1
|
Lertsakulbunlue S, Khimmaktong W, Khow O, Chantkran W, Noiphrom J, Promruangreang K, Chanhome L, Chaisakul J. Snake Venom Pharmacokinetics and Acute Toxic Outcomes Following Daboia siamensis Envenoming: Experimental and Clinical Correlations. Toxins (Basel) 2024; 17:10. [PMID: 39852963 PMCID: PMC11769258 DOI: 10.3390/toxins17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
An understanding of snake venom pharmacokinetics is essential for determining clinical outcomes of envenoming and developing therapeutic approaches to the treatment of envenoming, especially regarding the timing and optimal dosage of antivenom administration. Daboia siamensis (Eastern Russell's viper) envenoming causes systemic coagulopathy and severe hemorrhage including acute kidney injury. These toxic outcomes can be diminished by the administration of high quantities of Russell's viper antivenom. This study aimed to determine the correlation between the clinical profiles of D. siamensis envenomed patients and experimental data by measuring plasma venom concentration and conducting histopathological analyses of heart, kidney, and liver tissues in rats 6 h after experimental D. siamensis envenomation. Intramuscular (i.m.) administration of D. siamensis venom to anesthetized rats (200 µg/kg) resulted in a rapid absorption of venom which reached a peak concentration at 60 min before declining and then plateauing. Urine samples detected 209.3 ± 21.6 ng/mL of D. siamensis venom following i.m. administration at 6 h. Histopathological studies showed morphological changes in heart, kidney, and liver tissues following 3 h experimental envenoming and exhibited a higher degree of severity at 6 h. A retrospective study of the clinical profile and laboratory examination of Russell's viper envenomed patients in Central Thailand was also evaluated, showing that systemic coagulopathy and local effects were commonly observed in the early stage of D. siamensis envenoming. An abnormal increase in creatinine levels was found in 13.6% of the population. Early administration of specific antivenom within 1-2 h following envenoming is highly recommended to prevent life-threatening outcomes such as severe coagulation and acute kidney injury.
Collapse
Affiliation(s)
| | - Wipapan Khimmaktong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Orawan Khow
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (J.N.)
| | - Wittawat Chantkran
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Jureeporn Noiphrom
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand; (O.K.); (J.N.)
| | - Kanyanat Promruangreang
- Forensic Toxicology Unit, Department of Forensic Medicine, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand;
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| |
Collapse
|
2
|
Kakati H, Patra A, Mukherjee AK. Composition, pharmacology, and pathophysiology of the venom of monocled cobra (Naja kaouthia)- a medically crucial venomous snake of southeast Asia: An updated review. Toxicon 2024; 249:108056. [PMID: 39111718 DOI: 10.1016/j.toxicon.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
The Monocled Cobra (Naja kaouthia), a category one medically significant snake from the Elapidae family, inflicts severe envenomation in South and Southeast Asian countries. N. kaouthia is distributed throughout the eastern and northeastern parts of India, Nepal, Bangladesh, Myanmar, Thailand, Vietnam, Malaysia, and southwestern China. Envenomation by N. kaouthia is a medical emergency, and the primary clinical symptoms are neurotoxicity and localized tissue destruction. Unfortunately, data on the actual magnitude of N. kaouthia envenomation is scarce due to poor record keeping, lack of diagnostic kits, and region-wise well-coordinated epidemiological surveys. The present review highlights the diversity in the composition of N. Kaouthia venom (NKV) across various geographical regions, as revealed through biochemical and proteomic analyses. The qualitative and quantitative differences in the toxin isoforms result in differences in lethality and pathophysiological manifestation that may limit the effectiveness of antivenom therapy. Studies on commercial polyvalent antivenom (PAV) effectiveness against distinct NKV samples have revealed varying toxicity and enzymatic activity neutralization. Additionally, the identification of snake venom's poorly immunogenic toxins by mass spectrometry, quantification of venom-specific antibodies, and implications for antivenom therapy against snakebites are highlighted. Future directions involve clinical studies on NK envenomation where the snake is frequently encountered and the correlation of this data with NKV composition in that region. For more efficient and superior hospital management of NK envenomation, research should enhance the current immunization procedure to boost the development of antibodies against less immunogenic venom components of this snake.
Collapse
Affiliation(s)
- Hirakjyoti Kakati
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur- 784028, Assam, India
| | - Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India; Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur- 784028, Assam, India; Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India.
| |
Collapse
|
3
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
4
|
Tiwari N, Jaimini A, Jain GK, Aggarwal G, Mittal G. Evaluation of three different 99mTc-based mock-venom agents for lymphoscintigraphy studies in preclinical models of peripheral snakebite envenomation. J Pharmacol Toxicol Methods 2023:107280. [PMID: 37295617 DOI: 10.1016/j.vascn.2023.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Snakebite envenomation is one of the major public health concerns across many countries; with the WHO designating it as a 'priority neglected tropical disease' and stressing for a need to develop novel therapeutic strategies to reduce death and disability rate by end of 2030. Since a major component of venom; the high molecular weight (HMw) toxins enter the bloodstream through lymphatic system, research is focusing on modulating the lymphatic flow rate after topical application of suitable drug candidates. Present study compared the suitability of three radiopharmaceutical agents, namely 99mTc-Sulfur colloid (SC), 99mTc-Phytate (Phy) and 99mTc-Human serum albumin (HSA), to be used as mock-venom agent in studying modulation in lymphatic flow rate in preclinical models of peripheral snakebite envenomation using lymphoscintigraphy studies. The study was performed in 72 Sprague Dawley rats; divided into six groups of 12 rats each. Control groups were given intradermal injection (1.29-1.48 MBq in 100 μl normal saline) of either 99mTc-Phy/ 99mTc-SC/ 99mTc-HSA into the tail as 'mock-venom'. In respective test groups, commercially available topical formulation (Anobliss® Cream) containing Nifedipine (Nif; 0.3% w/w) and Lidocaine (Lid; 1.5% w/w) was applied topically over the animals' lower body (tail and hind limbs) immediately within 20s of administering intradermal injection of the radiopharmaceutical. Any modulation in lymph transit time from periphery to systemic circulation was assessed using lymphoscintigraphy by taking dynamic gamma-scintigraphy images of 60s each till 1 h post-injection of the test radiopharmaceuticals. Significant difference in movement of the three radiopharmaceuticals was noted in terms of their lymphatic movement. 99mTc-Phy did not show significant travel through the lymphatics and the liver was faintly visualized in control as well as test intervention groups. In case of 99mTc-SC, significant changes in movement of the radiotracer after topical application of Nif/Lid in the test intervention groups were clearly noted in comparison to control (P < 0.05). Multiple numbers of lymph nodes (LNs) could be clearly visualized in control (5 ± 1 LNs) and test intervention groups (3 ± 1 LNs). Liver uptake was more prominent in control animals and it reduced significantly in test intervention groups. On the other hand, 99mTc-HSA showed lesser number of lymph nodes and higher accumulation in liver as compared to 99mTc-SC, suggesting very fast movement of this radiopharmaceutical. Results indicates that 99mTc-SC could be used as a suitable agent to mimic lymphatic transit behavior of HMw toxin components of snake venom and could therefore be used as a model in studying the effect of any test pharmacological intervention in modulating lymphatic transit rate. Additional advantage could be a significant reduction in the need for sacrificing large number of animals, particularly during initial screening phase of drug development cycle.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi 110054, India; Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Abhinav Jaimini
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi 110054, India
| | - Gaurav Kumar Jain
- Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Gaurav Mittal
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi 110054, India.
