1
|
Kroeze E, Iaccarino I, Kleisman MM, Mondal M, Beder T, Khouja M, Höppner MP, Scheijde-Vermeulen MA, Kester LA, Brüggemann M, Baldus CD, Cario G, Bladergroen RS, Garnier N, Attarbaschi A, Verdu-Amorós J, Sutton R, Macintyre E, Scholten K, Arias Padilla L, Burkhardt B, Beishuizen A, den Boer ML, Kuiper RP, Loeffen JLC, Boer JM, Klapper W. Mutational and transcriptional landscape of pediatric B-cell precursor lymphoblastic lymphoma. Blood 2024; 144:74-83. [PMID: 38588489 DOI: 10.1182/blood.2024023938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Pediatric B-cell precursor (BCP) lymphoblastic malignancies are neoplasms with manifestation either in the bone marrow or blood (BCP acute lymphoblastic leukemia [BCP-ALL]) or are less common in extramedullary tissue (BCP lymphoblastic lymphoma [BCP-LBL]). Although both presentations are similar in morphology and immunophenotype, molecular studies have been virtually restricted to BCP-ALL so far. The lack of molecular studies on BCP-LBL is due to its rarity and restriction on small, mostly formalin-fixed paraffin-embedded (FFPE) tissues. Here, to our knowledge, we present the first comprehensive mutational and transcriptional analysis of what we consider the largest BCP-LBL cohort described to date (n = 97). Whole-exome sequencing indicated a mutational spectrum of BCP-LBL, strikingly similar to that found in BCP-ALL. However, epigenetic modifiers were more frequently mutated in BCP-LBL, whereas BCP-ALL was more frequently affected by mutation in genes involved in B-cell development. Integrating copy number alterations, somatic mutations, and gene expression by RNA sequencing revealed that virtually all molecular subtypes originally defined in BCP-ALL are present in BCP-LBL, with only 7% of lymphomas that were not assigned to a subtype. Similar to BCP-ALL, the most frequent subtypes of BCP-LBL were high hyperdiploidy and ETV6::RUNX1. Tyrosine kinase/cytokine receptor rearrangements were detected in 7% of BCP-LBL. These results indicate that genetic subtypes can be identified in BCP-LBL using next-generation sequencing, even in FFPE tissue, and may be relevant to guide treatment.
Collapse
Affiliation(s)
- Emma Kroeze
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ingram Iaccarino
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | | | - Mayukh Mondal
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mouhamad Khouja
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marc P Höppner
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monika Brüggemann
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claudia D Baldus
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Department of Pediatrics, Berlin-Frankfurt-Münster ALL Study Group Germany, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Nathalie Garnier
- Institut d'Hematologie et d'Oncologie Pediatrique, Hospices Civils de Lyon, Lyon, France
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Jaime Verdu-Amorós
- Department of Pediatric Hematology and Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA, Biomedical Research Institute, Valencia, Spain
| | - Rosemary Sutton
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Centre National de la Recherche Scientifique, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Kenneth Scholten
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Laura Arias Padilla
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Auke Beishuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| |
Collapse
|
2
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
5
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
6
|
Yi SG, Gaber AO, Chen W. B-cell response in solid organ transplantation. Front Immunol 2022; 13:895157. [PMID: 36016958 PMCID: PMC9395675 DOI: 10.3389/fimmu.2022.895157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
The transcriptional regulation of B-cell response to antigen stimulation is complex and involves an intricate network of dynamic signals from cytokines and transcription factors propagated from T-cell interaction. Long-term alloimmunity, in the setting of organ transplantation, is dependent on this B-cell response, which does not appear to be halted by current immunosuppressive regimens which are targeted at T cells. There is emerging evidence that shows that B cells have a diverse response to solid organ transplantation that extends beyond plasma cell antibody production. In this review, we discuss the mechanistic pathways of B-cell activation and differentiation as they relate to the transcriptional regulation of germinal center B cells, plasma cells, and memory B cells in the setting of solid organ transplantation.
Collapse
Affiliation(s)
- Stephanie G. Yi
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
- *Correspondence: Stephanie G. Yi,
| | - Ahmed Osama Gaber
- Division of Transplant Immunology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
7
|
Levi R, Louzoun Y. Two Step Selection for Bias in β Chain V-J Pairing. Front Immunol 2022; 13:906217. [PMID: 35911711 PMCID: PMC9330483 DOI: 10.3389/fimmu.2022.906217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The β chain rearrangement in T cells is a two-step process where first Dβ and Jβ bind, and only then Vβ is joined to the complex. We here show that the frequency of human and mouse Vβ
Jβ combinations deviates from the one expected based on each gene usage frequency. This bias is observed mainly in functional (F) rearrangements, but also slightly in non-functional (NF) rearrangements. Preferred Vβ
Jβ combinations in F clones are shared between donors and samples, suggesting a common structural mechanism for these biases in addition to any host-specific antigen-induced peripheral selection. The sharing holds even in clones with Jβ1 that share the same Dβ1 gene. Vβ
Jβ usage is correlated with the Molecular Weight and Isoelectric Point in F clones. The pairing is also observed in the Double Positive cells in mice thymocytes, suggesting that the selection leading to such a pairing occurs before thymic selection. These results suggest an additional structural checkpoint in the beta chain development prior to thymic selection during the T cell receptor expression. Understanding this structural selection is important for the distinction between normal and aberrant T cell development, and crucial for the design of engineered TCRs.
Collapse
|
8
|
Radzieta M, Peters TJ, Dickson HG, Cowin AJ, Lavery LA, Schwarzer S, Roberts T, Jensen SO, Malone M. A metatranscriptomic approach to explore longitudinal tissue specimens from non-healing diabetes related foot ulcers. APMIS 2022; 130:383-396. [PMID: 35394091 PMCID: PMC9320801 DOI: 10.1111/apm.13226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Cellular mechanisms and/or microbiological interactions which contribute to chronic diabetes related foot ulcers (DRFUs) were explored using serially collected tissue specimens from chronic DRFUs and control healthy foot skin. Total RNA was isolated for next-generation sequencing. We found differentially expressed genes (DEGs) and enriched hallmark gene ontology biological processes upregulated in chronic DRFUs which primarily functioned in the host immune response including: (i) Inflammatory response; (ii) TNF signalling via NFKB; (iii) IL6 JAK-STAT3 signalling; (iv) IL2 STAT5 signalling and (v) Reactive oxygen species. A temporal analysis identified RN7SL1 signal recognition protein and IGHG4 immunoglobulin protein coding genes as being the most upregulated genes after the onset of treatment. Testing relative temporal changes between healing and non-healing DRFUs identified progressive upregulation in healed wounds of CXCR5 and MS4A1 (CD20), both canonical markers of lymphocytes (follicular B cells/follicular T helper cells and B cells, respectively). Collectively, our RNA-seq data provides insights into chronic DRFU pathogenesis.
Collapse
Affiliation(s)
- Michael Radzieta
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Hugh G Dickson
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Lawrence A Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Saskia Schwarzer
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia
| | - Tara Roberts
- Oncology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Slade O Jensen
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Matthew Malone
- South West Sydney Limb Preservation and Wound Research, South Western Sydney LHD, Sydney, NSW, Australia.,Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
9
|
Shridharan RV, Kalakuntla N, Chirmule N, Tiwari B. The Happy Hopping of Transposons: The Origins of V(D)J Recombination in Adaptive Immunity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nearly 50% of the human genome is derived from transposable elements (TEs). Though dysregulated transposons are deleterious to humans and can lead to diseases, co-opted transposons play an important role in generating alternative or new DNA sequence combinations to perform novel cellular functions. The appearance of an adaptive immune system in jawed vertebrates, wherein the somatic rearrangement of T and B cells generates a repertoire of antibodies and receptors, is underpinned by Class II TEs. This review follows the evolution of recombination activation genes (RAGs), components of adaptive immunity, from TEs, focusing on the structural and mechanistic similarities between RAG recombinases and DNA transposases. As evolution occurred from a transposon precursor, DNA transposases developed a more targeted and constrained mechanism of mobilization. As DNA repair is integral to transposition and recombination, we note key similarities and differences in the choice of DNA repair pathways following these processes. Understanding the regulation of V(D)J recombination from its evolutionary origins may help future research to specifically target RAG proteins to rectify diseases associated with immune dysregulation.
Collapse
|
10
|
Abstract
The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.
