1
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Valcikova B, Vadovicova N, Smolkova K, Zacpalova M, Krejci P, Lee S, Rauch J, Kolch W, von Kriegsheim A, Dorotikova A, Andrysik Z, Vichova R, Vacek O, Soucek K, Uldrijan S. eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Proc Natl Acad Sci U S A 2024; 121:e2321305121. [PMID: 39436655 PMCID: PMC11536119 DOI: 10.1073/pnas.2321305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.
Collapse
Affiliation(s)
- Barbora Valcikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Natalia Vadovicova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Karolina Smolkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Laboratory of Cell Signaling, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno60200, Czech Republic
| | - Shannon Lee
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| | - Alexander von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XR, United Kingdom
| | - Anna Dorotikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Rachel Vichova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
| | - Ondrej Vacek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| |
Collapse
|
3
|
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:11043. [PMID: 39456824 PMCID: PMC11507918 DOI: 10.3390/ijms252011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (H.J.)
| |
Collapse
|
4
|
Sevrin T, Imoto H, Robertson S, Rauch N, Dyn'ko U, Koubova K, Wynne K, Kolch W, Rukhlenko OS, Kholodenko BN. Cell-specific models reveal conformation-specific RAF inhibitor combinations that synergistically inhibit ERK signaling in pancreatic cancer cells. Cell Rep 2024; 43:114710. [PMID: 39240715 PMCID: PMC11474227 DOI: 10.1016/j.celrep.2024.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 09/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges for targeted clinical interventions due to prevalent KRAS mutations, rendering PDAC resistant to RAF and MEK inhibitors (RAFi and MEKi). In addition, responses to targeted therapies vary between patients. Here, we explored the differential sensitivities of PDAC cell lines to RAFi and MEKi and developed an isogenic pair comprising the most sensitive and resistant PDAC cells. To simulate patient- or tumor-specific variations, we constructed cell-line-specific mechanistic models based on protein expression profiling and differential properties of KRAS mutants. These models predicted synergy between two RAFi with different conformation specificity (type I½ and type II RAFi) in inhibiting phospho-ERK (ppERK) and reducing PDAC cell viability. This synergy was experimentally validated across all four studied PDAC cell lines. Our findings underscore the need for combination approaches to inhibit the ERK pathway in PDAC.
Collapse
Affiliation(s)
- Thomas Sevrin
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Hiroaki Imoto
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sarah Robertson
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Uscinnia Dyn'ko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Katerina Koubova
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Ben-Yishay R, Globus O, Balint-Lahat N, Arbili-Yarhi S, Bar-Hai N, Bar V, Aharon S, Kosenko A, Zundelevich A, Berger R, Ishay-Ronen D. Class Effect Unveiled: PPARγ Agonists and MEK Inhibitors in Cancer Cell Differentiation. Cells 2024; 13:1506. [PMID: 39273076 PMCID: PMC11394433 DOI: 10.3390/cells13171506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a major role in breast cancer progression and the development of drug resistance. We have previously demonstrated a trans-differentiation therapeutic approach targeting invasive dedifferentiated cancer cells. Using a combination of PPARγ agonists and MEK inhibitors, we forced the differentiation of disseminating breast cancer cells into post-mitotic adipocytes. Utilizing murine breast cancer cells, we demonstrated a broad class effect of PPARγ agonists and MEK inhibitors in inducing cancer cell trans-differentiation into adipocytes. Both Rosiglitazone and Pioglitazone effectively induced adipogenesis in cancer cells, marked by PPARγ and C/EBPα upregulation, cytoskeleton rearrangement, and lipid droplet accumulation. All tested MEK inhibitors promoted adipogenesis in the presence of TGFβ, with Cobimetinib showing the most prominent effects. A metastasis ex vivo culture from a patient diagnosed with triple-negative breast cancer demonstrated a synergistic upregulation of PPARγ with the combination of Pioglitazone and Cobimetinib. Our results highlight the potential for new therapeutic strategies targeting cancer cell plasticity and the dedifferentiation phenotype in aggressive breast cancer subtypes. Combining differentiation treatments with standard therapeutic approaches may offer a strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
| | - Opher Globus
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
| | - Nora Balint-Lahat
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262000, Israel;
| | - Sheli Arbili-Yarhi
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
| | - Neta Bar-Hai
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Vered Bar
- Curesponse Ltd., Rehovot 7670102, Israel; (V.B.); (A.K.)
| | - Sara Aharon
- Curesponse Ltd., Rehovot 7670102, Israel; (V.B.); (A.K.)
| | - Anna Kosenko
- Curesponse Ltd., Rehovot 7670102, Israel; (V.B.); (A.K.)
| | | | - Raanan Berger
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Ishay-Ronen
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Fateeva A, Eddy K, Chen S. Overview of current melanoma therapies. Pigment Cell Melanoma Res 2024; 37:562-568. [PMID: 38063139 PMCID: PMC11161550 DOI: 10.1111/pcmr.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Melanoma is the most aggressive type of skin cancer and is responsible for the majority of deaths from skin cancer. Therapeutic advances in the last few decades, notably the development of novel targeted therapies and immunotherapies have significantly improved patient outcomes; nonetheless, these options remain limited due to the onset of resistance to treatment modalities and relapse. In this review, we focus on the available therapeutic options, their benefits, and limitations.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Lin H, Cao XX. Current State of Targeted Therapy in Adult Langerhans Cell Histiocytosis and Erdheim-Chester Disease. Target Oncol 2024; 19:691-703. [PMID: 38990463 DOI: 10.1007/s11523-024-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is a key driver in many histiocytic disorders, including Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD). This has led to successful and promising treatment with targeted therapies, including BRAF inhibitors and MEK inhibitors. Additional novel inhibitors have also demonstrated encouraging results. Nevertheless, there are several problems concerning targeted therapy that need to be addressed. These include, among others, incomplete responsiveness and the emergence of resistance to BRAF inhibition as observed in other BRAF-mutant malignancies. Drug resistance and relapse after treatment interruption remain problems with current targeted therapies. Targeted therapy does not seem to eradicate the mutated clone, leading to inevitable relapes, which is a huge challenge for the future. More fundamental research and clinical trials are needed to address these issues and to develop improved targeted therapies that can overcome resistance and achieve long-lasting remissions.
Collapse
Affiliation(s)
- He Lin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
8
|
Ngo VA. Insight into molecular basis and dynamics of full-length CRaf kinase in cellular signaling mechanisms. Biophys J 2024; 123:2623-2637. [PMID: 38946141 PMCID: PMC11365224 DOI: 10.1016/j.bpj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
Raf kinases play key roles in signal transduction in cells for regulating proliferation, differentiation, and survival. Despite decades of research into functions and dynamics of Raf kinases with respect to other cytosolic proteins, understanding Raf kinases is limited by the lack of their full-length structures at the atomic resolution. Here, we present the first model of the full-length CRaf kinase obtained from artificial intelligence/machine learning algorithms with a converging ensemble of structures simulated by large-scale temperature replica exchange simulations. Our model is validated by comparing simulated structures with the latest cryo-EM structure detailing close contacts among three key domains and regions of the CRaf. Our simulations identify potentially new epitopes of intramolecule interactions within the CRaf and reveal a dynamical nature of CRaf kinases, in which the three domains can move back and forth relative to each other for regulatory dynamics. The dynamic conformations are then used in a docking algorithm to shed insight into the paradoxical effect caused by vemurafenib in comparison with a paradox breaker PLX7904. We propose a model of Raf-heterodimer/KRas-dimer as a signalosome based on the dynamics of the full-length CRaf.
Collapse
Affiliation(s)
- Van A Ngo
- Advanced Computing for Life Sciences and Engineering, Science Engagement Section, Computing and Computational Sciences, National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
9
|
Mondru AK, Wilkinson B, Aljasir MA, Alrumayh A, Greaves G, Emmett M, Albohairi S, Pritchard-Jones R, Cross MJ. The ERK5 pathway in BRAFV600E melanoma cells plays a role in development of acquired resistance to dabrafenib but not vemurafenib. FEBS Lett 2024; 598:2011-2027. [PMID: 38977937 DOI: 10.1002/1873-3468.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
Malignant melanoma, an aggressive skin cancer with a poor prognosis, frequently features BRAFV600E mutation resulting in activation of the MAPK pathway and melanocyte proliferation and survival. BRAFV600E inhibitors like vemurafenib and dabrafenib have enhanced patient survival, yet drug resistance remains a significant challenge. We investigated the role of the ERK5 pathway in BRAFV600E melanoma cells and cells with acquired resistance to PLX4720 (vemurafenib) and dabrafenib. In BRAFV600E melanoma, ERK5 inhibition minimally affected viability compared to ERK1/2 inhibition. In vemurafenib-resistant cells, ERK5 inhibition alone didn't impact viability or restore drug sensitivity to vemurafenib. However, in dabrafenib-resistant cells, ERK5 inhibition reduced viability and enhanced the anti-proliferative effect of MEK1/2 inhibition. Targeting the ERK5 pathway may represent a therapeutic opportunity in dabrafenib-resistant melanoma.
