1
|
Wang W, Zhang L, Liu Y, Liu X, Liu X. Oriental covalent immobilization of N-glycan binding protein via N-terminal selective modification. Anal Chim Acta 2024; 1330:343311. [PMID: 39489947 DOI: 10.1016/j.aca.2024.343311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Lectin affinity chromatography is one of powerful tools for the study of protein glycosylation. Different lectin proteins can recognize different structures of monosaccharides or oligosaccharide units, allowing for the selective separation of glycopeptides or glycoproteins containing different polysaccharide structures. However, the N-glycans were only partially captured by most of common lectins, reducing the coverage rate of identifying N-glycoconjugates. Recently, it has been reported that the engineering variant of glycan binding protein Fbs1 has a high affinity for innermost Man3GlcNAc2 structure and is able to bind diverse types of N-glycans, which can be suitable for the analysis of protein N-glycosylation. However, efficient immobilization of protein to separation matrix is particularly challenging as it requires the functionality and integrity of the protein to be preserved. Herein, we describe a simple and robust strategy for oriental covalent immobilization of proteins on magnetic nanoparticles by N-terminal selective labeling techniques. We inserted the enterokinase cleavage site to produce the specific N- terminal glycine of protein. Under physiological conditions, the protein was immobilized on the surface of the MNPs by this glycine tag, and the enrichment process could be completed within 30 min. A whole enrichment and purification of glycan and glycopeptides were completed and analyzed by MALDI TOF-MS. The functional materials achieved stable enrichment of glycan structure in different enzyme digestion systems or complex samples, showing excellent anti-interference and applicability.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Yuanyuan Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xin Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Lima GM, Jame-Chenarboo Z, Sojitra M, Sarkar S, Carpenter EJ, Yang CY, Schmidt E, Lai J, Atrazhev A, Yazdan D, Peng C, Volker EA, Ho R, Monteiro G, Lai R, Mahal LK, Macauley MS, Derda R. The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage. Cell Chem Biol 2024; 31:1986-2001.e9. [PMID: 39454580 DOI: 10.1016/j.chembiol.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages-liquid lectin array (LiLA)-detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM73) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM290 display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM73. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer in situ detection of minor differences in glycocalyx in cells both in vitro and in vivo not feasible to currently available technologies.
Collapse
Affiliation(s)
- Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Mirat Sojitra
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Claire Y Yang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Edward Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Justine Lai
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Danial Yazdan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ray Ho
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP 05508 000, Brazil
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
3
|
Marcazzan S, Braz Carvalho MJ, Nguyen NT, Strangmann J, Slotta-Huspenina J, Tenditnaya A, Tschurtschenthaler M, Rieder J, Proaño-Vasco A, Ntziachristos V, Steiger K, Gorpas D, Quante M, Kossatz S. PARP1-targeted fluorescence molecular endoscopy as novel tool for early detection of esophageal dysplasia and adenocarcinoma. J Exp Clin Cancer Res 2024; 43:53. [PMID: 38383387 PMCID: PMC10880256 DOI: 10.1186/s13046-024-02963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Clinical Radiology, Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Marcos J Braz Carvalho
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Nghia T Nguyen
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Julia Strangmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Anna Tenditnaya
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Markus Tschurtschenthaler
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, TUM School of Medicine and Health, Klinikum rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Jonas Rieder
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Andrea Proaño-Vasco
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Comparative Experimental Pathology (CEP) and IBioTUM tissue biobank, TUM School of Medicine and Health, Technical University of Munich, München, 81675, Germany
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Michael Quante
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany.
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, 85748, Germany.
| |
Collapse
|
4
|
Boottanun P, Nagai-Okatani C, Nagai M, Ungkulpasvich U, Yamane S, Yamada M, Kuno A. An improved evanescent fluorescence scanner suitable for high-resolution glycome mapping of formalin-fixed paraffin-embedded tissue sections. Anal Bioanal Chem 2023; 415:6975-6984. [PMID: 37395746 DOI: 10.1007/s00216-023-04824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Lectin microarray (LMA) is a high-throughput platform that enables the rapid and sensitive analysis of N- and O-glycans attached to glycoproteins in biological samples, including formalin-fixed paraffin-embedded (FFPE) tissue sections. Here, we evaluated the sensitivity of the advanced scanner based on the evanescent-field fluorescence principle, which is equipped with a 1× infinity correction optical system and a high-end complementary metal-oxide semiconductor (CMOS) image sensor in digital binning mode. Using various glycoprotein samples, we estimated that the mGSR1200-CMOS scanner has at least fourfold higher sensitivity for the lower limit of linearity range than that of a previous charge-coupled device scanner (mGSR1200). A subsequent sensitivity test using HEK293T cell lysates demonstrated that cell glycomic profiling could be performed with only three cells, which has the potential for the glycomic profiling of cell subpopulations. Thus, we examined its application in tissue glycome mapping, as indicated in the online LM-GlycomeAtlas database. To achieve fine glycome mapping, we refined the laser microdissection-assisted LMA procedure to analyze FFPE tissue sections. In this protocol, it was sufficient to collect 0.1 mm2 of each of the tissue fragments from 5-μm-thick sections, which differentiated the glycomic profile between the glomerulus and renal tubules of a normal mouse kidney. In conclusion, the improved LMA enables high-resolution spatial analysis, which expands the possibilities of its application classifying cell subpopulations in clinical FFPE tissue specimens. This will be used in the discovery phase for the development of novel glyco-biomarkers and therapeutic targets, and to expand the range of target diseases.
Collapse
Affiliation(s)
- Patcharaporn Boottanun
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Chiaki Nagai-Okatani
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| | - Misugi Nagai
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Umbhorn Ungkulpasvich
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Shinjiro Yamane
- GlycoTechnica Ltd, 101 Hiranobiru3, 5-28-6 Utsukushigaoka, Aoba-Ku, Yokohama, Kanagawa, 225-0002, Japan
| | - Masao Yamada
- EMUKK LLC, 2-21-19, Matsunoki, Kuwana, Mie, 511-0902, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
5
|
Jajosky A, Fels Elliott DR. Esophageal Cancer Genetics and Clinical Translation. Thorac Surg Clin 2022; 32:425-435. [DOI: 10.1016/j.thorsurg.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Uno K, Koike T, Hatta W, Saito M, Tanabe M, Masamune A. Development of Advanced Imaging and Molecular Imaging for Barrett's Neoplasia. Diagnostics (Basel) 2022; 12:2437. [PMID: 36292126 PMCID: PMC9600913 DOI: 10.3390/diagnostics12102437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Barrett esophagus (BE) is a precursor to a life-threatening esophageal adenocarcinoma (EAC). Surveillance endoscopy with random biopsies is recommended for early intervention against EAC, but its adherence in the clinical setting is poor. Dysplastic lesions with flat architecture and patchy distribution in BE are hardly detected by high-resolution endoscopy, and the surveillance protocol entails issues of time and labor and suboptimal interobserver agreement for diagnosing dysplasia. Therefore, the development of advanced imaging technologies is necessary for Barrett's surveillance. Recently, non-endoscopic or endoscopic technologies, such as cytosponge, endocytoscopy, confocal laser endomicroscopy, autofluorescence imaging, and optical coherence tomography/volumetric laser endomicroscopy, were developed, but most of them are not clinically available due to the limited view field, expense of the equipment, and significant time for the learning curve. Another strategy is focused on the development of molecular biomarkers, which are also not ready to use. However, a combination of advanced imaging techniques together with specific biomarkers is expected to identify morphological abnormalities and biological disorders at an early stage in the surveillance. Here, we review recent developments in advanced imaging and molecular imaging for Barrett's neoplasia. Further developments in multiple biomarker panels specific for Barrett's HGD/EAC include wide-field imaging systems for targeting 'red flags', a high-resolution imaging system for optical biopsy, and a computer-aided diagnosis system with artificial intelligence, all of which enable a real-time and accurate diagnosis of dysplastic BE in Barrett's surveillance and provide information for precision medicine.
Collapse
Affiliation(s)
- Kaname Uno
- Division of Gastroenterology, Tohoku University Hospital, Sendai 981-8574, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Chen J, Jiang Y, Chang TS, Rubenstein JH, Kwon RS, Wamsteker EJ, Prabhu A, Zhao L, Appelman HD, Owens SR, Beer DG, Turgeon DK, Seibel EJ, Wang TD. Detection of Barrett's neoplasia with a near-infrared fluorescent heterodimeric peptide. Endoscopy 2022; 54:1198-1204. [PMID: 35299273 PMCID: PMC9718637 DOI: 10.1055/a-1801-2406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is a molecularly heterogeneous disease with poor prognosis that is rising rapidly in incidence. We aimed to demonstrate specific binding by a peptide heterodimer to Barrett's neoplasia in human subjects. METHODS Peptide monomers specific for EGFR and ErbB2 were arranged in a heterodimer configuration and labeled with IRDye800. This near-infrared (NIR) contrast agent was topically administered to patients with Barrett's esophagus (BE) undergoing either endoscopic therapy or surveillance. Fluorescence images were collected using a flexible fiber accessory passed through the instrument channel of an upper gastrointestinal endoscope. Fluorescence images were collected from 31 BE patients. A deep learning model was used to segment the target (T) and background (B) regions. RESULTS The mean target-to-background (T/B) ratio was significantly greater for high grade dysplasia (HGD) and EAC versus BE, low grade dysplasia (LGD), and squamous epithelium. At a T/B ratio of 1.5, sensitivity and specificity of 94.1 % and 92.6 %, respectively, were achieved for the detection of Barrett's neoplasia with an area under the curve of 0.95. No adverse events attributed to the heterodimer were found. EGFR and ErbB2 expression were validated in the resected specimens. CONCLUSIONS This "first-in-human" clinical study demonstrates the feasibility of detection of early Barrett's neoplasia using a NIR-labeled peptide heterodimer.