Collapse
Affiliation(s)
- Stephanie M Downs-Canner
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeremy Meier
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Bioinformatics and Computational Biology Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan S Serody
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; .,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Meir J, Abid MA, Abid MB. State of the CAR-T: Risk of Infections with Chimeric Antigen Receptor T-Cell Therapy and Determinants of SARS-CoV-2 Vaccine Responses. Transplant Cell Ther 2021; 27:973-987. [PMID: 34587552 PMCID: PMC8473073 DOI: 10.1016/j.jtct.2021.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown unprecedented response rates in patients with relapsed/refractory (R/R) hematologic malignancies. Although CAR-T therapy gives hope to heavily pretreated patients, the rapid commercialization and cumulative immunosuppression of this therapy predispose patients to infections for a prolonged period. CAR-T therapy poses distinctive short- and long-term toxicities and infection risks among patients who receive CAR T-cells after multiple prior treatments, often including hematopoietic cell transplantation. The acute toxicities include cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. The long-term B cell depletion, hypogammaglobulinemia, and cytopenia further predispose patients to severe infections and abrogate the remission success achieved by the living drug. These on-target-off-tumor toxicities deplete B-cells across the entire lineage and further diminish immune responses to vaccines. Early observational data suggest that patients with hematologic malignancies may not mount adequate humoral and cellular responses to SARS-CoV-2 vaccines. In this review, we summarize the immune compromising factors indigenous to CAR-T recipients. We discuss the immunogenic potential of different SARS-CoV-2 vaccines for CAR-T recipients based on the differences in vaccine manufacturing platforms. Given the lack of data related to the safety and efficacy of SARS-CoV-2 vaccines in this distinctively immunosuppressed cohort, we summarize the infection risks associated with Food and Drug Administration-approved CAR-T constructs and the potential determinants of vaccine responses. The review further highlights the potential need for booster vaccine dosing and the promise for heterologous prime-boosting and other novel vaccine strategies in CAR-T recipients. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Juliet Meir
- Department of Medicine, Westchester Medical Center, Valhalla, New York
| | - Muhammad Abbas Abid
- Department of Hematopathology & Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Bilal Abid
- Divisions of Infectious Diseases and Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
12
|
Pongubala JMR, Murre C. Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development. Front Immunol 2021; 12:633825. [PMID: 33854505 PMCID: PMC8039525 DOI: 10.3389/fimmu.2021.633825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Higher-order spatial organization of the genome into chromatin compartments (permissive and repressive), self-associating domains (TADs), and regulatory loops provides structural integrity and offers diverse gene regulatory controls. In particular, chromatin regulatory loops, which bring enhancer and associated transcription factors in close spatial proximity to target gene promoters, play essential roles in regulating gene expression. The establishment and maintenance of such chromatin loops are predominantly mediated involving CTCF and the cohesin machinery. In recent years, significant progress has been made in revealing how loops are assembled and how they modulate patterns of gene expression. Here we will discuss the mechanistic principles that underpin the establishment of three-dimensional (3D) chromatin structure and how changes in chromatin structure relate to alterations in gene programs that establish immune cell fate.
Collapse
Affiliation(s)
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Tsai DY, Hung KH, Chang CW, Lin KI. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J Biomed Sci 2019; 26:64. [PMID: 31472685 PMCID: PMC6717636 DOI: 10.1186/s12929-019-0558-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Terminally differentiated B cell, the plasma cell, is the sole cell type capable of producing antibodies in our body. Over the past 30 years, the identification of many key molecules controlling B cell activation and differentiation has elucidated the molecular pathways for generating antibody-producing plasma cells. Several types of regulation modulating the functions of the important key molecules in B cell activation and differentiation add other layers of complexity in shaping B cell responses following antigen exposure in the absence or presence of T cell help. Further understanding of the mechanisms contributing to the proper activation and differentiation of B cells into antibody-secreting plasma cells may enable us to develop new strategies for managing antibody humoral responses during health and disease. Herein, we reviewed the effect of different types of regulation, including transcriptional regulation, post-transcriptional regulation and epigenetic regulation, on B cell activation, and on mounting memory B cell and antibody responses. We also discussed the link between the dysregulation of the abovementioned regulatory mechanisms and B cell-related disorders.
Collapse
Affiliation(s)
- Dong-Yan Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Chia-Wei Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan. .,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
14
|
Yu K, Shi J, Lu D, Yang Q. Comparative analysis of CDR3 regions in paired human αβ CD8 T cells. FEBS Open Bio 2019; 9:1450-1459. [PMID: 31237075 PMCID: PMC6668380 DOI: 10.1002/2211-5463.12690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/23/2019] [Accepted: 06/21/2019] [Indexed: 01/21/2023] Open
Abstract
The majority of human CD8 cytotoxic T lymphocytes express αβ T-cell receptors that recognize peptide-MHC class I complexes. Considerable attention has been devoted to TCR β repertoires, but study of TCR α chains has been limited. To gain a better understanding of the features of CDR3α and CDR3β in paired samples, we comprehensively analyzed 776 unique paired αβ TCR CDR3 regions in this study. We found that (I) the CDR3 length among paired αβ TCRs had a fairly narrow distribution due to random assortment of CDR3 length in alpha and beta chains; (II) nucleotide deletions among CDR3 regions were positively correlated with insertions in both α and β TCRs; (III) the CDR3 loops of both α and β chains contained an abundance of charged/polar residues and the CDR3 base regions contained a conserved motif; and (IV) the occurrence of Gly was CDR3 length- and position-dependent in both chains, whereas the frequency of Ser at positions 106 and 107 was positively correlated with CDR3 length in TCR β. Overall, the amino acids in CDR3 loop regions were significantly different between TCR α and β, which suggests a distinct role for each chain in the recognition of antigen-MHC complexes. Here, we have provided detailed information on CDR3 in paired TCRs expressed on human CD8+ T cells and established the basis of a reference set for αβ TCR repertoires in healthy humans.
Collapse
MESH Headings
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/immunology
- Complementarity Determining Regions/chemistry
- Histocompatibility Antigens Class I/metabolism
- Humans
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Kun Yu
- Department of Breast and Thyroid SurgeryZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Ji Shi
- Department of Breast and Thyroid SurgeryTongDe Hospital of Zhejiang ProvinceHangzhouChina
| | - Dan Lu
- Department of RehabilitationTongDe Hospital of Zhejiang ProvinceHangzhouChina
| | - Qiong Yang
- Department of Breast and Thyroid SurgeryZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
15
|
Sabat R, Wolk K, Loyal L, Döcke WD, Ghoreschi K. T cell pathology in skin inflammation. Semin Immunopathol 2019; 41:359-377. [PMID: 31028434 PMCID: PMC6505509 DOI: 10.1007/s00281-019-00742-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
Forming the outer body barrier, our skin is permanently exposed to pathogens and environmental hazards. Therefore, skin diseases are among the most common disorders. In many of them, the immune system plays a crucial pathogenetic role. For didactic and therapeutic reasons, classification of such immune-mediated skin diseases according to the underlying dominant immune mechanism rather than to their clinical manifestation appears to be reasonable. Immune-mediated skin diseases may be mediated mainly by T cells, by the humoral immune system, or by uncontrolled unspecific inflammation. According to the involved T cell subpopulation, T cell-mediated diseases may be further subdivided into T1 cell-dominated (e.g., vitiligo), T2 cell-dominated (e.g., acute atopic dermatitis), T17/T22 cell-dominated (e.g., psoriasis), and Treg cell-dominated (e.g., melanoma) responses. Moreover, T cell-dependent and -independent responses may occur simultaneously in selected diseases (e.g., hidradenitis suppurativa). The effector mechanisms of the respective T cell subpopulations determine the molecular changes in the local tissue cells, leading to specific microscopic and macroscopic skin alterations. In this article, we show how the increasing knowledge of the T cell biology has been comprehensively translated into the pathogenetic understanding of respective model skin diseases and, based thereon, has revolutionized their daily clinical management.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Center, Department of Dermatology, Venereology and Allergology/Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Department of Dermatology, Venereology and Allergology/Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lucie Loyal
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolf-Dietrich Döcke
- SBU Oncology, Pharmaceuticals, Bayer AG, Berlin and Wuppertal, Müllerstraße 178, 13353, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
16
|
Han Y, Li H, Guan Y, Huang J. Immune repertoire: A potential biomarker and therapeutic for hepatocellular carcinoma. Cancer Lett 2016; 379:206-12. [DOI: 10.1016/j.canlet.2015.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022]
|
17
|
Zhang N, Zhang XJ, Song YL, Lu XB, Chen DD, Xia XQ, Sunyer JO, Zhang YA. Preferential combination between the light and heavy chain isotypes of fish immunoglobulins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:169-179. [PMID: 27057962 DOI: 10.1016/j.dci.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Immunoglobulin light chain (IgL) is necessary for the assembly of an Ig molecule, which plays important roles in the immune response. IgL genes were identified in various teleost species, but the basic functions of different IgL isotypes and the preferential combination between IgL and IgH (Ig heavy chain) isotypes remain unclear. In the current study, by EST database searching and cDNA cloning in rainbow trout, 8 IgL sequences were obtained, which could be classified into the IgLκF, IgLκG, IgLσ and IgLλ isotypes, respectively. Trout IgL isotypes were highly expressed in the immune-related tissues, and participated in the immune responses in spleen and gut by stimulation with LPS and poly (I:C). The results of FACS and LC-MS/MS indicated that the IgLκG and IgLσ isotypes preferentially bonded with the heavy chains of IgM and IgT, respectively, in trout B cells and serum. In addition, the genomic organization of trout IgL isotypes and the utilization of recombination signal sequences were studied.