Collapse
Affiliation(s)
- Anil Kumar Mondru
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Beth Wilkinson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Mohammad A Aljasir
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Ahmed Alrumayh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Georgia Greaves
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Maxine Emmett
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Saad Albohairi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Rowan Pritchard-Jones
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
10
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
11
|
Imyanitov EN, Mitiushkina NV, Kuligina ES, Tiurin VI, Venina AR. Pathways and targeting avenues of BRAF in non-small cell lung cancer. Expert Opin Ther Targets 2024; 28:613-622. [PMID: 38941191 DOI: 10.1080/14728222.2024.2374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
INTRODUCTION BRAF is a serine-threonine kinase implicated in the regulation of MAPK signaling cascade. BRAF mutation-driven activation occurs in approximately 2-4% of treatment-naive non-small cell carcinomas (NSCLCs). BRAF upregulation is also often observed in tumors with acquired resistance to receptor tyrosine kinase inhibitors (TKIs). AREAS COVERED This review describes the spectrum of BRAF mutations and their functional roles, discusses treatment options available for BRAF p.V600 and non-V600 mutated NSCLCs, and identifies some gaps in the current knowledge. EXPERT OPINION Administration of combined BRAF/MEK inhibitors usually produces significant, although often a short-term, benefit to NSCLC patients with BRAF V600 (class 1) mutations. There are no established treatments for BRAF class 2 (L597, K601, G464, G469A/V/R/S, fusions, etc.) and class 3 (D594, G596, G466, etc.) mutants, which account for up to two-thirds of BRAF-driven NSCLCs. Many important issues related to the use of immune therapy for the management of BRAF-mutated NSCLC deserve further investigation. The rare occurrence of BRAF mutations in NSCLC is compensated by high overall incidence of lung cancer disease; therefore, clinical studies on BRAF-associated NSCLC are feasible.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Natalia V Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Vladislav I Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| |
Collapse
|
12
|
Nussbaum DP, Martz CA, Waters AM, Barrera A, Liu A, Rutter JC, Cerda-Smith CG, Stewart AE, Wu C, Cakir M, Levandowski CB, Kantrowitz DE, McCall SJ, Pierobon M, Petricoin EF, Joshua Smith J, Reddy TE, Der CJ, Taatjes DJ, Wood KC. Mediator kinase inhibition impedes transcriptional plasticity and prevents resistance to ERK/MAPK-targeted therapy in KRAS-mutant cancers. NPJ Precis Oncol 2024; 8:124. [PMID: 38822082 PMCID: PMC11143207 DOI: 10.1038/s41698-024-00615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 06/02/2024] Open
Abstract
Acquired resistance remains a major challenge for therapies targeting oncogene activated pathways. KRAS is the most frequently mutated oncogene in human cancers, yet strategies targeting its downstream signaling kinases have failed to produce durable treatment responses. Here, we developed multiple models of acquired resistance to dual-mechanism ERK/MAPK inhibitors across KRAS-mutant pancreatic, colorectal, and lung cancers, and then probed the long-term events enabling survival against this class of drugs. These studies revealed that resistance emerges secondary to large-scale transcriptional adaptations that are diverse and cell line-specific. Transcriptional reprogramming extends beyond the well-established early response, and instead represents a dynamic, evolved process that is refined to attain a stably resistant phenotype. Mechanistic and translational studies reveal that resistance to dual-mechanism ERK/MAPK inhibition is broadly susceptible to manipulation of the epigenetic machinery, and that Mediator kinase, in particular, can be co-targeted at a bottleneck point to prevent diverse, cell line-specific resistance programs.
Collapse
Affiliation(s)
- Daniel P Nussbaum
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Colin A Martz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew M Waters
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Annie Liu
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Christian G Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Amy E Stewart
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chao Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, Colorectal Service, New York, NY, USA
| | - Merve Cakir
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - David E Kantrowitz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Shannon J McCall
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Mariaelena Pierobon
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Fairfax, VA, USA
| | - Emanuel F Petricoin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Fairfax, VA, USA
| | - J Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, Colorectal Service, New York, NY, USA
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Zhang H, Read A, Cataisson C, Yang HH, Lee WC, Turk BE, Yuspa SH, Luo J. Protein phosphatase 6 activates NF-κB to confer sensitivity to MAPK pathway inhibitors in KRAS- and BRAF-mutant cancer cells. Sci Signal 2024; 17:eadd5073. [PMID: 38743809 PMCID: PMC11238902 DOI: 10.1126/scisignal.add5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.
Collapse
Affiliation(s)
- Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Current affiliation: Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei-Chun Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Weidner P, Saar D, Söhn M, Schroeder T, Yu Y, Zöllner FG, Ponelies N, Zhou X, Zwicky A, Rohrbacher FN, Pattabiraman VR, Tanriver M, Bauer A, Ahmed H, Ametamey SM, Riffel P, Seger R, Bode JW, Wade RC, Ebert MPA, Kragelund BB, Burgermeister E. Myotubularin-related-protein-7 inhibits mutant (G12V) K-RAS by direct interaction. Cancer Lett 2024; 588:216783. [PMID: 38462034 DOI: 10.1016/j.canlet.2024.216783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes. Overexpression of MTMR7 reduced RAS GTPase activities and protein levels, ERK1/2 phosphorylation, c-FOS transcription and cancer cell proliferation in vitro. We located the RAS-inhibitory activity of MTMR7 to its charged coiled coil (CC) region and demonstrate direct interaction with the gastrointestinal cancer-relevant K-RASG12V mutant, favouring its GDP-bound state. In mouse models of gastric and intestinal cancer, a cell-permeable MTMR7-CC mimicry peptide decreased tumour growth, Ki67 proliferation index and ERK1/2 nuclear positivity. Thus, MTMR7 mimicry peptide(s) could provide a novel strategy for targeting mutant K-RAS in cancers.
Collapse
Affiliation(s)
- Philip Weidner
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Saar
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Söhn
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Schroeder
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yanxiong Yu
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cooperative Core Facility Animal Scanner ZI, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Ponelies
- Orthopaedics & Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaobo Zhou
- Department of Medicine I, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - André Zwicky
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Florian N Rohrbacher
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Vijaya R Pattabiraman
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Alexander Bauer
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences of ETH, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences of ETH, Zurich, Switzerland
| | - Philipp Riffel
- Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Rebecca C Wade
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; Heidelberg University, Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
| | - Matthias P A Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ-Hector Institute at the University Medical Center, Mannheim, Germany
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
15
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
16
|
Singhal A, Li BT, O'Reilly EM. Targeting KRAS in cancer. Nat Med 2024; 30:969-983. [PMID: 38637634 DOI: 10.1038/s41591-024-02903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
RAS family variants-most of which involve KRAS-are the most commonly occurring hotspot mutations in human cancers and are associated with a poor prognosis. For almost four decades, KRAS has been considered undruggable, in part due to its structure, which lacks small-molecule binding sites. But recent developments in bioengineering, organic chemistry and related fields have provided the infrastructure to make direct KRAS targeting possible. The first successes occurred with allele-specific targeting of KRAS p.Gly12Cys (G12C) in non-small cell lung cancer, resulting in regulatory approval of two agents-sotorasib and adagrasib. Inhibitors targeting other variants beyond G12C have shown preliminary antitumor activity in highly refractory malignancies such as pancreatic cancer. Herein, we outline RAS pathobiology with a focus on KRAS, illustrate therapeutic approaches across a variety of malignancies, including emphasis on the 'on' and 'off' switch allele-specific and 'pan' RAS inhibitors, and review immunotherapeutic and other key combination RAS targeting strategies. We summarize mechanistic understanding of de novo and acquired resistance, review combination approaches, emerging technologies and drug development paradigms and outline a blueprint for the future of KRAS therapeutics with anticipated profound clinical impact.