Collapse
Affiliation(s)
- Jing Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Jiang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Tse-Shao Chang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel H. Rubenstein
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard S. Kwon
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Erik J. Wamsteker
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anoop Prabhu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry D. Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott R. Owens
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - David G. Beer
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - D. Kim Turgeon
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric J. Seibel
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Heindel D, Chen S, Aziz PV, Chung JY, Marth JD, Mahal LK. Glycomic Analysis Reveals a Conserved Response to Bacterial Sepsis Induced by Different Bacterial Pathogens. ACS Infect Dis 2022; 8:1075-1085. [PMID: 35486714 PMCID: PMC9112329 DOI: 10.1021/acsinfecdis.2c00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Sepsis is an extreme inflammatory response to infection that occurs in the bloodstream and causes damage throughout the body. Glycosylation is known to play a role in immunity and inflammation, but the role of glycans in sepsis is not well-defined. Herein, we profiled the serum glycomes of experimental mouse sepsis models to identify changes induced by 4 different clinical bacterial pathogens (Gram-positive: Streptococcus pneumoniae and Staphylococcus aureus, Gram-negative: Escherichia coli and Salmonella Typhimurium) using our lectin microarray technology. We observed global shifts in the blood sera glycome that were conserved across all four species, regardless of whether they were Gram positive or negative. Bisecting GlcNAc was decreased upon sepsis and a strong increase in core 1/3 O-glycans was observed. Lectin blot analysis revealed a high molecular weight protein induced in sepsis by all four bacteria as the major cause of the core 1/3 O-glycan shift. Analysis of this band by mass spectrometry identified interalpha-trypsin inhibitor heavy chains (ITIHs) and fibronectin, both of which are associated with human sepsis. Shifts in the glycosylation of these proteins were observed. Overall, our work points toward a common mechanism for bacterially induced sepsis, marked by conserved changes in the glycome.
Collapse
Affiliation(s)
- Daniel
W. Heindel
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Shuhui Chen
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Peter V. Aziz
- SBP
Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jonathan Y. Chung
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jamey D. Marth
- SBP
Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lara K. Mahal
- Biomedical
Research Institute, Department of Chemistry, New York University, New York, New York 10003, United States
- Department
of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
9
|
Ali Z, Zakian C, Li Q, Gloriod J, Crozat S, Bouvet F, Pierre G, Sarantos V, Di Pietro M, Flisikowski K, Andersen P, Drexler W, Ntziachristos V. 360 º optoacoustic capsule endoscopy at 50 Hz for esophageal imaging. PHOTOACOUSTICS 2022; 25:100333. [PMID: 35242538 PMCID: PMC8864533 DOI: 10.1016/j.pacs.2022.100333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Gastrointestinal (GI) endoscopy is a common medical diagnostic procedure used for esophageal cancer detection. Current emerging capsule optoacoustic endoscopes, however, suffer from low pulse repetition rates and slow scanning units limit attainable imaging frame rates. Consequently, motion artifacts result in inaccurate spatial mapping and misinterpretation of data. To overcome these limitations, we report a 360º, 50 Hz frame rate, distal scanning capsule optoacoustic endoscope. The translational capability of the instrument for human GI tract imaging was characterized with an Archimedean spiral phantom consisting of twelve 100 µm sutures, a stainless steel mesh with a pitch of 3 mm and an ex vivo pig esophagus sample. We estimated an imaging penetration depth of ~0.84 mm in vivo by immersing the mesh phantom in intralipid solution to simulate light scattering in human esophageal tissue and validated our findings ex vivo using pig esophagus. This proof-of-concept study demonstrates the translational potential of the proposed video-rate endoscope for human GI tract imaging.
Collapse
Affiliation(s)
- Zakiullah Ali
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Zakian
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Qian Li
- Center of Medical Physics and Biomedical Engineering, Medical university of Vienna, Vienna, Austria
| | | | | | | | | | | | | | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, School of Life Science, Technical University of Munich, Freising, Germany
| | - Peter Andersen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Wolfgang Drexler
- Center of Medical Physics and Biomedical Engineering, Medical university of Vienna, Vienna, Austria
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
10
|
Sterkenburg AJ, Hooghiemstra WTR, Schmidt I, Ntziachristos V, Nagengast WB, Gorpas D. Standardization and implementation of fluorescence molecular endoscopy in the clinic. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210302SS-PERR. [PMID: 35170264 PMCID: PMC8847121 DOI: 10.1117/1.jbo.27.7.074704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Near-infrared fluorescence molecular endoscopy (NIR-FME) is an innovative technique allowing for in vivo visualization of molecular processes in hollow organs. Despite its potential for clinical translation, NIR-FME still faces challenges, for example, the lack of consensus in performing quality control and standardization of procedures and systems. This may hamper the clinical approval of the technology by authorities and its acceptance by endoscopists. Until now, several clinical trials using NIR-FME have been performed. However, most of these trials had different study designs, making comparison difficult. AIM We describe the need for standardization in NIR-FME, provide a pathway for setting up a standardized clinical study, and describe future perspectives for NIR-FME. Body: Standardization is challenging due to many parameters. Invariable parameters refer to the hardware specifications. Variable parameters refer to movement or tissue optical properties. Phantoms can be of aid when defining the influence of these variables or when standardizing a procedure. CONCLUSION There is a need for standardization in NIR-FME and hurdles still need to be overcome before a widespread clinical implementation of NIR-FME can be realized. When these hurdles are overcome, clinical outcomes can be compared and systems can be benchmarked, enabling clinical implementation.
Collapse
Affiliation(s)
- Andrea J. Sterkenburg
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Iris Schmidt
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Wouter B. Nagengast
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dimitris Gorpas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| |
Collapse
|
11
|
Fang HY, Stangl S, Marcazzan S, Carvalho MJB, Baumeister T, Anand A, Strangmann J, Huspenina JS, Wang TC, Schmid RM, Feith M, Friess H, Ntziachristos V, Multhoff G, Gorpas D, Quante M. Targeted Hsp70 fluorescence molecular endoscopy detects dysplasia in Barrett's esophagus. Eur J Nucl Med Mol Imaging 2022; 49:2049-2063. [PMID: 34882260 PMCID: PMC9016004 DOI: 10.1007/s00259-021-05582-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/03/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE The incidence of esophageal adenocarcinoma (EAC) has been increasing for decades without significant improvements in treatment. Barrett's esophagus (BE) is best established risk factor for EAC, but current surveillance with random biopsies cannot predict progression to cancer in most BE patients due to the low sensitivity and specificity of high-definition white light endoscopy. METHODS Here, we evaluated the membrane-bound highly specific Hsp70-specific contrast agent Tumor-Penetrating Peptide (Hsp70-TPP) in guided fluorescence molecular endoscopy biopsy. RESULTS Hsp70 was significantly overexpressed as determined by IHC in dysplasia and EAC compared with non-dysplastic BE in patient samples (n = 12) and in high-grade dysplastic lesions in a transgenic (L2-IL1b) mouse model of BE. In time-lapse microscopy, Hsp70-TPP was rapidly taken up and internalized by human BE dysplastic patient-derived organoids. Flexible fluorescence endoscopy of the BE mouse model allowed a specific detection of Hsp70-TPP-Cy5.5 that corresponded closely with the degree of dysplasia but not BE. Ex vivo application of Hsp70-TPP-Cy5.5 to freshly resected whole human EAC specimens revealed a high (> 4) tumor-to-background ratio and a specific detection of previously undetected tumor infiltrations. CONCLUSION In summary, these findings suggest that Hsp70-targeted imaging using fluorescently labeled TPP peptide may improve tumor surveillance in BE patients.
Collapse
Affiliation(s)
- Hsin-Yu Fang
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology and Central Institute for Translational Cancer Research, (TranslaTUM), Technische Universität München, Munich, Germany
| | - Sabrina Marcazzan
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Marcos J. Braz Carvalho
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Akanksha Anand
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| | | | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Roland M. Schmid
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Marcus Feith
- Chirurgische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Chirurgische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology and Central Institute for Translational Cancer Research, (TranslaTUM), Technische Universität München, Munich, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, School of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Michael Quante
- II Medizinische Klinik, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany ,Innere Medizin II, Universitätsklinik Freiburg, Universität Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021; 20:md20010027. [PMID: 35049882 PMCID: PMC8781517 DOI: 10.3390/md20010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.
Collapse
|
13
|
Kurz E, Chen S, Vucic E, Baptiste G, Loomis C, Agrawal P, Hajdu C, Bar-Sagi D, Mahal LK. Integrated Systems Analysis of the Murine and Human Pancreatic Cancer Glycomes Reveals a Tumor-Promoting Role for ST6GAL1. Mol Cell Proteomics 2021; 20:100160. [PMID: 34634466 PMCID: PMC8604807 DOI: 10.1016/j.mcpro.2021.100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. Glycans, such as carbohydrate antigen 19-9, are biomarkers of PDAC and are emerging as important modulators of cancer phenotypes. Herein, we used a systems-based approach integrating glycomic analysis of the well-established KC mouse, which models early events in transformation, and analysis of samples from human pancreatic cancer patients to identify glycans with potential roles in cancer formation. We observed both common and distinct patterns of glycosylation in pancreatic cancer across species. Common alterations included increased levels of α-2,3-sialic acid and α-2,6-sialic acid, bisecting GlcNAc and poly-N-acetyllactosamine. However, core fucose, which was increased in human PDAC, was not seen in the mouse, indicating that not all human glycomic changes are observed in the KC mouse model. In silico analysis of bulk and single-cell sequencing data identified ST6 beta-galactoside alpha-2,6-sialyltransferase 1, which underlies α-2,6-sialic acid, as overexpressed in human PDAC, concordant with histological data showing higher levels of this enzyme at the earliest stages. To test whether ST6 beta-galactoside alpha-2,6-sialyltransferase 1 promotes pancreatic cancer, we created a novel mouse in which a pancreas-specific genetic deletion of this enzyme overlays the KC mouse model. The analysis of our new model showed delayed cancer formation and a significant reduction in fibrosis. Our results highlight the importance of a strategic systems approach to identifying glycans whose functions can be modeled in mouse, a crucial step in the development of therapeutics targeting glycosylation in pancreatic cancer.