Collapse
Affiliation(s)
- Nu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yu-Long Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bing Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
18
|
Affiliation(s)
- Agata Cieslak
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Dominique Payet-Bornet
- Centre d'Immunologie de Marseille-Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (Inserm U631), CNRS UMR6102, Université de la Méditerranée, Marseille, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| |
Collapse
|
19
|
Hou XL, Wang L, Ding YL, Xie Q, Diao HY. Current status and recent advances of next generation sequencing techniques in immunological repertoire. Genes Immun 2016; 17:153-64. [PMID: 26963138 DOI: 10.1038/gene.2016.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/26/2023]
Abstract
To ward off a wide variety of pathogens, the human adaptive immune system harbors a vast array of T-cell receptors (TCRs) and B-cell receptors (BCRs), collectively referred to as the immune repertoire. High-throughput sequencing (HTS) of TCR/BCR genes allows in-depth molecular analysis of T/B-cell clones, providing an unprecedented level of detail when examining the T/B-cell repertoire of individuals. It can evaluate TCR/BCR complementarity-determining region 3 (CDR3) diversity and assess the clonal composition, including the size of the repertoire; similarities between repertoires; V(D)J segment use; nucleotide insertions and deletions; CDR3 lengths; and amino acid distributions along the CDR3s at sequence-level resolution. Deep sequencing of B-cell and T-cell repertoires offers the potential for a quantitative understanding of the adaptive immune system in healthy and disease states. Recently, paired sequencing strategies have also been developed, which can provide information about the identity of immune receptor pairs encoded by individual T or B lymphocytes. HTS technology provides a previously unimaginable amount of sequence data, accompanied, however, by numerous challenges associated with error correction and interpretation that remain to be solved. The review details some of the technologies and some of the recent achievements in this field.
Collapse
Affiliation(s)
- X-L Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - L Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Y-L Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Q Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - H-Y Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Aresta-Branco F, Pimenta S, Figueiredo LM. A transcription-independent epigenetic mechanism is associated with antigenic switching in Trypanosoma brucei. Nucleic Acids Res 2015; 44:3131-46. [PMID: 26673706 PMCID: PMC4838347 DOI: 10.1093/nar/gkv1459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/28/2015] [Indexed: 12/27/2022] Open
Abstract
Antigenic variation in Trypanosoma brucei relies on periodic switching of variant surface glycoproteins (VSGs), which are transcribed monoallelically by RNA polymerase I from one of about 15 bloodstream expression sites (BES). Chromatin of the actively transcribed BES is depleted of nucleosomes, but it is unclear if this open conformation is a mere consequence of a high rate of transcription, or whether it is maintained by a transcription-independent mechanism. Using an inducible BES-silencing reporter strain, we observed that chromatin of the active BES remains open for at least 24 hours after blocking transcription. This conformation is independent of the cell-cycle stage, but dependent upon TDP1, a high mobility group box protein. For two days after BES silencing, we detected a transient and reversible derepression of several silent BESs within the population, suggesting that cells probe other BESs before commitment to one, which is complete by 48 hours. FACS sorting and subsequent subcloning confirmed that probing cells are switching intermediates capable of returning to the original BES, switch to the probed BES or to a different BES. We propose that regulation of BES chromatin structure is an epigenetic mechanism important for successful antigenic switching.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Silvia Pimenta
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
21
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
22
|
Wagatsuma K, Tani-ichi S, Liang B, Shitara S, Ishihara K, Abe M, Miyachi H, Kitano S, Hara T, Nanno M, Ishikawa H, Sakimura K, Nakao M, Kimura H, Ikuta K. STAT5 Orchestrates Local Epigenetic Changes for Chromatin Accessibility and Rearrangements by Direct Binding to the TCRγ Locus. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26195811 DOI: 10.4049/jimmunol.1302456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transcription factor STAT5, which is activated by IL-7R, controls chromatin accessibility and rearrangements of the TCRγ locus. Although STAT-binding motifs are conserved in Jγ promoters and Eγ enhancers, little is known about their precise roles in rearrangements of the TCRγ locus in vivo. To address this question, we established two lines of Jγ1 promoter mutant mice: one harboring a deletion in the Jγ1 promoter, including three STAT motifs (Jγ1P(Δ/Δ)), and the other carrying point mutations in the three STAT motifs in that promoter (Jγ1P(mS/mS)). Both Jγ1P(Δ/Δ) and Jγ1P(mS/mS) mice showed impaired recruitment of STAT5 and chromatin remodeling factor BRG1 at the Jγ1 gene segment. This resulted in severe and specific reduction in germline transcription, histone H3 acetylation, and histone H4 lysine 4 methylation of the Jγ1 gene segment in adult thymus. Rearrangement and DNA cleavage of the segment were severely diminished, and Jγ1 promoter mutant mice showed profoundly decreased numbers of γδ T cells of γ1 cluster origin. Finally, compared with controls, both mutant mice showed a severe reduction in rearrangements of the Jγ1 gene segment, perturbed development of γδ T cells of γ1 cluster origin in fetal thymus, and fewer Vγ3(+) dendritic epidermal T cells. Furthermore, interaction with the Jγ1 promoter and Eγ1, a TCRγ enhancer, was dependent on STAT motifs in the Jγ1 promoter. Overall, this study strongly suggests that direct binding of STAT5 to STAT motifs in the Jγ promoter is essential for local chromatin accessibility and Jγ/Eγ chromatin interaction, triggering rearrangements of the TCRγ locus.
Collapse
Affiliation(s)
- Keisuke Wagatsuma
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shizue Tani-ichi
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Bingfei Liang
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Soichiro Shitara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ko Ishihara
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro Hara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Masanobu Nanno
- Yakult Central Institute, Kunitachi, Tokyo 186-8650, Japan
| | | | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Kimura
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita 565-0871, Japan; and Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
23
|
Han Y, Liu X, Wang Y, Wu X, Guan Y, Li H, Chen X, Zhou B, Yuan Q, Ou Y, Wu R, Huang W, Wang Y, Zhang M, Zhang Y, Zhu D, Zhu H, Yang L, Yi X, Huang C, Huang J. Identification of characteristic TRB V usage in HBV-associated HCC by using differential expression profiling analysis. Oncoimmunology 2015; 4:e1021537. [PMID: 26405574 DOI: 10.1080/2162402x.2015.1021537] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is one of the most common cancers worldwide. CDR3 sequencing-based immune repertoire can be closely associated with cancer prognosis and development. Identifying the specific interaction between the TCR and cellular antigens is important for developing novel immunotherapeutic approaches for the treatment of cancer. The rearranged TCRβ loci amplified using Vβ- and Jβ-specific primers by multi-PCR and sequenced using high-throughput sequencing (HTS) in liver cancers were compared with those of T cells from healthy adult peripheral blood and from adjacent liver tissue. The T-cell repertoires within each tumor show strong similarity to one another but are distinct from those of the circulating T-cell repertoire. In addition, our results demonstrate that there are significant differences in the T-cell repertoires of HCC (hepatocellular carcinoma), ICC (intrahepatic cholangiocarcinoma), and MHC (mixed hepatocellular and cholangiocellular carcinoma). Furthermore, we found that the highly expanded clone (HEC) ratio in blood samples from liver cancer patients differed significantly from those in the blood of healthy adults and hepatitis patients (p < 0.001). The above results suggest that comparison of the T-cell repertoires of tissue and blood could be used to distinguish liver cancer patients from healthy adults and from hepatitis patients. In the future, the diversity of CDR3 sequences in liver cancer may prove to be a useful and novel biomarker for detecting aggressive tumors with high invasive or metastatic capacity.