Collapse
Affiliation(s)
- Anupriya Singhal
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Watanabe H, Inoue Y, Karayama M, Yazawa S, Mochizuka Y, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Enomoto N, Fujisawa T, Shinmura K, Inui N, Suda T. Characterization of BRAFThr599dup Mutation as a Targetable Driver Mutation Identified in Lung Adenocarcinoma by Comprehensive Genomic Profiling. JCO Precis Oncol 2024; 8:e2300538. [PMID: 38662982 DOI: 10.1200/po.23.00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 04/30/2024] Open
Abstract
PURPOSE Understanding the function of BRAF mutants is crucial for determining the best treatment strategy. This study aimed to characterize a rare BRAF variant, BRAFThr599dup, which was identified in a patient with lung adenocarcinoma (LUAD) by comprehensive genomic profiling. MATERIALS AND METHODS We report a case of LUAD with BRAFThr599dup treated with dabrafenib and trametinib. We conditionally expressed wild-type BRAF, BRAFV600E, or BRAFThr599dup in Ba/F3 cells and BEAS-2B cells. Ba/F3 cells carrying double-mutant BRAF (BRAFThr599dup/R509H, BRAFV600E/R509H, or BRAFK601E/R509H) that lacked the dimerizing ability were also established. Knockout of endogenous BRAF or CRAF in Ba/F3-BRAFThr599dup cells and Ba/F3-BRAFV600E cells was performed using the CRISPR/Cas9 system. Cell viability, mitogen-activated protein kinase (MAPK) signaling activity, and sensitivity to dabrafenib and trametinib were evaluated. RESULTS The patient was revealed to have BRAFThr599dup-positive tumor cells as a predominant clone, and dabrafenib and trametinib treatment showed modest efficacy. In Ba/F3 cells, both BRAFThr599dup and BRAFV600E similarly caused interleukin-3-independent proliferation and activated the MAPK pathway. Moreover, BRAFThr599dup and BRAFV600E similarly caused a significant increase in the anchorage-independent growth ability of BEAS-2B cells. Along with Ba/F3-BRAFV600E cells, Ba/F3-BRAFThr599dup cells were highly sensitive to a monomer-specific BRAF inhibitor, dabrafenib, with a half-maximal inhibitory concentration value of 29.7 nM. In the absence of wild-type BRAF, wild-type CRAF, or an intact dimer interface, the ability to induce oncogenic addiction and MAPK pathway activation in Ba/F3-BRAFThr599dup cells was not affected, which was in contrast to the findings in the BRAFK601E/R509H double-mutant model. CONCLUSION BRAFThr599dup is a potent driver oncogene that activates the MAPK pathway without the requirement for dimerization in vitro. Because BRAFThr599dup has been recurrently reported across various cancer types, our findings should be further investigated both mechanistically and clinically.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shusuke Yazawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasutaka Mochizuka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
18
|
Bulle A, Liu P, Seehra K, Bansod S, Chen Y, Zahra K, Somani V, Khawar IA, Chen HP, Dodhiawala PB, Li L, Geng Y, Mo CK, Mahsl J, Ding L, Govindan R, Davies S, Mudd J, Hawkins WG, Fields RC, DeNardo DG, Knoerzer D, Held JM, Grierson PM, Wang-Gillam A, Ruzinova MB, Lim KH. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer. Nat Commun 2024; 15:2503. [PMID: 38509064 PMCID: PMC10954758 DOI: 10.1038/s41467-024-46811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peng Liu
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuljeet Seehra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yali Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kiran Zahra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vikas Somani
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Iftikhar Ali Khawar
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hung-Po Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yutong Geng
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chia-Kuei Mo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jay Mahsl
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Li Ding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sherri Davies
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacqueline Mudd
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Hawkins
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan C Fields
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jason M Held
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Lee E, Zhang Z, Chen CC, Choi D, Rivera ACA, Linton E, Ho YJ, Love J, LaClair J, Wongvipat J, Sawyers CL. Timing of treatment shapes the path to androgen receptor signaling inhibitor resistance in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585532. [PMID: 38562884 PMCID: PMC10983989 DOI: 10.1101/2024.03.18.585532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There is optimism that cancer drug resistance can be addressed through appropriate combination therapy, but success requires understanding the growing complexity of resistance mechanisms, including the evolution and population dynamics of drug-sensitive and drug-resistant clones over time. Using DNA barcoding to trace individual prostate tumor cells in vivo , we find that the evolutionary path to acquired resistance to androgen receptor signaling inhibition (ARSI) is dependent on the timing of treatment. In established tumors, resistance occurs through polyclonal adaptation of drug-sensitive clones, despite the presence of rare subclones with known, pre-existing ARSI resistance. Conversely, in an experimental setting designed to mimic minimal residual disease, resistance occurs through outgrowth of pre-existing resistant clones and not by adaptation. Despite these different evolutionary paths, the underlying mechanisms responsible for resistance are shared across the two evolutionary paths. Furthermore, mixing experiments reveal that the evolutionary path to adaptive resistance requires cooperativity between subclones. Thus, despite the presence of pre-existing ARSI-resistant subclones, acquired resistance in established tumors occurs primarily through cooperative, polyclonal adaptation of drug-sensitive cells. This tumor ecosystem model of resistance has new implications for developing effective combination therapy.
Collapse
|
20
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Marsiglia WM, Chow A, Khan ZM, He L, Dar AC. Live-cell target engagement of allosteric MEKi on MEK-RAF/KSR-14-3-3 complexes. Nat Chem Biol 2024; 20:373-381. [PMID: 37919548 PMCID: PMC10948974 DOI: 10.1038/s41589-023-01454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
The RAS-mitogen-activated protein kinase (MAPK) pathway includes KSR, RAF, MEK and the phospho-regulatory sensor 14-3-3. Specific assemblies among these components drive various diseases and likely dictate efficacy for numerous targeted therapies, including allosteric MEK inhibitors (MEKi). However, directly measuring drug interactions on physiological RAS-MAPK complexes in live cells has been inherently challenging to query and therefore remains poorly understood. Here we present a series of NanoBRET-based assays to quantify direct target engagement of MEKi on MEK1 and higher-order MEK1-bound complexes with ARAF, BRAF, CRAF, KSR1 and KSR2 in the presence and absence of 14-3-3 in living cells. We find distinct MEKi preferences among these complexes that can be compiled to generate inhibitor binding profiles. Further, these assays can report on the influence of the pathogenic BRAF-V600E mutant on MEKi binding. Taken together, these approaches can be used as a platform to screen for compounds intended to target specific complexes in the RAS-MAPK cascade.
Collapse
Affiliation(s)
- William M Marsiglia
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Arthur Chow
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaigham M Khan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liu He
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arvin C Dar
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
22
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
23
|
Aiman W, Ali MA, Jumean S, Asfeen U, Garcia J, Quirem M, Ahmad A, Rayad MN, Alkhlaifat O, Al Omour B, Chemarthi VS, Maroules M, Guron G, Shaaban H. BRAF Inhibitors in BRAF-Mutated Colorectal Cancer: A Systematic Review. J Clin Med 2023; 13:113. [PMID: 38202120 PMCID: PMC10779564 DOI: 10.3390/jcm13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths globally. BRAF mutation is present in about 10% of CRC patients and is associated with a poor response to chemotherapy. These patients have a relatively poor prognosis. This review aims to assess the efficacy and safety of BRAF inhibitors in BRAF-mutated CRC patients. A literature search was performed on PubMed and Embase, and clinical trials relevant to BRAF inhibitors in CRC were included. Data were extracted for efficacy and safety variables. Two randomized clinical trials (n = 765) and eight non-randomized trials (n = 281) were included based on inclusion criteria. In RCTs, an overall response was reported in 23% of the patients treated with BRAF inhibitor-based regimens compared to 2.5% with control regimens. The hazard ratio of overall survival was also significantly better with triplet encorafenib therapy at 0.52 (95% CI = 0.39-0.70). In single-arm trials, ORR was 17% and 34% in two-drug and three-drug regimens, respectively. BRAF inhibitor-based regimens were safe and effective in the treatment of BRAF-mutated CRC. Large-scale randomized trials are needed to find a suitable population for each regimen. PROSPERO registration No. CRD42023471627.
