1
|
Xu R, Huang F, Liu Q, Lv Y, Hu L, Zhang Q. USP25 attenuates anti-GBM nephritis in mice by negative feedback regulation of Th17 cell differentiation. Ren Fail 2024; 46:2338932. [PMID: 38616174 PMCID: PMC11018034 DOI: 10.1080/0886022x.2024.2338932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/30/2024] [Indexed: 04/16/2024] Open
Abstract
PURPOSE This study aimed to elucidate the role of USP25 in a mouse model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). METHODS USP25-deficient anti-GBM GN mice were generated, and their nephritis progression was monitored. Naïve CD4+ T cells were isolated from spleen lymphocytes and stimulated to differentiate into Th1, Th2, and Th17 cells. This approach was used to investigate the impact of USP25 on CD4+ T lymphocyte differentiation in vitro. Furthermore, changes in USP25 expression were monitored during Th17 differentiation, both in vivo and in vitro. RESULTS USP25-/- mice with anti-GBM GN exhibited accelerated renal function deterioration, increased infiltration of Th1 and Th17 cells, and elevated RORγt transcription. In vitro experiments demonstrated that USP25-/- CD4+ T lymphocytes had a higher proportion for Th17 cell differentiation and exhibited higher RORγt levels upon stimulation. Wild-type mice with anti-GBM GN showed higher USP25 levels compared to healthy mice, and a positive correlation was observed between USP25 levels and Th17 cell counts. Similar trends were observed in vitro. CONCLUSION USP25 plays a crucial role in mitigating renal histopathological and functional damage during anti-GBM GN in mice. This protective effect is primarily attributed to USP25's ability to inhibit the differentiation of naïve CD4+ T cells into Th17 cells. The underlying mechanism may involve the downregulation of RORγt. Additionally, during increased inflammatory responses or Th17 cell differentiation, USP25 expression is activated, forming a negative feedback regulatory loop that attenuates immune activation.
Collapse
Affiliation(s)
- Ranran Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Fei Huang
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Liu Hu
- Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qian Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
2
|
Liu P, Song X, Chen Q, Cen L, Tang C, Yu C, Xu C. Ubiquitin-specific peptidase 25 ameliorates hepatic steatosis by stabilizing peroxisome proliferator activated receptor alpha. J Biol Chem 2024:107876. [PMID: 39395794 DOI: 10.1016/j.jbc.2024.107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. USP25 in adipocytes has been proven to be involved in insulin resistance, a noteworthy characteristic of NAFLD. However, the roles of USP25 in NAFLD remain unclear. In this study, we aimed to elucidate the role of USP25 in NAFLD. Hepatic USP25 protein levels were measured in NAFLD patients and models. USP25 expression was manipulated in both mice and cells to evaluate its role in NAFLD. A downstream target of USP25 in NAFLD progression was identified through proteomic profiling analyses and confirmed. Additionally, a USP25 inhibitor was used to determine whether USP25 could be a viable treatment target for NAFLD. We found that USP25 protein levels were significantly decreased in the livers of NAFLD patients and NAFLD model mice. USP25 protein levels were also decreased in both mouse primary hepatocytes and Huh7 cells treated with free fatty acids (FFAs). We also found that Usp25 knockout mice presented much more severe hepatic steatosis when they were fed a high-fat diet. Similarly, knocking down USP25 in Huh7 cell lines aggravated FFA-induced steatosis, whereas USP25 overexpression ameliorated FFA-induced steatosis in Huh7 cell lines. Further proteomic profiling revealed that the PPARα signaling pathway was a downstream target of USP25, which was confirmed in both mice and cell lines. Moreover, USP25 could stabilize PPARα by promoting its deubiquitination. Finally, a USP25 inhibitor exacerbated diet-induced steatosis in mice. In conclusion, USP25 may play a role in NAFLD through the PPARα signaling pathway and could be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China. Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou 310006, China
| | - Xin Song
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingxia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China. Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou 310006, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Fan CX, Liu XR, Mei DQ, Li BM, Li WB, Xie HC, Wang J, Shen NX, Ye ZL, You QL, Li LY, Qu XC, Chen LZ, Liang JJ, Zhang MR, He N, Li J, Gao JY, Deng WY, Liu WZ, Wang WT, Liao WP, Chen Q, Shi YW. Heterozygous variants in USP25 cause genetic generalized epilepsy. Brain 2024; 147:3442-3457. [PMID: 38875478 DOI: 10.1093/brain/awae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology. Five heterozygous USP25 variants, including two de novo and three co-segregated variants, were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared with the East Asian population and all populations in the gnomAD database. The mean age at onset of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom, except that one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was expressed ubiquitously in mouse brain with two peaks, on embryonic Days 14-16 and postnatal Day 21, respectively. In human brain, likewise, USP25 is expressed in the fetus/early childhood stage and with a second peak at ∼12-20 years old, consistent with the seizure onset age in patients during infancy and in juveniles. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knockout mice, which showed increased seizure susceptibility compared with wild-type mice in a pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we used multiple functional detections. In HEK293 T cells, the variant associated with a severe phenotype (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed stable truncated dimers with an increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del variants increased neuronal excitability in mouse brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating that USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play an epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have a profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.
Collapse
Affiliation(s)
- Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Dao-Qi Mei
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huan-Cheng Xie
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ling-Ying Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Zhi Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jin-Jie Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jun-Ying Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Yi Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Zhe Liu
- Department of Stomatology of the second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Ting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qian Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
4
|
Hu Q, Zhang X, Peng H, Guan J, Huang Z, Jiang B, Sun D. A New Modulator of Neuroinflammation in Diabetic Retinopathy: USP25. Inflammation 2024; 47:1520-1535. [PMID: 38436811 PMCID: PMC11343827 DOI: 10.1007/s10753-024-01991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Diabetic retinopathy (DR) is a diabetes-associated complication that poses a threat to vision, distinguished by persistent and mild inflammation of the retinal microvasculature. The activation of microglia plays a crucial role in driving this pathological progression. Previous investigations have demonstrated that ubiquitin-specific peptidase 25 (USP25), a deubiquitinating enzyme, is involved in the regulation of immune cell activity. Nevertheless, the precise mechanisms through which USP25 contributes to the development of DR remain incompletely elucidated. Firstly, we have demonstrated the potential mechanism by which ROCKs can facilitate microglial activation and augment the synthesis of inflammatory mediators through the modulation of NF-κB signaling pathways in a high-glucose milieu. Furthermore, our study has provided novel insights by demonstrating that the regulatory role of USP25 in the secretion of proinflammatory factors is mediated through the involvement of ROCK in modulating the expression of NF-κB and facilitating the nuclear translocation of the phosphatase NF-κB. This regulatory mechanism plays a crucial role in modulating the activation of microglial cells within a high-glycemic environment. Hence, USP25 emerges as a pivotal determinant for the inflammatory activation of microglial cells, and its inhibition exhibits a dual effect of promoting retinal neuron survival while suppressing the inflammatory response in the retina. In conclusion, the promotion of diabetic retinopathy (DR) progression by USP25 is attributed to its facilitation of microglial activation induced by high glucose levels, a process mediated by the ROCK pathway. These findings highlight the importance of considering USP25 as a potential therapeutic target for the management of diabetic neuroinflammation.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
5
|
Hong L, Herjan T, Chen X, Zagore LL, Bulek K, Wang H, Yang CFJ, Licatalosi DD, Li X, Li X. Act1 drives chemoresistance via regulation of antioxidant RNA metabolism and redox homeostasis. J Exp Med 2024; 221:e20231442. [PMID: 38861022 PMCID: PMC11167376 DOI: 10.1084/jem.20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.
Collapse
Affiliation(s)
- Lingzi Hong
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xing Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Leah L. Zagore
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Han Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Donny D. Licatalosi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Takeda Pharmaceutical Company, San Diego, CA, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiao Li
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Patzke JV, Sauer F, Nair RK, Endres E, Proschak E, Hernandez-Olmos V, Sotriffer C, Kisker C. Structural basis for the bi-specificity of USP25 and USP28 inhibitors. EMBO Rep 2024; 25:2950-2973. [PMID: 38816515 PMCID: PMC11239673 DOI: 10.1038/s44319-024-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.