| |
Collapse
|
5
|
Simas Pereira Junior LC, Souza JF, Rodrigues da Silva AC, Coriolano de Oliveira E, Sanchez EF, Fuly AL. Utilization of gallic acid to inhibit some toxic activities caused by Bothrops jararaca or B. jararacussu snake venoms. Toxicon 2022; 217:5-12. [PMID: 35931224 DOI: 10.1016/j.toxicon.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Snake bite envenoming is a serious public health issue, affecting thousands of people worldwide every year, especially in rural communities of tropical and subtropical countries. Injection of venom into victims may cause hemorrhaging, blood coagulation imbalance, inflammation, pain, edema, muscle necrosis, and eventually, death. The official validated treatment recommended by governments is the administration of antivenom that efficiently prevents morbidity and mortality. However, this therapy does not effectively neutralize the local effects of Viperidae venoms which constitute one of the leading causes of disability or amputation of the affected limb. Thus, bioprospecting studies seeking for alternative therapies to complement antivenom should be encouraged, especially those investigating the blockage of local venomic toxicity. Plants produce a great diversity of metabolites with a wide range of pharmacological and biological properties. Therefore, the objective of this study was to assess the utilization of gallic acid, which is widely found in plants, against some toxic in vitro (coagulation, proteolytic, and hemolytic) or in vivo (edematogenic, hemorrhagic, and lethal) activities of Bothrops jararaca or B. jararacussu venom. Gallic acid was incubated with B. jararaca or B. jararacussu venom (incubation protocol), after which, in vitro or in vivo assays were performed. Additionally, a gel containing gallic acid was developed and topically applied over the skin of mice after injection of B. jararaca or B. jararacussu venom (treatment protocol), and then, a hemorrhagic assay was carried out. As a result, gallic acid inhibited the toxic activities, with variable efficacy, and the gallic acid gel neutralized B. jararaca or B. jararacussu venom-induced hemorrhagic activity. Gallic acid was devoid of in vitro toxicity as shown through a hemocompatibility test. Thus, these findings demonstrate the potential of gallic acid in the development of an alternative agent to treat victims of snake bites inflicted by Bothrops species.
Collapse
Affiliation(s)
- Luiz Carlos Simas Pereira Junior
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil
| | - Jenifer Frouche Souza
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Ana Cláudia Rodrigues da Silva
- Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Eduardo Coriolano de Oliveira
- Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Eladio Flores Sanchez
- Laboratório de Bioquímica de Proteínas de Venenos de Animais, Fundação Ezequiel Dias, Belo Horizonte, 30510-010, Minas Gerais, Brazil
| | - André Lopes Fuly
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Mukherjee A, Nepiyushchikh Z, Michalaki E, Dixon JB. Lymphatic injury alters the contractility and mechanosensitivity of collecting lymphatics to intermittent pneumatic compression. J Physiol 2021; 599:2699-2721. [PMID: 33644884 DOI: 10.1113/jp281206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS We present the first in vivo evidence that lymphatic contraction can entrain with an external oscillatory mechanical stimulus. Lymphatic injury can alter collecting lymphatic contractility, but not much is known about how its mechanosensitivity to external pressure is affected, which is crucial given the current pressure application methods for treating lymphoedema. We show that oscillatory pressure waves (OPW), akin to intermittent pneumatic compression (IPC) therapy, optimally entrain lymphatic contractility and modulate function depending on the frequency and propagation speed of the OPW. We show that the OPW-induced entrainment and contractile function in the intact collecting lymphatics are enhanced 28 days after a contralateral lymphatic ligation surgery. The results show that IPC efficacy can be improved through proper selection of OPW parameters, and that collecting lymphatics adapt their function and mechanosensitivity after a contralateral injury, switching their behaviour to a pump-like configuration that may be more suited to the altered microenvironment. ABSTRACT Intermittent pneumatic compression (IPC) is commonly used to control the swelling due to lymphoedema, possibly modulating the collecting lymphatic function. Lymphoedema causes lymphatic contractile dysfunction, but the consequent alterations in the mechanosensitivity of lymphatics to IPC is not known. In the present work, the spatiotemporally varying oscillatory pressure waves (OPW) generated during IPC were simulated to study the modulation of lymphatic function by OPW under physiological and pathological conditions. OPW with three temporal frequencies and three propagation speeds were applied to rat tail collecting lymphatics. The entrainment of the lymphatics to OPW was significantly higher at a frequency of 0.05 Hz compared with 0.1 Hz and 0.2 Hz (P = 0.0054 and P = 0.014, respectively), but did not depend on the OPW propagation speed. Lymphatic function was significantly higher at a frequency of 0.05 Hz and propagation speed of 2.55 mm/s (P = 0.015). Exogenous nitric oxide was not found to alter OPW-induced entrainment. A contralateral lymphatic ligation surgery was performed to simulate partial lymphatic injury in rat tails. The intact vessels showed a significant increase in entrainment to OPW, 28 days after ligation (compared with sham) (P = 0.016), with a similar increase in lymphatic transport function (P = 0.0029). The results suggest an enhanced mechanosensitivity of the lymphatics, along with a transition to a pump-like behaviour, in response to a lymphatic injury. These results enhance our fundamental understanding of how lymphatic mechanosensitivity assists the coordination of lymphatic contractility and how this might be leveraged in IPC therapy.