Collapse
Affiliation(s)
- Wajeeha Aiman
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Muhammad Ashar Ali
- Department of Internal Medicine, St. Mary’s and St. Clare’s Hospitals, New York Medical College, Denville, NJ 07834, USA
| | - Samer Jumean
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Ummul Asfeen
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Jose Garcia
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Murad Quirem
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Amaar Ahmad
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Mohammad Nabil Rayad
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Osama Alkhlaifat
- Department of Internal Medicine, Saint Michael’s Medical Center, New York Medical College, Newark, NJ 07102, USA; (W.A.); (S.J.); (U.A.); (J.G.); (M.Q.); (A.A.); (M.N.R.); (O.A.)
| | - Bader Al Omour
- Department of Hematology/Oncology, Saint Michael’s Cancer Center, New York Medical College, Newark, NJ 07102, USA (V.S.C.); (G.G.); (H.S.)
| | - Venkata S. Chemarthi
- Department of Hematology/Oncology, Saint Michael’s Cancer Center, New York Medical College, Newark, NJ 07102, USA (V.S.C.); (G.G.); (H.S.)
| | - Michael Maroules
- Department of Hematology/Oncology, Saint Mary’s Cancer Center, New York Medical College, Passaic, NJ 07055, USA;
| | - Gunwant Guron
- Department of Hematology/Oncology, Saint Michael’s Cancer Center, New York Medical College, Newark, NJ 07102, USA (V.S.C.); (G.G.); (H.S.)
| | - Hamid Shaaban
- Department of Hematology/Oncology, Saint Michael’s Cancer Center, New York Medical College, Newark, NJ 07102, USA (V.S.C.); (G.G.); (H.S.)
| |
Collapse
|
24
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
25
|
Yaeger R. Combination Therapy and Appropriate Dosing to Target KRAS in Colorectal Cancer. N Engl J Med 2023; 389:2197-2199. [PMID: 38055257 DOI: 10.1056/nejme2311611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Affiliation(s)
- Rona Yaeger
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|
26
|
Niessner H, Hüsch A, Kosnopfel C, Meinhardt M, Westphal D, Meier F, Schilling B, Sinnberg T. Exploring the In Vitro and In Vivo Therapeutic Potential of BRAF and MEK Inhibitor Combination in NRAS-Mutated Melanoma. Cancers (Basel) 2023; 15:5521. [PMID: 38067230 PMCID: PMC10705743 DOI: 10.3390/cancers15235521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
INTRODUCTION Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. METHODS The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. RESULTS Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. CONCLUSION In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
| | - Anna Hüsch
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany;
| | - Matthias Meinhardt
- Department of Pathology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
| | - Dana Westphal
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, 01307 Dresden, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany;
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
27
|
Batsi Y, Antonopoulou G, Fotopoulou T, Koumaki K, Kritsi E, Potamitis C, Goulielmaki M, Skarmalioraki S, Papalouka C, Poulou-Sidiropoulou E, Kosmidou V, Douna S, Vidali MS, Gkotsi EF, Chatziioannou A, Souliotis VL, Pletsa V, Papadodima O, Zoumpourlis V, Georgiadis P, Zervou M, Pintzas A, Kostas ID. Design and Synthesis of Novel 2-Acetamido, 6-Carboxamide Substituted Benzothiazoles as Potential BRAFV600E Inhibitors - In vitro Evaluation of their Antiproliferative Activity. ChemMedChem 2023; 18:e202300322. [PMID: 37792577 DOI: 10.1002/cmdc.202300322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
The oncogenic BRAFV600E kinase leads to abnormal activation of the MAPK signaling pathway and thus, uncontrolled cellular proliferation and cancer development. Based on our previous virtual screening studies which issued 2-acetamido-1,3 benzothiazole-6-carboxamide scaffold as active pharmacophore displaying selectivity against the mutated BRAF, eleven new substituted benzothiazole derivatives were designed and synthesized by coupling of 2-acetamidobenzo[d]thiazole-6-carboxylic acid with the appropriate amines in an effort to provide even more efficient inhibitors and tackle drug resistance often developed during cancer treatment. All derived compounds bore the benzothiazole scaffold substituted at position-2 by an acetamido moiety and at position-6 by a carboxamide functionality, the NH moiety of which was further linked through an alkylene linker to a sulfonamido (or amino) aryl (or alkyl) functionality or a phenylene linker to a sulfonamido aromatic (or non-aromatic) terminal pharmacophore in the order -C6 H4 -NHSO2 -R or reversely -C6 H4 -SO2 N(H)-R. These analogs were subsequently biologically evaluated as potential BRAFV600E inhibitors and antiproliferative agents in several colorectal cancer and melanoma cell lines. In all assays applied, one analog, namely 2-acetamido-N-[3-(pyridin-2-ylamino)propyl]benzo[d]thiazole-6-carboxamide (22), provided promising results in view of its use in drug development.
Collapse
Affiliation(s)
- Yakinthi Batsi
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Georgia Antonopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Theano Fotopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Kassandra Koumaki
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Constantinos Potamitis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Maria Goulielmaki
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Salomi Skarmalioraki
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Chara Papalouka
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Eleni Poulou-Sidiropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Stavroula Douna
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Maria-Sofia Vidali
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Eleni-Fani Gkotsi
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Aristotelis Chatziioannou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Panagiotis Georgiadis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Ioannis D Kostas
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| |
Collapse
|
28
|
Imoto H, Rauch N, Neve AJ, Khorsand F, Kreileder M, Alexopoulos LG, Rauch J, Okada M, Kholodenko BN, Rukhlenko OS. A Combination of Conformation-Specific RAF Inhibitors Overcome Drug Resistance Brought about by RAF Overexpression. Biomolecules 2023; 13:1212. [PMID: 37627277 PMCID: PMC10452107 DOI: 10.3390/biom13081212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer cells often adapt to targeted therapies, yet the molecular mechanisms underlying adaptive resistance remain only partially understood. Here, we explore a mechanism of RAS/RAF/MEK/ERK (MAPK) pathway reactivation through the upregulation of RAF isoform (RAFs) abundance. Using computational modeling and in vitro experiments, we show that the upregulation of RAFs changes the concentration range of paradoxical pathway activation upon treatment with conformation-specific RAF inhibitors. Additionally, our data indicate that the signaling output upon loss or downregulation of one RAF isoform can be compensated by overexpression of other RAF isoforms. We furthermore demonstrate that, while single RAF inhibitors cannot efficiently inhibit ERK reactivation caused by RAF overexpression, a combination of two structurally distinct RAF inhibitors synergizes to robustly suppress pathway reactivation.
Collapse
Affiliation(s)
- Hiroaki Imoto
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Nora Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ashish J. Neve
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Fahimeh Khorsand
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Martina Kreileder
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Leonidas G. Alexopoulos
- Protavio Ltd., Demokritos Science Park, 153 43 Athens, Greece
- Department of Mechanical Engineering, National Technical University of Athens, 106 82 Athens, Greece
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
29
|
Carroll RS, Du J, O'Leary BR, Steers G, Goswami PC, Buettner GR, Cullen JJ. Pharmacological ascorbate induces sustained mitochondrial dysfunction. Free Radic Biol Med 2023; 204:108-117. [PMID: 37137343 PMCID: PMC10375417 DOI: 10.1016/j.freeradbiomed.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
Pharmacological ascorbate (P-AscH-; high dose given intravenously) generates H2O2 that is selectively cytotoxic to cancer compared to normal cells. The RAS-RAF-ERK1/2 is a major signaling pathway in cancers carrying RAS mutations and is known to be activated by H2O2. Activated ERK1/2 also phosphorylates the GTPase dynamin-related protein (Drp1), which then stimulates mitochondrial fission. Although early generation of H2O2 leads to cytotoxicity of cancer cells, we hypothesized that sustained increases in H2O2 activate ERK-Drp1 signaling, leading to an adaptive response; inhibition of this pathway would enhance the toxicity of P-AscH-. Increases in phosphorylated ERK and Drp1 induced by P-AscH- were reversed with genetic and pharmacological inhibitors of ERK and Drp1, as well as in cells lacking functional mitochondria. P-AscH- increased Drp1 colocalization to mitochondria, decreased mitochondrial volume, increased disconnected components, and decreased mitochondrial length, suggesting an increase in mitochondrial fission 48 h after treatment with P-AscH-. P-AscH- decreased clonogenic survival; this was enhanced by genetic and pharmacological inhibition of both ERK and Drp1. In murine tumor xenografts, the combination of P-AscH- and pharmacological inhibition of Drp1 increased overall survival. These results suggest that P-AscH- induces sustained changes in mitochondria, through activation of the ERK/Drp1 signaling pathway, an adaptive response. Inhibition of this pathway enhanced the toxicity P-AscH- to cancer cells.
