1
|
Miranda JA, Revollo JR. Assessment of in vivo chemical mutagenesis by long-read sequencing. Toxicol Sci 2024; 202:96-102. [PMID: 39141500 DOI: 10.1093/toxsci/kfae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Evaluating the mutagenic properties of chemicals is crucial for understanding their potential cancer risks. Recent Illumina-based error-corrected sequencing techniques have enabled the direct detection of mutations induced de novo by mutagens. However, as the Illumina platform lacks intrinsic error-correction capabilities, complex library preparations and bioinformatic processes are necessary to identify these rare mutations. In this study, we evaluated whether long-read PacBio-based HiFi sequencing (HiFi seq), which has integrated error-correction, can detect de novo mutations induced by mutagens in C57BL/6 mouse tissues. Using HiFi seq, dose-dependent increases in mutation frequencies were found in tissues from mice exposed to 7,12-dimethylbenz[a]anthracene, procarbazine, and N-propyl-N-nitrosourea. Furthermore, the mutational signatures derived from these exposures were consistent with those previously reported for these mutagens. This study demonstrates that HiFi seq can complement established mutation detection assays to facilitate the identification of hazardous compounds.
Collapse
Affiliation(s)
- Jaime A Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
2
|
Witherspoon JG, Hall JR, Jima D, Atkins HM, Wamsley NT, Major MB, Weissman BE, Smart RC. Mutant Nrf2 E79Q enhances the promotion and progression of a subset of oncogenic Ras keratinocytes and skin tumors. Redox Biol 2024; 75:103261. [PMID: 38963974 PMCID: PMC11269801 DOI: 10.1016/j.redox.2024.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Squamous cell carcinomas (SCCs), including lung, head & neck, bladder, and skin SCCs often display constitutive activation of the KEAP1-NRF2 pathway. Constitutive activation is achieved through multiple mechanisms, including activating mutations in NFE2L2 (NRF2). To determine the functional consequences of Nrf2 activation on skin SCC development, we assessed the effects of mutant Nrf2E79Q expression, one of the most common activating mutations in human SCCs, on tumor promotion and progression in the mouse skin multistage carcinogenesis model using a DMBA-initiation/TPA-promotion protocol where the Hras A->T mutation (Q61L) is the canonical driver mutation. Nrf2E79Q expression was temporally and conditionally activated in the epidermis at two stages of tumor development: 1) after DMBA initiation in the epidermis but before cutaneous tumor development and 2) in pre-existing DMBA-initiated/TPA-promoted squamous papillomas. Expression of Nrf2E79Q in the epidermis after DMBA initiation but before tumor occurrence inhibited the development/promotion of 70% of squamous papillomas. However, the remaining papillomas often displayed non-canonical Hras and Kras mutations and enhanced progression to SCCs compared to control mice expressing wildtype Nrf2. Nrf2E79Q expression in pre-existing tumors caused rapid regression of 60% of papillomas. The remaining papillomas displayed the expected canonical Hras A->T mutation (Q61L) and enhanced progression to SCCs. These results demonstrate that mutant Nrf2E79Q enhances the promotion and progression of a subset of skin tumors and alters the frequency and diversity of oncogenic Ras mutations when expressed early after initiation.
Collapse
Affiliation(s)
| | - Jonathan R Hall
- Department of Biological Sciences, North Carolina State University, USA; Toxicology Graduate Program, North Carolina State University, USA; Center for Human Health and the Environment, North Carolina State University, USA
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, USA
| | - Hannah M Atkins
- Center for Human Health and the Environment, North Carolina State University, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, USA
| | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University at St Louis, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University at St Louis, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, USA.
| | - Robert C Smart
- Department of Biological Sciences, North Carolina State University, USA; Toxicology Graduate Program, North Carolina State University, USA; Center for Human Health and the Environment, North Carolina State University, USA.
| |
Collapse
|
3
|
Chavanel B, Virard F, Cahais V, Renard C, Sirand C, Smits KM, Schouten LJ, Fervers B, Charbotel B, Abedi-Ardekani B, Korenjak M, Zavadil J. Genome-scale mutational signature analysis in fixed archived tissues. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108512. [PMID: 39216514 DOI: 10.1016/j.mrrev.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Mutation spectra and mutational signatures in cancerous and non-cancerous tissues can be identified by various established techniques of massively parallel sequencing (or next-generation sequencing) including whole-exome or whole-genome sequencing, and more recently by error-corrected/duplex sequencing. One rather underexplored area has been the genome-scale analysis of mutational signatures as markers of mutagenic exposures, and their impact on cancer driver events applied to formalin-fixed or alcohol-fixed paraffin embedded archived biospecimens. This review showcases successful applications of the next-generation sequencing methodologies in archived fixed tissues, including the delineation of the specific tissue fixation-related DNA damage manifesting as artifactual signatures, distinguishable from the true signatures that arise from biological mutagenic processes. Overall, we discuss and demonstrate how next-generation sequencing techniques applied to archived fixed biospecimens can enhance our understanding of cancer causes including mutagenic effects of extrinsic cancer risk agents, and the implications for prevention efforts aimed at reducing avoidable cancer-causing exposures.
Collapse
Affiliation(s)
- Bérénice Chavanel
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - François Virard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France; University Claude Bernard Lyon 1 INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Vincent Cahais
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Claire Renard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Cécilia Sirand
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Kim M Smits
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Pathology, Maastricht, the Netherlands
| | - Leo J Schouten
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Epidemiology, Maastricht, the Netherlands
| | - Béatrice Fervers
- Centre Léon Bérard, Department Cancer and Environment, Lyon, France
| | - Barbara Charbotel
- University Claude Bernard Lyon 1, UMRESTTE, Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment, Lyon, France
| | | | - Michael Korenjak
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France.