Collapse
Affiliation(s)
- Anish Mukherjee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhanna Nepiyushchikh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
7
|
Current research into snake antivenoms, their mechanisms of action and applications. Biochem Soc Trans 2021; 48:537-546. [PMID: 32196542 DOI: 10.1042/bst20190739] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/11/2023]
Abstract
Snakebite is a major public health issue in the rural tropics. Antivenom is the only specific treatment currently available. We review the history, mechanism of action and current developments in snake antivenoms. In the late nineteenth century, snake antivenoms were first developed by raising hyperimmune serum in animals, such as horses, against snake venoms. Hyperimmune serum was then purified to produce whole immunoglobulin G (IgG) antivenoms. IgG was then fractionated to produce F(ab) and F(ab')2 antivenoms to reduce adverse reactions and increase efficacy. Current commercial antivenoms are polyclonal mixtures of antibodies or their fractions raised against all toxin antigens in a venom(s), irrespective of clinical importance. Over the last few decades there have been small incremental improvements in antivenoms, to make them safer and more effective. A number of recent developments in biotechnology and toxinology have contributed to this. Proteomics and transcriptomics have been applied to venom toxin composition (venomics), improving our understanding of medically important toxins. In addition, it has become possible to identify toxins that contain epitopes recognized by antivenom molecules (antivenomics). Integration of the toxinological profile of a venom and its composition to identify medically relevant toxins improved this. Furthermore, camelid, humanized and fully human monoclonal antibodies and their fractions, as well as enzyme inhibitors have been experimentally developed against venom toxins. Translation of such technology into commercial antivenoms requires overcoming the high costs, limited knowledge of venom and antivenom pharmacology, and lack of reliable animal models. Addressing such should be the focus of antivenom research.
Collapse
|
8
|
Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes. Biomaterials 2020; 265:120411. [PMID: 33080460 DOI: 10.1016/j.biomaterials.2020.120411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Lymph nodes (LNs) are immune organs housing high concentrations of lymphocytes, making them critical targets for therapeutic immunomodulation in a wide variety of diseases. While there is great interest in targeted drug delivery to LNs, many nanoscale drug delivery carriers have limited access to parenchymal resident immune cells compared to small molecules, limiting their efficacy. Nitric oxide (NO) is a potent regulator of vascular and lymphatic transport and a promising candidate for modulating nanocarrier access to LNs, but its lymphatic accumulation is limited by its low molecular weight and high reactivity. In this work, we employ S-nitrosated nanoparticles (SNO-NP), a lymphatic-targeted delivery system for controlled NO release, to investigate the effect of NO application on molecule accumulation and distribution within the LN. We evaluated the LN accumulation, spatial distribution, and cellular distribution of a panel of fluorescent tracers after intradermal administration alongside SNO-NP or a small molecule NO donor. While SNO-NP did not alter total tracer accumulation in draining lymph nodes (dLNs) or affect active cellular transport of large molecules from the injection site, its application enhanced the penetration of nanoscale 30 nm dextrans into the LN and their subsequent uptake by LN-resident lymphocytes, while nontargeted NO delivery did not. These results further extended to a peptide-conjugated NP drug delivery system, which showed enhanced uptake by B cells and dendritic cells when administered alongside SNO-NP. Together, these results highlight the utility of LN-targeted NO application for the enhancement of nanocarrier access to therapeutically relevant LN-resident immune cells, making NO a potentially useful tool for improving LN drug delivery and immune responses.
Collapse
|
9
|
Koh CY, Bendre R, Kini RM. Repurposed drug to the rescue of snakebite victims. Sci Transl Med 2020; 12:eabb6700. [PMID: 32376770 DOI: 10.1126/scitranslmed.abb6700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
Preclinical data suggest the possibility of repurposing a drug for early intervention in envenoming by snake venom rich in metalloproteinases (Albulescu et al., this issue).
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Rohan Bendre
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
10
|
Sestito LF, Thomas SN. Biomaterials for Modulating Lymphatic Function in Immunoengineering. ACS Pharmacol Transl Sci 2019; 2:293-310. [PMID: 32259064 DOI: 10.1021/acsptsci.9b00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Immunoengineering is a rapidly growing and interdisciplinary field focused on developing tools to study and understand the immune system, then employing that knowledge to modulate immune response for the treatment of disease. Because of its roles in housing a substantial fraction of the body's lymphocytes, in facilitating immune cell trafficking, and direct immune modulatory functions, among others, the lymphatic system plays multifaceted roles in immune regulation. In this review, the potential for biomaterials to be applied to regulate the lymphatic system and its functions to achieve immunomodulation and the treatment of disease are described. Three related processes-lymphangiogenesis, lymphatic vessel contraction, and lymph node remodeling-are specifically explored. The molecular regulation of each process and their roles in pathologies are briefly outlined, with putative therapeutic targets and the lymphatic remodeling that can result from disease highlighted. Applications of biomaterials that harness these pathways for the treatment of disease via immunomodulation are discussed.
Collapse
Affiliation(s)
- Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NW, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Helden DFV, Dosen PJ, O'Leary MA, Isbister GK. Two pathways for venom toxin entry consequent to injection of an Australian elapid snake venom. Sci Rep 2019; 9:8595. [PMID: 31197231 PMCID: PMC6565734 DOI: 10.1038/s41598-019-45022-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Here we test and refute the hypothesis that venom toxins from an Australian elapid, the Eastern Brown snake (Pseudonaja textilis, PTx), solely require lymphatic transport to enter the circulation. Studies were made using anaesthetised non-recovery rats in which a marker dye (India ink) or highly potent PTx venom was injected into the hind paw. The studies required a means of inhibiting lymphatic function, as achieved by cooling of the test hind limb to low temperatures (~3 °C). Maintained entry of a non-lethal dose (0.15 mg/kg) and respiratory arrest consequent to injection of a lethal dose (1 mg/kg) of PTx venom at these low temperatures indicate that venom including toxin components enter the circulation directly via the vascular system, a process facilitated by, but not dependent on, lymphatic transport. Notably, the venom had a direct effect on vascular permeability markedly increasing this to allow extravasation of plasma albumin (MWt ~60 kDa).
Collapse
Affiliation(s)
- Dirk F van Helden
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| | - Peter J Dosen
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Margaret A O'Leary
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
12
|
Schudel A, Sestito LF, Thomas SN. Winner of the society for biomaterials young investigator award for the annual meeting of the society for biomaterials, April 11-14, 2018, Atlanta, GA: S-nitrosated poly(propylene sulfide) nanoparticles for enhanced nitric oxide delivery to lymphatic tissues. J Biomed Mater Res A 2018; 106:1463-1475. [PMID: 29352735 PMCID: PMC5924474 DOI: 10.1002/jbm.a.36348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is a therapeutic implicated for the treatment of diseases afflicting lymphatic tissues, which range from infectious and cardiovascular diseases to cancer. Existing technologies available for NO therapy, however, provide poor bioactivity within lymphatic tissues. In this work, we address this technology gap with a NO encapsulation and delivery strategy leveraging the formation of S-nitrosothiols on lymphatic-targeting pluronic-stabilized, poly(propylene sulfide)-core nanoparticles (SNO-NP). We evaluated in vivo the lymphatic versus systemic delivery of NO resulting from intradermal administration of SNO-NP benchmarked against a commonly used, commercially available small molecule S-nitrosothiol NO donor, examined signs of toxicity systemically as well as localized to the site of injection, and investigated SNO effects on lymphatic transport and NP uptake by lymph node (LN)-resident cells. Donation of NO from SNO-NP, which scaled in proportion to the total administered dose, enhanced LN accumulation by two orders of magnitude without substantially reducing lymphatic transport of NP or the viability and extent of NP uptake by LN-resident cells. Additionally, NO delivery by SNO-NP was accompanied by low-to-negligible NO accumulation in systemic tissues with no apparent inflammation. These results suggest the utility and selectivity of SNO-NP for the targeted treatment of NO-regulated diseases that afflict lymphatic tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1463-1475, 2018.