Collapse
Affiliation(s)
- Emma Kurz
- Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Shuhui Chen
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA
| | - Emily Vucic
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA
| | - Gillian Baptiste
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Office of Science and Research, NYU Grossman School of Medicine, New York, New York, USA
| | - Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Cristina Hajdu
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA.
| | - Lara K Mahal
- Department of Chemistry, Biomedical Research Institute, New York University, New York, New York, USA.
| |
Collapse
|
14
|
Tang Y, Anandasabapathy S, Richards‐Kortum R. Advances in optical gastrointestinal endoscopy: a technical review. Mol Oncol 2021; 15:2580-2599. [PMID: 32915503 PMCID: PMC8486567 DOI: 10.1002/1878-0261.12792] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/23/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Optical endoscopy is the primary diagnostic and therapeutic tool for management of gastrointestinal (GI) malignancies. Most GI neoplasms arise from precancerous lesions; thus, technical innovations to improve detection and diagnosis of precancerous lesions and early cancers play a pivotal role in improving outcomes. Over the last few decades, the field of GI endoscopy has witnessed enormous and focused efforts to develop and translate accurate, user-friendly, and minimally invasive optical imaging modalities. From a technical point of view, a wide range of novel optical techniques is now available to probe different aspects of light-tissue interaction at macroscopic and microscopic scales, complementing white light endoscopy. Most of these new modalities have been successfully validated and translated to routine clinical practice. Herein, we provide a technical review of the current status of existing and promising new optical endoscopic imaging technologies for GI cancer screening and surveillance. We summarize the underlying principles of light-tissue interaction, the imaging performance at different scales, and highlight what is known about clinical applicability and effectiveness. Furthermore, we discuss recent discovery and translation of novel molecular probes that have shown promise to augment endoscopists' ability to diagnose GI lesions with high specificity. We also review and discuss the role and potential clinical integration of artificial intelligence-based algorithms to provide decision support in real time. Finally, we provide perspectives on future technology development and its potential to transform endoscopic GI cancer detection and diagnosis.
Collapse
Affiliation(s)
- Yubo Tang
- Department of BioengineeringRice UniversityHoustonTXUSA
| | | | | |
Collapse
|
15
|
Waterhouse DJ, Bano S, Januszewicz W, Stoyanov D, Fitzgerald RC, di Pietro M, Bohndiek SE. First-in-human pilot study of snapshot multispectral endoscopy for early detection of Barrett's-related neoplasia. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210159R. [PMID: 34628734 PMCID: PMC8501416 DOI: 10.1117/1.jbo.26.10.106002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/02/2021] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE The early detection of dysplasia in patients with Barrett's esophagus could improve outcomes by enabling curative intervention; however, dysplasia is often inconspicuous using conventional white-light endoscopy. AIM We sought to determine whether multispectral imaging (MSI) could be applied in endoscopy to improve detection of dysplasia in the upper gastrointestinal (GI) tract. APPROACH We used a commercial fiberscope to relay imaging data from within the upper GI tract to a snapshot MSI camera capable of collecting data from nine spectral bands. The system was deployed in a pilot clinical study of 20 patients (ClinicalTrials.gov NCT03388047) to capture 727 in vivo image cubes matched with gold-standard diagnosis from histopathology. We compared the performance of seven learning-based methods for data classification, including linear discriminant analysis, k-nearest neighbor classification, and a neural network. RESULTS Validation of our approach using a Macbeth color chart achieved an image-based classification accuracy of 96.5%. Although our patient cohort showed significant intra- and interpatient variance, we were able to resolve disease-specific contributions to the recorded MSI data. In classification, a combined principal component analysis and k-nearest-neighbor approach performed best, achieving accuracies of 95.8%, 90.7%, and 76.1%, respectively, for squamous, non-dysplastic Barrett's esophagus and neoplasia based on majority decisions per-image. CONCLUSIONS MSI shows promise for disease classification in Barrett's esophagus and merits further investigation as a tool in high-definition "chip-on-tip" endoscopes.
Collapse
Affiliation(s)
- Dale J. Waterhouse
- University of Cambridge, Department of Physics and CRUK Cambridge Institute, Cambridge, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Sophia Bano
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Wladyslaw Januszewicz
- Medical Centre for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Warsaw, Poland
| | - Dan Stoyanov
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Rebecca C. Fitzgerald
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Massimiliano di Pietro
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics and CRUK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
16
|
Jones JO, Moody WM, Shields JD. Microenvironmental modulation of the developing tumour: an immune-stromal dialogue. Mol Oncol 2021; 15:2600-2633. [PMID: 32741067 PMCID: PMC8486574 DOI: 10.1002/1878-0261.12773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Successful establishment of a tumour relies on a cascade of interactions between cancer cells and stromal cells within an evolving microenvironment. Both immune and nonimmune cellular components are key factors in this process, and the individual players may change their role from tumour elimination to tumour promotion as the microenvironment develops. While the tumour-stroma crosstalk present in an established tumour is well-studied, aspects in the early tumour or premalignant microenvironment have received less attention. This is in part due to the challenges in studying this process in the clinic or in mouse models. Here, we review the key anti- and pro-tumour factors in the early microenvironment and discuss how understanding this process may be exploited in the clinic.
Collapse
Affiliation(s)
- James O. Jones
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - William M. Moody
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
17
|
Cheng B, Tang Q, Zhang C, Chen X. Glycan Labeling and Analysis in Cells and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:363-387. [PMID: 34314224 DOI: 10.1146/annurev-anchem-091620-091314] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Wartak A, Kelada AK, Leon Alarcon PA, Bablouzian AL, Ahsen OO, Gregg AL, Wei Y, Bollavaram K, Sheil CJ, Farewell E, VanTol S, Smith R, Grahmann P, Baillargeon AR, Gardecki JA, Tearney GJ. Dual-modality optical coherence tomography and fluorescence tethered capsule endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4308-4323. [PMID: 34457416 PMCID: PMC8367220 DOI: 10.1364/boe.422453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
OCT tethered capsule endomicroscopy (TCE) is an emerging noninvasive diagnostic imaging technology for gastrointestinal (GI) tract disorders. OCT measures tissue reflectivity that provides morphologic image contrast, and thus is incapable of ascertaining molecular information that can be useful for improving diagnostic accuracy. Here, we introduce an extension to OCT TCE that includes a fluorescence (FL) imaging channel for attaining complementary, co-registered molecular contrast. We present the development of an OCT-FL TCE capsule and a portable, plug-and-play OCT-FL imaging system. The technology is validated in phantom experiments and feasibility is demonstrated in a methylene blue (MB)-stained swine esophageal injury model, ex vivo and in vivo.
Collapse
Affiliation(s)
- Andreas Wartak
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Alfred K. Kelada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paola A. Leon Alarcon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ara L. Bablouzian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Osman O. Ahsen
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Abigail L. Gregg
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yuxiao Wei
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Keval Bollavaram
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Conor J. Sheil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Edward Farewell
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Schuyler VanTol
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Smith
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Patricia Grahmann
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aaron R. Baillargeon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
19
|
Waterhouse DJ, Januszewicz W, Ali S, Fitzgerald RC, di Pietro M, Bohndiek SE. Spectral Endoscopy Enhances Contrast for Neoplasia in Surveillance of Barrett's Esophagus. Cancer Res 2021; 81:3415-3425. [PMID: 34039635 PMCID: PMC7611389 DOI: 10.1158/0008-5472.can-21-0474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Early detection of esophageal neoplasia enables curative endoscopic therapy, but the current diagnostic standard of care has low sensitivity because early neoplasia is often inconspicuous with conventional white-light endoscopy. Here, we hypothesized that spectral endoscopy could enhance contrast for neoplasia in surveillance of patients with Barrett's esophagus. A custom spectral endoscope was deployed in a pilot clinical study of 20 patients to capture 715 in vivo tissue spectra matched with gold standard diagnosis from histopathology. Spectral endoscopy was sensitive to changes in neovascularization during the progression of disease; both non-dysplastic and neoplastic Barrett's esophagus showed higher blood volume relative to healthy squamous tissue (P = 0.001 and 0.02, respectively), and vessel radius appeared larger in neoplasia relative to non-dysplastic Barrett's esophagus (P = 0.06). We further developed a deep learning algorithm capable of classifying spectra of neoplasia versus non-dysplastic Barrett's esophagus with high accuracy (84.8% accuracy, 83.7% sensitivity, 85.5% specificity, 78.3% positive predictive value, and 89.4% negative predictive value). Exploiting the newly acquired library of labeled spectra to model custom color filter sets identified a potential 12-fold enhancement in contrast between neoplasia and non-dysplastic Barrett's esophagus using application-specific color filters compared with standard-of-care white-light imaging (perceptible color difference = 32.4 and 2.7, respectively). This work demonstrates the potential of endoscopic spectral imaging to extract vascular properties in Barrett's esophagus, to classify disease stages using deep learning, and to enable high-contrast endoscopy. SIGNIFICANCE: The results of this pilot first-in-human clinical trial demonstrate the potential of spectral endoscopy to reveal disease-associated vascular changes and to provide high-contrast delineation of neoplasia in the esophagus. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3415/F1.large.jpg.
Collapse
Affiliation(s)
- Dale J Waterhouse
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wladyslaw Januszewicz
- Department of Gastroenterology, Hepatology, and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Sharib Ali
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Center, University of Cambridge, Cambridge, United Kingdom
| | - Massimiliano di Pietro
- MRC Cancer Unit, Hutchison/MRC Research Center, University of Cambridge, Cambridge, United Kingdom.
| | - Sarah E Bohndiek
- Department of Physics and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Comprehensive analysis of glycosphingolipid glycans by lectin microarrays and MALDI-TOF mass spectrometry. Nat Protoc 2021; 16:3470-3491. [PMID: 34099941 DOI: 10.1038/s41596-021-00544-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Glycosphingolipids (GSLs) are ubiquitous glycoconjugates present on the cell membrane; they play significant roles in many bioprocesses such as cell adhesion, embryonic development, signal transduction and carcinogenesis. Analyzing such amphiphilic molecules is a major challenge in the field of glycosphingolipidomics. We provide a step-by-step protocol that uses a lectin microarray to analyze GSL glycans from cultured cells. The procedure describes (i) extraction of GSLs from cell pellets, (ii) N-monodeacylation using sphingolipid ceramide N-deacylase digestion to form lyso-GSLs, (iii) fluorescence labeling at the newly exposed amine group, (iv) preparation of a lectin microarray, (v) GSL-glycan analysis by a lectin microarray, (vi) complementary mass spectrometry analysis and (vii) data acquisition and analysis. This method is high-throughput, low cost and easy to conduct, and it provides detailed information about glycan linkages. This protocol takes ~10 d.