| |
Collapse
|
4
|
Laseca N, Molina A, Perdomo-González D, Ziadi C, Azor PJ, Valera M. Exploring the Genetic Landscape of Vitiligo in the Pura Raza Español Horse: A Genomic Perspective. Animals (Basel) 2024; 14:2420. [PMID: 39199954 PMCID: PMC11350783 DOI: 10.3390/ani14162420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vitiligo is a depigmentation autoimmune disorder characterized by the progressive loss of melanocytes leading to the appearance of patchy depigmentation of the skin. The presence of vitiligo in horses is greater in those with grey coats. The aim of this study was therefore to perform a genome-wide association study (GWAS) to identify genomic regions and putative candidate loci associated with vitiligo depigmentation and susceptibility in the Pura Raza Español population. For this purpose, we performed a wssGBLUP (weighted single step genomic best linear unbiased prediction) using data from a total of 2359 animals genotyped with Affymetrix Axiom™ Equine 670 K and 1346 with Equine GeneSeek Genomic Profiler™ (GGP) Array V5. A total of 60,136 SNPs (single nucleotide polymorphisms) present on the 32 chromosomes from the consensus dataset after quality control were employed for the analysis. Vitiligo-like depigmentation was phenotyped by visual inspection of the different affected areas (eyes, mouth, nostrils) and was classified into nine categories with three degrees of severity (absent, slight, and severe). We identified one significant genomic region for vitiligo around the eyes, eight significant genomic regions for vitiligo around the mouth, and seven significant genomic regions for vitiligo around the nostrils, which explained the highest percentage of variance. These significant genomic regions contained candidate genes related to melanocytes, skin, immune system, tumour suppression, metastasis, and cutaneous carcinoma. These findings enable us to implement selective breeding strategies to decrease the incidence of vitiligo and to elucidate the genetic architecture underlying vitiligo in horses as well as the molecular mechanisms involved in the disease's development. However, further studies are needed to better understand this skin disorder in horses.
Collapse
Affiliation(s)
- Nora Laseca
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Davinia Perdomo-González
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| | - Chiraz Ziadi
- Departamento de Genética, Universidad de Córdoba, Ctra. Madrid Km 396, 44014 Córdoba, Spain; (A.M.); (C.Z.)
| | - Pedro J. Azor
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Cortijo de Cuarto (Viejo), 41014 Sevilla, Spain;
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Sevilla, Spain; (N.L.); (D.P.-G.)
| |
Collapse
|
5
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
6
|
Konger RL, Xuei X, Derr-Yellin E, Fang F, Gao H, Liu Y. The Loss of PPARγ Expression and Signaling Is a Key Feature of Cutaneous Actinic Disease and Squamous Cell Carcinoma: Association with Tumor Stromal Inflammation. Cells 2024; 13:1356. [PMID: 39195246 DOI: 10.3390/cells13161356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Given the importance of peroxisome proliferator-activated receptor (PPAR)-gamma in epidermal inflammation and carcinogenesis, we analyzed the transcriptomic changes observed in epidermal PPARγ-deficient mice (Pparg-/-epi). A gene set enrichment analysis revealed a close association with epithelial malignancy, inflammatory cell chemotaxis, and cell survival. Single-cell sequencing of Pparg-/-epi mice verified changes to the stromal compartment, including increased inflammatory cell infiltrates, particularly neutrophils, and an increase in fibroblasts expressing myofibroblast marker genes. A comparison of transcriptomic data from Pparg-/-epi and publicly available human and/or mouse actinic keratoses (AKs) and cutaneous squamous cell carcinomas (SCCs) revealed a strong correlation between the datasets. Importantly, PPAR signaling was the top common inhibited canonical pathway in AKs and SCCs. Both AKs and SCCs also had significantly reduced PPARG expression and PPARγ activity z-scores. Smaller reductions in PPARA expression and PPARα activity and increased PPARD expression but reduced PPARδ activation were also observed. Reduced PPAR activity was also associated with reduced PPARα/RXRα activity, while LPS/IL1-mediated inhibition of RXR activity was significantly activated in the tumor datasets. Notably, these changes were not observed in normal sun-exposed skin relative to non-exposed skin. Finally, Ppara and Pparg were heavily expressed in sebocytes, while Ppard was highly expressed in myofibroblasts, suggesting that PPARδ has a role in myofibroblast differentiation. In conclusion, these data provide strong evidence that PPARγ and possibly PPARα represent key tumor suppressors by acting as master inhibitors of the inflammatory changes found in AKs and SCCs.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fang Fang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Taylor MA, Kandyba E, Halliwill K, Delrosario R, Khoroshkin M, Goodarzi H, Quigley D, Li YR, Wu D, Bollam SR, Mirzoeva OK, Akhurst RJ, Balmain A. Stem-cell states converge in multistage cutaneous squamous cell carcinoma development. Science 2024; 384:eadi7453. [PMID: 38815020 DOI: 10.1126/science.adi7453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Stem cells play a critical role in cancer development by contributing to cell heterogeneity, lineage plasticity, and drug resistance. We created gene expression networks from hundreds of mouse tissue samples (both normal and tumor) and integrated these with lineage tracing and single-cell RNA-seq, to identify convergence of cell states in premalignant tumor cells expressing markers of lineage plasticity and drug resistance. Two of these cell states representing multilineage plasticity or proliferation were inversely correlated, suggesting a mutually exclusive relationship. Treatment of carcinomas in vivo with chemotherapy repressed the proliferative state and activated multilineage plasticity whereas inhibition of differentiation repressed plasticity and potentiated responses to cell cycle inhibitors. Manipulation of this cell state transition point may provide a source of potential combinatorial targets for cancer therapy.