Collapse
Affiliation(s)
- Alex Schudel
- School of Materials Science and Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Lauren F. Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, and Emory University, 201 Dowman Drive, Atlanta, Georgia 30322
| | - Susan N. Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, and Emory University, 201 Dowman Drive, Atlanta, Georgia 30322
- Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, Georgia 30322
| |
Collapse
|
13
|
Parker-Cote J, Meggs WJ. First Aid and Pre-Hospital Management of Venomous Snakebites. Trop Med Infect Dis 2018; 3:E45. [PMID: 30274441 PMCID: PMC6073535 DOI: 10.3390/tropicalmed3020045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antivenom is the definitive treatment for venomous snakebites, but is expensive and not available in many rural and poorly developed regions. Timely transportation to facilities that stock and administer antivenom may not be available in rural areas with poorly developed emergency medical services. These factors have led to consideration of measures to delay onset of toxicity or alternatives to antivenom therapy. METHODS PubMed searches were conducted for articles on snakebite treatment, or that contained first aid, emergency medical services, tourniquets, pressure immobilization bandages, suction devices, and lymphatic flow inhibitors. RESULTS The reviewed articles describe how venoms spread after a venomous snakebite on an extremity, list the proposed first aid measures for delaying the spread of venoms, and evaluate the scientific studies that support or refute methods of snakebite first aid. The recommendations for field treatment of venomous snakebites will be discussed. CONCLUSIONS The evidence suggests that pressure immobilization bandages and related strategies are the best interventions to delay onset of systemic toxicity from venomous snakebites but may increase local toxicity for venoms that destroy tissue at the site of the bite, so their use should be individualized to the circumstances and nature of the venom.
Collapse
Affiliation(s)
- Jennifer Parker-Cote
- Division of Toxicology, Department of Emergency Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - William J Meggs
- Division of Toxicology, Department of Emergency Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
14
|
Jones D, Meijer EFJ, Blatter C, Liao S, Pereira ER, Bouta EM, Jung K, Chin SM, Huang P, Munn LL, Vakoc BJ, Otto M, Padera TP. Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci Transl Med 2018; 10:eaam7964. [PMID: 29343625 PMCID: PMC5953194 DOI: 10.1126/scitranslmed.aam7964] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/20/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of morbidity and mortality worldwide and is a frequent cause of skin and soft tissue infections (SSTIs). Lymphedema-fluid accumulation in tissue caused by impaired lymphatic vessel function-is a strong risk factor for SSTIs. SSTIs also frequently recur in patients and sometimes lead to acquired lymphedema. However, the mechanism of how SSTIs can be both the consequence and the cause of lymphatic vessel dysfunction is not known. Intravital imaging in mice revealed an acute reduction in both lymphatic vessel contractility and lymph flow after localized MRSA infection. Moreover, chronic lymphatic impairment is observed long after MRSA is cleared and inflammation is resolved. Associated with decreased collecting lymphatic vessel function was the loss and disorganization of lymphatic muscle cells (LMCs), which are critical for lymphatic contraction. In vitro, incubation with MRSA-conditioned supernatant led to LMC death. Proteomic analysis identified several accessory gene regulator (agr)-controlled MRSA exotoxins that contribute to LMC death. Infection with agr mutant MRSA resulted in sustained lymphatic function compared to animals infected with wild-type MRSA. Our findings suggest that agr is a promising target to preserve lymphatic vessel function and promote immunity during SSTIs.
Collapse
Affiliation(s)
- Dennis Jones
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Eelco F J Meijer
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Cedric Blatter
- Harvard Medical School, Boston, MA 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shan Liao
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Echoe M Bouta
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Keehoon Jung
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Shan Min Chin
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Peigen Huang
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lance L Munn
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin J Vakoc
- Harvard Medical School, Boston, MA 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratory, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA.
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Abstract
Snakebite envenoming is a neglected tropical disease that kills >100,000 people and maims >400,000 people every year. Impoverished populations living in the rural tropics are particularly vulnerable; snakebite envenoming perpetuates the cycle of poverty. Snake venoms are complex mixtures of proteins that exert a wide range of toxic actions. The high variability in snake venom composition is responsible for the various clinical manifestations in envenomings, ranging from local tissue damage to potentially life-threatening systemic effects. Intravenous administration of antivenom is the only specific treatment to counteract envenoming. Analgesics, ventilator support, fluid therapy, haemodialysis and antibiotic therapy are also used. Novel therapeutic alternatives based on recombinant antibody technologies and new toxin inhibitors are being explored. Confronting snakebite envenoming at a global level demands the implementation of an integrated intervention strategy involving the WHO, the research community, antivenom manufacturers, regulatory agencies, national and regional health authorities, professional health organizations, international funding agencies, advocacy groups and civil society institutions.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, PO Box 11501-2060, San José, Costa Rica
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David J Williams
- Charles Campbell Toxinology Centre, School of Medicine &Health Sciences, University of Papua New Guinea, Boroko, National Capital District, Papua New Guinea
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - David A Warrell
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Razavi MS, Nelson TS, Nepiyushchikh Z, Gleason RL, Dixon JB. The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling. Am J Physiol Heart Circ Physiol 2017; 313:H1249-H1260. [PMID: 28778909 DOI: 10.1152/ajpheart.00003.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intrinsic contraction of collecting lymphatic vessels serves as a pumping system to propel lymph against hydrostatic pressure gradients as it returns interstitial fluid to the venous circulation. In the present study, we proposed and validated that the maximum opposing outflow pressure along a chain of lymphangions at which flow can be achieved increases with the length of chain. Using minimally invasive near-infrared imaging to measure the effective pumping pressure at various locations in the rat tail, we demonstrated increases in pumping pressure along the length of the tail. Computational simulations based on a microstructurally motivated model of a chain of lymphangions informed from biaxial testing of isolated vessels was used to provide insights into the pumping mechanisms responsible for the pressure increases observed in vivo. These models suggest that the number of lymphangions in the chain and smooth muscle cell force generation play a significant role in determining the maximum outflow pressure, whereas the frequency of contraction has no effect. In vivo administration of nitric oxide attenuated lymphatic contraction, subsequently lowering the effective pumping pressure. Computational simulations suggest that the reduction in contractile strength of smooth muscle cells in the presence of nitric oxide can account for the reductions in outflow pressure observed along the lymphangion chain in vivo. Thus, combining modeling with multiple measurements of lymphatic pumping pressure provides a method for approximating intrinsic lymphatic muscle activity noninvasively in vivo while also providing insights into factors that determine the extent that a lymphangion chain can transport fluid against an adverse pressure gradient. NEW & NOTEWORTHY Here, we report the first minimally invasive in vivo measurements of the relationship between lymphangion chain length and lymphatic pumping pressure. We also provide the first in vivo validation of lumped parameter models of lymphangion chains previously developed through data obtained from isolated vessel testing.