Collapse
Affiliation(s)
- Jonathan Vincent Patzke
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Radhika Karal Nair
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Erik Endres
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Li Y, Li L, Wang X, Zhao F, Yang Y, Zhou Y, Zhang J, Wang L, Jiang Z, Zhang Y, Chen Y, Wu C, Li K, Zhang T, Wang P, Mao Z, Zhu W, Xu X, Liang S, Lou Z, Yuan J. USP25 Elevates SHLD2-Mediated DNA Double-Strand Break Repair and Regulates Chemoresponse in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403485. [PMID: 38803048 PMCID: PMC11267380 DOI: 10.1002/advs.202403485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/29/2024]
Abstract
DNA damage plays a significant role in the tumorigenesis and progression of the disease. Abnormal DNA repair affects the therapy and prognosis of cancer. In this study, it is demonstrated that the deubiquitinase USP25 promotes non-homologous end joining (NHEJ), which in turn contributes to chemoresistance in cancer. It is shown that USP25 deubiquitinates SHLD2 at the K64 site, which enhances its binding with REV7 and promotes NHEJ. Furthermore, USP25 deficiency impairs NHEJ-mediated DNA repair and reduces class switch recombination (CSR) in USP25-deficient mice. USP25 is overexpressed in a subset of colon cancers. Depletion of USP25 sensitizes colon cancer cells to IR, 5-Fu, and cisplatin. TRIM25 is also identified, an E3 ligase, as the enzyme responsible for degrading USP25. Downregulation of TRIM25 leads to an increase in USP25 levels, which in turn induces chemoresistance in colon cancer cells. Finally, a peptide that disrupts the USP25-SHLD2 interaction is successfully identified, impairing NHEJ and increasing sensitivity to chemotherapy in PDX model. Overall, these findings reveal USP25 as a critical effector of SHLD2 in regulating the NHEJ repair pathway and suggest its potential as a therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yunhui Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Lei Li
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Xinshu Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Fei Zhao
- College of BiologyHunan UniversityChangsha410082China
| | - Yuntong Yang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yujuan Zhou
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Jiyuan Zhang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Li Wang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Zeshan Jiang
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| | - Yuanyuan Zhang
- Department of General Surgery and Colorectal SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yuping Chen
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200080China
| | - Chenming Wu
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Ping Wang
- Tongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineShanghai200072China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal‐Fetal MedicineClinical and Translational Research Center of Shanghai First Maternity and Infant HospitalFrontier Science Center for Stem Cell ResearchTongji University School of MedicineShanghai200040China
| | - Weiguo Zhu
- International Cancer CenterGuangdong Key Laboratory of Genome Instability and Human Disease PreventionMarshall Laboratory of Biomedical EngineeringDepartment of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhen518037China
| | - Xingzhi Xu
- The Sixth Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University School of MedicineShenzhen518055China
| | - Shikang Liang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong Kong SAR999077Hong Kong
| | - Zhenkun Lou
- Department of OncologyMayo ClinicRochesterMNUSA
| | - Jian Yuan
- Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Cancer CenterTongji University School of MedicineShanghai200331China
- Department of Biochemistry and Molecular BiologyTongji University School of MedicineShanghai200331China
| |
Collapse
|
8
|
Peroumal D, Biswas PS. Kidney-Specific Interleukin-17 Responses During Infection and Injury. Annu Rev Immunol 2024; 42:35-55. [PMID: 37906942 DOI: 10.1146/annurev-immunol-052523-015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure-mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Kim HJ, Choi Y, Lee Y, Hwangbo M, Kim J. OTUD6A orchestrates complex modulation of TEAD4-mediated transcriptional programs. FEBS Lett 2024; 598:1045-1060. [PMID: 38594215 DOI: 10.1002/1873-3468.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/11/2024]
Abstract
TEAD transcription factors play a central role in the Hippo signaling pathway. In this study, we focused on transcriptional enhancer factor TEF-3 (TEAD4), exploring its regulation by the deubiquitinase OTU domain-containing protein 6A (OTUD6A). We identified OTUD6A as a TEAD4-interacting deubiquitinase, positively influencing TEAD-driven transcription without altering TEAD4 stability. Structural analyses revealed specific interaction domains: the N-terminal domain of OTUD6A and the YAP-binding domain of TEAD4. Functional assays demonstrated the positive impact of OTUD6A on the transcription of YAP-TEAD target genes. Despite no impact on TEAD4 nuclear localization, OTUD6A selectively modulated nuclear interactions, enhancing YAP-TEAD4 complex formation while suppressing VGLL4 (transcription cofactor vestigial-like protein 4)-TEAD4 interaction. Critically, OTUD6A facilitated YAP-TEAD4 complex binding to target gene promoters. Our study unveils the regulatory landscape of OTUD6A on TEAD4, providing insights into diseases regulated by YAP-TEAD complexes.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Yunsik Choi
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Yuri Lee
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Mi Hwangbo
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul, Korea
| |
Collapse
|
10
|
Jiang P, Jing Y, Zhao S, Lan C, Yang L, Dai X, Luo L, Cai S, Zhu Y, Miller H, Lai J, Zhang X, Zhao X, Wu Y, Yang J, Zhang W, Guan F, Zhong B, Umehara H, Lei J, Dong L, Liu C. Expression of USP25 associates with fibrosis, inflammation and metabolism changes in IgG4-related disease. Nat Commun 2024; 15:2627. [PMID: 38521787 PMCID: PMC10960850 DOI: 10.1038/s41467-024-45977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
IgG4-related disease (IgG4-RD) has complex clinical manifestations ranging from fibrosis and inflammation to deregulated metabolism. The molecular mechanisms underpinning these phenotypes are unclear. In this study, by using IgG4-RD patient peripheral blood mononuclear cells (PBMCs), IgG4-RD cell lines and Usp25 knockout mice, we show that ubiquitin-specific protease 25 (USP25) engages in multiple pathways to regulate fibrotic and inflammatory pathways that are characteristic to IgG4-RD. Reduced USP25 expression in IgG4-RD leads to increased SMAD3 activation, which contributes to fibrosis and induces inflammation through the IL-1β inflammatory axis. Mechanistically, USP25 prevents ubiquitination of RAC1, thus, downregulation of USP25 leads to ubiquitination and degradation of RAC1. Decreased RAC1 levels result in reduced aldolase A release from the actin cytoskeleton, which then lowers glycolysis. The expression of LYN, a component of the B cell receptor signalosome is also reduced in USP25-deficient B cells, which might result in B cell activation deficiency. Altogether, our results indicate a potential anti-inflammatory and anti-fibrotic role for USP25 and make USP25 a promising diagnostic marker and potential therapeutic target in IgG4-RD.