Collapse
Affiliation(s)
- Yingxin Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine; Shanghai Center for Systems Biomedicine; Shanghai Jiao Tong University; Shanghai, China ; Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Xing Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine; Shanghai Center for Systems Biomedicine; Shanghai Jiao Tong University; Shanghai, China
| | - Yuqi Wang
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Xiaolei Wu
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Yanfang Guan
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Hongmei Li
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Xinchun Chen
- Shenzhen Key Lab. of Infection and Immunity; Shenzhen Third People's Hospital; Guangdong Medical college ; Shenzhen, China
| | - Boping Zhou
- Shenzhen Key Lab. of Infection and Immunity; Shenzhen Third People's Hospital; Guangdong Medical college ; Shenzhen, China
| | - Qing Yuan
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine; Shanghai Center for Systems Biomedicine; Shanghai Jiao Tong University; Shanghai, China
| | - Ying Ou
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine; Shanghai Center for Systems Biomedicine; Shanghai Jiao Tong University; Shanghai, China
| | - Renhua Wu
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Wanqiu Huang
- Tongji Medical College; Huazhong University of Science and Technology ; Wuhan, China
| | - Yun Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine; Shanghai Center for Systems Biomedicine; Shanghai Jiao Tong University; Shanghai, China
| | - Ming Zhang
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Yinxin Zhang
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Dongxing Zhu
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Hongmei Zhu
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Ling Yang
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China
| | - Xin Yi
- Binhai Genomics Institute; BGI-Tianjin ; Tianjin, China ; Tianjin Translational Genomics Center; BGI-Tianjin ; Tianjin, China ; BGI-Shenzhen ; Shenzhen, China ; Guangzhou Key Laboratory of Cancer Trans-Omics Research (GZ2012, NO348); BGI-Guangzhou , Guangzhou, China
| | - Chen Huang
- Department of Nephrology; Xijing Hospital; Fourth Military Medical University ; Xi An, China
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine; Shanghai Center for Systems Biomedicine; Shanghai Jiao Tong University; Shanghai, China
| |
Collapse
|
24
|
The proximal J kappa germline-transcript promoter facilitates receptor editing through control of ordered recombination. PLoS One 2015; 10:e0113824. [PMID: 25559567 PMCID: PMC4283955 DOI: 10.1371/journal.pone.0113824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/31/2014] [Indexed: 12/31/2022] Open
Abstract
V(D)J recombination creates antibody light chain diversity by joining a Vκ gene segment with one of four Jκ segments. Two Jκ germline-transcript (GT) promoters control Vκ-Jκ joining, but the mechanisms that govern Jκ choice are unclear. Here, we show in gene-targeted mice that the proximal GT promoter helps targeting rearrangements to Jκ1 by preventing premature DNA breaks at Jκ2. Consequently, cells lacking the proximal GT promoter show a biased utilization of downstream Jκ segments, resulting in a diminished potential for receptor editing. Surprisingly, the proximal—in contrast to the distal—GT promoter is transcriptionally inactive prior to Igκ recombination, indicating that its role in Jκ choice is independent of classical promoter function. Removal of the proximal GT promoter increases H3K4me3 levels at Jκ segments, suggesting that this promoter could act as a suppressor of recombination by limiting chromatin accessibility to RAG. Our findings identify the first cis-element critical for Jκ choice and demonstrate that ordered Igκ recombination facilitates receptor editing.
Collapse
|
25
|
Carico Z, Krangel MS. Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires. Adv Immunol 2015; 128:307-61. [DOI: 10.1016/bs.ai.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Naik AK, Hawwari A, Krangel MS. Specification of Vδ and Vα usage by Tcra/Tcrd locus V gene segment promoters. THE JOURNAL OF IMMUNOLOGY 2014; 194:790-4. [PMID: 25472997 DOI: 10.4049/jimmunol.1402423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tcra/Tcrd locus undergoes V-Dδ-Jδ rearrangement in CD4(-)CD8(-) thymocytes to form the TCRδ chain of the γδ TCR and V-Jα rearrangement in CD4(+)CD8(+) thymocytes to form the TCRα-chain of the αβ TCR. Most V segments in the locus participate in V-Jα rearrangement, but only a small and partially overlapping subset participates in V-Dδ-Jδ rearrangement. What specifies any particular Tcra/Tcrd locus V gene segment as a Vδ, a Vα, or both is currently unknown. We tested the hypothesis that V segment usage is specified by V segment promoter-dependent chromatin accessibility in developing thymocytes. TRAV15/DV6 family V gene segments contribute to both the Tcrd and the Tcra repertoires, whereas TRAV12 family V gene segments contribute almost exclusively to the Tcra repertoire. To understand whether the TRAV15/DV6 promoter region specifies TRAV15/DV6 as a Vδ, we used gene targeting to replace the promoter region of a TRAV12 family member with one from a TRAV15/DV6 family member. The TRAV15/DV6 promoter region conferred increased germline transcription and histone modifications to TRAV12 in double-negative thymocytes and caused a substantial increase in usage of TRAV12 in Tcrd recombination events. Our results demonstrate that usage of TRAV15/DV6 family V gene segments for Tcrd recombination in double-negative thymocytes is regulated, at least in part, by intrinsic features of TRAV15/DV6 promoters, and argue that Tcra/Tcrd locus Vδ gene segments are defined by their local chromatin accessibility in CD4(-)CD8(-) thymocytes.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Abbas Hawwari
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| |
Collapse
|
27
|
Cieslak A, Le Noir S, Trinquand A, Lhermitte L, Franchini DM, Villarese P, Gon S, Bond J, Simonin M, Vanhille L, Vanhile L, Reimann C, Verhoeyen E, Larghero J, Six E, Spicuglia S, André-Schmutz I, Langerak A, Nadel B, Macintyre E, Payet-Bornet D, Asnafi V. RUNX1-dependent RAG1 deposition instigates human TCR-δ locus rearrangement. ACTA ACUST UNITED AC 2014; 211:1821-32. [PMID: 25135298 PMCID: PMC4144731 DOI: 10.1084/jem.20132585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Within the human TCR-α/δ locus, ordered rearrangements requires RUNX1, which binds to the Dδ2-23RSS and interacts with RAG1 to enhance RAG1 deposition at this site. Absence of this RUNX1 binding site in the homologous murine Dδ1-23RSS offers an explanation for the lack of ordered TCR-δ gene assembly in mice. V(D)J recombination of TCR loci is regulated by chromatin accessibility to RAG1/2 proteins, rendering RAG1/2 targeting a potentially important regulator of lymphoid differentiation. We show that within the human TCR-α/δ locus, Dδ2-Dδ3 rearrangements occur at a very immature thymic, CD34+/CD1a−/CD7+dim stage, before Dδ2(Dδ3)-Jδ1 rearrangements. These strictly ordered rearrangements are regulated by mechanisms acting beyond chromatin accessibility. Importantly, direct Dδ2-Jδ1 rearrangements are prohibited by a B12/23 restriction and ordered human TCR-δ gene assembly requires RUNX1 protein, which binds to the Dδ2-23RSS, interacts with RAG1, and enhances RAG1 deposition at this site. This RUNX1-mediated V(D)J recombinase targeting imposes the use of two Dδ gene segments in human TCR-δ chains. Absence of this RUNX1 binding site in the homologous mouse Dδ1-23RSS provides a molecular explanation for the lack of ordered TCR-δ gene assembly in mice and may underlie differences in early lymphoid differentiation between these species.