Collapse
Affiliation(s)
- Rory S Carroll
- Departments of Surgery, University of Iowa College of Medicine, USA
| | - Juan Du
- Departments of Surgery, University of Iowa College of Medicine, USA; Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA
| | - Brianne R O'Leary
- Departments of Surgery, University of Iowa College of Medicine, USA; Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA
| | - Garett Steers
- Departments of Surgery, University of Iowa College of Medicine, USA
| | - Prabhat C Goswami
- Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA; Radiation Oncology, University of Iowa College of Medicine, USA; Holden Comprehensive Cancer Center, University of Iowa College of Medicine, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA; Radiation Oncology, University of Iowa College of Medicine, USA; Holden Comprehensive Cancer Center, University of Iowa College of Medicine, USA
| | - Joseph J Cullen
- Departments of Surgery, University of Iowa College of Medicine, USA; Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA; Radiation Oncology, University of Iowa College of Medicine, USA; Holden Comprehensive Cancer Center, University of Iowa College of Medicine, USA.
| |
Collapse
|
30
|
Rialdi A, Duffy M, Scopton AP, Fonseca F, Zhao JN, Schwarz M, Molina-Sanchez P, Mzoughi S, Arceci E, Abril-Fornaguera J, Meadows A, Ruiz de Galarreta M, Torre D, Reyes K, Lim YT, Rosemann F, Khan ZM, Mohammed K, Wang X, Yu X, Lakshmanan M, Rajarethinam R, Tan SY, Jin J, Villanueva A, Michailidis E, De Jong YP, Rice CM, Marazzi I, Hasson D, Llovet JM, Sobota RM, Lujambio A, Guccione E, Dar AC. WNTinib is a multi-kinase inhibitor with specificity against β-catenin mutant hepatocellular carcinoma. NATURE CANCER 2023; 4:1157-1175. [PMID: 37537299 PMCID: PMC10948969 DOI: 10.1038/s43018-023-00609-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. β-Catenin (CTNNB1)-mutated HCC represents 30% of cases of the disease with no precision therapeutics available. Using chemical libraries derived from clinical multi-kinase inhibitor (KI) scaffolds, we screened HCC organoids to identify WNTinib, a KI with exquisite selectivity in CTNNB1-mutated human and murine models, including patient samples. Multiomic and target engagement analyses, combined with rescue experiments and in vitro and in vivo efficacy studies, revealed that WNTinib is superior to clinical KIs and inhibits KIT/mitogen-activated protein kinase (MAPK) signaling at multiple nodes. Moreover, we demonstrate that reduced engagement on BRAF and p38α kinases by WNTinib relative to several multi-KIs is necessary to avoid compensatory feedback signaling-providing a durable and selective transcriptional repression of mutant β-catenin/Wnt targets through nuclear translocation of the EZH2 transcriptional repressor. Our studies uncover a previously unknown mechanism to harness the KIT/MAPK/EZH2 pathway to potently and selectively antagonize CTNNB1-mutant HCC with an unprecedented wide therapeutic index.
Collapse
Affiliation(s)
- Alex Rialdi
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Duffy
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex P Scopton
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Frank Fonseca
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Nanyi Zhao
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan Schwarz
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pedro Molina-Sanchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Mzoughi
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa Arceci
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Abril-Fornaguera
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Austin Meadows
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Torre
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyna Reyes
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan Ting Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Felix Rosemann
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zaigham M Khan
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Mohammed
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xuedi Wang
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xufen Yu
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Soo Yong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jian Jin
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ype P De Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Ivan Marazzi
- Department of Biological Cancer, University of California Irvine, Orange, CA, USA
| | - Dan Hasson
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ernesto Guccione
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for OncoGenomics and Innovative Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Arvin C Dar
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
32
|
Li X, Liu Y, Liu J, Qiang W, Ma J, Xie J, Chen P, Wang Y, Hou P, Ji M. STAG2 inactivation reprograms glutamine metabolism of BRAF-mutant thyroid cancer cells. Cell Death Dis 2023; 14:454. [PMID: 37479689 PMCID: PMC10361981 DOI: 10.1038/s41419-023-05981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
STAG2, an important subunit in cohesion complex, is involved in the segregation of chromosomes during the late mitosis and the formation of sister chromatids. Mutational inactivation of STAG2 is a major cause of the resistance of BRAF-mutant melanomas to BRAF/MEK inhibitors. In the present study, we found that STAG2 was frequently down-regulated in thyroid cancers compared with control subjects. By a series of in vitro and in vivo studies, we demonstrated that STAG2 knockdown virtually had no effect on malignant phenotypes of BRAF-mutant thyroid cancer cells such as cell proliferation, colony formation and tumorigenic ability in nude mice compared with the control. In addition, unlike melanoma, STAG2 knockdown also did not affect the sensitivity of these cells to MEK inhibitor. However, we surprisingly found that STAG2-knockdown cells exhibited more sensitive to glutamine deprivation or glutaminase inhibitor BPTES compared with control cells. Mechanistically, knocking down STAG2 in BRAF-mutant thyroid cancer cells decreases the protein stability of c-Myc via the ERK/AKT/GSK3β feedback pathway, thereby impairing glutamine metabolism of thyroid cancer cells by down-regulating its downstream targets such as SCL1A5, GLS and GLS2. Our data, taken together, demonstrate that STAG2 inactivation reprograms glutamine metabolism of BRAF-mutant thyroid cancer cells, thereby improving their cellular response to glutaminase inhibitor. This study will provide a potential therapeutic strategy for BRAF-mutant thyroid cancers.
Collapse
Affiliation(s)
- Xinru Li
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Juan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Wei Qiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jingjing Ma
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jingyi Xie
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
33
|
Nair NU, Greninger P, Zhang X, Friedman AA, Amzallag A, Cortez E, Sahu AD, Lee JS, Dastur A, Egan RK, Murchie E, Ceribelli M, Crowther GS, Beck E, McClanaghan J, Klump-Thomas C, Boisvert JL, Damon LJ, Wilson KM, Ho J, Tam A, McKnight C, Michael S, Itkin Z, Garnett MJ, Engelman JA, Haber DA, Thomas CJ, Ruppin E, Benes CH. A landscape of response to drug combinations in non-small cell lung cancer. Nat Commun 2023; 14:3830. [PMID: 37380628 PMCID: PMC10307832 DOI: 10.1038/s41467-023-39528-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Combination of anti-cancer drugs is broadly seen as way to overcome the often-limited efficacy of single agents. The design and testing of combinations are however very challenging. Here we present a uniquely large dataset screening over 5000 targeted agent combinations across 81 non-small cell lung cancer cell lines. Our analysis reveals a profound heterogeneity of response across the tumor models. Notably, combinations very rarely result in a strong gain in efficacy over the range of response observable with single agents. Importantly, gain of activity over single agents is more often seen when co-targeting functionally proximal genes, offering a strategy for designing more efficient combinations. Because combinatorial effect is strongly context specific, tumor specificity should be achievable. The resource provided, together with an additional validation screen sheds light on major challenges and opportunities in building efficacious combinations against cancer and provides an opportunity for training computational models for synergy prediction.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Xiaohu Zhang
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Adam A Friedman
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eliane Cortez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avinash Das Sahu
- University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Joo Sang Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Anahita Dastur
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Regina K Egan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen Murchie
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Erin Beck
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | | | | | | | - Leah J Damon
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey Ho
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela Tam
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sam Michael
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Zina Itkin
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | | | - Daniel A Haber
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD, 20850, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Cyril H Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Xie X, Li L, Xie L, Liu Z, Zhang G, Gao X, Peng W, Deng H, Yang Y, Yang M, Chang L, Yi X, Xia X, He Z, Zhou C. Stratification of non-small cell lung adenocarcinoma patients with EGFR actionable mutations based on drug-resistant stem cell genes. iScience 2023; 26:106584. [PMID: 37288343 PMCID: PMC10241979 DOI: 10.1016/j.isci.2023.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/02/2023] [Accepted: 03/30/2023] [Indexed: 06/09/2023] Open
Abstract
EGFR-TKIs were used in NSCLC patients with actionable EGFR mutations and prolong prognosis. However, most patients treated with EGFR-TKIs developed resistance within around one year. This suggests that residual EGFR-TKIs resistant cells may eventually lead to relapse. Predicting resistance risk in patients will facilitate individualized management. Herein, we built an EGFR-TKIs resistance prediction (R-index) model and validate in cell line, mice, and cohort. We found significantly higher R-index value in resistant cell lines, mice models and relapsed patients. Patients with an elevated R-index had significantly shorter relapse time. We also found that the glycolysis pathway and the KRAS upregulation pathway were related to EGFR-TKIs resistance. MDSC is a significant immunosuppression factor in the resistant microenvironment. Our model provides an executable method for assessing patient resistance status based on transcriptional reprogramming and may contribute to the clinical translation of patient individual management and the study of unclear resistance mechanisms.