Collapse
Affiliation(s)
- Panpan Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Siyu Zhao
- Department Immunology, School of Medicine, Yangtze University, Jingzhou, 434000, China
| | - Caini Lan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xin Dai
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Li Luo
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yingzi Zhu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, USA
| | - Juan Lai
- GeneMind Biosciences Company Limited, Shenzhen, 518001, China
| | - Xin Zhang
- GeneMind Biosciences Company Limited, Shenzhen, 518001, China
| | - Xiaochao Zhao
- GeneMind Biosciences Company Limited, Shenzhen, 518001, China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Jingzhi Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, 250063, PR China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, 100730, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hisanori Umehara
- Department of Medicine, Nagahama City Hospital, Nagahama, 949-1701, Japan
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:BST20230454. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
12
|
Koh CH, Kim BS, Kang CY, Chung Y, Seo H. IL-17 and IL-21: Their Immunobiology and Therapeutic Potentials. Immune Netw 2024; 24:e2. [PMID: 38455465 PMCID: PMC10917578 DOI: 10.4110/in.2024.24.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 03/09/2024] Open
Abstract
Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the modulation of a wide range of immune responses. IL-17 serves as a critical defender against bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal microbiota. However, alterations in its levels can lead to chronic inflammation and autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important role in both health and disease. Delving into the intricacies of these cytokines not only opens new avenues for understanding the immune system, but also promises innovative advances in the development of therapeutic strategies for numerous diseases. In this review, we will discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Kalinderi K, Papaliagkas V, Fidani L. The Genetic Landscape of Sleep Disorders in Parkinson's Disease. Diagnostics (Basel) 2024; 14:106. [PMID: 38201415 PMCID: PMC10795795 DOI: 10.3390/diagnostics14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Parknson's disease (PD) is the second most common neurodegenerative disease, affecting 1% of people aged over 60. PD is characterized by a wide range of motor symptoms, however the clinical spectrum of PD covers a wide range of non-motor symptoms, as well. Sleep disorders are among the most common non-motor symptoms of PD, can occur at any stage of the disease and significantly affect quality of life. These include rapid eye movement sleep behavior disorder (RBD), restless legs syndrome (RLS), excessive daytime sleepiness (EDS), insomnia, obstructive sleep apnea (OSA) and circadian rhythm disturbances. One of the main challenges in PD research is identifying individuals during the prodromal phase of the disease. Combining genetic and prodromal data may aid the early identification of individuals susceptible to PD. This review highlights current data regarding the genetic component of sleep disorders in PD patients, focusing on genes that have currently been associated with this PD co-morbidity.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
14
|
Jiang W, Li M, Peng S, Hu T, Long Y, Zhang J, Peng D, Shen Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol Res 2023; 71:800-813. [PMID: 37291329 DOI: 10.1007/s12026-023-09400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Mengling Li
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Siyuan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Tian Hu
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yan Long
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Jiayi Zhang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Dan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China.
| |
Collapse
|
15
|
Teo QW, Wong HH, Heunis T, Stancheva V, Hachim A, Lv H, Siu L, Ho J, Lan Y, Mok CKP, Ulferts R, Sanyal S. Usp25-Erlin1/2 activity limits cholesterol flux to restrict virus infection. Dev Cell 2023; 58:2495-2509.e6. [PMID: 37683630 PMCID: PMC10914638 DOI: 10.1016/j.devcel.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/20/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Reprogramming lipid metabolic pathways is a critical feature of activating immune responses to infection. However, how these reconfigurations occur is poorly understood. Our previous screen to identify cellular deubiquitylases (DUBs) activated during influenza virus infection revealed Usp25 as a prominent hit. Here, we show that Usp25-deleted human lung epithelial A549 cells display a >10-fold increase in pathogenic influenza virus production, which was rescued upon reconstitution with the wild type but not the catalytically deficient (C178S) variant. Proteomic analysis of Usp25 interactors revealed a strong association with Erlin1/2, which we confirmed as its substrate. Newly synthesized Erlin1/2 were degraded in Usp25-/- or Usp25C178S cells, activating Srebp2, with increased cholesterol flux and attenuated TLR3-dependent responses. Our study therefore defines the function of a deubiquitylase that serves to restrict a range of viruses by reprogramming lipid biosynthetic flux to install appropriate inflammatory responses.
Collapse
Affiliation(s)
- Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ho Him Wong
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Viktoriya Stancheva
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Asmaa Hachim
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lewis Siu
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Julian Ho
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yun Lan
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Gong Y, Yu T, Shuai W, Chen T, Zhang J, Huang H. USP38 exacerbates atrial inflammation, fibrosis, and susceptibility to atrial fibrillation after myocardial infarction in mice. Mol Med 2023; 29:157. [PMID: 37953295 PMCID: PMC10641944 DOI: 10.1186/s10020-023-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Inflammation plays an important role in the pathogenesis of atrial fibrillation (AF) after myocardial infarction (MI). The role of USP38, a member of the ubiquitin-specific protease family, on MI-induced atrial inflammation, fibrosis, and associated AF is unclear. METHODS In this study, we surgically constructed a mouse MI model using USP38 cardiac conditional knockout (USP38-CKO) and cardiac-specific overexpression (USP38-TG) mice and applied biochemical, histological, electrophysiological characterization and molecular biology to investigate the effects of USP38 on atrial inflammation, fibrosis, and AF and its mechanisms. RESULTS Our results revealed that USP38-CKO attenuates atrial inflammation, thereby ameliorating fibrosis, and abnormal electrophysiologic properties, and reducing susceptibility to AF on day 7 after MI. USP38-TG showed the opposite effect. Mechanistically, The TAK1/NF-κB signaling pathway in the atria was significantly activated after MI, and phosphorylated TAK1, P65, and IκBα protein expression was significantly upregulated. USP38-CKO inhibited the activation of the TAK1/NF-κB signaling pathway, whereas USP38-TG overactivated the TAK1/NF-κB signaling pathway after MI. USP38 is dependent on the TAK1/NF-κB signaling pathway and regulates atrial inflammation, fibrosis, and arrhythmias after MI to some extent. CONCLUSIONS USP38 plays an important role in atrial inflammation, fibrosis, and AF susceptibility after MI, providing a promising target for the treatment of AF after MI.
Collapse
Affiliation(s)
- Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tingting Yu
- Department of Respiratory Medicine, Hubei Veterans Hospital, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
17
|
Liu B, Miao X, Shen J, Lou L, Chen K, Mei F, Chen M, Su X, Du X, Zhu Z, Song W, Wang X. USP25 ameliorates diabetic nephropathy by inhibiting TRAF6-mediated inflammatory responses. Int Immunopharmacol 2023; 124:110877. [PMID: 37657242 DOI: 10.1016/j.intimp.2023.110877] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetic vascular complication affecting nearly 40% of patients with diabetes. The lack of efficacious therapy for DKD necessitates the in-depth investigation of the molecular mechanisms underlying the pathogenesis and progression of DKD, which remain incompletely understood. Here, we discovered that the expression of USP25, a deubiquitinating enzyme, was significantly upregulated in the kidney of diabetic mice. Ablation of USP25 had no influence on glycemic control in type 1 diabetes but significantly aggravated diabetes-induced renal dysfunction and fibrosis by exacerbating inflammation in the kidney. In DKD, USP25 was mainly expressed in glomerular mesangial cells and kidney-infiltrating macrophages. Upon stimulation with advanced glycation end-products (AGEs), USP25 markedly inhibited the production of proinflammatory cytokines in these two cell populations by downregulating AGEs-induced activation of NF-κB and MAPK pathways. Mechanistically, USP25 interacted with TRAF6 and inhibited its K63 polyubiquitination induced by AGEs. Collectively, these findings identify USP25 as a novel regulator of DKD.
Collapse
Affiliation(s)
- Baohua Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xiaomin Miao
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Jiangyun Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Liyan Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Kangmin Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Fuqi Mei
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Meng Chen
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xian Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Xue Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Zhenhu Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Weihong Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
18
|
Hakimi P, Tabatabaei F, Rahmani V, Zakariya NA, Moslehian MS, Bedate AM, Tamadon A, Rahbarghazi R, Mahdipour M. Dysregulated miRNAs in recurrent miscarriage: A systematic review. Gene 2023; 884:147689. [PMID: 37543220 DOI: 10.1016/j.gene.2023.147689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Recurrent miscarriage (RM) is a complex reproductive medicine disease that affects many families. The cause of RM is unclear at this time; however, lifestyle and genetic variables may influence the process. The slight alteration in miRNA expression has enormous consequences for a variety of difficulties, one of which may be RM. The target of this systematic study was to provide a framework of the dysregulated miRNAs in RM. The Prisma guidelines were applied to perform current systematic review pertaining to articles in the seven databases. Thirty-nine papers out of 245 received fulfilled all inclusion requirements. From all the mentioned miRNAs, 40 were up-regulated (65.57 %), whereas 21 were down-regulated (34.43 %). These dysregulated miRNAs contributed to the pathophysiology of RM by influencing key pathways and processes such as apoptosis, angiogenesis, epithelial-mesenchymal transition, and the immune system. Understanding the dysregulation of miRNAs, as well as the pathways and processes that engage these miRNAs and impact disease pathogenesis, may aid in clarifying the unknown underlying mechanisms of RM and the development of novel molecular therapeutic targets and medical domains.