Collapse
Affiliation(s)
- Agata Cieslak
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Sandrine Le Noir
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Amélie Trinquand
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Don-Marc Franchini
- CNRS-Pierre Fabre USR3388, Epigenetic Targeting of Cancer (ETaC), and INSERM UMR1037, Cancer Research Center of Toulouse (CRCT), 31035 Toulouse, France
| | - Patrick Villarese
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Stéphanie Gon
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM 2, INSERM UMR 1104, CNRS UMR 7280, 13288 Marseille, France
| | - Jonathan Bond
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Mathieu Simonin
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Laurent Vanhille
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, 13288 Marseille, France
| | - Laurent Vanhile
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, 13288 Marseille, France
| | - Christian Reimann
- Université Paris-Descartes, Faculté de Médecine René Descartes, IFR94 and INSERM, U768, F-75015 Paris, France
| | - Els Verhoeyen
- CIRI, International center for Infectiology Research, EVIR team, Université de Lyon, INSERM U1111, Lyon, France and Centre Méditerranéen de Médecine Moléculaire (C3M), team "contrôle métabolique des morts cellulaires" Inserm, U1065, 06204 Nice, France
| | - Jerome Larghero
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Université Paris Diderot, Sorbonne Paris Cité, Inserm CICBT501 et UMR1160, Institut Universitaire d'Hématologie, 75010 Paris, France
| | - Emmanuelle Six
- Université Paris-Descartes, Faculté de Médecine René Descartes, IFR94 and INSERM, U768, F-75015 Paris, France
| | - Salvatore Spicuglia
- Technological Advances for Genomics and Clinics (TAGC), INSERM U1090, Université de la Méditerranée, 13288 Marseille, France
| | - Isabelle André-Schmutz
- Université Paris-Descartes, Faculté de Médecine René Descartes, IFR94 and INSERM, U768, F-75015 Paris, France
| | - Anton Langerak
- Department of Immunology, Erasmus MC, University Medical Center, 3016 Rotterdam, Netherlands
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM 2, INSERM UMR 1104, CNRS UMR 7280, 13288 Marseille, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Dominique Payet-Bornet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM 2, INSERM UMR 1104, CNRS UMR 7280, 13288 Marseille, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, 75015 Paris, France
| |
Collapse
|
28
|
Visualization and quantification of monoallelic TCRα gene rearrangement in αβ T cells. Immunol Cell Biol 2014; 92:409-16. [PMID: 24418818 DOI: 10.1038/icb.2013.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 11/08/2022]
Abstract
T-cell receptor α (TCRα) chain rearrangement is not constrained by allelic exclusion and thus αβ T cells frequently have rearranged both alleles of this locus. Thereby, stepwise secondary rearrangements of both TCRα loci further increase the odds for generation of an α-chain that can be positively selected in combination with a pre-existing TCRβ chain. Previous studies estimated that approximately 2-12% of murine and human αβ T cells still carry one TCRα locus in germline configuration, which must comprise a partially or even fully rearranged TCRδ locus. However, these estimates are based on a relatively small amount of individual αβ T-cell clones and αβ T-cell hybridomas analyzed to date. To address this issue more accurately, we made use of a mouse model, in which a fluorescent reporter protein is introduced into the constant region of the TCRδ locus. In this TcrdH2BeGFP system, fluorescence emanating from retained TCRδ loci enabled us to quantify monoallelically rearranged αβ T cells on a single-cell basis. Via fluorescence-activated cell sorting analysis, we determined the frequency of monoallelic TCRα rearrangements to be 1.7% in both peripheral CD4(+) and CD8(+) αβ T cells. Furthermore, we found a skewed 5' Jα gene utilization of the rearranged TCRα allele in T cells with monoallelic TCRα rearrangements. This is in line with previous descriptions of a tight interallelic positional coincidence of Jα gene segments used on both TCRα alleles. Finally, analysis of T cells from transgenic mice harboring only one functional TCRα locus implied the existence of very rare unusual translocation or episomal reintegration events of formerly excised TCRδ loci.
Collapse
|
29
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
30
|
Winandy S. Ikaros to the rescue of TCR-α chain gene rearrangement. Eur J Immunol 2013; 43:314-7. [PMID: 23299235 DOI: 10.1002/eji.201243272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 12/18/2012] [Accepted: 01/03/2013] [Indexed: 12/15/2022]
Abstract
Ikaros is a transcriptional regulator critical for B- and T-cell development. Recently, it has been shown to play a central role in facilitating rearrangement of antigen-receptor genes in B cells. Whether or not it had a similar function in this process in T cells, however, was a mystery. In this issue of the European Journal of Immunology, a role for Ikaros in T-cell receptor (TCR) rearrangement and expression of TCR-α chain genes is revealed in the study by Collins et al. [Eur. J. Immunol. 2013. 43: 521-532]. Ikaros functions in this capacity as an "accessibility factor," facilitating increased TCR-α chain gene transcription and accessibility of the locus to promote rearrangement. Interestingly, this study has also revealed differences in the mechanisms by which Ikaros promotes antigen-receptor rearrangement in B versus T cells, thereby suggesting that Ikaros may have lineage-specific functions in coordinating antigen-receptor rearrangement.
Collapse
Affiliation(s)
- Susan Winandy
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
31
|
Mehr R, Sternberg-Simon M, Michaeli M, Pickman Y. Models and methods for analysis of lymphocyte repertoire generation, development, selection and evolution. Immunol Lett 2012; 148:11-22. [PMID: 22902400 DOI: 10.1016/j.imlet.2012.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 01/10/2023]
Abstract
T and B cell receptor repertoires are diversified by variable region gene rearrangement and selected based on functionality and lack of self-reactivity. Repertoires can also be defined based on phenotype and function rather than receptor specificity - such as the diversity of T helper cell subsets. Natural killer (NK) cell repertoires, in which each cell expresses a randomly chosen subset of its inhibitory receptor genes, and is educated based on self-MHC recognition by yet unknown mechanisms, are also phenotypic repertoires. Studying the generation, development and selection of lymphocyte repertoires, and their functions during immune responses, is essential for understanding the function of the immune system in healthy individuals and in immune deficient, autoimmune or cancer patients. The study of lymphocyte repertoires will enable clinical immunologists to develop better therapeutic monoclonal antibodies, vaccines, transplantation donor-recipient matching protocols, and other immune intervention strategies. The recent development of high-throughput methods for repertoire data collection - from multicolor flow cytometry through single-cell imaging to deep sequencing - presents us now, for the first time, with the ability to analyze and compare large samples of lymphocyte repertoires in health, aging and disease. The exponential growth of these datasets, however, challenges the theoretical immunology community to develop methods for data organization and analysis. Furthermore, the need to test hypotheses regarding immune function, and generate predictions regarding the outcomes of medical interventions, necessitates the development of complex mathematical and computational models, covering processes on multiple scales, from the genetic and molecular to the cellular and system scales.
Collapse
Affiliation(s)
- Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
32
|
Murray JM, Messier T, Rivers J, O’Neill JP, Walker VE, Vacek PM, Finette BA. V(D)J Recombinase-Mediated TCR β Locus Gene Usage and Coding Joint Processing in Peripheral T Cells during Perinatal and Pediatric Development. THE JOURNAL OF IMMUNOLOGY 2012; 189:2356-64. [DOI: 10.4049/jimmunol.1200382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Daniel JA, Nussenzweig A. Roles for histone H3K4 methyltransferase activities during immunoglobulin class-switch recombination. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:733-8. [PMID: 22710321 PMCID: PMC3378979 DOI: 10.1016/j.bbagrm.2012.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
Abstract
Germ-line transcription of an antigen receptor gene segment is an essential feature of the targeting mechanism for DNA double-strand break formation during physiological DNA rearrangements in lymphocytes. Alterations in chromatin structure have long been postulated to regulate accessibility of recombinase activities for lymphocytes to generate antibody diversity; however, whether or not germ-line transcripts are the cause or the effect of chromatin changes at antigen receptor loci is still not clear. Methylation of histone H3 at lysine 4 is one of the most well-studied histone post-translational modifications yet we have only recently begun to understand the significance of the MLL-like H3K4 methyltransferase activities in lymphocyte function. While it is clear during lymphocyte development that H3K4me3 plays a critical role in targeting and stimulating RAG1/2 recombinase activity for V(D)J recombination, recent work suggests roles for this histone mark and different MLL-like complexes in mature B cells during immunoglobulin class-switch recombination. In this review, we focus our discussion to advances on how MLL-like complexes and H3K4 methylation may function during the germ-line transcription and recombinase targeting steps of class-switch recombination. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Jeremy A. Daniel
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
34
|
Brandt VL, Hewitt SL, Skok JA. It takes two: communication between homologous alleles preserves genomic stability during V(D)J recombination. Nucleus 2012; 1:23-9. [PMID: 21327101 DOI: 10.4161/nucl.1.1.10595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/11/2009] [Indexed: 01/14/2023] Open
Abstract
Chromosome pairing is involved in X chromosome inactivation, a classic instance of monoallelic gene expression. Antigen receptor genes are also monoallelically expressed ("allelically excluded") by B and T lymphocytes, and we asked whether pairing contributed to the regulation of V(D)J recombination at these loci. We found that homologous immunoglobulin (Ig) alleles pair up during recombination. Homologous Ig pairing is substantially reduced in the absence of the RAG1/RAG2 recombinase, but a transgene expressing an active site RAG1 mutant (which binds but does not cleave DNA) rescues pairing in Rag1(-/-) developing B cells. RAG-mediated cleavage on one allele induces the other allele to relocate to pericentromeric heterochromatin (PCH), likely to ensure that only one allele is cut at a time. This relocation to PCH requires the DNA damage sensor ATM (ataxia telengiectasia mutated). In the absence of ATM, repositioning at PCH is diminished and the incidence of cleavage on both alleles is significantly increased. ATM appears to be activated by the introduction of a double-strand break on one allele to act in trans on the uncleaved allele, repositioning or maintaining it at PCH, to prevent bi-allelic recombination and chromosomal translocations.