Collapse
Affiliation(s)
- Xiaohong Xie
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102206, China
| | - Liang Xie
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | | | | | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, Guangdong 518122, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming 650000, China
| | - Haiyi Deng
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yilin Yang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Meiling Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102206, China
| | | | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chengzhi Zhou
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
35
|
Jiang Q, Zhang D, Liu J, Liang C, Yang R, Zhang C, Wu J, Lin J, Ye T, Ding L, Li J, Gao S, Li B, Ye Q. HPIP is an essential scaffolding protein running through the EGFR-RAS-ERK pathway and drives tumorigenesis. SCIENCE ADVANCES 2023; 9:eade1155. [PMID: 37294756 PMCID: PMC10256163 DOI: 10.1126/sciadv.ade1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
The EGFR-RAS-ERK pathway plays a key role in cancer development and progression. However, the integral assembly of EGFR-RAS-ERK signaling complexes from the upstream component EGFR to the downstream component ERK is largely unknown. Here, we show that hematopoietic PBX-interacting protein (HPIP) interacts with all classical components of the EGFR-RAS-ERK pathway and forms at least two complexes with overlapping components. Experiments of HPIP knockout or knockdown and chemical inhibition of HPIP expression showed that HPIP is required for EGFR-RAS-ERK signaling complex formation, EGFR-RAS-ERK signaling activation, and EGFR-RAS-ERK signaling-mediated promotion of aerobic glycolysis as well as cancer cell growth in vitro and in vivo. HPIP expression is correlated with EGFR-RAS-ERK signaling activation and predicts worse clinical outcomes in patients with lung cancer. These results provide insights into EGFR-RAS-ERK signaling complex formation and EGFR-RAS-ERK signaling regulation and suggest that HPIP may be a promising therapeutic target for cancer with dysregulated EGFR-RAS-ERK signaling.
Collapse
Affiliation(s)
- Qiwei Jiang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Deyu Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Juan Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Chaoyang Liang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ronghui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Cheng Zhang
- Outpatient Department, Jingnan Medical Area, Chinese PLA General Hospital, Beijing 100850, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jing Lin
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Clinical Laboratory, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Tianxing Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Jianbin Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Binghui Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| |
Collapse
|
36
|
Kobayashi M, Onozawa M, Watanabe S, Nagashima T, Tamura K, Kubo Y, Ikeda A, Ochiai K, Michishita M, Bonkobara M, Kobayashi M, Hori T, Kawakami E. Establishment of a BRAF V595E-mutant canine prostate cancer cell line and the antitumor effects of MEK inhibitors against canine prostate cancer. Vet Comp Oncol 2023; 21:221-230. [PMID: 36745053 DOI: 10.1111/vco.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Canine prostate cancer (cPCa) is a malignant neoplasm with no effective therapy. The BRAF V595E mutation, corresponding to the human BRAF V600E mutation, is found frequently in cPCa. Activating BRAF mutations are recognized as oncogenic drivers, and blockade of MAPK/ERK phosphorylation may be an effective therapeutic target against BRAF-mutated tumours. The aim of this study was to establish a novel cPCa cell line and to clarify the antitumor effects of MEK inhibitors on cPCa in vitro and in vivo. We established the novel CHP-2 cPCa cell line that was derived from the prostatic tissue of a cPCa patient. Sequencing of the canine BRAF gene in two cPCa cell lines revealed the presence of the BRAF V595E mutation. MEK inhibitors (trametinib, cobimetinib and mirdametinib) strongly suppressed cell proliferation in vitro, and trametinib showed the highest efficacy against cPCa cells with minimal cytotoxicity to non-cancer COPK cells. Furthermore, we orally administered 0.3 or 1.0 mg/kg trametinib to CHP-2 xenografted mice and examined its antitumor effects in vivo. Trametinib reduced tumour volume, decreased phosphorylated ERK levels, and lowered Ki-67 expression in xenografts in a dose-dependent manner. Although no clear adverse events were observed with administration, trametinib-treated xenografts showed osteogenesis that was independent of dosage. Our results indicate that trametinib induces cell cycle arrest by inhibiting ERK activation, resulting in cPCa tumour regression in a dose-dependent manner. MEK inhibitors, in addition to BRAF inhibitors, may be a targeted agent option for cPCa with the BRAF V595E mutation.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Moe Onozawa
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shiho Watanabe
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kyoichi Tamura
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Akiko Ikeda
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Bonkobara
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masato Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tatsuya Hori
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Eiichi Kawakami
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
- Japan Institute of Small Animal Reproduction (Bio Art), Tokyo, Japan
| |
Collapse
|
37
|
Adachi Y, Kimura R, Hirade K, Yanase S, Nishioka Y, Kasuga N, Yamaguchi R, Ebi H. Scribble mis-localization induces adaptive resistance to KRAS G12C inhibitors through feedback activation of MAPK signaling mediated by YAP-induced MRAS. NATURE CANCER 2023; 4:829-843. [PMID: 37277529 DOI: 10.1038/s43018-023-00575-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
Tumor cells evade targeted drugs by rewiring their genetic and epigenetic networks. Here, we identified that inhibition of MAPK signaling rapidly induces an epithelial-to-mesenchymal transition program by promoting re-localization of an apical-basal polarity protein, Scribble, in oncogene-addicted lung cancer models. Mis-localization of Scribble suppressed Hippo-YAP signaling, leading to YAP nuclear translocation. Furthermore, we discovered that a RAS superfamily protein MRAS is a direct target of YAP. Treatment with KRAS G12C inhibitors induced MRAS expression, which formed a complex with SHOC2, precipitating feedback activation of MAPK signaling. Abrogation of YAP activation or MRAS induction enhanced the efficacy of KRAS G12C inhibitor treatment in vivo. These results highlight a role for protein localization in the induction of a non-genetic mechanism of resistance to targeted therapies in lung cancer. Furthermore, we demonstrate that induced MRAS expression is a key mechanism of adaptive resistance following KRAS G12C inhibitor treatment.
Collapse
Affiliation(s)
- Yuta Adachi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ryo Kimura
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kentaro Hirade
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Shogo Yanase
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yuki Nishioka
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Natsumi Kasuga
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.
- Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
38
|
Gong L, Lu Y, Wang J, Li X, Zhao J, Chen Y, Ma R, Ma J, Liu T, Han S. Cocktail hepatocarcinoma therapy by a super-assembled nano-pill targeting XPO1 and ATR synergistically. J Pharm Anal 2023; 13:603-615. [PMID: 37440910 PMCID: PMC10334348 DOI: 10.1016/j.jpha.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Intensive cancer treatment with drug combination is widely exploited in the clinic but suffers from inconsistent pharmacokinetics among different therapeutic agents. To overcome it, the emerging nanomedicine offers an unparalleled opportunity for encapsulating multiple drugs in a nano-carrier. Herein, a two-step super-assembled strategy was performed to unify the pharmacokinetics of a peptide and a small molecular compound. In this proof-of-concept study, the bioinformatics analysis firstly revealed the potential synergies towards hepatoma therapy for the associative inhibition of exportin 1 (XPO1) and ataxia telangiectasia mutated-Rad3-related (ATR), and then a super-assembled nano-pill (gold nano drug carrier loaded AZD6738 and 97-110 amino acids of apoptin (AP) (AA@G)) was constructed through camouflaging AZD6738 (ATR small-molecule inhibitor)-binding human serum albumin onto the AP-Au supramolecular nanoparticle. As expected, both in vitro and in vivo experiment results verified that the AA@G possessed extraordinary biocompatibility and enhanced therapeutic effect through inducing cell cycle arrest, promoting DNA damage and inhibiting DNA repair of hepatoma cell. This work not only provides a co-delivery strategy for intensive liver cancer treatment with the clinical translational potential, but develops a common approach to unify the pharmacokinetics of peptide and small-molecular compounds, thereby extending the scope of drugs for developing the advanced combination therapy.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yinliang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyue Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Zhao
- Department of Radiotherapy, The First Affiliated Hospital Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yuetong Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rongze Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianya Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
39
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
40
|
Sousa A, Dugourd A, Memon D, Petursson B, Petsalaki E, Saez‐Rodriguez J, Beltrao P. Pan-Cancer landscape of protein activities identifies drivers of signalling dysregulation and patient survival. Mol Syst Biol 2023; 19:e10631. [PMID: 36688815 PMCID: PMC9996241 DOI: 10.15252/msb.202110631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Genetic alterations in cancer cells trigger oncogenic transformation, a process largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While the mutational profiles of thousands of tumours have been extensively characterised, the measurements of protein activities have been technically limited until recently. We compiled public data of matched genomics and (phospho)proteomics measurements for 1,110 tumours and 77 cell lines that we used to estimate activity changes in 218 kinases and 292 TFs. Co-regulation of kinase and TF activities reflects previously known regulatory relationships and allows us to dissect genetic drivers of signalling changes in cancer. We find that loss-of-function mutations are not often associated with the dysregulation of downstream targets, suggesting frequent compensatory mechanisms. Finally, we identified the activities most differentially regulated in cancer subtypes and showed how these can be linked to differences in patient survival. Our results provide broad insights into the dysregulation of protein activities in cancer and their contribution to disease severity.
Collapse
Affiliation(s)
- Abel Sousa
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3s)PortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA)Abel Salazar Biomedical Sciences Institute, University of PortoPortoPortugal
| | - Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems Biology, RWTH Aachen UniversityAachenGermany
| | - Danish Memon
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Borgthor Petursson
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
41
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
42
|
Sala-Gaston J, Costa-Sastre L, Pedrazza L, Martinez-Martinez A, Ventura F, Rosa JL. Regulation of MAPK Signaling Pathways by the Large HERC Ubiquitin Ligases. Int J Mol Sci 2023; 24:ijms24054906. [PMID: 36902336 PMCID: PMC10003351 DOI: 10.3390/ijms24054906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Protein ubiquitylation acts as a complex cell signaling mechanism since the formation of different mono- and polyubiquitin chains determines the substrate's fate in the cell. E3 ligases define the specificity of this reaction by catalyzing the attachment of ubiquitin to the substrate protein. Thus, they represent an important regulatory component of this process. Large HERC ubiquitin ligases belong to the HECT E3 protein family and comprise HERC1 and HERC2 proteins. The physiological relevance of the Large HERCs is illustrated by their involvement in different pathologies, with a notable implication in cancer and neurological diseases. Understanding how cell signaling is altered in these different pathologies is important for uncovering novel therapeutic targets. To this end, this review summarizes the recent advances in how the Large HERCs regulate the MAPK signaling pathways. In addition, we emphasize the potential therapeutic strategies that could be followed to ameliorate the alterations in MAPK signaling caused by Large HERC deficiencies, focusing on the use of specific inhibitors and proteolysis-targeting chimeras.
Collapse
|
43
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
44
|
Grierson PM, Tan B, Pedersen KS, Park H, Suresh R, Amin MA, Trikalinos NA, Knoerzer D, Kreider B, Reddy A, Liu J, Der CJ, Wang-Gillam A, Lim KH. Phase Ib Study of Ulixertinib Plus Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Adenocarcinoma. Oncologist 2023; 28:e115-e123. [PMID: 36427020 PMCID: PMC9907047 DOI: 10.1093/oncolo/oyac237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ulixertinib is a novel oral ERK inhibitor that has shown promising single-agent activity in a phase I clinical trial that included patients with RAS-mutant cancers. METHODS We conducted a phase Ib trial combining ulixertinib with gemcitabine and nab-paclitaxel (GnP) for untreated metastatic pancreatic adenocarcinoma. The trial comprised a dose de-escalation part and a cohort expansion part at the recommended phase II dose (RP2D). Primary endpoint was to determine the RP2D of ulixertinib plus GnP and secondary endpoints were to assess toxicity and safety profile, biochemical and radiographic response, progression-free survival (PFS) and overall survival (OS). RESULTS Eighteen patients were enrolled. Ulixertinib 600 mg PO twice daily (BID) with GnP was initially administered but was de-escalated to 450 mg BID as RP2D early during dose expansion due to poor tolerability, which ultimately led to premature termination of the study. Common treatment-related adverse events (TRAEs) were anemia, thrombocytopenia, rash and diarrhea. For 5 response evaluable patients, one patient achieved a partial response and 2 patients achieved stable disease. For 15 patients who received the triplet, median PFS and OS were 5.46 and 12.23 months, respectively. CONCLUSION Ulixertinib plus GnP had similar frequency of grade ≥3 TRAEs and potentially efficacy as GnP, however was complicated by a high rate of all-grade TRAEs (ClinicalTrials.gov Identifier: NCT02608229).
Collapse
Affiliation(s)
- Patrick M Grierson
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Benjamin Tan
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Katrina S Pedersen
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Haeseong Park
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Rama Suresh
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Manik A Amin
- Section of Hematology/Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nikolaos A Trikalinos
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | | | | | | | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University, St. Louis, MO, USA
| | - Channing J Der
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA
| | - Andrea Wang-Gillam
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
45
|
Fröhlich F, Gerosa L, Muhlich J, Sorger PK. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. Mol Syst Biol 2023; 19:e10988. [PMID: 36700386 PMCID: PMC9912026 DOI: 10.15252/msb.202210988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
BRAF is prototypical of oncogenes that can be targeted therapeutically and the treatment of BRAFV600E melanomas with RAF and MEK inhibitors results in rapid tumor regression. However, drug-induced rewiring generates a drug adapted state thought to be involved in acquired resistance and disease recurrence. In this article, we study mechanisms of adaptive rewiring in BRAFV600E melanoma cells using an energy-based implementation of ordinary differential equation (ODE) modeling in combination with proteomic, transcriptomic and imaging data. We develop a method for causal tracing of ODE models and identify two parallel MAPK reaction channels that are differentially sensitive to RAF and MEK inhibitors due to differences in protein oligomerization and drug binding. We describe how these channels, and timescale separation between immediate-early signaling and transcriptional feedback, create a state in which the RAS-regulated MAPK channel can be activated by growth factors under conditions in which the BRAFV600E -driven channel is fully inhibited. Further development of the approaches in this article is expected to yield a unified model of adaptive drug resistance in melanoma.
Collapse
Affiliation(s)
- Fabian Fröhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA,Present address:
Genentech, Inc.South San FranciscoCAUSA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
46
|
Capogiri M, De Micheli AJ, Lassaletta A, Muñoz DP, Coppé JP, Mueller S, Guerreiro Stucklin AS. Response and resistance to BRAF V600E inhibition in gliomas: Roadblocks ahead? Front Oncol 2023; 12:1074726. [PMID: 36698391 PMCID: PMC9868954 DOI: 10.3389/fonc.2022.1074726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
BRAFV600E represents the most common BRAF mutation in all human cancers. Among central nervous system (CNS) tumors, BRAFV600E is mostly found in pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas brought a paradigm shift to clinical care. However, not all patients benefit from treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining predictors of response, as well as developing strategies to prevent resistance to BRAFi and overcome post-BRAFi tumor progression/rebound growth are some of the main challenges at present in the field. In this review, we outline current achievements and limitations of BRAF inhibition in gliomas, with a special focus on potential mechanisms of resistance. We discuss future directions of targeted therapy for BRAFV600E mutated gliomas, highlighting how insights into resistance to BRAFi could be leveraged to improve outcomes.