Collapse
|
21
|
Chen J, Jiang Y, Chang TS, Joshi B, Zhou J, Rubenstein JH, Wamsteker EJ, Kwon RS, Appelman H, Beer DG, Turgeon DK, Seibel EJ, Wang TD. Multiplexed endoscopic imaging of Barrett's neoplasia using targeted fluorescent heptapeptides in a phase 1 proof-of-concept study. Gut 2021; 70:1010-1013. [PMID: 33028666 PMCID: PMC8108279 DOI: 10.1136/gutjnl-2020-322945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Chen
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Jiang
- Biomedical Engineering, University of Washington, Seattle, WA, USA
| | - Tse-Shao Chang
- Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Bishnu Joshi
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan Zhou
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Erik J Wamsteker
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard S Kwon
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry Appelman
- Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - David G Beer
- Thoracic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Eric J Seibel
- Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Thomas D Wang
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA .,Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Rath T, Neurath MF, Atreya R. Molecular Endoscopic Imaging in Cancer. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Ma M, Han G, Wang Y, Zhao Z, Guan F, Li X. Role of FUT8 expression in clinicopathology and patient survival for various malignant tumor types: a systematic review and meta-analysis. Aging (Albany NY) 2020; 13:2212-2230. [PMID: 33323540 PMCID: PMC7880376 DOI: 10.18632/aging.202239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
Dysregulation of α(1,6)-fucosyltransferase (FUT8) plays significant roles in development of a variety of malignant tumor types. We collected as many relevant articles and microarray datasets as possible to assess the prognostic value of FUT8 expression in malignant tumors. For this purpose, we systematically searched PubMed, Embase, Web of Science, Springer, Chinese National Knowledge Infrastructure (CNKI), and Wan Fang, and eventually identified 7 articles and 35 microarray datasets (involving 6124 patients and 10 tumor types) for inclusion in meta-analysis. In each tumor type, FUT8 expression showed significant (p< 0.05) correlation with one or more clinicopathological parameters; these included patient gender, molecular subgroup, histological grade, TNM stage, estrogen receptor, progesterone receptor, and recurrence status. In regard to survival prognosis, FUT8 expression level was associated with overall survival in non-small cell lung cancer (NSCLC), breast cancer, diffuse large B cell lymphoma, gastric cancer, and glioma. FUT8 expression was also correlated with disease-free survival in NSCLC, breast cancer, and colorectal cancer, and with relapse-free survival in pancreatic ductal adenocarcinoma. For most tumor types, survival prognosis of patients with high FUT8 expression was related primarily to clinical features such as gender, tumor stage, age, and pathological category. Our systematic review and meta-analysis confirmed the association of FUT8 with clinicopathological features and patient survival rates for numerous malignant tumor types. Verification of prognostic value of FUT8 in these tumor types will require a large-scale study using standardized methods of detection and analysis.
Collapse
Affiliation(s)
- Minxing Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.,Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guoxiong Han
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ziyan Zhao
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.,Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Čaval T, Heck AJR, Reiding KR. Meta-heterogeneity: Evaluating and Describing the Diversity in Glycosylation Between Sites on the Same Glycoprotein. Mol Cell Proteomics 2020; 20:100010. [PMID: 33561609 PMCID: PMC8724623 DOI: 10.1074/mcp.r120.002093] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Mass spectrometry-based glycoproteomics has gone through some incredible developments over the last few years. Technological advances in glycopeptide enrichment, fragmentation methods, and data analysis workflows have enabled the transition of glycoproteomics from a niche application, mainly focused on the characterization of isolated glycoproteins, to a mature technology capable of profiling thousands of intact glycopeptides at once. In addition to numerous biological discoveries catalyzed by the technology, we are also observing an increase in studies focusing on global protein glycosylation and the relationship between multiple glycosylation sites on the same protein. It has become apparent that just describing protein glycosylation in terms of micro- and macro-heterogeneity, respectively, the variation and occupancy of glycans at a given site, is not sufficient to describe the observed interactions between sites. In this perspective we propose a new term, meta-heterogeneity, to describe a higher level of glycan regulation: the variation in glycosylation across multiple sites of a given protein. We provide literature examples of extensive meta-heterogeneity on relevant proteins such as antibodies, erythropoietin, myeloperoxidase, and a number of serum and plasma proteins. Furthermore, we postulate on the possible biological reasons and causes behind the intriguing meta-heterogeneity observed in glycoproteins.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| |
Collapse
|
25
|
Pietrobono S, Anichini G, Sala C, Manetti F, Almada LL, Pepe S, Carr RM, Paradise BD, Sarkaria JN, Davila JI, Tofani L, Battisti I, Arrigoni G, Ying L, Zhang C, Li H, Meves A, Fernandez-Zapico ME, Stecca B. ST3GAL1 is a target of the SOX2-GLI1 transcriptional complex and promotes melanoma metastasis through AXL. Nat Commun 2020; 11:5865. [PMID: 33203881 PMCID: PMC7673140 DOI: 10.1038/s41467-020-19575-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
Understanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Giulia Anichini
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Viale M. Bracci 16, 53100, Siena, Italy
| | - Cesare Sala
- Department of Clinical and Experimental Medicine, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sara Pepe
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Viale M. Bracci 16, 53100, Siena, Italy
| | - Ryan M Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brooke D Paradise
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaime I Davila
- Department of Health Sciences Research, Mayo Clinic, Rochester, Rochester, MN, 55905, USA
| | - Lorenzo Tofani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Ilaria Battisti
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Oris 2B, 35129, Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Via G. Oris 2B, 35129, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58B, 35131, Padova, Italy
| | - Li Ying
- Department of Dermatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
26
|
Qiao M, Li B, Ji Y, Lin L, Linhardt R, Zhang X. Synthesis of selected unnatural sugar nucleotides for biotechnological applications. Crit Rev Biotechnol 2020; 41:47-62. [PMID: 33153306 DOI: 10.1080/07388551.2020.1844623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sugar nucleotides are the principal building blocks for the synthesis of most complex carbohydrates and are crucial intermediates in carbohydrate metabolism. Uridine diphosphate (UDP) monosaccharides are among the most common sugar nucleotide donors and are transferred to glycosyl acceptors by glycosyltransferases or synthases in glycan biosynthetic pathways. These natural nucleotide donors have great biological importance, however, the synthesis and application of unnatural sugar nucleotides that are not available from in vivo biosynthesis are not well explored. In this review, we summarize the progress in the preparation of unnatural sugar nucleotides, in particular, the widely studied UDP-GlcNAc/GalNAc analogs. We focus on the "two-block" synthetic pathway that is initiated from monosaccharides, in which the first block is the synthesis of sugar-1-phosphate and the second block is the diphosphate bond formation. The biotechnological applications of these unnatural sugar nucleotides showing their physiological and pharmacological potential are discussed.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Robert Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
27
|
Amano Y, Ishimura N, Ishihara S. Is Malignant Potential of Barrett's Esophagus Predictable by Endoscopy Findings? Life (Basel) 2020; 10:E244. [PMID: 33081277 PMCID: PMC7602941 DOI: 10.3390/life10100244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Given that endoscopic findings can be used to predict the potential of neoplastic progression in Barrett's esophagus (BE) cases, the detection rate of dysplastic Barrett's lesions may become higher even in laborious endoscopic surveillance because a special attention is consequently paid. However, endoscopic findings for effective detection of the risk of neoplastic progression to esophageal adenocarcinoma (EAC) have not been confirmed, though some typical appearances are suggestive. In the present review, endoscopic findings that can be used predict malignant potential to EAC in BE cases are discussed. Conventional results obtained with white light endoscopy, such as length of BE, presence of esophagitis, ulceration, hiatal hernia, and nodularity, are used as indicators of a higher risk of neoplastic progression. However, there are controversies in some of those findings. Absence of palisade vessels may be also a new candidate predictor, as that reveals degree of intense inflammation and of cyclooxygenase-2 protein expression with accelerated cellular proliferation. Furthermore, an open type of mucosal pattern and enriched stromal blood vessels, which can be observed by image-enhanced endoscopy, including narrow band imaging, have been confirmed as factors useful for prediction of neoplastic progression of BE because they indicate more frequent cyclooxygenase-2 protein expression along with accelerated cellular proliferation. Should the malignant potential of BE be shown predictable by these endoscopic findings, that would simplify methods used for an effective surveillance, because patients requiring careful monitoring would be more easily identified. Development in the near future of a comprehensive scoring system for BE based on clinical factors, biomarkers and endoscopic predictors is required.
Collapse
Affiliation(s)
- Yuji Amano
- Department of Endoscopy, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba 270-2232, Japan
| | - Norihisa Ishimura
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (N.I.); (S.I.)
| | - Shunji Ishihara
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (N.I.); (S.I.)
| |
Collapse
|
28
|
Ahmed S, Kreft A, Chowdhury EH, Hossain SM, Galle PR, Neumann H. Molecular endoscopic imaging for the detection of Barrett's metaplasia using biodegradable inorganic nanoparticles: An ex-vivo pilot study on human tissue. PLoS One 2020; 15:e0239814. [PMID: 33002048 PMCID: PMC7529275 DOI: 10.1371/journal.pone.0239814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND STUDY AIMS Despite major technical advancements, endoscopic surveillance for detecting premalignant lesions in Barrett's esophagus is challenging because of their flat appearance with only subtle morphological changes. Molecular endoscopic imaging (MEI) using nanoparticles (NPs), coupled with fluorescently labeled antibody permits visualization of disease-specific molecular alterations. The aim of this ex vivo study was to assess the diagnostic applicability of MEI with NPs to detect Barrett's metaplasia. PATIENTS AND METHODS Seven patients undergoing endoscopic surveillance of known Barrett's esophagus were recruited. Freshly resected biopsy specimens were incubated with NPs coupled with FITC labeled Muc-2 antibodies and examined with MEI. Fluorescence intensity from Barrett's mucosa and control specimens were compared, followed by histological confirmation. RESULTS Fluorescence signals, indicating the presence of goblet cells, were noted for traditional MEI using Muc-2 antibodies in Barrett's intestinal metaplasia. Significantly stronger fluorescence signals were achieved with NPs coupled with FITC-conjugated Muc-2 antibodies. The results of MEI with NPs for the prediction of Barrett's metaplasia correlated with the final histopathological examination in all the cases. CONCLUSIONS Highly-specific NPs detected Barrett's metaplasia more efficiently than conventional MEI in this first feasibility study. MEI was as effective as standard histopathology for identifying Muc-2 containing goblet cells for diagnosis of Barrett's metaplasia. (DRKS-ID: DRKS00017747).