Collapse
Affiliation(s)
- Mohammad S Razavi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Tyler S Nelson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Zhanna Nepiyushchikh
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Rudolph L Gleason
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - J Brandon Dixon
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
17
|
Harrison RA, Gutiérrez JM. Priority Actions and Progress to Substantially and Sustainably Reduce the Mortality, Morbidity and Socioeconomic Burden of Tropical Snakebite. Toxins (Basel) 2016; 8:toxins8120351. [PMID: 27886134 PMCID: PMC5198546 DOI: 10.3390/toxins8120351] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022] Open
Abstract
The deliberations and conclusions of a Hinxton Retreat convened in September 2015, entitled “Mechanisms to reverse the public health neglect of snakebite victims” are reported. The participants recommended that the following priority actions be included in strategies to reduce the global impact of snake envenoming: (a) collection of accurate global snakebite incidence, mortality and morbidity data to underpin advocacy efforts and help design public health campaigns; (b) promotion of (i) public education prevention campaigns; (ii) transport systems to improve access to hospitals and (iii) establishment of regional antivenom-efficacy testing facilities to ensure antivenoms’ effectiveness and safety; (c) exploration of funding models for investment in the production of antivenoms to address deficiencies in some regions; (d) establishment of (i) programs for training in effective first aid, hospital management and post-treatment care of victims; (ii) a clinical network to generate treatment guidelines and (iii) a clinical trials system to improve the clinical management of snakebite; (e) development of (i) novel treatments of the systemic and local tissue-destructive effects of envenoming and (ii) affordable, simple, point-of-care snakebite diagnostic kits to improve the accuracy and rapidity of treatment; (f) devising and implementation of interventions to help the people and communities affected by physical and psychological sequelae of snakebite.
Collapse
Affiliation(s)
- Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical, Liverpool L35QA, UK.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| |
Collapse
|
18
|
In vivo visualization and quantification of collecting lymphatic vessel contractility using near-infrared imaging. Sci Rep 2016; 6:22930. [PMID: 26960708 PMCID: PMC4785392 DOI: 10.1038/srep22930] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/24/2016] [Indexed: 02/07/2023] Open
Abstract
Techniques to image lymphatic vessel function in either animal models or in the clinic are limited. In particular, imaging methods that can provide robust outcome measures for collecting lymphatic vessel function are sorely needed. In this study, we aimed to develop a method to visualize and quantify collecting lymphatic vessel function in mice, and to establish an in vivo system for evaluation of contractile agonists and antagonists using near-infrared fluorescence imaging. The flank collecting lymphatic vessel in mice was exposed using a surgical technique and a near-infrared tracer was infused into the inguinal lymph node. Collecting lymphatic vessel contractility and valve function could be easily visualized after the infusion. A diameter tracking method was established and the diameter of the vessel was found to closely correlate to near-infrared fluorescence signal. Phasic contractility measures of frequency and amplitude were established using an automated algorithm. The methods were validated by tracking the vessel response to topical application of a contractile agonist, prostaglandin F2α, and by demonstrating the potential of the technique for non-invasive evaluation of modifiers of lymphatic function. These new methods will enable high-resolution imaging and quantification of collecting lymphatic vessel function in animal models and may have future clinical applications.
Collapse
|
19
|
Telinius N, Majgaard J, Kim S, Katballe N, Pahle E, Nielsen J, Hjortdal V, Aalkjaer C, Boedtkjer DB. Voltage-gated sodium channels contribute to action potentials and spontaneous contractility in isolated human lymphatic vessels. J Physiol 2015; 593:3109-22. [PMID: 25969124 PMCID: PMC4532530 DOI: 10.1113/jp270166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) play a key role for initiating action potentials (AP) in excitable cells. VGSC in human lymphatic vessels have not been investigated. In the present study, we report the electrical activity and APs of small human lymphatic collecting vessels, as well as mRNA expression and function of VGSC in small and large human lymphatic vessels. The VGSC blocker TTX inhibited spontaneous contractions in six of 10 spontaneously active vessels, whereas ranolazine, which has a narrower VGSC blocking profile, had no influence on spontaneous activity. TTX did not affect noradrenaline-induced contractions. The VGSC opener veratridine induced contractions in a concentration-dependent manner (0.1-30 μm) eliciting a stable tonic contraction and membrane depolarization to -18 ± 0.6 mV. Veratridine-induced depolarizations and contractions were reversed ∼80% by TTX, and were dependent on Ca(2+) influx via L-type calcium channels and the sodium-calcium exchanger in reverse mode. Molecular analysis determined NaV 1.3 to be the predominantly expressed VGSC isoform. Electrophysiology of mesenteric lymphatics determined the resting membrane potential to be -45 ± 1.7 mV. Spontaneous APs were preceded by a slow depolarization of 5.3 ± 0.6 mV after which a spike was elicited that almost completely repolarized before immediately depolarizing again to plateau. Vessels transiently hyperpolarized prior to returning to the resting membrane potential. TTX application blocked APs. We have shown that VGSC are necessary for initiating and maintaining APs and spontaneous contractions in human lymphatic vessels and our data suggest the main contribution from comes NaV 1.3. We have also shown that activation of these channels augments the contractile activity of the vessels.
Collapse
Affiliation(s)
- Niklas Telinius
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University HospitalAarhus, Denmark
| | - Jens Majgaard
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
| | - Niels Katballe
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
| | - Einar Pahle
- Department of Surgery, Viborg HospitalViborg, Denmark
| | - Jørn Nielsen
- Department of Surgery, Viborg HospitalViborg, Denmark
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Aarhus University HospitalAarhus, Denmark
| | | | - Donna Briggs Boedtkjer
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University HospitalAarhus, Denmark
| |
Collapse
|
20
|
Hart AJ, Hodgson WC, O'Leary M, Isbister GK. Pharmacokinetics and pharmacodynamics of the myotoxic venom of Pseudechis australis (mulga snake) in the anesthetised rat. Clin Toxicol (Phila) 2014; 52:604-10. [PMID: 24940643 DOI: 10.3109/15563650.2014.914526] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Myotoxicity is a common clinical effect of snake envenoming and results from either local or systemic myotoxins in snake venoms. Although numerous myotoxins have been isolated from snake venoms, there has been limited study on the relationship between the time course of venom concentrations (pharmacokinetics) and the time course of muscle injury measured as a rise in creatine kinase (CK) (pharmacodynamics). OBJECTIVE The aim of this study was to develop an in vivo model of myotoxicity to investigate the time course of myotoxicity and the effect of antivenom. MATERIALS AND METHODS Anesthetised rats were administered Pseudechis australis (mulga snake) venom either through i.v., i.m. or s.d. route, including a range of doses (5-100 μg/kg). Serial blood samples were collected for measurement of venom using enzyme immunoassay and measurement of CK and creatinine. Antivenom was administered before, 1 and 6 h after venom administration to investigate its effect on muscle injury. Plots of venom and CK versus time were made and the area under the curve (AUC) was calculated. RESULTS There was a significant dose-dependent increase in CK concentration after administration of P. australis venom, which was greatest for i.v. administration. Timed measurement of venom concentrations showed a rapid absorption through s.d. and i.m. routes and a delayed rise in CK concentrations following any route. Antivenom prevented myotoxicity shown by a decrease in the CK AUC, which was most effective if given earliest. There was a rise in creatinine following i.v. venom administration. CONCLUSION The study shows the delayed relationship between venom absorption and the rise in CK, consistent with the delayed onset of myotoxicity in human envenoming. Antivenom prevented myotoxicity more effectively if given earlier.