Collapse
Affiliation(s)
- Mark A Taylor
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Clinical Research Centre, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- AbbVie, South San Francisco, CA 94080, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matvei Khoroshkin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94518, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94518, USA
- Arc Institute, Palo Alto, CA 94304, USA
| | - David Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94518, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA 94518, USA
| | - Yun Rose Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Cancer Genetics & Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, Phoenix, CA 85004, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Saumya R Bollam
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94518, USA
| | - Olga K Mirzoeva
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rosemary J Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94518, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94518, USA
| |
Collapse
|
8
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Yang F, Yang M, Liu Y, Zhou C, Chen Y, Wu J, Zhang X, Xiao S. PDLIM7 Promotes Tumor Metastasis in Papillary Thyroid Carcinoma via Stabilizing Focal Adhesion Kinase Protein. Thyroid 2024; 34:598-610. [PMID: 38243825 DOI: 10.1089/thy.2023.0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Background: As an actin cytoskeleton interactor, PDZ (postsynaptic density 65-discs large-zonula occludens 1) and LIM (abnormal cell lineage 11-isket 1-mechanosensory abnormal 3) domain protein 7 (PDLIM7) was supposed to play an essential role modulating cytoskeleton. Focal adhesions (FAs), which are located at the cytomembrane terminus of actin cytoskeleton, function as a force sensor and can transform the mechanical signal to a biochemical signal. Focal adhesion kinase (FAK) localizes to and regulates signal transduction in FAs, which play an essential role in cell polarity, migration, and invasion. However, whether PDLIM7 is involved in FAs-associated signal transduction and its role in tumor invasion and metastasis remains largely unknown. Methods: A cohort of 80 patients with papillary thyroid carcinoma (PTC) at The Second Affiliated Hospital of Guilin Medical University, as well as 512 PTC samples from The Cancer Genome Atlas thyroid cancer database was utilized to analyze the expression of PDLIM7 and its association with prognosis. Survival data were assessed using Kaplan-Meier curves, whereas clinicopathological characteristics such as age, sex, tumor size, multilocality, extrathyroidal extension, lymph metastases, Hashimoto's thyroiditis, distant metastasis, and TNM stage were considered. Functional assays were performed in vitro and in a xenograft mouse model to assess the role of PDLIM7 in PTC cell lines. The colocalization of PDLIM7 with FAK and integrin alpha V (ITGAV) was determined using immunofluorescence assay and immunoprecipitation assay. Protein expression levels in cell and tissue biopsies were measured through Western blotting and immunohistochemistry. Results: (1) The PDLIM7 protein frequently upregulated in both PTC tissues and cells, and overexpression of PDLIM7 is associated with advanced clinicopathological characteristics. (2) Knockdown of PDLIM7 effectively inhibits cell proliferation, migration, and invasion in PTC cell lines in vitro. (3) Knockdown of PDLIM7 hinders the growth and metastasis of TPC-1 xenografts in vivo. (4) PDLIM7 demonstrates colocalization with both FAK and the FA molecule ITGAV and the knockdown of PDLIM7 resulted in disassembly of FAs and proteosome-dependent degradation of FAK in PTC cell lines. Conclusions: PDLIM7 function as an oncoprotein in PTC to promote metastasis, and a novel underlying mechanism is proposed that PDLIM7 keeps FAK protein from proteosome-dependent degradation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Mingqing Yang
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yi Liu
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yongbei Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jiacai Wu
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
10
|
Reeves MQ, Balmain A. Mutations, Bottlenecks, and Clonal Sweeps: How Environmental Carcinogens and Genomic Changes Shape Clonal Evolution during Tumor Progression. Cold Spring Harb Perspect Med 2024; 14:a041388. [PMID: 38052482 PMCID: PMC10910358 DOI: 10.1101/cshperspect.a041388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The transition from a single, initiated cell to a full-blown malignant tumor involves significant genomic evolution. Exposure to carcinogens-whether directly mutagenic or not-can drive progression toward malignancy, as can stochastic acquisition of cancer-promoting genetic events. Mouse models using both carcinogens and germline genetic manipulations have enabled precise inquiry into the evolutionary dynamics that take place as a tumor progresses from benign to malignant to metastatic stages. Tumor progression is characterized by changes in somatic point mutations and copy-number alterations, even though any single tumor can itself have a high or low burden of genomic alterations. Further, lineage-tracing, single-cell analyses and CRISPR barcoding have revealed the distinct clonal dynamics within benign and malignant tumors. Application of these tools in a range of mouse models can shed unique light on the patterns of clonal evolution that take place in both mouse and human tumors.
Collapse
Affiliation(s)
- Melissa Q Reeves
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
11
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Tanaka M, Lum L, Hu K, Ledezma-Soto C, Samad B, Superville D, Ng K, Adams Z, Kersten K, Fong L, Combes AJ, Krummel M, Reeves M. Tumor cell heterogeneity drives spatial organization of the intratumoral immune response in squamous cell skin carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538140. [PMID: 37162860 PMCID: PMC10168251 DOI: 10.1101/2023.04.25.538140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Intratumoral heterogeneity (ITH)-defined as genetic and cellular diversity within a tumor-is linked to failure of immunotherapy and an inferior anti-tumor immune response. The underlying mechanism of this association is unknown. To address this question, we modeled heterogeneous tumors comprised of a pro-inflammatory ("hot") and an immunosuppressive ("cold") tumor population, labeled with YFP and RFP tags respectively to enable precise spatial tracking. The resulting mixed-population tumors exhibited distinct regions comprised of YFP+ (hot) cells, RFP+ (cold) cells, or a mixture. We found that tumor regions occupied by hot tumor cells (YFP+) harbored more total T cells and a higher frequency of Th1 cells and IFNγ+ CD8 T cells compared to regions occupied by cold tumor cells (RFP+), whereas immunosuppressive macrophages showed the opposite spatial pattern. We identified the chemokine CX3CL1, produced at higher levels by our cold tumors, as a mediator of intratumoral macrophage accumulation, particularly immunosuppressive CD206Hi macrophages. Furthermore, we examined the response of heterogeneous tumors to a therapeutic combination of PD-1 blockade and CD40 agonist on a region-by-region basis. While the combination successfully increases Th1 abundance in "cold" tumor regions, it fails to bring overall T cell activity to the same level as seen in "hot" regions. The presence of the "cold" cells thus ultimately leads to a failure of the therapy to induce tumor rejection. Collectively, our results demonstrate that the organization of heterogeneous tumor cells has a profound impact on directing the spatial organization and function of tumor-infiltrating immune cells as well as on responses to immunotherapy.