Collapse
Affiliation(s)
- Parvin Hakimi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Tabatabaei
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Division of Gynecologic Laparoscopic, Surgeries, Al-Zahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian Society of Minimally Invasive Gynecology, Iran University of Medical, Sciences, Tehran, Iran
| | - Vahideh Rahmani
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Afshar Zakariya
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Amin Tamadon
- PerciaVista R&D Co, Shiraz, Iran; Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
20
|
Sui J, Dai F, Shi J, Zhou C. Ubiquitin-specific peptidase 25 exacerbated osteoarthritis progression through facilitating TXNIP ubiquitination and NLRP3 inflammasome activation. J Orthop Surg Res 2023; 18:762. [PMID: 37814350 PMCID: PMC10561454 DOI: 10.1186/s13018-023-04083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/06/2023] [Indexed: 10/11/2023] Open
Abstract
Several members of the ubiquitin-specific proteases (USPs) family have been revealed to regulate the progression of osteoarthritis (OA). The current study aimed to investigate the role and the underlying mechanism of USP25 in IL-1β-induced chondrocytes and OA rat model. It was discovered that IL-1β stimulation upregulated USP25, increased ROS level, and suppressed cell viability in rat chondrocytes. Besides, USP25 knockdown alleviated IL-1β-induced injury by decreasing ROS level, attenuating pyroptosis, and downregulating the expression of IL-18, NLRP3, GSDMD-N, active caspase-1, MMP-3, and MMP-13. Furthermore, we discovered that USP25 affected the IL-1β-induced injury in chondrocytes in a ROS-dependent manner. Moreover, USP25 was revealed to interact with TXNIP, and USP25 knockdown increased the ubiquitination of TXNIP. The pro-OA effect of USP25 abundance could be overturned by TXNIP suppression in IL-1β-induced chondrocytes. Finally, in vivo experiment results showed that USP25 inhibition alleviated cartilage destruction in OA rats. In conclusion, we demonstrated that USP25 stimulated the overproduction of ROS to activate the NLRP3 inflammasome via regulating TXNIP, resulting in increased pyroptosis and inflammation in OA.
Collapse
Affiliation(s)
- Jie Sui
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China
| | - Fei Dai
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China
| | - Jiusheng Shi
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China.
| | - Changcheng Zhou
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
21
|
Li Z, Liu B, Lambertsen KL, Clausen BH, Zhu Z, Du X, Xu Y, Poulsen FR, Halle B, Bonde C, Chen M, Wang X, Schlüter D, Huang J, Waisman A, Song W, Wang X. USP25 Inhibits Neuroinflammatory Responses After Cerebral Ischemic Stroke by Deubiquitinating TAB2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301641. [PMID: 37587766 PMCID: PMC10558664 DOI: 10.1002/advs.202301641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Cerebral ischemic stroke is a leading cause of morbidity and mortality globally. However, the mechanisms underlying ischemic stroke injury remain poorly understood. Here, it is found that deficiency of the ubiquitin-specific protease USP25 significantly aggravate ischemic stroke injury in mice. USP25 has no impact on neuronal death under hypoxic conditions, but reduced ischemic stroke-induced neuronal loss and neurological deficits by inhibiting microglia-mediated neuroinflammation. Mechanistically, USP25 restricts the activation of NF-κB and MAPK signaling by regulating TAB2. As a deubiquitinating enzyme, USP25 removeds K63-specific polyubiquitin chains from TAB2. AAV9-mediated TAB2 knockdown ameliorates ischemic stroke injury and abolishes the effect of USP25 deletion. In both mouse and human brains, USP25 is markedly upregulated in microglia in the ischemic penumbra, implying a clinical relevance of USP25 in ischemic stroke. Collectively, USP25 is identified as a critical inhibitor of ischemic stroke injury and this data suggest USP25 may serve as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Zhongding Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Baohua Liu
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Kate Lykke Lambertsen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense C5000Denmark
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurologyOdense University HospitalOdense C5000Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdense C5000Denmark
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xue Du
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Yanqi Xu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Frantz Rom Poulsen
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Bo Halle
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Christian Bonde
- BRIDGE – Brain Research – Inter Disciplinary Guided ExcellenceDepartment of Clinical ResearchUniversity of Southern DenmarkOdense C5000Denmark
- Department of NeurosurgeryOdense University HospitalOdense C5000Denmark
| | - Meng Chen
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xue Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical School30625HannoverGermany
| | - Jingyong Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325015China
| | - Ari Waisman
- Institute for Molecular MedicineJohannes Gutenberg University Mainz55131MainzGermany
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhou325035China
| | - Xu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
22
|
Vozandychova V, Rehulka P, Hercik K, Spidlova P, Pavlik P, Hanus J, Hadravova R, Stulik J. Modified activities of macrophages' deubiquitinating enzymes after Francisella infection. Front Immunol 2023; 14:1252827. [PMID: 37841261 PMCID: PMC10570801 DOI: 10.3389/fimmu.2023.1252827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jaroslav Hanus
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Czechia
| | - Romana Hadravova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
23
|
Liu Y, Ma J, Lu S, He P, Dong W. USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway. Chin Med J (Engl) 2023; 136:2229-2242. [PMID: 37439386 PMCID: PMC10508383 DOI: 10.1097/cm9.0000000000002714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC. METHODS We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25. RESULTS USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo . CONCLUSIONS In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory of Renmin Hospital, Wuhan, Hubei 430060, China
| | - Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shimin Lu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory of Renmin Hospital, Wuhan, Hubei 430060, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
24
|
Douglas A, Stevens B, Lynch L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 2023; 5:1088-1100. [PMID: 37488456 PMCID: PMC10440016 DOI: 10.1038/s42255-023-00846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Cai F, Song B, Yang Y, Liao H, Li R, Wang Z, Cao R, Chen H, Wang J, Wu Y, Zhang Y, Song W. USP25 contributes to defective neurogenesis and cognitive impairments. FASEB J 2023; 37:e22971. [PMID: 37171286 DOI: 10.1096/fj.202300057r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Both Down syndrome (DS) individuals and animal models exhibit hypo-cellularity in hippocampus and neocortex indicated by enhanced neuronal death and compromised neurogenesis. Ubiquitin-specific peptidase 25 (USP25), a human chromosome 21 (HSA21) gene, encodes for a deubiquitinating enzyme overexpressed in DS patients. Dysregulation of USP25 has been associated with Alzheimer's phenotypes in DS, but its role in defective neurogenesis in DS has not been defined. In this study, we found that USP25 upregulation impaired cell cycle regulation during embryonic neurogenesis and cortical development. Overexpression of USP25 in hippocampus promoted the neural stem cells to glial cell fates and suppressed neuronal cell fate by altering the balance between cyclin D1 and cyclin D2, thus reducing neurogenesis in the hippocampus. USP25-Tg mice showed increased anxiety/depression-like behaviors and learning and memory deficits. These results suggested that USP25 overexpression resulted in defective neurogenesis and cognitive impairments, which could contribute to the pathogenesis of DS. USP25 may be a potential pharmaceutical target for DS.
Collapse
Affiliation(s)
- Fang Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yi Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haikang Liao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ran Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruixue Cao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Luo W, Zhang G, Wang Z, Wu Y, Xiong Y. Ubiquitin-specific proteases: Vital regulatory molecules in bone and bone-related diseases. Int Immunopharmacol 2023; 118:110075. [PMID: 36989900 DOI: 10.1016/j.intimp.2023.110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Stabilization of bone structure and function involves multiple cell-to-cell and molecular interactions, in which the regulatory functions of post-translational modifications such as ubiquitination and deubiquitination shouldn't be underestimated. As the largest family of deubiquitinating enzymes, the ubiquitin-specific proteases (USPs) participate in the development of bone homeostasis and bone-related diseases through multiple classical osteogenic and osteolytic signaling pathways, such as BMP/TGF-β pathway, NF-κB/p65 pathway, EGFR-MAPK pathway and Wnt/β-catenin pathway. Meanwhile, USPs may also broadly regulate regulate hormone expression level, cell proliferation and differentiation, and may further influence bone homeostasis from gene fusion and nuclear translocation of transcription factors. The number of patients with bone-related diseases is currently enormous, making exploration of their pathogenesis and targeted therapy a hot topic. Pathological increases in the levels of inflammatory mediators such as IL-1β and TNF-α lead to inflammatory bone diseases such as osteoarthritis, rheumatoid arthritis and periodontitis. While impaired body metabolism greatly increases the probability of osteoporosis. Abnormal physiological activity of bone-associated cells results in a variety of bone tumors. The regulatory role of USPs in bone-related disease has received particular attention from academics in recent studies. In this review, we focuse on the roles and mechanisms of USPs in bone homeostasis and bone-related diseases, with the expectation of informing targeted therapies in the clinic.