Collapse
Affiliation(s)
- A J Hart
- Department of Pharmacology, Monash Venom Group, Monash University , Victoria , Australia
| | | | | | | |
Collapse
|
21
|
Behringer M, Montag J, Kilian Y, McCourt M, Liphardt AM, Mester J. Serum Cartilage Oligomeric Matrix Protein: is There a Repeated Bout Effect? Orthop Rev (Pavia) 2014; 6:5543. [PMID: 25317315 PMCID: PMC4195994 DOI: 10.4081/or.2014.5543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/22/2022] Open
Abstract
The primary aim of the present study was to investigate if there is a repeated bout effect for cartilage tissue, evident in the marker serum cartilage oligomeric matrix protein (sCOMP). Ten healthy male subjects (26.4±3.14 years) performed two high impact interventions (100 drop jumps with a 30 second interval) carried out at a 3 week interval. After each intervention, sCOMP and muscle soreness were assessed on 8 and 6 occasions respectively. Muscle soreness was determined via a visual analog scale with a maximum pain score of 10. sComp levels did not show a blunted response after the second bout (Bout 1: 12.2±3.3 U/L−1; Bout 2: 13.1±4.0 U/L−1; P>0.05). Remarkably, sCOMP increased from baseline levels by 16% after bout 1 and 15% after bout 2. Muscle soreness was blunted following the second intervention (Bout 1: 5.0±1.8; Bout 2: 1.6±0.8). Unlike the known repeated bout effect for muscle damage markers, sCOMP levels do not show a blunted response after two similar loading interventions. This information on biomarker behavior is essential to clinicians attempting to use this marker as an indicator of cartilage damage associated with the development or progression of osteoarthritis.
Collapse
Affiliation(s)
- Michael Behringer
- Institute of Training Science and Sport Informatics, German Sport University of Cologne , Germany
| | - Johannes Montag
- Institute of Training Science and Sport Informatics, German Sport University of Cologne , Germany
| | - Yvonne Kilian
- Institute of Training Science and Sport Informatics, German Sport University of Cologne , Germany
| | - Molly McCourt
- Institute of Training Science and Sport Informatics, German Sport University of Cologne , Germany
| | - Anna-Maria Liphardt
- Institute of Training Science and Sport Informatics, German Sport University of Cologne , Germany
| | - Joachim Mester
- Institute of Training Science and Sport Informatics, German Sport University of Cologne , Germany
| |
Collapse
|
22
|
Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption. Int J Biochem Cell Biol 2014; 53:134-40. [PMID: 24836907 DOI: 10.1016/j.biocel.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 11/23/2022]
Abstract
Lymphatic absorption is a highly regulated process driven by both an extrinsic mechanism (external force) and an intrinsic mechanism (lymphatic vessel contractility). The lymphatic muscle is a specialized smooth muscle with unique mechanical properties. To understand the molecular mechanism and relative contribution of smooth muscle contraction in lymphatic absorption, we analyzed mice with a smooth muscle-specific deletion of Mylk, a critical gene for smooth muscle contraction. Interestingly, the knockout mice were significantly resistant to anesthesia reagents. Upon injection in the feet with FITC-dextran, the mutant mice displayed a 2-fold delay of the absorption peak in the peripheral circulation. Examining the ear lymphatic vessels of the mutant mice revealed a reduction in the amount of fluid in the lumens of the lymphangions, suggesting an impairment of lymph formation. The Mylk-deficient lymphatic muscle exhibited a significant reduction of peristalsis and of myosin light chain phosphorylation in response to depolarization. We thus concluded that MLCK and myosin light chain phosphorylation are required for lymphatic vessel contraction. Lymphatic contractility is not an exclusive requirement for lymphatic absorption, and external force appears to be necessary for absorption.
Collapse
|
23
|
Wang W, Chen QF, Yin RX, Zhu JJ, Li QB, Chang HH, Wu YB, Michelson E. Clinical features and treatment experience: a review of 292 Chinese cobra snakebites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:648-655. [PMID: 24577231 DOI: 10.1016/j.etap.2013.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Although Chinese cobra snakebite is the most common type of snake venenation in China, it still lacks a comprehensive and systematic description. Hence, we aimed to study Chinese cobra bite cases with particular attention to demography, epidemiology and clinical profile. In this study, a total of 292 cases of Chinese cobra snakebite, presenting between January 1, 2008 and December 31, 2012, were retrospectively reviewed. To investigate the effect of treatment at different presentation times (time from snakebite to admission), the patients were divided into two groups: group A included 133 cases that presented <12 h after the bite; group B included 159 cases that presented ≥12 h after the bite. To assess the correlation between application of a tourniquet and skin grafting, the cases were re-divided into two groups according to whether or not a tourniquet was used after the snakebite: tourniquet group (n=220) and non-tourniquet group (n=72). The results showed that Chinese cobra snakebites were most commonly seen during the summer, in the upper limbs, and in males, young adults, and snake-hunters. Group A experienced milder intoxication than group B (P<0.001). The rate of skin grafting was significantly higher in the tourniquet group (20.0%, compared with 9.7% in the non-tourniquet group, P<0.05). The results of this study indicate that anti-cobra venom and swift admission (within 12 h of the snakebite) are recommended for Chinese cobra snakebite. Tourniquet use is not recommended.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Quan-Fang Chen
- Department of Respiratory, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Rui-Xing Yin
- Department of Cardiology, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Ji-Jin Zhu
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Qi-Bin Li
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Hai-Hua Chang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Yan-Bi Wu
- Department of Respiratory, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Edward Michelson
- Department of Emergency, University Hospitals Case Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, 44106 OH, USA.