Collapse
Affiliation(s)
- Miho Tanaka
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Lotus Lum
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth Hu
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Cecilia Ledezma-Soto
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Bushra Samad
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Daphne Superville
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth Ng
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Zoe Adams
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Alexis J Combes
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Reeves
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Taylor MA, Kandyba E, Halliwill K, Delrosario R, Koroshkin M, Goodarzi H, Quigley D, Li YR, Wu D, Bollam S, Mirzoeva O, Akhurst RJ, Balmain A. Gene networks reveal stem-cell state convergence during preneoplasia and progression to malignancy in multistage skin carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539863. [PMID: 37215032 PMCID: PMC10197547 DOI: 10.1101/2023.05.08.539863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Adult mammalian stem cells play critical roles in normal tissue homeostasis, as well as in tumor development, by contributing to cell heterogeneity, plasticity, and development of drug resistance. The relationship between different types of normal and cancer stem cells is highly controversial and poorly understood. Here, we carried out gene expression network analysis of normal and tumor samples from genetically heterogeneous mice to create network metagenes for visualization of stem-cell networks, rather than individual stem-cell markers, at the single-cell level during multistage carcinogenesis. We combined this approach with lineage tracing and single-cell RNASeq of stem cells and their progeny, identifying a previously unrecognized hierarchy in which Lgr6+ stem cells from tumors generate progeny that express a range of other stem-cell markers including Sox2, Pitx1, Foxa1, Klf5, and Cd44. Our data identify a convergence of multiple stem-cell and tumor-suppressor pathways in benign tumor cells expressing markers of lineage plasticity and oxidative stress. This same single-cell population expresses network metagenes corresponding to markers of cancer drug resistance in human tumors of the skin, lung and prostate. Treatment of mouse squamous carcinomas in vivo with the chemotherapeutic cis-platin resulted in elevated expression of the genes that mark this cell population. Our data have allowed us to create a simplified model of multistage carcinogenesis that identifies distinct stem-cell states at different stages of tumor progression, thereby identifying networks involved in lineage plasticity, drug resistance, and immune surveillance, providing a rich source of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Mark A. Taylor
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Matvei Koroshkin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - David Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Yun Rose Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Saumya Bollam
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Olga Mirzoeva
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Rosemary J. Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| |
Collapse
|
14
|
Xin Q, Ma H, Wang H, Zhang X. Tracking tumor heterogeneity and progression with near-infrared II fluorophores. EXPLORATION (BEIJING, CHINA) 2023; 3:20220011. [PMID: 37324032 PMCID: PMC10191063 DOI: 10.1002/exp.20220011] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Heterogeneous cells are the main feature of tumors with unique genetic and phenotypic characteristics, which can stimulate differentially the progression, metastasis, and drug resistance. Importantly, heterogeneity is pervasive in human malignant tumors, and identification of the degree of tumor heterogeneity in individual tumors and progression is a critical task for tumor treatment. However, current medical tests cannot meet these needs; in particular, the need for noninvasive visualization of single-cell heterogeneity. Near-infrared II (NIR-II, 1000-1700 nm) imaging exhibits an exciting prospect for non-invasive monitoring due to the high temporal-spatial resolution. More importantly, NIR-II imaging displays more extended tissue penetration depths and reduced tissue backgrounds because of the significantly lower photon scattering and tissue autofluorescence than traditional the near-infrared I (NIR-I) imaging. In this review, we summarize systematically the advances made in NIR-II in tumor imaging, especially in the detection of tumor heterogeneity and progression as well as in tumor treatment. As a non-invasive visual inspection modality, NIR-II imaging shows promising prospects for understanding the differences in tumor heterogeneity and progression and is envisioned to have the potential to be used clinically.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of PathologyTianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
| | - Xiao‐Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| |
Collapse
|
15
|
Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FFL, Zavadil J. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat Rev Cancer 2022; 22:576-591. [PMID: 35854147 DOI: 10.1038/s41568-022-00494-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
| |
Collapse
|
16
|
Mano R, Tanaka T, Hashiguchi S, Takahashi H, Sakata N, Kondo S, Kodama S. Induction of potassium channel regulator KCNE4 in a submandibular lymph node metastasis model. Sci Rep 2022; 12:13208. [PMID: 35915077 PMCID: PMC9343410 DOI: 10.1038/s41598-022-15926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer cells often metastasize to the lymph nodes (LNs) before disseminating throughout the body. Clinically, LN metastasis correlates with poor prognosis and influences treatment options. Many studies have shown that cancer cells communicate with immune and stromal cells to prepare a suitable niche for metastasis. In this study, mice were injected with B16-F10 murine melanoma cells to generate a tongue submandibular lymph node (SLN) metastasis model in which genes of interest could be investigated. Microarray analyses were performed on SLNs, identifying 162 upregulated genes, some of which are known metastasis genes. Among these upregulated genes, Kcne4, Slc7a11, Fscn1, and Gadd45b were not associated with metastasis, and increased expression of Kcne4 and Slc7a11 was confirmed by real-time PCR and immunohistochemistry. The roles of KCNE4 in chemokine production and cell adhesion were examined using primary lymphatic endothelial cells, and demonstrated that Ccl17 and Ccl19, which are involved in melanoma metastasis, were upregulated by KCNE4, as well as Mmp3 matrix metalloproteinase. Expression of KCNE4 was detected in human LNs with metastatic melanoma. In conclusion, we found that LN metastatic melanoma induces KCNE4 expression in the endothelium of LNs.
Collapse
Affiliation(s)
- Ryosuke Mano
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan
| | - Shiho Hashiguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan
| | - Hiroyuki Takahashi
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan.
| | - Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan.
| |
Collapse
|
17
|
Moser R, Gurley KE, Nikolova O, Qin G, Joshi R, Mendez E, Shmulevich I, Ashley A, Grandori C, Kemp CJ. Synthetic lethal kinases in Ras/p53 mutant squamous cell carcinoma. Oncogene 2022; 41:3355-3369. [PMID: 35538224 DOI: 10.1038/s41388-022-02330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
The oncogene Ras and the tumor suppressor gene p53 are frequently co-mutated in human cancer and mutations in Ras and p53 can cooperate to generate a more malignant cell state. To discover novel druggable targets for cancers carrying co-mutations in Ras and p53, we performed arrayed, kinome focused siRNA and oncology drug phenotypic screening utilizing a set of syngeneic Ras mutant squamous cell carcinoma (SCC) cell lines that also carried co-mutations in selected p53 pathway genes. These cell lines were derived from SCCs from carcinogen-treated inbred mice which harbored germline deletions or mutations in Trp53, p19Arf, Atm, or Prkdc. Both siRNA and drug phenotypic screening converge to implicate the phosphoinositol kinases, receptor tyrosine kinases, MAP kinases, as well as cell cycle and DNA damage response genes as targetable dependencies in SCC. Differences in functional kinome profiles between Ras mutant cell lines reflect incomplete penetrance of Ras synthetic lethal kinases and indicate that co-mutations cause a rewiring of survival pathways in Ras mutant tumors. This study describes the functional kinomic landscape of Ras/p53 mutant chemically-induced squamous cell carcinoma in both the baseline unperturbed state and following DNA damage and nominates candidate therapeutic targets, including the Nek4 kinase, for further development.