Collapse
Affiliation(s)
- Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Zhao Y, Chen X, Lin Y, Li Z, Su X, Fan S, Chen Y, Wang X, Liang G. USP25 inhibits renal fibrosis by regulating TGFβ-SMAD signaling pathway in Ang II-induced hypertensive mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166713. [PMID: 37059312 DOI: 10.1016/j.bbadis.2023.166713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 04/16/2023]
Abstract
Renal fibrosis is a crucial pathological feature of hypertensive renal disease (HRD). In-depth analysis of the pathogenesis of fibrosis is of great significance for the development of new drugs for the treatment of HRD. USP25 is a deubiquitinase that can regulate the progression of many diseases, but its function in the kidney remains unclear. We found that USP25 was significantly increased in human and mice HRD kidney tissues. In the HRD model induced by Ang II, USP25-/- mice showed significant aggravation of renal dysfunction and fibrosis compared with the control mice. Consistently, AAV9-mediated overexpression of USP25 significantly improved renal dysfunction and fibrosis. Mechanistically, USP25 inhibited the TGF-β pathway by reducing SMAD4 K63-linked polyubiquitination, thereby suppressing SMAD2 nuclear translocation. In conclusion, this study demonstrates for the first time that the deubiquitinase USP25 plays an important regulatory role in HRD.
Collapse
Affiliation(s)
- Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xi Chen
- Department of Pharmacology, Medical College, Taizhou University, Taizhou, Jiaojiang 318000, Zhejiang, China
| | - Yimin Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongding Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xian Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shijie Fan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
28
|
Li R, Song B, Xu L, Zheng J, Pan W, Cai F, Wang J, Wu Y, Song W. Regulation of USP25 by SP1 Associates with Amyloidogenesis. J Alzheimers Dis 2023; 92:1459-1472. [PMID: 36938736 DOI: 10.3233/jad-221184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
BACKGROUND Trisomy 21, an extra copy of human chromosome 21 (HSA21), causes most Down's syndrome (DS) cases. Individuals with DS inevitably develop Alzheimer's disease (AD) neuropathological phenotypes after middle age including amyloid plaques and tau neurofibrillary tangles. Ubiquitin Specific Peptidase 25 (USP25), encoding by USP25 gene located on HSA21, is a deubiquitinating enzyme, which plays an important role in both DS and AD pathogenesis. However, the regulation of USP25 remains unclear. OBJECTIVE We aimed to determine the regulation of USP25 by specificity protein 1 (SP1) in neuronal cells and its potential role in amyloidogenesis. METHODS The transcription start site and promoter activity was identified by SMART-RACE and Dual-luciferase assay. Functional SP1-responsive elements were examined by EMSA. USP25 expression was examined by RT-PCR and immunoblotting. Student's t-test or one-way ANOVA were applied or statistical analysis. RESULTS The transcription start site of human USP25 gene was identified. Three functional SP1 responsive elements in human USP25 gene were revealed. SP1 promotes USP25 transcription and subsequent USP25 protein expression, while SP1 inhibition significantly reduces USP25 expression in both non-neuronal and neuronal cells. Moreover, SP1 inhibition dramatically reduces amyloidogenesis. CONCLUSION We demonstrates that transcription factor SP1 regulates USP25 gene expression, which associates with amyloidogenesis. It suggests that SP1 signaling may play an important role in USP25 regulation and contribute to USP25-mediated DS and AD pathogenesis.
Collapse
Affiliation(s)
- Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Lu Xu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiali Zheng
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhao Pan
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihong Song
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province,Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
29
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
30
|
Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, Han J, Han X, Huang W, Wu G, Wang X, Liang G. USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes. Circ Res 2023; 132:465-480. [PMID: 36722348 DOI: 10.1161/circresaha.122.321849] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. METHODS The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. RESULTS We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. CONCLUSIONS We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.
Collapse
Affiliation(s)
- Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Hao Zhou
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Wante Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.)
| | - Weijian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Xu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences (X.W.), Wenzhou Medical University, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences (B.Y., Y.C.,W. Luo, W. Lin, Y. Z, J.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital (B.Y., H.Z., Y.C., W. Luo, W. Lin, W.H., G.W., G.L.), Wenzhou Medical University, Zhejiang, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (X.H., G.L.)
| |
Collapse
|
31
|
Li H, Wang N, Jiang Y, Wang H, Xin Z, An H, Pan H, Ma W, Zhang T, Wang X, Lin W. E3
ubiquitin ligase
NEDD4L
negatively regulates inflammation by promoting ubiquitination of
MEKK2. EMBO Rep 2022; 23:e54603. [PMID: 36161689 PMCID: PMC9638856 DOI: 10.15252/embr.202254603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Aberrant activation of inflammation signaling triggered by tumor necrosis factor α (TNF‐α), interleukin‐1 (IL‐1), and interleukin‐17 (IL‐17) is associated with immunopathology. Here, we identify neural precursor cells expressed developmentally down‐regulated gene 4‐like (NEDD4L), a HECT type E3 ligase, as a common negative regulator of signaling induced by TNF‐α, IL‐1, and IL‐17. NEDD4L modulates the degradation of mitogen‐activated protein kinase kinase kinase 2 (MEKK2) via constitutively and directly binding to MEKK2 and promotes its poly‐ubiquitination. In interleukin‐17 receptor (IL‐17R) signaling, Nedd4l knockdown or deficiency enhances IL‐17‐induced p38 and NF‐κB activation and the production of proinflammatory cytokines and chemokines in a MEKK2‐dependent manner. We further show that IL‐17‐induced MEKK2 Ser520 phosphorylation is required not only for downstream p38 and NF‐κB activation but also for NEDD4L‐mediated MEKK2 degradation and the subsequent shutdown of IL‐17R signaling. Importantly, Nedd4l‐deficient mice show increased susceptibility to IL‐17‐induced inflammation and aggravated symptoms of experimental autoimmune encephalomyelitis (EAE) in IL‐17R signaling‐dependent manner. These data suggest that NEDD4L acts as an inhibitor of IL‐17R signaling, which ameliorates the pathogenesis of IL‐17‐mediated autoimmune diseases.