Collapse
Affiliation(s)
- Shakil Ahmed
- Inner Medicine, University Medical Centre, Mainz, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Centre, Mainz, Germany
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sultana Mehbuba Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Peter R. Galle
- Inner Medicine, University Medical Centre, Mainz, Germany
| | - Helmut Neumann
- Inner Medicine, University Medical Centre, Mainz, Germany
- * E-mail:
| |
Collapse
|
29
|
Lim AWW, Neves AA, Lam Shang Leen S, Lao-Sirieix P, Bird-Lieberman E, Singh N, Sheaff M, Hollingworth T, Brindle K, Sasieni P. Lectins in Cervical Screening. Cancers (Basel) 2020; 12:E1928. [PMID: 32708812 PMCID: PMC7409129 DOI: 10.3390/cancers12071928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022] Open
Abstract
Cervical screening in low-resource settings remains an unmet need. Lectins are naturally occurring sugar-binding glycoproteins whose binding patterns change as cancer develops. Lectins discriminate between dysplasia and normal tissue in several precancerous conditions. We explored whether lectins could be developed for cervical screening via visual inspection. Discovery work comprised lectin histochemistry using a panel of candidate lectins on fixed-human cervix tissue (high-grade cervical intraepithelial neoplasia (CIN3, n = 20) or normal (n = 20)), followed by validation in a separate cohort (30 normal, 25 CIN1, 25 CIN3). Lectin binding was assessed visually according to staining intensity. To validate findings macroscopically, near-infra red fluorescence imaging was conducted on freshly-resected cervix (1 normal, 7 CIN3), incubated with topically applied fluorescently-labelled lectin. Fluorescence signal was compared for biopsies and whole specimens according to regions of interest, identified by the overlay of histopathology grids. Lectin histochemistry identified two lectins-wheat germ agglutinin (WGA) and Helix pomatia agglutinin (HPA)-with significantly decreased binding to CIN3 versus normal in both discovery and validation cohorts. Findings at the macroscopic level confirmed weaker WGA binding (lower signal intensity) in CIN3 vs. normal for biopsies (p = 0.0308) and within whole specimens (p = 0.0312). Our findings confirm proof-of-principle and indicate that WGA could potentially be developed further as a probe for high-grade cervical disease.
Collapse
Affiliation(s)
- Anita WW Lim
- Wolfson Institute of Preventive Medicine, Centre for Cancer Prevention, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - André A. Neves
- Cancer Research UK Cambridge Institute, Li-Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; (A.A.N.); (K.B.)
| | - Sarah Lam Shang Leen
- Department of Cellular Pathology, Barts and the London NHS Trust, Pathology and Pharmacy Building, The Royal London Hospital, 80 Newark Street, London E1 2ES, UK; (S.L.S.L.); (N.S.); (M.S.)
| | - Pierre Lao-Sirieix
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge CB2 0XZ, UK; (P.L.-S.); (E.B.-L.)
| | - Elizabeth Bird-Lieberman
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge CB2 0XZ, UK; (P.L.-S.); (E.B.-L.)
- Translational Gastroenterology Unit and Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Naveena Singh
- Department of Cellular Pathology, Barts and the London NHS Trust, Pathology and Pharmacy Building, The Royal London Hospital, 80 Newark Street, London E1 2ES, UK; (S.L.S.L.); (N.S.); (M.S.)
| | - Michael Sheaff
- Department of Cellular Pathology, Barts and the London NHS Trust, Pathology and Pharmacy Building, The Royal London Hospital, 80 Newark Street, London E1 2ES, UK; (S.L.S.L.); (N.S.); (M.S.)
| | - Tony Hollingworth
- Whipps Cross University Hospital, Barts Health NHS Trust, Whipps Cross Road, London E11 1NR, UK;
| | - Kevin Brindle
- Cancer Research UK Cambridge Institute, Li-Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; (A.A.N.); (K.B.)
| | - Peter Sasieni
- Wolfson Institute of Preventive Medicine, Centre for Cancer Prevention, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| |
Collapse
|
30
|
Hoffman A, Atreya R, Rath T, Neurath MF. Use of Fluorescent Dyes in Endoscopy and Diagnostic Investigation. Visc Med 2020; 36:95-103. [PMID: 32355666 DOI: 10.1159/000506241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background The advancement of innovative endoscopic technology in terms of improving the visualization of the mucosa has been of significant benefit. Summary Advancements in image resolution, software processing, and optical filter technology have resulted in several techniques complemental to traditional white light endoscopy. These new techniques provide a real-time optical diagnosis as well as virtual histology of detected lesions. Optical molecular imaging permits a functional assessment within cells. Key Message Optical molecular imaging provides an understanding of cellular processes and permits validation of the specificity of fluorescent tracers and the possibility of quantifying the signal.
Collapse
Affiliation(s)
- Arthur Hoffman
- Department of Internal Medicine III, Clinic Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Timo Rath
- First Department of Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F Neurath
- First Department of Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
31
|
Noori MS, Bodle SJ, Showalter CA, Streator ES, Drozek DS, Burdick MM, Goetz DJ. Sticking to the Problem: Engineering Adhesion in Molecular Endoscopic Imaging. Cell Mol Bioeng 2020; 13:113-124. [PMID: 32175025 DOI: 10.1007/s12195-020-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract cause nearly one quarter of the cancer deaths worldwide, and nearly half of these are due to cancers of the esophagus and colon. Early detection of cancer significantly increases the rate of survival, and thus it is critical that cancer within these organs is detected early. In this regard, endoscopy is routinely used to screen for transforming/cancerous (i.e. dysplastic to fully cancerous) tissue. Numerous studies have revealed that the biochemistry of the luminal surface of such tissue within the colon and esophagus becomes altered throughout disease progression. Molecular endoscopic imaging (MEI), an emerging technology, seeks to exploit these changes for the early detection of cancer. The general approach for MEI is as follows: the luminal surface of an organ is exposed to molecular ligands, or particulate probes bearing a ligand, cognate to biochemistry unique to pre-cancerous/cancerous tissue. After a wash, the tissue is imaged to determine the presence of the probes. Detection of the probes post-washing suggests pathologic tissue. In the current review we provide a succinct, but extensive, review of ligands and target moieties that could be, or are currently being investigated, as possible cognate chemistries for MEI. This is followed by a review of the biophysics that determines, in large part, the success of a particular MEI design. The work draws an analogy between MEI and the well-advanced field of cell adhesion and provides a road map for engineering MEI to achieve assays that yield highly selective recognition of transforming/cancerous tissue in situ.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - Sarah J Bodle
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| | - Christian A Showalter
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Evan S Streator
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - David S Drozek
- Department of Specialty Medicine, Ohio University, Athens, OH 45701 USA
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
32
|
Wagatsuma T, Nagai-Okatani C, Matsuda A, Masugi Y, Imaoka M, Yamazaki K, Sakamoto M, Kuno A. Discovery of Pancreatic Ductal Adenocarcinoma-Related Aberrant Glycosylations: A Multilateral Approach of Lectin Microarray-Based Tissue Glycomic Profiling With Public Transcriptomic Datasets. Front Oncol 2020; 10:338. [PMID: 32232009 PMCID: PMC7082313 DOI: 10.3389/fonc.2020.00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Aberrant protein glycosylation is one of the most notable features in cancerous tissues, and thereby glycoproteins with disease-relevant glycosylation alterations are fascinating targets for the development of biomarkers and therapeutic agents. For this purpose, a reliable strategy is needed for the analysis of glycosylation alterations occurring on specific glycoproteins during the progression of cancer. Here, we propose a bilateral approach combining lectin microarray-based tissue glycomic profiling and database-derived transcriptomic datasets. First, lectin microarray was used to perform differential glycomic profiling of crude extracts derived from non-tumor and tumor regions of frozen tissue sections from pancreatic ductal adenocarcinoma (PDAC). This analysis revealed two notable tissue glycome alterations in PDAC samples: increases in sialylated glycans and bisecting N-acetylglucosamine and a decrease in ABO blood group antigens. To examine aberrations in the glycosylation machinery related to these glycomic alterations, we next employed public datasets of gene expression profiles in cancerous and normal pancreases provided by The Cancer Genome Atlas and the Genotype-Tissue Expression projects, respectively. In this analysis, glycosyltransferases responsible for the glycosylation alterations showed aberrant gene expression in the cancerous tissues, consistent with the tissue glycomic profiles. The correlated alterations in glycosyltransferase expression and tissue glycomics were then evaluated by differential glycan profiling of a membrane N-glycoprotein, basigin, expressed in tumor and non-tumor pancreatic cells. The focused differential glycomic profiling for endogenous basigin derived from non-tumor and cancerous regions of PDAC tissue sections demonstrated that PDAC-relevant glycan alterations of basigin closely reflected the notable features in the disease-specific alterations in the tissue glycomes. In conclusion, the present multi-omics strategy using public transcriptomic datasets and experimental glycomic profiling using a tiny amount of clinical specimens successfully demonstrated that basigin is a representative N-glycoprotein that reflects PDAC-related aberrant glycosylations. This study indicates the usefulness of large public data sets such as the gene expression profiles of glycosylation-related genes for evaluation of the highly sensitive tissue glycomic profiling results. This strategy is expected to be useful for the discovery of novel glyco-biomarkers and glyco-therapeutic targets.