Collapse
Affiliation(s)
- Vicky L Brandt
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
35
|
Sakamoto S, Wakae K, Anzai Y, Murai K, Tamaki N, Miyazaki M, Miyazaki K, Romanow WJ, Ikawa T, Kitamura D, Yanagihara I, Minato N, Murre C, Agata Y. E2A and CBP/p300 Act in Synergy To Promote Chromatin Accessibility of the Immunoglobulin κ Locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:5547-60. [DOI: 10.4049/jimmunol.1002346] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
|
37
|
Calvanese V, Lara E, Fraga MF. Epigenetic code and self-identity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:236-55. [PMID: 22399383 DOI: 10.1007/978-1-4614-1680-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Epigenetics is a new and expanding science that studies the chromatin-based regulation of gene expression. It is achieving considerable importance, especially with regard to developmental mechanisms that drive cell and organ differentiation, as well as in all those biological processes that involve response and adaptation to environmental stimuli. One of the most interesting biological questions concerning animals, especially human beings, is the ability to distinguish self from nonself. This ability has developed throughout evolution, both as the main function of the immune system, which defends against attack by foreign organisms and at the level of consciousness of oneself as an individual, one of the highest functions of the brain that enables social life. Here we will attempt to dissect the epigenetic mechanisms involved in establishing these higher functions and describe some alterations of the epigenetic machinery responsible for the impairment of correct self-recognition and self-identity.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Department of Immunology and Oncology, National Center for Biotechnology, Madrid, Spain
| | | | | |
Collapse
|
38
|
Lawson BR, Eleftheriadis T, Tardif V, Gonzalez-Quintial R, Baccala R, Kono DH, Theofilopoulos AN. Transmethylation in immunity and autoimmunity. Clin Immunol 2011; 143:8-21. [PMID: 22364920 DOI: 10.1016/j.clim.2011.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 10/14/2022]
Abstract
The activation of immune cells is mediated by a network of signaling proteins that can undergo post-translational modifications critical for their activity. Methylation of nucleic acids or proteins can have major effects on gene expression as well as protein repertoire diversity and function. Emerging data indicate that indeed many immunologic functions, particularly those of T cells, including thymic education, differentiation and effector function are highly dependent on methylation events. The critical role of methylation in immunocyte biology is further documented by evidence that autoimmune phenomena may be curtailed by methylation inhibitors. Additionally, epigenetic alterations imprinted by methylation can also exert effects on normal and abnormal immune responses. Further work in defining methylation effects in the immune system is likely to lead to a more detailed understanding of the immune system and may point to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Brian R Lawson
- The Scripps Research Institute, Department of Immunology & Microbial Science, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shih HY, Hao B, Krangel MS. Orchestrating T-cell receptor α gene assembly through changes in chromatin structure and organization. Immunol Res 2011; 49:192-201. [PMID: 21128009 DOI: 10.1007/s12026-010-8181-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
V(D)J recombination is regulated through changes in chromatin structure that allow recombinase proteins access to recombination signal sequences and through changes in three-dimensional chromatin organization that bring pairs of distant recombination signal sequences into proximity. The Tcra/Tcrd locus is complex and undergoes distinct recombination programs in double negative and double positive thymocytes that lead to the assembly of Tcrd and Tcra genes, respectively. Our studies provide insights into how locus chromatin structure is regulated and how changes in locus chromatin structure can target and then retarget the recombinase to create developmental progressions of recombination events. Our studies also reveal distinct locus conformations in double negative and double positive thymocytes and suggest how these conformations may support the distinct recombination programs in the two compartments.
Collapse
Affiliation(s)
- Han-Yu Shih
- Department of Immunology, Duke University Medical Center, PO Box 3010, Durham, NC 27710, USA
| | | | | |
Collapse
|
40
|
Nozaki M, Wakae K, Tamaki N, Sakamoto S, Ohnishi K, Uejima T, Minato N, Yanagihara I, Agata Y. Regulation of TCR Vγ2 gene rearrangement by the helix-loop-helix protein, E2A. Int Immunol 2011; 23:297-305. [PMID: 21421735 DOI: 10.1093/intimm/dxr005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
V(D)J recombination of Ig and TCR genes is strictly regulated by the accessibility of target gene chromatin in a lineage- and stage-specific manner. In the mouse TCRγ locus, rearrangement of the Vγ2 gene predominates over Vγ3 rearrangement in the adult thymus. This preferential rearrangement is likely due to the differential accessibility of the individual Vγ genes, because the levels of germ line transcription and histone acetylation of the Vγ genes are well correlated with the rearrangement frequency in adult thymocytes. However, factors responsible for the differential regulation of the Vγ gene rearrangement have been largely unknown. In this study, we demonstrated that Vγ2 rearrangement in the adult thymus was substantially reduced in mice deficient for the basic helix-loop-helix protein, E2A. The decreased rearrangement is likely caused by the reduced accessibility of Vγ2 chromatin, since germ line transcription and histone acetylation of the Vγ2 gene were reduced in an E2A dosage-dependent manner. We further showed that E2A bound around the Vγ2 gene in vivo and we identified two canonical E-box sites downstream of Vγ2, to which E2A can bind in vitro. Furthermore, these two E-box sites had the ability to activate transcription upon E2A over-expression. These data suggest that E2A directly binds to and increases accessibility of Vγ2 chromatin, thereby facilitating Vγ2 rearrangement in the adult thymus.
Collapse
Affiliation(s)
- Masatoshi Nozaki
- Department of Developmental Medicine, Research Institute, Osaka Medical Center for Maternal and Child Health, Osaka 594-1101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Haddad D, Oruc Z, Puget N, Laviolette-Malirat N, Philippe M, Carrion C, Le Bert M, Khamlichi AA. Sense transcription through the S region is essential for immunoglobulin class switch recombination. EMBO J 2011; 30:1608-20. [PMID: 21378751 DOI: 10.1038/emboj.2011.56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/07/2011] [Indexed: 11/10/2022] Open
Abstract
Class switch recombination (CSR) occurs between highly repetitive sequences called switch (S) regions and is initiated by activation-induced cytidine deaminase (AID). CSR is preceded by a bidirectional transcription of S regions but the relative importance of sense and antisense transcription for CSR in vivo is unknown. We generated three mouse lines in which we attempted a premature termination of transcriptional elongation by inserting bidirectional transcription terminators upstream of Sμ, upstream of Sγ3 or downstream of Sγ3 sequences. The data show, at least for Sγ3, that sense transcriptional elongation across S region is absolutely required for CSR whereas its antisense counterpart is largely dispensable, strongly suggesting that sense transcription is sufficient for AID targeting to both DNA strands.