Collapse
Affiliation(s)
- Russell Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kay E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olga Nikolova
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | | | - Rashmi Joshi
- New Mexico State University, Las Cruces, NM, USA
| | | | | | | | | | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
18
|
Integrated DNA and RNA sequencing reveals early drivers involved in metastasis of gastric cancer. Cell Death Dis 2022; 13:392. [PMID: 35449126 PMCID: PMC9023472 DOI: 10.1038/s41419-022-04838-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022]
Abstract
Gastric cancer (GC) is the second cause of cancer-related death and metastasis is an important cause of death. Considering difficulties in searching for metastatic driver mutations, we tried a novel strategy here. We conducted an integrative genomic analysis on GC and identified early drivers lead to metastasis. Whole-exome sequencing (WES), transcriptomes sequencing and targeted-exome sequencing (TES) were performed on tumors and matched normal tissues from 432 Chinese GC patients, especially the comparative analysis between higher metastatic-potential (HMP) group with T1 stage and lymph-node metastasis, and lower metastatic-potential (LMP) group without lymph-nodes or distant metastasis. HMP group presented higher mutation load and heterogeneity, enrichment in immunosuppressive signaling, more immune cell infiltration than LMP group. An integrated mRNA-lncRNA signature based on differentially expressed genes was constructed and its prognostic value was better than traditional TNM stage. We identified 176 candidate prometastatic mutations by WES and selected 8 genes for following TES. Mutated TP53 and MADCAM1 were significantly associated with poor metastasis-free survival. We further demonstrated that mutated MADCAM1 could not only directly promote cancer cells migration, but also could trigger tumor metastasis by establishing immunosuppressive microenvironment, including promoting PD-L1-mediated immune escape and reprogramming tumor-associated macrophages by regulating CCL2 through Akt/mTOR axis. In conclusion, GCs with different metastatic-potential are distinguishable at the genetic level and we revealed a number of potential metastatic driver mutations. Driver mutations in early-onset metastatic GC could promote metastasis by establishing an immunosuppressive microenvironment. This study provided possibility for future target therapy of GC.
Collapse
|
19
|
Haldavnekar R, Venkatakrishnan A, Kiani A. Tracking the Evolution of Metastasis with Self-Functionalized 3D Nanoprobes. ACS APPLIED BIO MATERIALS 2022; 5:1633-1647. [PMID: 35316034 DOI: 10.1021/acsabm.2c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite recent advances in cancer treatment, metastasis is the cause of mortality in 90% of cancer cases. It has now been well-established that dissemination of cancer cells to distant sites occurs very early during tumorigenesis, resulting in the minimal effect of surgical or chemotherapeutic treatments after the detection of metastasis. The underlying reason for this challenge is mostly due to the limited understanding of molecular mechanisms of the metastasis cascade, particularly related to metastatic traits. Therefore, there is an urgent need to investigate this currently invisible evolution of metastasis. The tracking of metastasis evolution has not been addressed yet. Here, we introduce, for the first time, a synchronous approach to unveil the molecular mechanisms of the metastasis cascade. As cancer stem cells (CSCs) demonstrate cancer initiation, drug resistance, metastasis, and tumor relapse and can exist in a quasi-intermediate epithelial-mesenchymal transition state, the tumor-initiating events during a CSCs metamorphosis were monitored with single-cell sensitivity. Because of the invasive and resistive properties of the metastable intermediate CSCs, investigation of the molecular profiles of the quasi-intermediate CSCs was necessary for the detection of metastasis dissemination. For this purpose, the ultrasensitive technique of surface-enhanced Raman scattering (SERS) was adopted. Titanium-based, biocompatible three-dimensional (3D) nanoprobes that were synthesized for multiphoton ionization achieved a substantial SERS enhancement of ∼80-fold due to the oxygen vacancy-enriched composition of the nanoprobes. The 3D interconnected complex nanoarchitecture of the nanoprobes enabled us to entrap the nonadherent CSCs of three metastatic cancer cell lines (triple negative breast adenocarcinoma (MDAMB231), human Caucasian colon adenocarcinoma (COLO 205), and cervical adenocarcinoma (HeLa)─all very aggressive forms of cancer). The nanoprobes not only promoted the CSC proliferation to successfully attain the quasi-intermediate states but also monitored its reprogramming into a cancer cell state. The nanoprobes substantially amplified weak intracellular Raman signals to capture the molecular events during a CSC transformation. The detection of cancer was achieved with 100% accuracy. We experimentally demonstrated that the molecular signatures of CSC reprogramming are cancer-type specific. This observation enabled us to identify the origin of metastasis with 100% accuracy, providing more clarity on the relatively unknown quasi-intermediate states. This first demonstration of CSC-based tracking of metastasis evolution has the potential to provide an insightful perspective of tumorigenesis that could be useful in cancer diagnosis and prognosis as well as in the monitoring of therapeutic interventions.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada.,Ultrashort Laser Nanomanufacturing research facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada
| | - Akshay Venkatakrishnan
- Department of Basic Medical Sciences, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A3K7, Canada
| | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility, Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe Street N, Oshawa, Ontario L1G0C5, Canada.,Department of Mechanical and Manufacturing Engineering, Ontario Tech University, 2000 Simcoe Street N, Oshawa, Ontario L1G0C5, Canada
| |
Collapse
|
20
|
Dong J, Zhu C, Zhang F, Zhou Z, Sun M. "Attractive/adhesion force" dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J Control Release 2021; 341:892-903. [PMID: 34953982 DOI: 10.1016/j.jconrel.2021.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is refractory systemic disease resulting in low survival rate of breast cancer patients, especially in the late stage. The processes of metastasis are mainly initiated by strong "attractive force" from distant organs and deteriorated by weak "adhesion force" in primary tumor. Here, we reported "attractive/adhesion force" dual-regulatory nanogels (CQ-HF/PTX) for the precise treatment of both primary and metastasis of metastatic breast cancer. Hydroxychloroquine (HCQ) and hydrophobic Fmoc were grafted on hydrophilic hydroxyethyl starch (HES) to obtain amphiphilic CQ-HF polymer, which was assembly with chemotherapy drug paclitaxel (PTX) to form the nanogels for anti-primary tumor. Meanwhile, CQ-HF/PTX nanogels play two roles in anti-metastasis: i) For reducing the "attractive force", it could block the CXCR4/SDF-1 pathway, preventing tumor cells metastasis to the lung; ii) For reinforcing "adhesion force", it could inhibit the excessive autophagy for hindering the degradation of paxillin and enhancing the cell adhesion. As a result, dual-regulatory CQ-HF/PTX nanogels dramatically inhibited tumor and the lung metastasis of mouse breast cancer. Therefore, the fabricating of synergetic dual-regulatory nanogels uncovered the explicit mechanism and provided an efficient strategy for combating malignant metastatic tumors.