Collapse
Affiliation(s)
- Takanori Wagatsuma
- Project for Utilizing Glycans in the Development of Innovative Drug Discovery Technologies, Japan Bioindustry Association (JBA), Tokyo, Japan.,Center for Integrated Medical Research, Keio University School of Medicine, Tokyo, Japan.,Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Chiaki Nagai-Okatani
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Atsushi Matsuda
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masako Imaoka
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
33
|
Nangraj AS, Selvaraj G, Kaliamurthi S, Kaushik AC, Cho WC, Wei DQ. Integrated PPI- and WGCNA-Retrieval of Hub Gene Signatures Shared Between Barrett's Esophagus and Esophageal Adenocarcinoma. Front Pharmacol 2020; 11:881. [PMID: 32903837 PMCID: PMC7438937 DOI: 10.3389/fphar.2020.00881] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a deadly cancer with high mortality rate, especially in economically advanced countries, while Barrett's esophagus (BE) is reported to be a precursor that strongly increases the risk of EAC. Due to the complexity of these diseases, their molecular mechanisms have not been revealed clearly. This study aims to explore the gene signatures shared between BE and EAC based on integrated network analysis. We obtained EAC- and BE-associated microarray datasets GSE26886, GSE1420, GSE37200, and GSE37203 from the Gene Expression Omnibus and ArrayExpress using systematic meta-analysis. These data were accompanied by clinical data and RNAseq data from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to explore the relationship between gene sets and clinical traits as well as to discover the key relationships behind the co-expression modules. A differentially expressed gene-based protein-protein interaction (PPI) complex was used to extract hub genes through Cytoscape plugins. As a result, 403 DEGs were excavated, comprising 236 upregulated and 167 downregulated genes, which are involved in the cell cycle and replication pathways. Forty key genes were identified using modules of MCODE, CytoHubba, and CytoNCA with different algorithms. A dark-gray module with 207 genes was identified which having a high correlation with phenotype (gender) in the WGCNA. Furthermore, five shared hub gene signatures (SHGS), namely, pre-mRNA processing factor 4 (PRPF4), serine and arginine-rich splicing factor 1 (SRSF1), heterogeneous nuclear ribonucleoprotein M (HNRNPM), DExH-Box Helicase 9 (DHX9), and origin recognition complex subunit 2 (ORC2), were identified between BE and EAC. SHGS enrichment denotes that RNA metabolism and splicosomes play a key role in esophageal cancer development and progress. We conclude that the PPI complex and WGCNA co-expression network highlight the importance of phenotypic identifying hub gene signatures for BE and EAC.
Collapse
Affiliation(s)
- Asma Sindhoo Nangraj
- The State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, Henan University of Technology, Zhengzhou, China
- *Correspondence: Gurudeeban Selvaraj, ; Dong Qing Wei,
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, Henan University of Technology, Zhengzhou, China
| | - Aman Chandra Kaushik
- The State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Dong Qing Wei
- The State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Center of Interdisciplinary Sciences-Computational Life Sciences, Henan University of Technology, Zhengzhou, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Gurudeeban Selvaraj, ; Dong Qing Wei,
| |
Collapse
|
34
|
Ahmed S, Galle PR, Neumann H. Molecular endoscopic imaging: the future is bright. Ther Adv Gastrointest Endosc 2019; 12:2631774519867175. [PMID: 31517311 PMCID: PMC6724493 DOI: 10.1177/2631774519867175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
The prediction and final survival rate of gastrointestinal cancers are dependent on the stage of disease. The ideal would be to detect those gastrointestinal lesions at early stage or even premalignant forms which are difficult to detect by conventional endoscopy with white light optical imaging as they show minimum or no changes in morphological characteristics and are thus left untreated. The introduction of molecular imaging has greatly changed the pattern for detecting gastrointestinal lesions from purely macroscopic structural imaging to the molecular level. It allows microscopic examination of the gastrointestinal mucosa with endoscopy after the topical or systemic application of molecular probes. In recent years, major advancements in endoscopic instruments and specific molecular probes have been achieved. This review focuses on the current status of endoscopic imaging and highlights the application of molecular imaging in gastrointestinal and hepatic disease in the context of diagnosis and therapy based on recently published literature in this field. We also discuss the challenges of molecular endoscopic imaging, its future directions and potential that could have a tremendous impact on endoscopic research and clinical practice in future.
Collapse
Affiliation(s)
- Shakil Ahmed
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helmut Neumann
- Department of Interdisciplinary Endoscopy, I. Medical Clinic and Polyclinic, University Hospital Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
35
|
Sweer JA, Chen T, Salimian K, Battafarano RJ, Durr NJ. Wide-field optical property mapping and structured light imaging of the esophagus with spatial frequency domain imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201900005. [PMID: 31056845 PMCID: PMC6721984 DOI: 10.1002/jbio.201900005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/31/2019] [Accepted: 05/02/2019] [Indexed: 05/18/2023]
Abstract
As the incidence of esophageal adenocarcinoma continues to rise, there is a need for improved imaging technologies with contrast to abnormal esophageal tissues. To inform the design of optical technologies that meet this need, we characterize the spatial distribution of the scattering and absorption properties from 471 to 851 nm of eight resected human esophagi tissues using Spatial Frequency Domain Imaging. Histopathology was used to categorize tissue types, including normal, inflammation, fibrotic, ulceration, Barrett's Esophagus and squamous cell carcinoma. Average absorption and reduced scattering coefficients of normal tissues were 0.211 ± 0.051 and 1.20 ± 0.18 mm-1 , respectively at 471 nm, and both values decreased monotonically with increasing wavelength. Fibrotic tissue exhibited at least 68% larger scattering signal across all wavelengths, while squamous cell carcinoma exhibited a 36% decrease in scattering at 471 nm. We additionally image the esophagus with high spatial frequencies up to 0.5 mm-1 and show strong reflectance contrast to tissue treated with radiation. Lastly, we observe that esophageal absorption and scattering values change by an average of 9.4% and 2.7% respectively over a 30 minute duration post-resection. These results may guide system design for the diagnosis, prevention and monitoring of esophageal pathologies.
Collapse
Affiliation(s)
- Jordan A. Sweer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tianyi Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevan Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard J. Battafarano
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas J. Durr
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Noori MS, Streator ES, Carlson GE, Drozek DS, Burdick MM, Goetz DJ. An adhesion based approach for the detection of esophageal cancer. Integr Biol (Camb) 2019; 10:747-757. [PMID: 30398503 DOI: 10.1039/c8ib00132d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Esophageal cancer has a 5 year survival rate of ∼20%. This dismal prognosis is due, in part, to the fact that esophageal cancer often presents at a late stage. Thus, there is a critical need for assays that enable the early detection of cancerous tissue within the esophagus. The luminal surface of the esophagus expresses signature molecule(s) at sites of transformation providing an avenue for the development of in situ assays that detect neoplastic growth within the esophagus. An attractive approach, receiving increased attention, is the endoscopic administration of particles conjugated with ligands to signature molecules present on transforming tissue. Detection of the particles within the esophagus, post-washing, would indicate the presence of the signature molecule and thus transforming tissue. In this work, we utilized cancerous and normal esophageal cells to provide in vitro proof of principle for this approach utilizing ligand-conjugated microspheres and demonstrate the need, and provide the framework for, engineering this technology. Specifically, the study (i) reveals selective increased expression of signature molecules on cancerous esophageal cells relative to normal cells; (ii) demonstrates selective binding of ligand-conjugated microspheres to cancerous esophageal cells relative to normal cells; (iii) demonstrates that the selective recognition of cancerous, relative to normal esophageal cells, is highly dependent on the biophysical design of the assay; and (iv) advocates utilizing the knowledge from the field of cell adhesion as a guide for the effective development of ligand-conjugated particle-based schemes that seek to detect esophageal oncogenesis in situ.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Lectin nanoparticle assays for detecting breast cancer-associated glycovariants of cancer antigen 15-3 (CA15-3) in human plasma. PLoS One 2019; 14:e0219480. [PMID: 31344060 PMCID: PMC6658058 DOI: 10.1371/journal.pone.0219480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/25/2019] [Indexed: 01/29/2023] Open
Abstract
Cancer antigen 15–3 (CA15-3) is widely utilized for monitoring metastatic breast cancer (BC). However, its utility for early detection of breast cancer is severely limited due to poor clinical sensitivity and specificity. The glycosylation of CA15-3 is known to be affected by BC, and therefore it might offer a way to construct CA15-3 glycovariant assays with improved cancer specificity. To this end, we performed lectin-based glycoprofiling of BC-associated CA15-3. CA15-3 expressed by a BC cell line was immobilized on microtitration wells using an anti-CA15-3 antibody. The glycosylation of the immobilized CA15-3 was then detected by using lectins coated onto europium (III)-doped nanoparticles (Eu+3-NPs) and measuring the time-resolved fluorescence of Eu. Out of multiple lectin-Eu+3-NP preparations, wheat germ agglutinin (WGA) and macrophage galactose-type lectin (MGL) -Eu3+-NPs bound to the BC cell line-dericed CA15-3 glycovariants (CA15-3Lectin). To evaluate the clinical performance of these two lectin-based assays, plasma samples from metastatic BC patients (n = 53) and healthy age-matched women (n = 20).Plasma CA15-3Lectin measurements better distinguished metastatic BC patients from healthy controls than the conventional CA15-3 immunoassay. At 90% specificity, the clinical sensitivity of the assays was 66.0, 67.9 and 81.1% for the conventional CA15-3, CA15-3MGL and CA15-3WGA assays, respectively. Baseline CA15-3MGL and CA15-3WGA were correlated to conventional baseline CA15-3 levels (r = 0.68, p<0.001, r = 0.90, p>0.001, respectively). However, very low baseline CA15-3MGL levels ≤ 5 U/mL were common in this metastatic breast cancer patient population.In conclusion, the new CA15-3Lectin concept could considerably improve the clinical sensitivity of BC detection compared to the conventional CA15-3 immunoassays and should be validated further on a larger series of subjects with different cancer subtypes and stages.
Collapse
|
38
|
Waterhouse DJ, Fitzpatrick CRM, Pogue BW, O'Connor JPB, Bohndiek SE. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat Biomed Eng 2019; 3:339-353. [PMID: 31036890 DOI: 10.1038/s41551-019-0392-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Clinical workflows for the non-invasive detection and characterization of disease states could benefit from optical-imaging biomarkers. In this Perspective, we discuss opportunities and challenges towards the clinical implementation of optical-imaging biomarkers for the early detection of cancer by analysing two case studies: the assessment of skin lesions in primary care, and the surveillance of patients with Barrett's oesophagus in specialist care. We stress the importance of technical and biological validations and clinical-utility assessments, and the need to address implementation bottlenecks. In addition, we define a translational roadmap for the widespread clinical implementation of optical-imaging technologies.