Collapse
Affiliation(s)
- Dania Haddad
- CNRS UMR 5089-IPBS (Institut de Pharmacologie et de Biologie Structurale) and Université Paul Sabatier III, Equipe 'Instabilité génétique et régulation transcriptionnelle', Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Carabana J, Watanabe A, Hao B, Krangel MS. A barrier-type insulator forms a boundary between active and inactive chromatin at the murine TCRβ locus. THE JOURNAL OF IMMUNOLOGY 2011; 186:3556-62. [PMID: 21317385 DOI: 10.4049/jimmunol.1003164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In CD4(-)CD8(-) double-negative thymocytes, the murine Tcrb locus is composed of alternating blocks of active and inactive chromatin containing Tcrb gene segments and trypsinogen genes, respectively. Although chromatin structure is appreciated to be critical for regulated recombination and expression of Tcrb gene segments, the molecular mechanisms that maintain the integrity of these differentially regulated Tcrb locus chromatin domains are not understood. We localized a boundary between active and inactive chromatin by mapping chromatin modifications across the interval extending from Prss2 (the most 3' trypsinogen gene) to D(β)1. This boundary, located 6 kb upstream of D(β)1, is characterized by a transition from repressive (histone H3 lysine 9 dimethylation [H3K9me2]) to active (histone H3 acetylation [H3ac]) chromatin and is marked by a peak of histone H3 lysine 4 dimethylation (H3K4me2) that colocalizes with a retroviral long terminal repeat (LTR). Histone H3 lysine 4 dimethylation is retained and histone H3 lysine 9 dimethylation fails to spread past the LTR even on alleles lacking the Tcrb enhancer (E(β)) suggesting that these features may be determined by the local DNA sequence. Notably, we found that LTR-containing DNA functions as a barrier-type insulator that can protect a transgene from negative chromosomal position effects. We propose that, in vivo, the LTR blocks the spread of heterochromatin, and thereby helps to maintain the integrity of the E(β)-regulated chromatin domain. We also identified low-abundance, E(β)-dependent transcripts that initiate at the border of the LTR and an adjacent long interspersed element. We speculate that this transcription, which extends across D(β), J(β) and C(β) gene segments, may play an additional role promoting initial opening of the E(β)-regulated chromatin domain.
Collapse
Affiliation(s)
- Juan Carabana
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
43
|
Giallourakis CC, Franklin A, Guo C, Cheng HL, Yoon HS, Gallagher M, Perlot T, Andzelm M, Murphy AJ, Macdonald LE, Yancopoulos GD, Alt FW. Elements between the IgH variable (V) and diversity (D) clusters influence antisense transcription and lineage-specific V(D)J recombination. Proc Natl Acad Sci U S A 2010; 107:22207-12. [PMID: 21123744 PMCID: PMC3009784 DOI: 10.1073/pnas.1015954107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ig and T-cell receptor (TCR) variable-region gene exons are assembled from component variable (V), diversity (D) and joining (J) gene segments during early B and T cell development. The RAG1/2 endonuclease initiates V(D)J recombination by introducing DNA double-strand breaks at borders of the germ-line segments. In mice, the Ig heavy-chain (IgH) locus contains, from 5' to 3', several hundred V(H) gene segments, 13 D segments, and 4 J(H) segments within a several megabase region. In developing B cells, IgH variable-region exon assembly is ordered with D to J(H) rearrangement occurring on both alleles before appendage of a V(H) segment. Also, IgH V(H) to DJ(H) rearrangement does not occur in T cells, even though DJ(H) rearrangements occur at low levels. In these contexts, V(D)J recombination is controlled by modulating substrate gene segment accessibility to RAG1/2 activity. To elucidate control elements, we deleted the 100-kb intergenic region that separates the V(H) and D clusters (generating ΔV(H)-D alleles). In both B and T cells, ΔV(H)-D alleles initiated high-level antisense and, at lower levels, sense transcription from within the downstream D cluster, with antisense transcripts extending into proximal V(H) segments. In developing T lymphocytes, activated germ-line antisense transcription was accompanied by markedly increased IgH D-to-J(H) rearrangement and substantial V(H) to DJ(H) rearrangement of proximal IgH V(H) segments. Thus, the V(H)-D intergenic region, and likely elements within it, can influence silencing of sense and antisense germ-line transcription from the IgH D cluster and thereby influence targeting of V(D)J recombination.
Collapse
Affiliation(s)
- Cosmas C. Giallourakis
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114; and
| | - Andrew Franklin
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chunguang Guo
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Hwei-Ling Cheng
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Hye Suk Yoon
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Michael Gallagher
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Thomas Perlot
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Milena Andzelm
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | | | | | - Frederick W. Alt
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
44
|
Farcot E, Bonnet M, Jaeger S, Spicuglia S, Fernandez B, Ferrier P. TCR beta allelic exclusion in dynamical models of V(D)J recombination based on allele independence. THE JOURNAL OF IMMUNOLOGY 2010; 185:1622-32. [PMID: 20585038 DOI: 10.4049/jimmunol.0904182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allelic exclusion represents a major aspect of TCRbeta gene assembly by V(D)J recombination in developing T lymphocytes. Despite recent progress, its comprehension remains problematic when confronted with experimental data. Existing models fall short in terms of incorporating into a unique distribution all the cell subsets emerging from the TCRbeta assembly process. To revise this issue, we propose dynamical, continuous-time Markov chain-based modeling whereby essential steps in the biological procedure (D-J and V-DJ rearrangements and feedback inhibition) evolve independently on the two TCRbeta alleles in every single cell while displaying random modes of initiation and duration. By selecting parameters via fitting procedures, we demonstrate the capacity of the model to offer accurate fractions of all distinct TCRbeta genotypes observed in studies using developing and mature T cells from wild-type or mutant mice. Selected parameters in turn afford relative duration for each given step, hence updating TCRbeta recombination distinctive timings. Overall, our dynamical modeling integrating allele independence and noise in recombination and feedback-inhibition events illustrates how the combination of these ingredients alone may enforce allelic exclusion at the TCRbeta locus.
Collapse
Affiliation(s)
- Etienne Farcot
- Centre de Physique Théorique, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6207, Université de la Méditerranée-Université de Provence-Université Sud Toulon Var, Centre National de la Recherche Scientifique Luminy Case 907, France
| | | | | | | | | | | |
Collapse
|
45
|
Tani-ichi S, Lee HC, Ye SK, Ikuta K. Accessibility control of TCR Vγ region by STAT5. Int Immunol 2010; 22:693-703. [PMID: 20547543 DOI: 10.1093/intimm/dxq054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The signal of the IL-7R and signal transducers and activators of transcription (STAT) 5 plays an essential role in gammadelta T-cell development by inducing V-J recombination in the TCRgamma locus. Previously, we have shown that STAT5 binds to the Jgamma promoters and controls chromatin accessibility by histone acetylation. However, little is known on control mechanism of Vgamma region by the IL-7R. To elucidate the regulation by STAT5, we first analyzed the chromatin status of Vgamma region in primary thymocytes. The levels of histone H3 acetylation are high at Vgamma5, HsA element and Vgamma2 in Rag2(-/-) thymocytes but low in IL-7R alpha-chain (IL-7Ralpha)-deficient early thymocytes, suggesting that IL-7R signaling controls the accessibility of the Vgamma region. In addition, high levels of histone H3 acetylation and germ line transcription were induced at Vgamma5 and HsA by cytokine and STAT5 in cytokine-dependent Ba/F3 and other hematopoietic cell lines. Importantly, the chromatin accessibility of Vgamma5 gene is increased by cytokine signal. Furthermore, STAT5 was not recruited to a non-canonical STAT-binding motif in the endogenous chromatin of the Vgamma5 promoter by cytokine stimulation, while STAT5 binds to a consensus motif in the HsA element. In accordance with this result, STAT5 does not directly activate the Vgamma5 promoter by reporter assay. These results suggested that while STAT5 directly binds to HsA element and induces its histone acetylation, STAT5 indirectly activates the Vgamma5 promoter. Thus, this study implies a potential role of STAT5 in accessibility control of Vgamma region, especially at Vgamma5 and HsA.
Collapse
Affiliation(s)
- Shizue Tani-ichi
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
46
|
Numerical modelling of the V-J combinations of the T cell receptor TRA/TRD locus. PLoS Comput Biol 2010; 6:e1000682. [PMID: 20174554 PMCID: PMC2824756 DOI: 10.1371/journal.pcbi.1000682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/21/2010] [Indexed: 01/07/2023] Open
Abstract
T-Cell antigen Receptor (TR) repertoire is generated through rearrangements of V and J genes encoding α and β chains. The quantification and frequency for every V-J combination during ontogeny and development of the immune system remain to be precisely established. We have addressed this issue by building a model able to account for Vα-Jα gene rearrangements during thymus development of mice. So we developed a numerical model on the whole TRA/TRD locus, based on experimental data, to estimate how Vα and Jα genes become accessible to rearrangements. The progressive opening of the locus to V-J gene recombinations is modeled through windows of accessibility of different sizes and with different speeds of progression. Furthermore, the possibility of successive secondary V-J rearrangements was included in the modelling. The model points out some unbalanced V-J associations resulting from a preferential access to gene rearrangements and from a non-uniform partition of the accessibility of the J genes, depending on their location in the locus. The model shows that 3 to 4 successive rearrangements are sufficient to explain the use of all the V and J genes of the locus. Finally, the model provides information on both the kinetics of rearrangements and frequencies of each V-J associations. The model accounts for the essential features of the observed rearrangements on the TRA/TRD locus and may provide a reference for the repertoire of the V-J combinatorial diversity. Lymphocytes of the immune system ensure the body defense by the expression of receptors which are specific of targets, termed antigens. Each lymphocyte, deriving from the same original clone, expresses the same unique receptor. To achieve the production of receptors covering the wide variety of antigens, lymphocytes use a specialized genetic mechanism consisting of gene rearrangements. For instance, the genes encoding the receptor of the alpha chain of the T lymphocyte receptor (TRA) spread over a 1500 Kb genetic region which includes around 100 V genes, 60 J genes, and a single C gene. To constitute a functional alpha chain, one of the V and one of the J genes rearrange together to form a single exon. The precise definition of these V-J combinations is essential to understand the repertoire of TRA. We have developed a numerical model simulating all of the V-J combinations of TRA, fitting the available experimental observations obtained from the analysis of TRA in T lymphocytes of the thymus and the blood. Our model gives new insights on the rules controlling the use of V and J genes in providing a dynamic estimation of the total V-J combinations.