Collapse
Affiliation(s)
- Jingwen Dong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chenfei Zhu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feiran Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
21
|
Liu YZ, Lu HL, Qi XM, Xing GZ, Wang X, Yu P, Liu L, Yang FF, Ding XL, Zhang ZA, Deng ZP, Gong LK, Ren J. Aristolochic acid I promoted clonal expansion but did not induce hepatocellular carcinoma in adult rats. Acta Pharmacol Sin 2021; 42:2094-2105. [PMID: 33686245 PMCID: PMC8633323 DOI: 10.1038/s41401-021-00622-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Aristolochic acid I (AAI) is a well-known nephrotoxic carcinogen, which is currently reported to be also associated with hepatocellular carcinoma (HCC). Whether AAI is a direct hepatocarcinogen remains controversial. In this study we investigated the association between AAI exposure and HCC in adult rats using a sensitive rat liver bioassay with several cofactors. Formation of glutathione S-transferase placental form-positive (GST-P+) foci was used as the marker for preneoplastic lesions/clonal expansion. We first conducted a medium-term (8 weeks) study to investigate whether AAI had any tumor-initiating or -promoting activity. Then a long-term (52 weeks) study was conducted to determine whether AAI can directly induce HCC. We showed that oral administration of single dose of AAI (20, 50, or 100 mg/kg) in combination with partial hepatectomy (PH) to stimulate liver proliferation did not induce typical GST-P+ foci in liver. In the 8-week study, only high dose of AAI (10 mg · kg-1 · d-1, 5 days a week for 6 weeks) in combination with PH significantly increased the number and area of GST-P+ foci initiated by diethylnitrosamine (DEN) in liver. Similarly, only high dose of AAI (10 mg· kg-1· d-1, 5 days a week for 52 weeks) in combination with PH significantly increased the number and area of hepatic GST-P+ foci in the 52-week study. No any nodules or HCC were observed in liver of any AAI-treated groups. In contrast, long-term administration of AAI (0.1, 1, 10 mg· kg-1· d-1) time- and dose-dependently caused death due to the occurrence of cancers in the forestomach, intestine, and/or kidney. Besides, AAI-DNA adducts accumulated in the forestomach, kidney, and liver in a time- and dose-dependent manner. Taken together, AAI promotes clonal expansion only in the high-dose group but did not induce any nodules or HCC in liver of adult rats till their deaths caused by cancers developed in the forestomach, intestine, and/or kidney. Findings from our animal studies will pave the way for further large-scale epidemiological investigation of the associations between AA and HCC.
Collapse
Affiliation(s)
- Yong-Zhen Liu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng-Lei Lu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin-Ming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guo-Zhen Xing
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pan Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu Liu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang-Fang Yang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Lan Ding
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ze-An Zhang
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong-Ping Deng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li-Kun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, CAS, Zhongshan, 528400, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
22
|
Hill W, Caswell DR, Swanton C. Capturing cancer evolution using genetically engineered mouse models (GEMMs). Trends Cell Biol 2021; 31:1007-1018. [PMID: 34400045 DOI: 10.1016/j.tcb.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Initiating from a single cell, cancer undergoes clonal evolution, leading to a high degree of intratumor heterogeneity (ITH). The arising genetic heterogeneity between cancer cells is influenced by exogenous and endogenous forces that shape the composition of clones within tumors. Preclinical mouse models have provided a valuable tool for understanding cancer, helping to build a fundamental understanding of tumor initiation, progression, and metastasis. Until recently, genetically engineered mouse models (GEMMS) of cancer had lacked the genetic diversity found in human tumors, in which evolution may be driven by long-term carcinogen exposure and DNA damage. However, advances in sequencing technology and in our understanding of the drivers of genetic instability have given us the knowledge to generate new mouse models, offering an approach to functionally explore mechanisms of tumor evolution.
Collapse
Affiliation(s)
- William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK; University College London Hospitals NHS Trust, London, UK.
| |
Collapse
|
23
|
Varney SD, Wu L, Longmate WM, DiPersio CM, Van De Water L. Loss of integrin α9β1 on tumor keratinocytes enhances the stromal vasculature and growth of cutaneous tumors. J Invest Dermatol 2021; 142:1966-1975.e8. [PMID: 34843681 DOI: 10.1016/j.jid.2021.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Angiogenesis is critical to tumor progression and the function of integrins in tumor angiogenesis is complex. Here we report that loss of integrin α9β1 expression from epidermal tumor cells is critical to maintain persistent stromal vessel density. Forced expression of α9 in transformed mouse keratinocytes dramatically reduces vessel density in allograft tumors, in vivo, compared to the same cells lacking α9β1. Moreover, α9 mRNA expression is dramatically reduced in mouse and human epidermal tumors as is α9β1-dependent gene regulation. Loss of tumor cell α9β1 occurs through at least two mechanisms: (1) ITGA9 gene copy number loss in human tumors, and (2) epigenetic silencing in mouse and human tumors. Importantly, we show that reversal of epigenetic silencing of Itga9 restores α9 expression in mouse keratinocytes, and that human tumors without ITGA9 copy number loss have increased promoter methylation. Our data suggest that for epidermal tumorigenesis to occur, tumor cells must avoid the tumor and angiogenic suppressive effects of α9β1 by repressing its expression through deletion and/or epigenetic silencing, thereby promoting stromal development and tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Livingston Van De Water
- Department of Surgery; Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
24
|
Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis 2021; 12:629. [PMID: 34145217 PMCID: PMC8213763 DOI: 10.1038/s41419-021-03890-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Detachment is the initial and critical step for cancer metastasis. Only the cells that survive from detachment can develop metastases. Following the disruption of cell-extracellular matrix (ECM) interactions, cells are exposed to a totally different chemical and mechanical environment. During which, cells inevitably suffer from multiple stresses, including loss of growth stimuli from ECM, altered mechanical force, cytoskeletal reorganization, reduced nutrient uptake, and increased reactive oxygen species generation. Here we review the impact of these stresses on the anchorage-independent survival and the underlying molecular signaling pathways. Furthermore, its implications in cancer metastasis and treatment are also discussed.