Collapse
Affiliation(s)
- Dale J Waterhouse
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Catherine R M Fitzpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | | | | | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Poiroux G, Barre A, Rougé P, Benoist H. Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy. Curr Cancer Drug Targets 2019; 19:349-359. [DOI: 10.2174/1568009618666180628101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
The use of photodynamic therapy in cancer still remains limited, partly because of the lack of photosensitizer (PS) specificity for the cancerous tissues. Various molecular tools are available to increase PS efficiency by targeting the cancer cell molecular alterations. Most strategies use the protein-protein interactions, e.g. monoclonal antibodies directed toward tumor antigens, such as HER2 or EGFR. An alternative could be the targeting of the tumor glycosylation aberrations, e.g. T/Tn antigens that are truncated O-glycans over-expressed in numerous tumors. Thus, to achieve an effective targeting, PS can be conjugated to molecules that specifically recognize the Oglycosylation aberrations at the cancer cell surface.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Universite de Toulouse, CRCT, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France
| | - Annick Barre
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Pierre Rougé
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Hervé Benoist
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| |
Collapse
|
40
|
Johnson A, Baeten J, Patel K, Killian M, Sunny S, Suresh A, Uma K, Birur P, Kuriakose M, Kademani D. Evaluation of a Lectin-Based Imaging System for the Chairside Detection of Oral Dysplasia and Malignancy. J Oral Maxillofac Surg 2019; 77:1941-1951. [PMID: 31004587 DOI: 10.1016/j.joms.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE Currently available oral cancer screening adjuncts have not enhanced clinical screening methods because of high false positives and negatives, highlighting the need for a molecularly specific technique for accurate screening of suspicious oral lesions. The purpose of this study was to evaluate the in vivo screening accuracy of an oral lesion identification system that evaluates aberrant glycosylation patterns using a fluorescently labeled lectin (wheat germ agglutinin and fluorescein isothiocyanate [WGA-FITC]). MATERIALS AND METHODS The authors designed and implemented a prospective cohort study at 3 institutions composed of patients with and without suspicious oral lesions. Oral cavities were screened by clinical examination and with the oral lesion identification system according to a stepwise procedure that included the topical application and fluorescence visualization of a fluorescent nuclear stain and WGA-FITC. Tissue samples were obtained from all enrolled patients for histopathological diagnosis and were used to calculate sensitivity and specificity metrics (primary outcome variable) irrespective of the oral lesion identification system result. RESULTS The sample was composed of 97 patients; 86 had 100 clinically suspicious lesions and 11 without such lesions were included as a control group. Use of the oral lesion identification system resulted in 100, 100, and 74% sensitivity for cancer, high-grade dysplasia, and low-grade dysplasia, respectively, and a specificity of 80%. Clinical diagnosis yielded similar sensitivity values of 84, 100, and 88% for cancer, high-grade dysplasia, and low-grade dysplasia, respectively, and a specificity of 76%. Use of the oral lesion identification system enhanced the visualization of lesion dimensionality and borders. CONCLUSIONS The results of this study suggest the oral lesion identification system was a beneficial adjunct to standard clinical examination, because the system provided sensitivity and specificity values similar to or greater than clinical diagnosis.
Collapse
Affiliation(s)
| | - John Baeten
- Director of Engineering/Research and Development, Inter-Med, Inc, Racine, WI
| | - Ketan Patel
- Attending Surgeon, North Memorial Health Care, Robbinsdale, MN
| | - Molly Killian
- Clinical Research Coordinator, North Memorial Health Care, Robbinsdale, MN
| | - Sumsum Sunny
- Fellow, Mazumdar Shaw Cancer Center, Bangalore, India
| | - Amritha Suresh
- Research Scientist, Mazumdar Shaw Cancer Center, Bangalore, India
| | - K Uma
- Oral Pathologist, KLES Dental College, Bangalore, India
| | - Praveen Birur
- Professor and Department Head, Oral Medicine and Radiology, KLES Dental College, Bangalore, India
| | - Moni Kuriakose
- Professor and Director, Department of Surgical Oncology, Narayana Hrudayalaya Hospital, Bangalore, India; Professor of Oncology and Director of Head and Neck Oncology Research Program, Roswell Park Cancer Institute, Buffalo, NY
| | - Deepak Kademani
- Chief of Surgery, Chief and Fellowship Director, Oral and Maxillofacial Surgery, North Memorial Medical Center, Robbinsdale, MN.
| |
Collapse
|
41
|
|
42
|
Nagengast WB, Hartmans E, Garcia-Allende PB, Peters FTM, Linssen MD, Koch M, Koller M, Tjalma JJJ, Karrenbeld A, Jorritsma-Smit A, Kleibeuker JH, van Dam GM, Ntziachristos V. Near-infrared fluorescence molecular endoscopy detects dysplastic oesophageal lesions using topical and systemic tracer of vascular endothelial growth factor A. Gut 2019; 68:7-10. [PMID: 29247063 PMCID: PMC6839834 DOI: 10.1136/gutjnl-2017-314953] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/25/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Elmire Hartmans
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Pilar B Garcia-Allende
- Chair for Biological Imaging and Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Centre Munich, Munich, Germany
| | - Frans T M Peters
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Matthijs D Linssen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Maximilian Koch
- Chair for Biological Imaging and Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Centre Munich, Munich, Germany
| | - Marjory Koller
- Department of Surgery, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Jolien J J Tjalma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Arend Karrenbeld
- Department of Pathology, University of Groningen, University MedicalCenter, Groningen, The Netherlands
| | - Annelies Jorritsma-Smit
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Jan H Kleibeuker
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University of Groningen, University Medical Center, Groningen, The Netherlands,Department of Nuclear Medicine & Molecular Imaging and Intensive Care, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Chair for Biological Imaging and Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Centre Munich, Munich, Germany
| |
Collapse
|
43
|
Espinoza JA, Riquelme I, Sagredo EA, Rosa L, García P, Bizama C, Apud-Bell M, Leal P, Weber H, Benavente F, Vargas S, Romero D, Kalergis AM, Roa JC. Mucin 5B, carbonic anhydrase 9 and claudin 18 are potential theranostic markers of gallbladder carcinoma. Histopathology 2018; 74:597-607. [PMID: 30565710 DOI: 10.1111/his.13797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
AIMS Gallbladder cancer (GBC) is an aggressive tumour that is usually diagnosed at advanced stages and is characterised by a poor prognosis. Using public data of normal human tissues, we found that mRNA and protein levels of mucin 5B (MUC5B) and carbonic anhydrase 9 (CA9) were highly increased in gallbladder tissues. In addition, previous evidence has shown that claudin 18 (CLDN18) protein expression is higher in GBC. The aim of this study was to perform an analysis of these cell surface proteins during the histological progression of GBC in order to identify their theranostic potential. METHODS AND RESULTS MUC5B expression, CA9 expression and CLDN18 expression were examined by immunohistochemistry in a series of 179 chronic cholecystitis (including 16 metaplastic tissues), 15 dysplasia and 217 GBC samples by the use of tissue microarray analysis. A composite staining score was calculated from staining intensity and percentage of positive cells. Immunohistochemical analysis showed high expression of MUC5B and CA9 among normal epithelium, metaplastic tissues, and dysplastic tissues. However, expression of both proteins was observed in roughly 50% of GBC samples. In contrast, CLDN18 was absent in normal epithelium, but its expression was higher in metaplastic cells. Among GBC cases, approximately half showed high CLDN18 expression. No associations were found between MUC5B, CA9 and CLDN18 expression and any clinicopathological features. CONCLUSIONS CLDN18 is a new metaplasia marker in gallbladder tissues, and is conserved in approximately half of GBC cases. MUC5B and CA9 are highly conserved during GBC histological progression. The three markers are potential theranostic markers, in particular CA9 and CLDN18, for which there are already targeted therapies available.
Collapse
Affiliation(s)
- Jaime A Espinoza
- SciLifeLab, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Eduardo A Sagredo
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Rosa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia García
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Apud-Bell
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Leal
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Helga Weber
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Felipe Benavente
- Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Sergio Vargas
- Department of Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Romero
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Department of Molecular Genetics and Microbiology, Millennium Institute of Immunology and Immunotherapy, Faculty of Biological Sciences, Santiago, Chile.,Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Molecular Genetics and Microbiology, Millennium Institute of Immunology and Immunotherapy, Faculty of Biological Sciences, Santiago, Chile
| |
Collapse
|
44
|
Strome A, Kossatz S, Zanoni DK, Rajadhyaksha M, Patel S, Reiner T. Current Practice and Emerging Molecular Imaging Technologies in Oral Cancer Screening. Mol Imaging 2018; 17:1536012118808644. [PMID: 32852263 PMCID: PMC6287312 DOI: 10.1177/1536012118808644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common cancers globally. Survival rates for patients are directly correlated with stage of diagnosis; despite this knowledge, 60% of individuals are presenting with late-stage disease. Currently, the initial evaluation of a questionable lesion is performed by a conventional visual examination with white light. If a lesion is deemed suspicious, a biopsy is taken for diagnosis. However, not all lesions present suspicious under visual white light examination, and there is limited specificity in differentiating between benign and malignant transformations. Several vital dyes, light-based detection systems, and cytology evaluation methods have been formulated to aid in the visualization process, but their lack of specific biomarkers resulted in high false-positive rates and thus limits their reliability as screening and guidance tools. In this review, we will analyze the current methodologies and demonstrate the need for specific intraoral imaging agents to aid in screening and diagnosis to identify patients earlier. Several novel molecular imaging agents will be presented as, by result of their molecular targeting, they aim to have high specificity for tumor pathways and can support in identifying dysplastic/cancerous lesions and guiding visualization of biopsy sites. Imaging agents that are easy to use, inexpensive, noninvasive, and specific can be utilized to increase the number of patients who are screened and monitored in a variety of different environments, with the ultimate goal of increasing early detection.