Collapse
|
47
|
Yang-Iott KS, Carpenter AC, Rowh MAW, Steinel N, Brady BL, Hochedlinger K, Jaenisch R, Bassing CH. TCR beta feedback signals inhibit the coupling of recombinationally accessible V beta 14 segments with DJ beta complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1369-78. [PMID: 20042591 PMCID: PMC2873682 DOI: 10.4049/jimmunol.0900723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ag receptor allelic exclusion is thought to occur through monoallelic initiation and subsequent feedback inhibition of recombinational accessibility. However, our previous analysis of mice containing a V(D)J recombination reporter inserted into Vbeta14 (Vbeta14(Rep)) indicated that Vbeta14 chromatin accessibility is biallelic. To determine whether Vbeta14 recombinational accessibility is subject to feedback inhibition, we analyzed TCRbeta rearrangements in Vbeta14(Rep) mice containing a preassembled in-frame transgenic Vbeta8.2Dbeta1Jbeta1.1 or an endogenous Vbeta14Dbeta1Jbeta1.4 rearrangement on the homologous chromosome. Expression of either preassembled VbetaDJbetaC beta-chain accelerated thymocyte development because of enhanced cellular selection, demonstrating that the rate-limiting step in early alphabeta T cell development is the assembly of an in-frame VbetaDJbeta rearrangement. Expression of these preassembled VbetaDJbeta rearrangements inhibited endogenous Vbeta14-to-DJbeta rearrangements as expected. However, in contrast to results predicted by the accepted model of TCRbeta feedback inhibition, we found that expression of these preassembled TCR beta-chains did not downregulate recombinational accessibility of Vbeta14 chromatin. Our findings suggest that TCRbeta-mediated feedback inhibition of Vbeta14 rearrangements depends on inherent properties of Vbeta14, Dbeta, and Jbeta recombination signal sequences.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chromatin/physiology
- Feedback, Physiological/physiology
- Gene Expression Regulation, Developmental/immunology
- Gene Rearrangement, T-Lymphocyte/immunology
- Genes, Reporter/immunology
- Germ-Line Mutation/immunology
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Loss of Heterozygosity/immunology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Katherine S. Yang-Iott
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Andrea C. Carpenter
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Marta A. W. Rowh
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Natalie Steinel
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Brenna L. Brady
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Konrad Hochedlinger
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Cancer Center and Center for Regenerative Medicine, Boston, MA 02114
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Craig H. Bassing
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| |
Collapse
|
48
|
Haddad D, Dougier HL, Laviolette N, Puget N, Khamlichi AA. Replacement of Imu-Cmu intron by NeoR gene alters Imu germ-line expression but has no effect on V(D)J recombination. Mol Immunol 2009; 47:961-71. [PMID: 20036775 DOI: 10.1016/j.molimm.2009.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/13/2009] [Indexed: 01/23/2023]
Abstract
The NeoR gene has often been used to unravel the mechanisms underlying long-range interactions between promoters and enhancers during V(D)J assembly and class switch recombination (CSR) in the immunoglobulin heavy chain (IgH) locus. This approach led to the notion that CSR is regulated through competition of germ-line (GL) promoters for activities displayed by the 3' regulatory region (3'RR). This polarized long-range effect of the 3'RR is disturbed upon insertion of NeoR gene in the IgH constant (C(H)) region, where only GL transcription derived from upstream GL promoters is impaired. In the context of V(D)J recombination, replacement of Emu enhancer or Emu core enhancer (cEmu) by NeoR gene fully blocked V(D)J recombination and mu0 GL transcription which originates 5' of DQ52 and severely diminished Imu GL transcription derived from Emu/Imu promoter, suggesting a critical role for cEmu in the regulation of V(D)J recombination and of mu0 and Imu expression. Here we focus on the effect of NeoR gene on mu0 and Imu GL transcription in a mouse line in which the Imu-Cmu intron was replaced by a NeoR gene in the sense-orientation. B cell development was characterized by a marked but incomplete block at the pro-B cell stage. However, V(D)J recombination was unaffected in sorted pro-B and pre-B cells excluding an interference with the accessibility control function of Emu. mu0 GL transcription initiation was relatively normal but the maturation step seemed to be affected most likely through premature termination at NeoR polyadenylation sites. In contrast, Imu transcription initiation was impaired suggesting an interference of NeoR gene with the IgH enhancers that control Imu expression. Surprisingly, in stark contrast with the NeoR effect in the C(H) region, LPS-induced NeoR expression restored Imu transcript levels to normal. The data suggest that Emu enhancer may be the master control element that counteracts the down-regulatory "Neo effect" on Imu expression upon LPS stimulation. More importantly, they reveal a complex and developmentally regulated interplay between IgH enhancers in the control of Imu expression.
Collapse
Affiliation(s)
- Dania Haddad
- CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale, Equipe Instabilité génétique et régulation transcriptionnelle, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | |
Collapse
|
49
|
Brandt VL, Roth DB. Recent insights into the formation of RAG-induced chromosomal translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:32-45. [PMID: 19731799 DOI: 10.1007/978-1-4419-0296-2_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Chromosomal translocations are found in many types of tumors, where they may be either a cause or a result of malignant transformation. In lymphoid neoplasms, however, it is dear that pathogenesis is initiated by any of a number of recurrent DNA rearrangements. These particular translocations typically place an oncogene under the regulatory control of an Ig or TCR gene promoter, dysregulating cell growth, differentiation, or apoptosis. Given that physiological DNA rearrangements (V(D)J and class switch recombination) are integral to lymphocyte development, it is critical to understand how genomic stability is maintained during these processes. Recent advances in our understanding of DNA damage signaling and repair have provided clues to the kinds of mechanisms that lead to V(D)J-mediated translocations. In turn, investigations into the regulation of V(D)J joining have illuminated a formerly obscure pathway of DNA repair known as alternative NHEJ, which is error-prone and frequently involved in translocations. In this chapter we consider recent advances in our understanding of the functions of the RAG proteins, RAG interactions with DNA repair pathways, damage signaling and chromosome biology, all of which shed light on how mistakes at different stages of V(D)J recombination might lead to leukemias and lymphomas.
Collapse
Affiliation(s)
- Vicky L Brandt
- Department of Pathology and Program in Molecular Pathogenesis, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
50
|
Perlot T, Alt FW. Cis-regulatory elements and epigenetic changes control genomic rearrangements of the IgH locus. Adv Immunol 2009; 99:1-32. [PMID: 19117530 DOI: 10.1016/s0065-2776(08)00601-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunoglobulin variable region exons are assembled from discontinuous variable (V), diversity (D), and joining (J) segments by the process of V(D)J recombination. V(D)J rearrangements of the immunoglobulin heavy chain (IgH) locus are tightly controlled in a tissue-specific, ordered and allele-specific manner by regulating accessibility of V, D, and J segments to the recombination activating gene proteins which are the specific components of the V(D)J recombinase. In this review we discuss recent advances and established models brought forward to explain the mechanisms underlying accessibility control of V(D)J recombination, including research on germline transcripts, spatial organization, and chromatin modifications of the immunoglobulin heavy chain (IgH) locus. Furthermore, we review the functions of well-described and potential new cis-regulatory elements with regard to processes such as V(D)J recombination, allelic exclusion, and IgH class switch recombination.
Collapse
Affiliation(s)
- Thomas Perlot
- The Howard Hughes Medical Institute, The Children's Hospital, Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|