Collapse
Affiliation(s)
- Hui Li
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
- Department of Medical Oncology The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou China
- Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou China
| | - Ning Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Yu Jiang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Haofei Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Zengfeng Xin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Huazhang An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital Jinan China
| | - Hao Pan
- Department of Urology, The First Affiliated Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Wangqian Ma
- Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Ting Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xiaojian Wang
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| | - Wenlong Lin
- Institute of Immunology and Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine Zhejiang China
| |
Collapse
|
32
|
Liu X, Luo W, Chen J, Hu C, Mutsinze RN, Wang X, Zhang Y, Huang L, Zuo W, Liang G, Wang Y. USP25 Deficiency Exacerbates Acute Pancreatitis via Up-Regulating TBK1-NF-κB Signaling in Macrophages. Cell Mol Gastroenterol Hepatol 2022; 14:1103-1122. [PMID: 35934222 PMCID: PMC9490099 DOI: 10.1016/j.jcmgh.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Severe acute pancreatitis can easily lead to systemic inflammatory response syndrome and death. Macrophages are known to be involved in the pathophysiology of acute pancreatitis (AP), and macrophage activation correlates with disease severity. In this study, we examined the role of ubiquitin-specific protease 25, a deubiquitinating enzyme and known regulator of macrophages, in the pathogenesis of AP. METHODS We used L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP in Usp25-/- mice and wild-type mice. We also generated bone marrow Usp25-/- chimeric mice and initiated L-arginine-mediated AP. Primary acinar cells and bone marrow-derived macrophages were isolated from wild-type and Usp25-/- mice to dissect molecular mechanisms. RESULTS Our results show that Usp25 deficiency exacerbates pancreatic and lung injury, neutrophil and macrophage infiltration, and systemic inflammatory responses in L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP. Bone marrow Usp25-/- chimeric mice challenged with L-arginine show that Usp25 deficiency in macrophages exaggerates AP by up-regulating the TANK-binding kinase 1 (TBK1)-nuclear factor-κB (NF-κB) signaling pathway. Similarly, in vitro data confirm that Usp25 deficiency enhances the TBK1-NF-κB pathway, leading to increased expression of inflammatory cytokines in bone marrow-derived macrophages. CONCLUSIONS Usp25 deficiency in macrophages enhances TBK1-NF-κB signaling, and the induction of inflammatory chemokines and type I interferon-related genes exacerbates pancreatic and lung injury in AP.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rumbidzai N. Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China,Correspondence Address correspondence to: Yi Wang, PhD, Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. fax: (86) 577 85773060
| |
Collapse
|
33
|
Aslani MR, Sharghi A, Boskabady MH, Ghobadi H, Keyhanmanesh R, Alipour MR, Ahmadi M, Saadat S, Naghizadeh P. Altered gene expression levels of IL-17/TRAF6/MAPK/USP25 axis and pro-inflammatory cytokine levels in lung tissue of obese ovalbumin-sensitized rats. Life Sci 2022; 296:120425. [PMID: 35202642 DOI: 10.1016/j.lfs.2022.120425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
AIMS The association between asthma and obesity has been shown but its accurate mechanism is unknown. In the current study, we sought to investigate the gene expression levels of IL-17/TRAF6/MAPK/USP25 axis and pro-inflammatory cytokine level (IL-6, IL-1β, and TNF-α) in obese Ovalbumin (OVA)-sensitized female and male Wistar rats lung tissue. MAIN METHODS Animals in both males and females were divided into eight groups (four groups in each sex) based on diet and OVA-sensitization: normal diet, a normal diet with OVA-sensitization, high-fat diet (HFD), and OVA-sensitization with an HFD. KEY FINDINGS In both sexes, obese OVA-sensitized rats, the methacholine concentration-response curve shifted to the left and EC50 methacholine decreased. Increased pro-inflammatory cytokines as well as elevated IL-17/TRAF6/MAPK axis genes and decreased USP25 gene expression were identified in obese OVA-sensitized groups. SIGNIFICANCE The results indicate that in obese OVA-sensitized rats, the IL-17 axis were involved in the pathogenesis of the disease and can be considered as a therapeutic target in subjects with obesity-related asthma.
Collapse
Affiliation(s)
- Mohammad Reza Aslani
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshan Sharghi
- Department of Community Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hassan Ghobadi
- Internal Medicine Department, Pulmonary Division, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Rana Keyhanmanesh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Parya Naghizadeh
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
34
|
Deubiquitination of TNKS1 Regulates Wnt/β-Catenin to Affect the Expression of USP25 to Promote the Progression of Glioma. DISEASE MARKERS 2022; 2022:9087190. [PMID: 35450028 PMCID: PMC9017575 DOI: 10.1155/2022/9087190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Objective To explore the regulatory effect of ubiquitin specific protease 25 (USP25) on glioma cell proliferation, migration, invasion, and its underlying mechanism. Methods The USP25-overexpressed and USP25-knockdown glioma cells were established on U251 and U87 cells, respectively. Glioma cell proliferation ability was evaluated by CCK-8 assay. Cell apoptosis and cell cycle were determined utilizing flow cytometry. The Transwell assay measured cell invasion with wound healing used for cell migration detection. Western blotting established key protein expression levels in the Wnt/β-catenin pathway. The coimmunoprecipitation was used to check Thankyrase 1 (TNKS1) ubiquitination levels. Results TNKS1 expression levels were found to be considerably repressed in USP25-knockdown glioma cells and elevated in USP25-overexpressed glioma cells, accompanied by Wnt/β-catenin pathway key protein downregulation and upregulation, respectively. Glioma cell invasion, migration, and proliferation activity were dramatically inhibited in USP25-knockdown glioma cells and promoted in USP25-overexpressed glioma cells. TNKS1 ubiquitination level was knowingly increased in USP25-knockdown glioma cells and reduced in USP25-overexpressed glioma cells, suggesting TNKS1 ubiquitination levels were negatively regulated by USP25. Conclusion USP25 facilitated glioma cell invasion, migration, and proliferation by regulating Wnt/β-catenin through the deubiquitination on TNKS1.
Collapse
|
35
|
Morgado-Palacin L. Bo Zhong: Captive by the viral immune escape. J Cell Biol 2022; 221:e202202057. [PMID: 35195660 PMCID: PMC8932527 DOI: 10.1083/jcb.202202057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bo Zhong studies the regulation of the antiviral innate immunity, inflammation, and tumorigenesis by the protein ubiquitination system.
Collapse
|
36
|
Zheng Q, Song B, Li G, Cai F, Wu M, Zhao Y, Jiang L, Guo T, Shen M, Hou H, Zhou Y, Zhao Y, Di A, Zhang L, Zeng F, Zhang XF, Luo H, Zhang X, Zhang H, Zeng Z, Huang TY, Dong C, Qing H, Zhang Y, Zhang Q, Wang X, Wu Y, Xu H, Song W, Wang X. USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and Aβ generation. J Clin Invest 2022; 132:152170. [PMID: 35229730 PMCID: PMC8884900 DOI: 10.1172/jci152170] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/11/2022] [Indexed: 02/02/2023] Open
Abstract
Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer’s disease (AD), implicating key roles for chromosome 21–encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene–mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted β cleavage of APP and Aβ generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.
Collapse
Affiliation(s)
- Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guilin Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meiling Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyu Shen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huan Hou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Anjie Di
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fanwei Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chen Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xu Wang
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neuroscience, Center for Brain Sciences, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Chen R, Pang X, Li L, Zeng Z, Chen M, Zhang S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis 2022; 13:139. [PMID: 35145062 PMCID: PMC8831562 DOI: 10.1038/s41419-022-04566-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
The exact pathogenesis of inflammatory bowel disease (IBD), a chronic gastrointestinal inflammatory disease comprising Crohn’s disease and ulcerative colitis, remains unclear. Studies on ubiquitination, which regulates the degradation of inflammation signalling pathway molecules, and deubiquitination have provided novel insights. Targeting the ubiquitin-specific protease (USP) family of deubiquitinases elucidates IBD signalling pathway mechanisms and possibly, IBD therapeutic solutions. Here, we characterised USPs as chief regulators of pro-inflammatory signalling pathways, including nuclear factor-κB and transforming growth factor-β; analysed the relationship between USPs and IBD pathogenesis in terms of genetic susceptibility, intestinal epithelial barrier, immunity, and gut microbiota; and discussed future research prospects.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobai Pang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
38
|
Gan C, Wang Y, Zhao Q, Kong M, Chen J, Zhang W, Tan L, Tian M. USP25 inhibits DNA damage by stabilizing BARD1 protein in a house dust mite‐induced asthmatic model
in vitro
and
in vivo. Cell Biol Int 2022; 46:922-932. [PMID: 35143098 DOI: 10.1002/cbin.11775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Cong Gan
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Ye Wang
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Qian Zhao
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Mi Kong
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Jinnan Chen
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Wanying Zhang
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Lingxiao Tan
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| | - Man Tian