Collapse
Affiliation(s)
- Arianna Strome
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Milind Rajadhyaksha
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Snehal Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiology, Weill-Cornell Medical College, New York, NY, USA
| |
Collapse
|
45
|
Koppolu S, Wang L, Mathur A, Nigam JA, Dezzutti CS, Isaacs C, Meyn L, Bunge KE, Moncla BJ, Hillier SL, Rohan LC, Mahal LK. Vaginal Product Formulation Alters the Innate Antiviral Activity and Glycome of Cervicovaginal Fluids with Implications for Viral Susceptibility. ACS Infect Dis 2018; 4:1613-1622. [PMID: 30183260 DOI: 10.1021/acsinfecdis.8b00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylated proteins (i.e., mucins, IgG) are important mediators of innate antiviral immunity in the vagina; however, our current knowledge of the role that glycan themselves play in genital immunity is relatively low. Herein, we evaluate the relationship between innate antiviral immunity and glycomic composition in cervicovaginal lavage fluid (CVL) collected as part of a Phase I clinical trial testing the impact of two distinct formulations of the antiretroviral drug dapivirine. Using lectin microarray technology, we discovered that formulation (hydrogel- versus film-based delivery) impacted the CVL glycome, with hydrogel formulations inducing more changes, including a loss of high-mannose. The loss of this epitope correlated to a loss of anti-HIV-1 activity. Glycoproteomic identification of high-mannose proteins revealed a cohort of antiproteases shown to be important in HIV-1 resistance, whose expression covaried with the high-mannose signature. Our data strongly suggests high-mannose as a marker for secreted proteins mediating innate antiviral immunity in vaginal fluids and that drug formulation may impact this activity as reflected in the glycome.
Collapse
Affiliation(s)
- Sujeethraj Koppolu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Linlin Wang
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Ayushi Mathur
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Jayeshwar A. Nigam
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Charlene S. Dezzutti
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Charles Isaacs
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, New York 10314, United States
| | - Leslie Meyn
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Katherine E. Bunge
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Bernard J. Moncla
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Sharon L. Hillier
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Lisa C. Rohan
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Lara K. Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
46
|
Rath T, Kiesslich R, Neurath MF, Atreya R. Molecular imaging within the lower gastrointestinal tract: From feasibility to future. Dig Endosc 2018; 30:730-738. [PMID: 30075487 DOI: 10.1111/den.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
Molecular imaging is based on the labelling of defined molecular targets through the utilization of fluorescently linked probes and their subsequent detection with high-resolution endoscopic devices, thereby enabling visualization of single molecules including receptors. Whereas early studies have used molecular imaging for improved visualization and detection of early dysplasia and cancer as well as for assessing intestinal inflammation and inflammation-associated cancer within the gastrointestinal (GI) tract, more recent studies have impressively demonstrated that molecular imaging can also be used to characterize and visualize the molecular fingerprint of cancer and inflammation in vivo and in real time. With this, molecular imaging can be used to guide expression-tailored individualized therapy. With the rapid expansion and diversification of the repertoire of biological agents utilized in inflammatory bowel disease and cancer, this approach is gaining increasing attention. Within this review, we first summarize the technical components commonly used for molecular imaging and then review preclinical and clinical studies and evolving clinical applications on molecular imaging within the lower GI tract. Molecular imaging has the potential to significantly change endoscopic diagnosis and subsequent targeted therapy of gastrointestinal cancer and chronic gastrointestinal diseases.
Collapse
Affiliation(s)
- Timo Rath
- Division of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital of Erlangen, Erlangen, Germany
| | - Ralf Kiesslich
- Department of Medicine, Division of Gastroenterology, Helios-Dr.-Horst-Schmidt-Kliniken, Wiesbaden, Germany
| | - Markus F Neurath
- Division of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital of Erlangen, Erlangen, Germany
| | - Raja Atreya
- Division of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
47
|
Luthman AS, Waterhouse DJ, Ansel-Bollepalli L, Yoon J, Gordon GSD, Joseph J, di Pietro M, Januszewicz W, Bohndiek SE. Bimodal reflectance and fluorescence multispectral endoscopy based on spectrally resolving detector arrays. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-14. [PMID: 30358334 PMCID: PMC6975231 DOI: 10.1117/1.jbo.24.3.031009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/07/2018] [Indexed: 05/08/2023]
Abstract
Emerging clinical interest in combining standard white light endoscopy with targeted near-infrared (NIR) fluorescent contrast agents for improved early cancer detection has created demand for multimodal imaging endoscopes. We used two spectrally resolving detector arrays (SRDAs) to realize a bimodal endoscope capable of simultaneous reflectance-based imaging in the visible spectral region and multiplexed fluorescence-based imaging in the NIR. The visible SRDA was composed of 16 spectral bands, with peak wavelengths in the range of 463 to 648 nm and full-width at half-maximum (FWHM) between 9 and 26 nm. The NIR SRDA was composed of 25 spectral bands, with peak wavelengths in the range 659 to 891 nm and FWHM 7 to 15 nm. The spectral endoscope design was based on a "babyscope" model using a commercially available imaging fiber bundle. We developed a spectral transmission model to select optical components and provide reference endmembers for linear spectral unmixing of the recorded image data. The technical characterization of the spectral endoscope is presented, including evaluation of the angular field-of-view, barrel distortion, spatial resolution and spectral fidelity, which showed encouraging performance. An agarose phantom containing oxygenated and deoxygenated blood with three fluorescent dyes was then imaged. After spectral unmixing, the different chemical components of the phantom could be successfully identified via majority decision with high signal-to-background ratio (>3). Imaging performance was further assessed in an ex vivo porcine esophagus model. Our preliminary imaging results demonstrate the capability to simultaneously resolve multiple biological components using a compact spectral endoscopy system.
Collapse
Affiliation(s)
- A. Siri Luthman
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Dale J. Waterhouse
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Laura Ansel-Bollepalli
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Jonghee Yoon
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - George S. D. Gordon
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Department of Engineering, Cambridge, United Kingdom
| | - James Joseph
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Massimiliano di Pietro
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Wladyslaw Januszewicz
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
48
|
Klenske E, Neurath MF, Atreya R, Rath T. Molecular imaging in gastroenterology: A route for personalized endoscopy. Dig Liver Dis 2018; 50:878-885. [PMID: 30005960 DOI: 10.1016/j.dld.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
With the rapid expansion and diversification of the repertoire of biological agents utilized in inflammatory bowel diseases and cancer and the increase in oncological patients in gastroenterology, visualization of single receptor or molecular target expression and the subsequent initiation of expression tailored therapy are gaining increasing attention. Through the combination of utilizing fluorescently labeled probes with high specificity towards defined molecular targets and their subsequent detection and visualization with endoscopic devices, molecular imaging is a new emerging field focusing on the receptor expression within the mucosa on a cellular level rather than on macroscopic changes. In the past years various new technological and molecular probes have been successfully utilized for molecular imaging. Within this review, we summarize different technologies as well as molecular probes applied in molecular imaging and review current and past approaches for functional imaging with molecular endoscopy within the GI Tract and resulting clinical applications. It can be expected that molecular imaging allows for individualized diagnostic approaches and patient tailored medicine in the future.
Collapse
Affiliation(s)
- Entcho Klenske
- Department of Medicine I, Division of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital of Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine I, Division of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital of Erlangen, Germany
| | - Raja Atreya
- Department of Medicine I, Division of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital of Erlangen, Germany
| | - Timo Rath
- Department of Medicine I, Division of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital of Erlangen, Germany.
| |
Collapse
|
49
|
Joshi BP, Wang TD. Targeted Optical Imaging Agents in Cancer: Focus on Clinical Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2015237. [PMID: 30224903 PMCID: PMC6129851 DOI: 10.1155/2018/2015237] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/27/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Molecular imaging is an emerging strategy for in vivo visualization of cancer over time based on biological mechanisms of disease activity. Optical imaging methods offer a number of advantages for real-time cancer detection, particularly in the epithelium of hollow organs and ducts, by using a broad spectral range of light that spans from visible to near-infrared. Targeted ligands are being developed for improved molecular specificity. These platforms include small molecule, peptide, affibody, activatable probes, lectin, and antibody. Fluorescence labeling is used to provide high image contrast. This emerging methodology is clinically useful for early cancer detection by identifying and localizing suspicious lesions that may not otherwise be seen and serves as a guide for tissue biopsy and surgical resection. Visualizing molecular expression patterns may also be useful to determine the best choice of therapy and to monitor efficacy. A number of these imaging agents are overcoming key challenges for clinical translation and are being validated in vivo for a wide range of human cancers.
Collapse
Affiliation(s)
- Bishnu P. Joshi
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 1722, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Amlashi FG, Wang X, Davila RE, Maru DM, Bhutani MS, Lee JH, Weston BR, Mizrak Kaya D, Vassilakopoulou M, Harada K, Blum Murphy MA, Rice DC, Hofstetter WL, Davila M, Nguyen QN, Ajani JA. Barrett's Esophagus after Bimodality Therapy in Patients with Esophageal Adenocarcinoma. Oncology 2018; 95:81-90. [PMID: 29843157 PMCID: PMC6067962 DOI: 10.1159/000488489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Barrett's esophagus (BE) may be present in patients with esophageal adenocarcinoma (EAC) after bimodality therapy (BMT). There is no specific guidance for follow-up of these patients with regard to the presence of BE or dysplasia. In this study, we assessed the outcomes of patients who, after BMT, had BE and those who did not. METHOD Patients with EAC who had BMT were identified and analyzed retrospectively in two groups, with and without BE. We compared patient characteristics and outcome variables (local, distant, and no recurrence). RESULTS Of 228 patients with EAC, 68 (29.8%) had BE before BMT. Ninety-eight (42.9%) had BE after BMT, and endoscopic intervention was done in 11 (11.2%). With a median follow-up of 37 months, the presence of post-BMT BE was not significantly associated with overall survival (OS) and local recurrence-free survival (LRFS). Similarly, endoscopic intervention was not significantly associated with OS and LRFS. Fifty (73.5%) patients with BE before BMT had BE after BMT (p < 0.0001). CONCLUSION The presence of BE after BMT was not associated with increased risk of local recurrence. The local recurrence rate was not influenced by endoscopic intervention. Prospective studies are warranted to generate guidance for intervention, if necessary, for this group of EAC patients.
Collapse
Affiliation(s)
- Fatemeh G Amlashi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuemei Wang
- Department of Biostatics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raquel E Davila
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey H Lee
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian R Weston
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dilsa Mizrak Kaya
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Vassilakopoulou
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mariela A Blum Murphy
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David C Rice
- Department of Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wayne L Hofstetter
- Department of Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta Davila
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|