| |
Collapse
|
24
|
van Helden DF, Thomas PA, Dosen PJ, Imtiaz MS, Laver DR, Isbister GK. Pharmacological approaches that slow lymphatic flow as a snakebite first aid. PLoS Negl Trop Dis 2014; 8:e2722. [PMID: 24587472 PMCID: PMC3937289 DOI: 10.1371/journal.pntd.0002722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background This study examines the use of topical pharmacological agents as a snakebite first aid where slowing venom reaching the circulation prevents systemic toxicity. It is based on the fact that toxin molecules in most snake venoms are large molecules and generally first enter and traverse the lymphatic system before accessing the circulation. It follows on from a previous study where it was shown that topical application of a nitric oxide donor slowed lymph flow to a similar extent in humans and rats as well as increased the time to respiratory arrest for subcutaneous injection of an elapid venom (Pseudonaja textilis, Ptx; Eastern brown snake) into the hind feet of anaesthetized rats. Methodology/Principal Findings The effects of topical application of the L-type Ca2+ channel antagonist nifedipine and the local anesthetic lignocaine in inhibiting lymph flow and protecting against envenomation was examined in an anaesthetized rat model. The agents significantly increased dye-measured lymph transit times by 500% and 390% compared to controls and increased the time to respiratory arrest to foot injection of a lethal dose of Ptx venom by 60% and 40% respectively. The study also examined the effect of Ptx venom dose over the lethal range of 0.4 to 1.5 mg/kg finding a negative linear relationship between increase in venom dose and time to respiratory arrest. Conclusions/Significance The findings suggest that a range of agents that inhibit lymphatic flow could potentially be used as an adjunct treatment to pressure bandaging with immobilization (PBI) in snakebite first aid. This is important given that PBI (a snakebite first aid recommended by the Australian National Health and Medical research Council) is often incorrectly applied. The use of a local anesthetic would have the added advantage of reducing pain. Snakebite remains a major problem worldwide causing death or serious illness in many tens of thousands of victims annually. An approach to reduce the burden of envenoming is to provide optimum first aid procedures. We have previously shown that topical application of a nitric oxide (NO) donor slowed lymph flow to similar extent in humans and rats as well as increased the time to respiratory arrest by ∼50% for subcutaneous injection of eastern brown snake venom into the hind feet of anaesthetized rats. The present study examines the use of several other topical pharmacological agents that aim to slow venom toxins reaching the circulation through the lymphatic system. The study found that the agents examined were similarly effective to that previously found for the NO donor. The fact that one of these is a commonly used topical local anesthetic may be an ideal adjunct first aid, as it provides first aid while reducing pain.
Collapse
Affiliation(s)
- Dirk F. van Helden
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- * E-mail:
| | - Paul A. Thomas
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Peter J. Dosen
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mohammad S. Imtiaz
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Derek R. Laver
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffrey K. Isbister
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| |
Collapse
|
25
|
Albuquerque PLMM, Jacinto CN, Silva Junior GB, Lima JB, Veras MDSB, Daher EF. Acute kidney injury caused by Crotalus and Bothrops snake venom: a review of epidemiology, clinical manifestations and treatment. Rev Inst Med Trop Sao Paulo 2014; 55:295-301. [PMID: 24037282 PMCID: PMC4105065 DOI: 10.1590/s0036-46652013000500001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/27/2013] [Indexed: 02/06/2023] Open
Abstract
SUMMARY Ophidic accidents are an important public health problem due to their incidence, morbidity and mortality. An increasing number of cases have been registered in Brazil in the last few years. Several studies point to the importance of knowing the clinical complications and adequate approach in these accidents. However, knowledge about the risk factors is not enough and there are an increasing number of deaths due to these accidents in Brazil. In this context, acute kidney injury (AKI) appears as one of the main causes of death and consequences for these victims, which are mainly young males working in rural areas. Snakes of the Bothrops and Crotalus genera are the main responsible for renal involvement in ophidic accidents in South America. The present study is a literature review of AKI caused by Bothrops and Crotalus snake venom regarding diverse characteristics, emphasizing the most appropriate therapeutic approach for these cases. Recent studies have been carried out searching for complementary therapies for the treatment of ophidic accidents, including the use of lipoic acid, simvastatin and allopurinol. Some plants, such as Apocynaceae, Lamiaceae and Rubiaceae seem to have a beneficial role in the treatment of this type of envenomation. Future studies will certainly find new therapeutic measures for ophidic accidents.
Collapse
|
26
|
Nelson TS, Akin RE, Weiler MJ, Kassis T, Kornuta JA, Dixon JB. Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging. Am J Physiol Regul Integr Comp Physiol 2014; 306:R281-90. [PMID: 24430884 DOI: 10.1152/ajpregu.00369.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (P(eff), pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased P(eff) of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of P(eff) and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease.
Collapse
Affiliation(s)
- Tyler S Nelson
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
27
|
Pharmacokinetic studies of protein drugs: past, present and future. Adv Drug Deliv Rev 2013; 65:1065-73. [PMID: 23541379 DOI: 10.1016/j.addr.2013.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
Among the growing number of therapeutic proteins on the market, there is an emergence of biotherapeutics designed from our comprehension of the physiological mechanisms responsible for their peripheral and tissue pharmacokinetics. Most of them have been optimized to increase their half-life through glycosylation engineering, polyethylene glycol conjugation or Fc fusion. However, our understanding of biological drug behaviors is still its infancy compared to the huge amount of data regarding small molecular weight drugs accumulated over half a century. Unfortunately, therapeutic proteins share few resemblances with these drugs. For instance drug-targeted-mediated disposition, binding to glycoreceptors, lysosomal recycling, large hydrodynamic volume and electrostatic charge are typical critical characteristics that cannot be derived from our anterior knowledge of classical drugs. However, the numerous discoveries made in the two last decades have driven and will continue to drive new options in biochemical engineering and support the design of complex delivery systems. Most of these new developments will be supported by novel analytical methods for assessing in vitro or in vivo metabolism parameters.
Collapse
|
28
|
Abstract
Rapid and effective treatment of bites is a major variable in the overall outcome of a patient who is a victim of a bite. There are a wide range of animals that bite and sting, and the reactions vary depending on the individual and the animal involved. Although most bites are treated on an outpatient basis, patients who have severe complications related to bites become patients in critical care settings. An overview of potential bite and sting sources, with some general guidelines for what to expect and how to treat the patient, is presented.