- Department of RespiratoryChildren's Hospital of Nanjing Medical UniversityNanjing210000China
| |
Collapse
|
39
|
Shen J, Fu B, Wu Y, Yang Y, Lin X, Lin H, Liu H, Huang W. USP25 Expression in Peripheral Blood Mononuclear Cells Is Associated With Bone Mineral Density in Women. Front Cell Dev Biol 2022; 9:811611. [PMID: 35141233 PMCID: PMC8819182 DOI: 10.3389/fcell.2021.811611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most common metabolic bone disease in postmenopausal women. As precursors of osteoclasts, peripheral blood mononuclear cells are accessible and considered suitable models for studying osteoporosis pathology. Ubiquitination is a crucial protein degradation system in bone metabolism. The aim of this study was to identify potential ubiquitination-related genes in PBMCs that are related to osteoporosis pathogenesis. Therefore, we performed an integrated analysis of osteoporosis-related microarray datasets. With the obtained ubiquitination-related gene set, weighted gene coexpression network analysis was performed. The results showed that genes in the turquoise module were correlated with menopause, and 48 genes were identified as hub genes. A differential expression analysis revealed 43 differentially expressed genes between pre- and postmenopausal samples. After integrating the information on differentially expressed menopause-related genes, we found that several members of the ubiquitin-specific protease (USP) family (USP1, USP7, USP9X, USP16, and USP25) were highly expressed in samples from postmenopausal female and that, USP25 expression was significantly higher in low-BMD samples than in high-BMD samples among samples from premenopausal subjects (p = 0.0013) and among all samples (p = 0.013). Finally, we verified the protein expression of USP25 in PBMCs by performing Western blot analysis, which yielded results consistent with the aforementioned results. Moreover, by assessing GTEx datasets, we found that USP25 expression was highly correlated with TRAF6 expression in whole blood (p < 0.001). We also tested the protein expression levels of TRAF6 in PBMCs and found that it was positively correlated with USP25 expression (p = 0.036). Our results reveal that the ubiquitin-specific protease family may play important roles in menopause and that USP25 is related to osteoporosis pathogenesis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoning Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| |
Collapse
|
40
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
41
|
Wu W, Huang S, Xie X, Chen C, Yan Z, Lv X, Fan Y, Chen C, Yue F, Yang B. Raman spectroscopy may allow rapid noninvasive screening of keratitis and conjunctivitis. Photodiagnosis Photodyn Ther 2021; 37:102689. [PMID: 34933166 DOI: 10.1016/j.pdpdt.2021.102689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/30/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Keratitis and conjunctivitis are the most common ocular diseases, their symptoms are similar and easy to confuse, however infectious conjunctivitis is highly contagious. If misdiagnosed, it may worsen the disease and pose a threat to public health.This is a preclinical study to propose a method for rapid and accurate screening of keratitis and conjunctivitis by combining tear Raman spectroscopy with deep learning models that may be applied to clinical applications in the future.The tears of 16 cases of keratitis patients, 13 cases of conjunctivitis patients and 46 cases of healthy subjects were collected, and their Raman spectra were compared and analyzed. By adding different decibels of Gaussian white noise to expand the data, the performance of the tear Raman spectra with a large sample size in the deep learning model was discussed. Principal component analysis (PCA), partial least squares (PLS) and maximum correlation minimum redundancy (mRMR) were used for feature extraction. The processed data were imported into convolutional neural network (CNN) and recurrent neural network (RNN) depth models for classification. After the data were enhanced and processed by PLS, the highest classification accuracy of healthy subjects and keratitis patients, healthy subjects and conjunctivitis patients, and keratitis and conjunctivitis patients reached 94.8%, 95.4%, and 92.7%, respectively. The results of this study show that the use of large sample tear Raman spectra data combined with PLS feature extraction and depth learning algorithms may have great potential in clinical screening of keratitis and conjunctivitis.
Collapse
Affiliation(s)
- Wei Wu
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060 China
| | - Xiaodong Xie
- People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Ophthalmology, Urumqi 830001, China.
| | - Cheng Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Ziwei Yan
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; Key Laboratory of signal detection and processing, Xinjiang University, Urumqi 830046, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, China; Key Laboratory of signal detection and processing, Xinjiang University, Urumqi 830046, China
| | - Yangyang Fan
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; Key Laboratory of signal detection and processing, Xinjiang University, Urumqi 830046, China
| | - Feilong Yue
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Bo Yang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
42
|
Gao Y, Chen J, Ji R, Ding J, Zhang Y, Yang J. USP25 Regulates the Proliferation and Apoptosis of Ovarian Granulosa Cells in Polycystic Ovary Syndrome by Modulating the PI3K/AKT Pathway via Deubiquitinating PTEN. Front Cell Dev Biol 2021; 9:779718. [PMID: 34805185 PMCID: PMC8599287 DOI: 10.3389/fcell.2021.779718] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Polycystic ovarian syndrome (PCOS) is an endocrine-related disease related to abnormal folliculogenesis and is a leading cause of infertility worldwide. Inhibition of granulosa cells (GCs) proliferation and increased GCs apoptosis have been identified as the major factors in aberrant follicle maturation. Methods: USP25 and PTEN expression in GCs from women with and without PCOS was analyzed using Western blotting. A PCOS-like mouse model was constructed using USP25 knockout and wild-type mice to explore the role of USP25 in PCOS. The human granular cell line KGN was cultured for proliferation and apoptosis assays, and the effect of USP25 on PTEN was investigated after transfection with shRNA-USP25 lentivirus. Results: USP25 expression was found to be elevated in patients and mice with PCOS. With mouse model, we observed a reduction in PCOS symptoms in mice after USP25 deletion. Increased proliferation, reduced apoptosis, activation of the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and decreased PTEN expression were found in KGN cells after USP25 knockdown. Finally, we verified that USP25 could deubiquitinate PTEN in KGN cells. Conclusions: In this study, we investigated that USP25 can regulate the PI3K/AKT signaling pathway by deubiquitinating PTEN, thus affecting the proliferation and apoptosis of GCs and contributing to the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
43
|
Wang R, Maksymowych WP. Targeting the Interleukin-23/Interleukin-17 Inflammatory Pathway: Successes and Failures in the Treatment of Axial Spondyloarthritis. Front Immunol 2021; 12:715510. [PMID: 34539646 PMCID: PMC8446672 DOI: 10.3389/fimmu.2021.715510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
The IL-23/IL-17 pathway has been implicated in the etiopathogenesis of axial spondyloarthritis through studies of genetic polymorphisms associated with disease, an animal model with over-expression of IL-23 that resembles human disease, and observations that cytokines in this pathway can be found at the site of disease in both humans and animal models. However, the most direct evidence has emerged from clinical trials of agents targeting cytokines in this pathway. Monoclonal antibodies targeting IL-17A have been shown to ameliorate signs and symptoms, as well as MRI inflammation in the spine and sacroiliac joints, in patients with radiographic and non-radiographic axial spondyloarthritis. This was evident in patients refractory to non-steroidal anti-inflammatory agents as well as patients failing treatment with tumor necrosis factor inhibitor therapies. Treatment with a bispecific antibody targeting both IL-17A and IL-17F was also effective in a phase II study. Post-hoc analyses have even suggested a potential disease-modifying effect in reducing development of spinal ankylosis. However, benefits for extra-articular manifestations were limited to psoriasis and did not extend to colitis and uveitis. Conversely, trials of therapies targeting IL-23 did not demonstrate any significant impact on signs, symptoms, and MRI inflammation in axial spondyloarthritis. These developments coincide with recent observations that expression of these cytokines is evident in many different cell types with roles in innate as well as adaptive immunity. Moreover, evidence has emerged for the existence of both IL-23-dependent and IL-23-independent pathways regulating expression of IL-17, potentially associated with different roles in intestinal and axial skeletal inflammation.
Collapse
Affiliation(s)
- Runsheng Wang
- Division of Rheumatology, Columbia University Irving Medical Center, New York, NY, United States
- Garden State Rheumatology Consultants, Union, NJ, United States
| | - Walter P. Maksymowych
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- CARE Arthritis, Edmonton, AB, Canada
| |
Collapse
|
44
|
Zhu W, Zheng D, Wang D, Yang L, Zhao C, Huang X. Emerging Roles of Ubiquitin-Specific Protease 25 in Diseases. Front Cell Dev Biol 2021; 9:698751. [PMID: 34249948 PMCID: PMC8262611 DOI: 10.3389/fcell.2021.698751] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
The balance of ubiquitination and deubiquitination plays diverse roles in regulating protein stability and cellular homeostasis. Deubiquitinating enzymes catalyze the hydrolysis and removal of ubiquitin chains from target proteins and play critical roles in various disease processes, including cancer, immune responses to viral infections and neurodegeneration. This article aims to summarize roles of the deubiquitinating enzyme ubiquitin-specific protease 25 (USP25) in disease onset and progression. Previous studies have focused on the role of USP25 in antiviral immunity and neurodegenerative diseases. Recently, however, as the structural similarities and differences between USP25 and its homolog USP28 have become clear, mechanisms of action of USP25 in cancer and other diseases have been gradually revealed.