Collapse
|
25
|
Li K, Li T, Feng Z, Huang M, Wei L, Yan Z, Long M, Hu Q, Wang J, Liu S, Sgroi DC, Demehri S. CD8 + T cell immunity blocks the metastasis of carcinogen-exposed breast cancer. SCIENCE ADVANCES 2021; 7:eabd8936. [PMID: 34144976 PMCID: PMC8213232 DOI: 10.1126/sciadv.abd8936] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The link between carcinogen exposure and cancer immunogenicity is unclear. Single exposure to 12-dimethylbenz[a]anthracene (DMBA) at puberty accelerated spontaneous breast carcinogenesis in mouse mammary tumor virus-polyoma middle tumor-antigen transgenic (MMTV-PyMTtg or PyMT) and MMTV-Her2/neutg (Her2) mice. Paradoxically, DMBA-treated PyMT and Her2 animals were protected from metastasis. CD8+ T cells significantly infiltrated DMBA-exposed breast cancers. CD8+ T cell depletion resulted in severe lung and liver metastasis in DMBA-treated PyMT mice. Besides increasing tumor mutational burden, DMBA exposure up-regulated Chemokine (C-C motif) ligand 21 (CCL21) in cancer cells and heightened antigen presentation. CCL21 injection suppressed breast cancer growth, and CCL21 receptor deletion attenuated T cell immunity against cancer metastasis in DMBA-treated PyMT animals. CCL21 expression correlated with increased mutational burden and cytolytic activity across human cancers. Higher CCL21 levels correlated with increased CD8+ T cell infiltrates in human breast cancer and predicted lower breast cancer distant recurrence rate. Collectively, carcinogen exposure induces immune-activating factors within cancer cells that promote CD8+ T cell immunity against metastasis.
Collapse
Affiliation(s)
- Kaiwen Li
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Tiancheng Li
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhaoyi Feng
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mei Huang
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zhiyu Yan
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dennis C Sgroi
- Molecular Pathology Unit, Department of Pathology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Patel SA, Rodrigues P, Wesolowski L, Vanharanta S. Genomic control of metastasis. Br J Cancer 2021; 124:3-12. [PMID: 33144692 PMCID: PMC7782491 DOI: 10.1038/s41416-020-01127-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis remains the leading cause of cancer-associated mortality, and a detailed understanding of the metastatic process could suggest new therapeutic avenues. However, how metastatic phenotypes arise at the genomic level has remained a major open question in cancer biology. Comparative genetic studies of primary and metastatic cancers have revealed a complex picture of metastatic evolution with diverse temporal patterns and trajectories to dissemination. Whole-genome amplification is associated with metastatic cancer clones, but no metastasis-exclusive driver mutations have emerged. Instead, genetically activated oncogenic pathways that drive tumour initiation and early progression acquire metastatic traits by co-opting physiological programmes from stem cell, developmental and regenerative pathways. The functional consequences of oncogenic driver mutations therefore change via epigenetic mechanisms to promote metastasis. Increasing evidence is starting to uncover the molecular mechanisms that determine how specific oncogenic drivers interact with various physiological programmes, and what triggers their activation in support of metastasis. Detailed insight into the mechanisms that control metastasis is likely to reveal novel opportunities for intervention at different stages of metastatic progression.
Collapse
Affiliation(s)
- Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Paulo Rodrigues
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Ludovic Wesolowski
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
27
|
Abstract
Metastatic dissemination occurs very early in the malignant progression of a cancer but the clinical manifestation of metastases often takes years. In recent decades, 5-year survival of patients with many solid cancers has increased due to earlier detection, local disease control and adjuvant therapies. As a consequence, we are confronted with an increase in late relapses as more antiproliferative cancer therapies prolong disease courses, raising questions about how cancer cells survive, evolve or stop growing and finally expand during periods of clinical latency. I argue here that the understanding of early metastasis formation, particularly of the currently invisible phase of metastatic colonization, will be essential for the next stage in adjuvant therapy development that reliably prevents metachronous metastasis.
Collapse
Affiliation(s)
- Christoph A Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany.
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany.
| |
Collapse
|
28
|
The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk. Nat Genet 2020; 52:1139-1143. [PMID: 33106632 DOI: 10.1038/s41588-020-00727-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022]
Abstract
Cancer is driven by genomic mutations in 'cancer driver' genes, which have essential roles in tumor development. These mutations may be caused by exposure to mutagens in the environment or by endogenous DNA-replication errors in tissue stem cells. Recent observations of abundant mutations, including cancer driver mutations, in histologically normal human tissues suggest that mutations alone are not sufficient for tumor development, thus prompting the question of how single mutant cells give rise to neoplasia. In a concept supported by decades-old data from mouse tumor models, non-mutagenic tumor-promoting agents have been posited to activate the proliferation of dormant mutated cells, thus generating actively growing lesions, with the promotion stage as the rate-limiting step in tumor formation. Non-mutagenic promoting agents, either endogenous or environmental, may therefore have a more important role in human cancer etiology than previously thought.
Collapse
|
29
|
Sato Y, Fujimura T, Hidaka T, Lyu C, Tanita K, Matsushita S, Yamamoto M, Aiba S. Possible Roles of Proinflammatory Signaling in Keratinocytes Through Aryl Hydrocarbon Receptor Ligands for the Development of Squamous Cell Carcinoma. Front Immunol 2020; 11:534323. [PMID: 33178182 PMCID: PMC7596320 DOI: 10.3389/fimmu.2020.534323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) provides a deeper insight into the pathogenesis of cutaneous squamous cell carcinoma (cSCC). AhR ligands, such as 6-formylindolo[3,2-b] carbazole (FICZ), and 7,12-Dimethylbenz[a]anthracene (DMBA), constitute major substrates for the cytochrome P450 (CYP) family, and influence the expression of various cytokine genes, including IL-17 and IL-23-related genes via the AhR. On the other hand, proinflammatory cytokines could drive tumor progression through the TRAF-ERK5 signaling pathway in cSCC. From the above findings, we hypothesized that AhR ligands might enhance the mRNA expression of proinflammatory cytokines via the AhR, leading to the development of cSCC. The purpose of this study was to investigate (1) the immunomodulatory effects of FICZ and DMBA on normal human keratinocytes (NHKCs), focusing on IL-17, and related cytokines/chemokines (IL-23, IL-36γ, and CCL20), (2) the expression of these factors in AhR-dependent pathways using a two-stage chemically induced skin carcinogenesis mouse model, and (3) the expression of these factors in lesion-affected skin in cSCC. Both FICZ and DMBA augmented the expression of CYP1A1, p19, CCL20, and IL-36γ mRNA in NHKCs in vitro. Moreover, the mRNA expression of these proinflammatory factors, as well as IL-17, in mouse cSCC is significantly decreased in the AhR-(fl/fl) Krt5-(Cre) mice compared to wild type mice, leading to a decrease in the number of developed cSCC lesions. Furthermore, CCL20, IL-23, as well as IL-17, are detected in the lesion-affected skin of cSCC patients. Our study demonstrates a possible mechanism for the development of cSCC involving AhR-mediated signaling by epidermal keratinocytes and recruitment of Th17 cells.