Collapse
Affiliation(s)
- Monica Capogiri
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Alvaro Lassaletta
- Department of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Denise P. Muñoz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Jean-Philippe Coppé
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Sabine Mueller
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, United States
| | - Ana S. Guerreiro Stucklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,*Correspondence: Ana S. Guerreiro Stucklin,
| |
Collapse
|
47
|
Russi M, Valeri R, Marson D, Danielli C, Felluga F, Tintaru A, Skoko N, Aulic S, Laurini E, Pricl S. Some things old, new and borrowed: Delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer. Eur J Pharm Sci 2023; 180:106311. [PMID: 36273785 DOI: 10.1016/j.ejps.2022.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Two clinically approved anticancer drugs targeting BRAF in melanoma patients - dabrafenib (DAB) and vemurafenib (VEM) - have been successfully encapsulated into nanomicelles formed upon self-assembly of an amphiphilic dendrimer AD based on two C18 aliphatic chains and a G2 PAMAM head. The process resulted in the formation of well-defined (∼10 nm) core-shell nanomicelles (NMs) with excellent encapsulation efficiency (∼70% for DAB and ∼60% for VEM) and good drug loading capacity (∼27% and ∼24% for DAB and VEM, respectively). Dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and molecular simulation (MS) experiments were used, respectively, to determine the size and structure of the empty and drug-loaded nanomicelles (DLNMs), along with the interactions between the NMs and their cargoes. The in vitro release data revealed profiles governed by Fickian diffusion; moreover, for both anticancer molecules, an acidic environment (pH = 5.0) facilitated drug release with respect to physiological pH conditions (pH = 7.4). Finally, both DAB- and VEM-loaded NMs elicited enhanced response with respect to free drug treatments in 4 different melanoma cell lines.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Rachele Valeri
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Chiara Danielli
- Department of Chemical and Pharmaceutical Sciences, DSCF, University of Trieste, Via Giorgeri 1, Trieste 34127, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, DSCF, University of Trieste, Via Giorgeri 1, Trieste 34127, Italy
| | - Aura Tintaru
- Aix Marseille Univ, CNRS - Centre Interdisciplinaire de Nanosciences de Marseille (CINaM) UMR 7325 - Département IMMF - Campus Luminy, 163, Avenue de Luminy, Marseille 13288, France
| | - Natasa Skoko
- Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy; Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy; Department of General Biophysics, University of Łódź, ul. Pomorska 141/143, Łódź 90-236, Poland
| |
Collapse
|
48
|
Shi K, Lu H, Zhang Z, Fu Y, Wu J, Zhou S, Ma P, Ye K, Zhang S, Shi H, Shi W, Cai MC, Zhao X, Yu Z, Tang J, Zhuang G. Transient targeting of BIM-dependent adaptive MCL1 preservation enhances tumor response to molecular therapeutics in non-small cell lung cancer. Cell Death Differ 2023; 30:195-207. [PMID: 36171331 PMCID: PMC9883455 DOI: 10.1038/s41418-022-01064-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
Despite remarkable efficacy, targeted treatments often yield a subpopulation of residual tumor cells in part due to non-genetic adaptions. Previous mechanistic understanding on the emergence of these drug-tolerant persisters (DTPs) has been limited to epigenetic and transcriptional reprogramming. Here, by comprehensively interrogating therapy-induced early dynamic protein changes in diverse oncogene-addicted non-small cell lung cancer models, we identified adaptive MCL1 increase as a new and universal mechanism to confer apoptotic evasion and DTP formation. In detail, acute MAPK signaling disruption in the presence of genotype-based tyrosine kinase inhibitors (TKIs) prompted mitochondrial accumulation of pro-apoptotic BH3-only protein BIM, which sequestered MCL1 away from MULE-mediated degradation. A small-molecule combination screen uncovered that PI3K-mTOR pathway blockade prohibited MCL1 upregulation. Biochemical and immunocytochemical evidence indicated that mTOR complex 2 (mTORC2) bound and phosphorylated MCL1, facilitating its interaction with BIM. As a result, short-term polytherapy combining antineoplastic TKIs with PI3K, mTOR or MCL1 inhibitors sufficed to prevent DTP development and promote cancer eradication. Collectively, these findings support that upfront and transient targeting of BIM-dependent, mTORC2-regulated adaptive MCL1 preservation holds enormous promise to improve the therapeutic index of molecular targeted agents.
Collapse
Affiliation(s)
- Kaixuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haijiao Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shichao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Ma
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailei Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiping Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jian Tang
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Abstract
The RAS family of proteins is among the most frequently mutated genes in human malignancies. In ovarian cancer (OC), the most lethal gynecological malignancy, RAS, especially KRAS mutational status at codons 12, 13, and 61, ranges from 6-65% spanning different histo-types. Normally RAS regulates several signaling pathways involved in a myriad of cellular signaling cascades mediating numerous cellular processes like cell proliferation, differentiation, invasion, and death. Aberrant activation of RAS leads to uncontrolled induction of several downstream signaling pathways such as RAF-1/MAPK (mitogen-activated protein kinase), PI3K phosphoinositide-3 kinase (PI3K)/AKT, RalGEFs, Rac/Rho, BRAF (v-Raf murine sarcoma viral oncogene homolog B), MEK1 (mitogen-activated protein kinase kinase 1), ERK (extracellular signal-regulated kinase), PKB (protein kinase B) and PKC (protein kinase C) involved in cell proliferation as well as maintenance pathways thereby driving tumorigenesis and cancer cell propagation. KRAS mutation is also known to be a biomarker for poor outcome and chemoresistance in OC. As a malignancy with several histotypes showing varying histopathological characteristics, we focus on reviewing recent literature showcasing the involvement of oncogenic RAS in mediating carcinogenesis and chemoresistance in OC and its subtypes.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anjana Anand
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| | | | | | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Shahab Uddin
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| |
Collapse
|
50
|
Schulz A, Raetz J, Karitzky PC, Dinter L, Tietze JK, Kolbe I, Käubler T, Renner B, Beissert S, Meier F, Westphal D. Head-to-Head Comparison of BRAF/MEK Inhibitor Combinations Proposes Superiority of Encorafenib Plus Trametinib in Melanoma. Cancers (Basel) 2022; 14:cancers14194930. [PMID: 36230853 PMCID: PMC9564158 DOI: 10.3390/cancers14194930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A decade ago, the diagnosis of metastatic melanoma was mostly a death sentence. This has changed since new therapies became widely available in the clinical setting. In addition to checkpoint inhibitors, targeted therapy with BRAF and MEK inhibitors is standard care for BRAF-mutated melanoma, which accounts for almost half of all melanoma cases. The second largest group of melanoma patients, whose tumors harbor a mutation in the NRAS gene, demonstrates only a limited response to targeted therapy with MEK inhibitors. The aim of this investigation was to directly compare all possible BRAF/MEK inhibitor combinations in addition to the currently applied regimens. The analyzed data suggested that the combination of the BRAF inhibitor encorafenib and the MEK inhibitor trametinib demonstrated the highest anti-tumor activity in both, BRAF- and NRAS-mutated melanoma. This combination is not presently used in patient treatment, and therefore, deserves an opportunity to become part of clinical trials. Abstract BRAFV600 mutations in melanoma are targeted with mutation-specific BRAF inhibitors in combination with MEK inhibitors, which have significantly increased overall survival, but eventually lead to resistance in most cases. Additionally, targeted therapy for patients with NRASmutant melanoma is difficult. Our own studies showed that BRAF inhibitors amplify the effects of MEK inhibitors in NRASmutant melanoma. This study aimed at identifying a BRAF and MEK inhibitor combination with superior anti-tumor activity to the three currently approved combinations. We, thus, assessed anti-proliferative and pro-apoptotic activities of all nine as well as resistance-delaying capabilities of the three approved inhibitor combinations in a head-to-head comparison in vitro. The unconventional combination encorafenib/trametinib displayed the highest activity to suppress proliferation and induce apoptosis, acting in an additive manner in BRAFmutant and in a synergistic manner in NRASmutant melanoma cells. Correlating with current clinical studies of approved inhibitor combinations, encorafenib/binimetinib prolonged the time to resistance most efficiently in BRAFmutant cells. Conversely, NRASmutant cells needed the longest time to establish resistance when treated with dabrafenib/trametinib. Together, our data indicate that the most effective combination might not be currently used in clinical settings and could lead to improved overall responses.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Jennifer Raetz
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Paula C. Karitzky
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Lisa Dinter
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Julia K. Tietze
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18055 Rostock, Germany
| | - Isabell Kolbe
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Theresa Käubler
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden, University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden–Rossendorf (HZDR), 01328 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-82274
| |
Collapse
|