Collapse
Affiliation(s)
- Stephen D Krau
- School of Nursing, Vanderbilt University Medical Center, Nashville, TN 37240, USA.
| |
Collapse
|
29
|
Scallan JP, Davis MJ. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels. J Physiol 2013; 591:2139-56. [PMID: 23420659 DOI: 10.1113/jphysiol.2012.250662] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The role of nitric oxide (NO) in regulating lymphatic contractile function and, consequently, lymph flow has been the subject of intense study. Despite this, the precise effects of NO on lymphatic contractile activity remain unclear. Recent hypotheses posit that basal levels of endogenous NO increase lymphatic contraction strength as a consequence of lowering frequency (i.e. positive lusitropy), whereas higher agonist-evoked concentrations of NO exert purely inhibitory effects on contractile function. We tested both hypotheses directly by isolating and cannulating collecting lymphatic vessels from genetically modified mice for ex vivo study. The effects of basal NO and agonist-evoked NO were evaluated, respectively, by exposing wild-type (WT), endothelial NO synthase (eNOS)(-/-) and inducible NO synthase (iNOS)(-/-) lymphatic vessels to controlled pressure steps followed by ACh doses. To compare with pharmacological inhibition of eNOS, we repeated both tests in the presence of l-NAME. Surprisingly, genetic removal of basal NO enhanced contraction amplitude significantly without increasing contraction frequency. Higher levels of NO production stimulated by ACh evoked dilation, decreased tone, slowed contraction frequency and reduced fractional pump flow. We conclude that basal NO specifically depresses contraction amplitude, and that greater NO production then inhibits all other aspects of contractile function. Further, this work demonstrates definitively that mouse collecting lymphatic vessels exhibit autonomous, large-amplitude contractions that respond to pressure similarly to collecting lymphatics of other mammalian species. At least in the peripheral lymphatic vasculature, NO production depresses contractile function, which influences lymph flow needed for fluid regulation, humoral immunity and cancer metastasis.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | |
Collapse
|
30
|
Mendez U, Stroup EM, Lynch LL, Waller AB, Goldman J. A chronic and latent lymphatic insufficiency follows recovery from acute lymphedema in the rat foreleg. Am J Physiol Heart Circ Physiol 2012; 303:H1107-13. [PMID: 22942182 DOI: 10.1152/ajpheart.00522.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secondary lymphedema in humans is a common consequence of axillary lymph node dissection (ALND) to treat breast cancer. Remarkably, secondary lymphedema generally first appears following a delay of over a year and can be triggered suddenly by an inflammatory insult. However, it remains unclear why the apparently functional lymphatic system is unable to accommodate an inflammatory trigger. To provide mechanistic insight into the delayed and rapid secondary lymphedema initiation, we compared the ability of the ALND-recovered rat foreleg lymphatic system to prevent edema during an inflammatory challenge with that of the uninjured lymphatic system. At 73 days postsurgery, the forelegs of ALND(-)- and ALND(+)-sensitized rats were exposed to the proinflammatory agent oxazolone, which was found to reduce fluid drainage and increase skin thickness in both ALND(-) and ALND(+) forelegs (P < 0.05). However, drainage in the ALND-recovered forelegs was more severely impaired than ALND(-) forelegs, as visualized by indocyanine green lymphography and quantified by interstitial transport of fluid marker (P < 0.05). Although both ALND(+) and ALND(-) forelegs experienced significant inflammation-induced edema with the oxazolone exposure (P < 0.05), the peak tissue swelling in the ALND(+) group was significantly greater than that of the ALND(-) forelegs (arm area peaked at ∼13.4 vs. ∼5.7% swelling, respectively, P < 0.005; wrist diameter peaked at 9.7 vs. 2.2% swelling, respectively, P < 0.005). The findings demonstrate that outward recovery from ALND in the rat foreleg masks an ensuing chronic and latent lymphatic insufficiency, which reduces the ability of the foreleg lymphatic system to prevent edema during an acute inflammatory process.
Collapse
Affiliation(s)
- Uziel Mendez
- Biomedical Engineering Department, Michigan Technological University, Houghton, Michigan 49931, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Weiler M, Kassis T, Dixon JB. Sensitivity analysis of near-infrared functional lymphatic imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:066019. [PMID: 22734775 PMCID: PMC3381044 DOI: 10.1117/1.jbo.17.6.066019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Near-infrared imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, yet the imaging capabilities of this approach have yet to be quantitatively characterized. We seek to quantify its capabilities as a diagnostic tool for lymphatic disease. Imaging is performed in a tissue phantom for sensitivity analysis and in hairless rats for in vivo testing. To demonstrate the efficacy of this imaging approach to quantifying immediate functional changes in lymphatics, we investigate the effects of a topically applied nitric oxide (NO) donor glyceryl trinitrate ointment. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being 150 μg/mL ICG and 60 g/L albumin. ICG fluorescence can be detected at a concentration of 150 μg/mL as deep as 6 mm with our system, but spatial resolution deteriorates below 3 mm, skewing measurements of vessel geometry. NO treatment slows lymphatic transport, which is reflected in increased transport time, reduced packet frequency, reduced packet velocity, and reduced effective contraction length. NIR imaging may be an alternative to invasive procedures measuring lymphatic function in vivo in real time.
Collapse
Affiliation(s)
- Michael Weiler
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, IBB 2312, 315 Ferst Drive, Atlanta, Georgia 30332-0405
| | - Timothy Kassis
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, IBB 2312, 315 Ferst Drive, Atlanta, Georgia 30332-0405
| | - J. Brandon Dixon
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, IBB 2312, 315 Ferst Drive, Atlanta, Georgia 30332-0405
- Address all correspondence to: J. Brandon Dixon, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, IBB 2312, 315 Ferst Drive, Atlanta, GA 30332-0405. Tel: (404) 385-3915; Fax: (404) 385-1397; E-mail:
| |
Collapse
|
33
|
Gashev AA, Zhang RZ, Muthuchamy M, Zawieja DC, Davis MJ. Regional heterogeneity of length-tension relationships in rat lymph vessels. Lymphat Res Biol 2012; 10:14-9. [PMID: 22416912 DOI: 10.1089/lrb.2011.0013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Heterogeneity of the length-tension relationships in lymph vessels has never been evaluated systematically. METHODS AND RESULTS In this study we measured the length-tension relationships in lymph vessels from three different regions of the rat: thoracic duct, cervical, and femoral lymph vessels, and compared the results to our previous measurements of rat mesenteric lymph vessels. We performed isometric force measurements on activated and passive lymph vessel segments using a small-vessel wire myograph. We found that all groups of vessels had relatively broad plateaus in their active tension versus length relationships, suggesting that they are adapted to generate near-maximal tensions over a relatively wide range of preloads (at least 0.85-1.05 L(0)). Thoracic duct exhibited the flattest active tension curve, particularly for peak active tension, in which there was less than a 5% change in peak active tension from 0.75 to 1.30 of optimal length. Femoral lymph vessels were able to withstand the highest estimated pressures, followed by mesenteric and cervical vessels and then thoracic duct. CONCLUSIONS We conclude that lymph vessels effectively adapt their contractile force to the particular hydrodynamic conditions (transmural pressures and intraluminal flows) that exist in different regions of the lymphatic system.
Collapse
Affiliation(s)
- Anatoliy A Gashev
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA.
| | | | | | | | | |
Collapse
|
34
|
|