Collapse
Affiliation(s)
- Wenjing Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
46
|
Single nucleotide polymorphisms of TRAF2 and TRAF5 gene in ankylosing spondylitis: a case-control study. Clin Exp Med 2021; 21:645-653. [PMID: 33997937 DOI: 10.1007/s10238-021-00719-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Objective To investigate the role of eight locus polymorphisms of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF5 gene and their interaction in the susceptibility to ankylosing spondylitis (AS) in Chinese Han population. Methods Eight single nucleotide polymorphisms (SNPs) of TRAF2 (rs3750511, rs10781522, rs17250673, rs59471504) and TRAF5 (rs6540679, rs12569232, rs4951523, rs7514863) gene were genotyped in 673 AS patients and 687 controls. Results The SNPs of TRAF2 and TRAF5 do not indicate a correlation with the susceptibility of AS in Chinese Han population. Genotype frequencies of rs3750511 were statistically significant in females between patients and controls. The allele frequencies of rs10781522 and genotype frequencies of rs3750511 were statistically significant between groups of different diseases activity. One three-locus model, TRAF2 (rs10781522, rs17250673) and TRAF5 (rs12569232), had a maximum testing accuracy of 52.67% and a maximum cross-validation consistency (10/10) that was significant at the level of P = 0.0001, after determined empirically by permutation testing. As to environmental variables, only marginal association was found between sleep quality and AS susceptibility. Conclusion TRAF2 rs3750511 polymorphism may be associated with the susceptibility and severity of AS. Besides, the interaction of TRAF2 and TRAF5 genes may be associated with AS susceptibility, but many open questions remain.
Collapse
|
47
|
Homeostatic regulation of T follicular helper and antibody response to particle antigens by IL-1Ra of medullary sinus macrophage origin. Proc Natl Acad Sci U S A 2021; 118:2019798118. [PMID: 33875594 DOI: 10.1073/pnas.2019798118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis B virus (HBV) vaccines are composed of surface antigen HBsAg that spontaneously assembles into subviral particles. Factors that impede its humoral immunity in 5% to 10% of vaccinees remain elusive. Here, we showed that the low-level interleukin-1 receptor antagonist (IL-1Ra) can predict antibody protection both in mice and humans. Mechanistically, murine IL-1Ra-inhibited T follicular helper (Tfh) cell expansion and subsequent germinal center (GC)-dependent humoral immunity, resulting in significantly weakened protection against the HBV challenge. Compared to soluble antigens, HBsAg particle antigen displayed a unique capture/uptake and innate immune activation, including IL-1Ra expression, preferably of medullary sinus macrophages. In humans, a unique polymorphism in the RelA/p65 binding site of IL-1Ra enhancer associated IL-1Ra levels with ethnicity-dependent vaccination outcome. Therefore, the differential IL-1Ra response to particle antigens probably creates a suppressive milieu for Tfh/GC development, and neutralization of IL-1Ra would resurrect antibody response in HBV vaccine nonresponders.
Collapse
|
48
|
Zheng Q, Li G, Wang S, Zhou Y, Liu K, Gao Y, Zhou Y, Zheng L, Zhu L, Deng Q, Wu M, Di A, Zhang L, Zhao Y, Zhang H, Sun H, Dong C, Xu H, Wang X. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer's brains is mediated by USP25. SCIENCE ADVANCES 2021; 7:7/1/eabe1340. [PMID: 33523861 PMCID: PMC7775784 DOI: 10.1126/sciadv.abe1340] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most significant risk factor for early-onset Alzheimer's disease (AD); however, underlying mechanisms linking DS and AD remain unclear. Here, we show that triplication of homologous chromosome 21 genes aggravates neuroinflammation in combined murine DS-AD models. Overexpression of USP25, a deubiquitinating enzyme encoded by chromosome 21, results in microglial activation and induces synaptic and cognitive deficits, whereas genetic ablation of Usp25 reduces neuroinflammation and rescues synaptic and cognitive function in 5×FAD mice. Mechanistically, USP25 deficiency attenuates microglia-mediated proinflammatory cytokine overproduction and synapse elimination. Inhibition of USP25 reestablishes homeostatic microglial signatures and restores synaptic and cognitive function in 5×FAD mice. In summary, we demonstrate an unprecedented role for trisomy 21 and pathogenic effects associated with microgliosis as a result of the increased USP25 dosage, implicating USP25 as a therapeutic target for neuroinflammation in DS and AD.
Collapse
Affiliation(s)
- Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Guilin Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Ke Liu
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yulin Zhou
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Liangkai Zheng
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingfang Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Meiling Wu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Anjie Di
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Lishan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingjun Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Chen Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
49
|
Zhang M, Yang W, Wang P, Deng Y, Dong YT, Liu FF, Huang R, Zhang P, Duan YQ, Liu XD, Lin D, Chu Q, Zhong B. CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer. Nat Commun 2020; 11:6119. [PMID: 33257678 PMCID: PMC7704643 DOI: 10.1038/s41467-020-19973-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023] Open
Abstract
The efficacy of checkpoint immunotherapy to non-small cell lung cancer (NSCLC) largely depends on the tumor microenvironment (TME). Here, we demonstrate that CCL7 facilitates anti-PD-1 therapy for the KrasLSL−G12D/+Tp53fl/fl (KP) and the KrasLSL−G12D/+Lkb1fl/fl (KL) NSCLC mouse models by recruiting conventional DC 1 (cDC1) into the TME to promote T cell expansion. CCL7 exhibits high expression in NSCLC tumor tissues and is positively correlated with the infiltration of cDC1 in the TME and the overall survival of NSCLC patients. CCL7 deficiency impairs the infiltration of cDC1 in the TME and the subsequent expansion of CD8+ and CD4+ T cells in bronchial draining lymph nodes and TME, thereby promoting tumor development in the KP mouse model. Administration of CCL7 into lungs alone or in combination with anti-PD-1 significantly inhibits tumor development and prolongs the survival of KP and KL mice. These findings suggest that CCL7 potentially serves as a biomarker and adjuvant for checkpoint immunotherapy of NSCLC. Only a limited proportion of patients with non-small cell lung cancer respond to anti-PD-1/PD-L1 immunotherapy. Here, the authors show that in autochthonous models of KRAS-mutated lung cancer, CCL7 promotes cDC1 infiltration into the lungs, sustaining antitumor immune responses and potentiating anti-PD1 treatment efficacy.
Collapse
Affiliation(s)
- Man Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Yang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ting Dong
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Fang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 40038, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Qi Duan
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Dong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 40038, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430061, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China. .,Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
50
|
USP25 Regulates EGFR Fate by Modulating EGF-Induced Ubiquitylation Dynamics. Biomolecules 2020; 10:biom10111548. [PMID: 33202887 PMCID: PMC7696865 DOI: 10.3390/biom10111548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Deregulated epidermal growth factor receptor (EGFR) signaling is a key feature in different stages of oncogenesis. One important mechanism whereby cancer cells achieve increased and uncontrolled EGFR signaling is escaping down-modulation of the receptor. Ubiquitylation of the EGFR plays a decisive role in this process, as it regulates receptor internalization, trafficking and degradation. Deubiquitinating enzymes (DUBs) may oppose the ubiquitylation process, antagonizing or even promoting receptor degradation. Here, we use qualitative and quantitative assays to measure EGFR internalization and degradation after Ubiquitin Specific Peptidase 25 (USP25) depletion. We show that, by acting at the early steps of EGFR internalization, USP25 restrains the degradation of the EGFR by assisting in the association of the E3 ubiquitin ligase c-Cbl with EGFR, thereby modulating the amplitude of ubiquitylation on the receptor. This study establishes USP25 as a negative regulator of the EGFR down-modulation process and suggests that it is a promising target for pharmacological intervention to hamper oncogenic growth signals in tumors that depend on the EGFR.
Collapse
|