Collapse
Affiliation(s)
- Yota Sato
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chunbing Lyu
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kayo Tanita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
So JY, Skrypek N, Yang HH, Merchant AS, Nelson GW, Chen WD, Ishii H, Chen JM, Hu G, Achyut BR, Yoon EC, Han L, Huang C, Cam MC, Zhao K, Lee MP, Yang L. Induction of DNMT3B by PGE2 and IL6 at Distant Metastatic Sites Promotes Epigenetic Modification and Breast Cancer Colonization. Cancer Res 2020; 80:2612-2627. [PMID: 32265226 PMCID: PMC7299749 DOI: 10.1158/0008-5472.can-19-3339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
Current cancer treatments are largely based on the genetic characterization of primary tumors and are ineffective for metastatic disease. Here we report that DNA methyltransferase 3B (DNMT3B) is induced at distant metastatic sites and mediates epigenetic reprogramming of metastatic tumor cells. Multiomics analysis and spontaneous metastatic mouse models revealed that DNMT3B alters multiple pathways including STAT3, NFκB, PI3K/Akt, β-catenin, and Notch signaling, which are critical for cancer cell survival, apoptosis, proliferation, invasion, and colonization. PGE2 and IL6 were identified as critical inflammatory mediators in DNMT3B induction. DNMT3B expression levels positively correlated with human metastatic progression. Targeting IL6 or COX-2 reduced DNMT3B induction and improved chemo or PD1 therapy. We propose a novel mechanism linking the metastatic microenvironment with epigenetic alterations that occur at distant sites. These results caution against the "Achilles heel" in cancer therapies based on primary tumor characterization and suggests targeting DNMT3B induction as new option for treating metastatic disease. SIGNIFICANCE: These findings reveal that DNMT3B epigenetically regulates multiple pro-oncogenic signaling pathways via the inflammatory microenvironment at distant sites, cautioning the clinical approach basing current therapies on genetic characterization of primary tumors.
Collapse
Affiliation(s)
- Jae Young So
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nicolas Skrypek
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Anand S Merchant
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - George W Nelson
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Wei-Dong Chen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Hiroki Ishii
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jennifer M Chen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Gangqing Hu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhagelu R Achyut
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Esther C Yoon
- Department of Pathology, New York Medical College, Valhalla, New York
| | - Liying Han
- Department of Pathology, New York Medical College, Valhalla, New York
| | - Chuanshu Huang
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York
| | - Margaret C Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
32
|
Longmate WM, Varney S, Power D, Miskin RP, Anderson KE, DeFreest L, Van De Water L, DiPersio CM. Integrin α3β1 on Tumor Keratinocytes Is Essential to Maintain Tumor Growth and Promotes a Tumor-Supportive Keratinocyte Secretome. J Invest Dermatol 2020; 141:142-151.e6. [PMID: 32454065 DOI: 10.1016/j.jid.2020.05.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 02/01/2023]
Abstract
The development of integrin-targeted cancer therapies is hindered by incomplete understanding of integrin function in tumor cells and the tumor microenvironment. Previous studies showed that mice with epidermis-specific deletion of the α3 integrin subunit fail to form skin tumors during two-step chemical tumorigenesis, indicating a protumorigenic role for integrin α3β1. Here, we generated mice with tamoxifen-inducible, epidermis-specific α3 knockout to determine the role of α3β1 in the maintenance of established tumor cells and/or the associated stroma. Genetic ablation of α3 in established skin tumors caused their rapid regression, indicating that α3β1 is essential to maintain tumor growth. Although reduced proliferation and increased apoptosis were observed in α3β1-deficient tumor cells, these changes followed a robust increase in stromal apoptosis. Furthermore, macrophages and fibulin-2 levels were reduced in stroma following α3 deletion from tumor cells. Mass spectrometric analysis of conditioned medium from immortalized keratinocytes showed that α3β1 regulates a substantial fraction of the keratinocyte secretome, including fibulin-2 and macrophage CSF1; RNA in situ hybridization showed that expression of these two genes was reduced in tumor keratinocytes in vivo. Our findings identify α3β1 as a regulator of the keratinocyte secretome and skin tumor microenvironment and as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Scott Varney
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Derek Power
- Department of Surgery Albany Medical College, Albany, New York, USA
| | | | - Karl E Anderson
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Lori DeFreest
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Livingston Van De Water
- Department of Surgery Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Surgery Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
33
|
Melki PN, Korenjak M, Zavadil J. Experimental investigations of carcinogen-induced mutation spectra: Innovation, challenges and future directions. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 853:503195. [PMID: 32522347 DOI: 10.1016/j.mrgentox.2020.503195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/18/2022]
Abstract
Recent years have witnessed an expansion of mutagenesis research focusing on experimentally modeled genome-scale mutational signatures of carcinogens and of endogenous processes. Experimental mutational signatures can explain etiologic links to patterns found in human tumors that may be linked to same exposures, and can serve as biomarkers of exposure history and may even provide insights on causality. A number of innovative exposure models have been employed and reported, based on cells cultured in monolayers or in 3-D, on organoids, induced pluripotent stem cells, non-mammalian organisms, microorganisms and rodent bioassays. Here we discuss some of the latest developments and pros and cons of these experimental systems used in mutational signature analysis. Integrative designs that bring together multiple exposure systems (in vitro, in vivo and in silico pan-cancer data mining) started emerging as powerful tools to identify robust mutational signatures of the tested cancer risk agents. We further propose that devising a new generation of cell-based models is warranted to streamline systematic testing of carcinogen effects on the cell genomes, while seeking to increasingly supplant animal with non-animal systems to address relevant ethical issues and accentuate the 3R principles. We conclude that the knowledge accumulating from the growing body of signature modelling investigations has considerable power to advance cancer etiology studies and to support cancer prevention efforts through streamlined characterization of cancer-causing agents and the recognition of their specific effects.
Collapse
Affiliation(s)
- Pamela N Melki
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France.
| |
Collapse
|
34
|
Varešlija D, Priedigkeit N, Fagan A, Purcell S, Cosgrove N, O'Halloran PJ, Ward E, Cocchiglia S, Hartmaier R, Castro CA, Zhu L, Tseng GC, Lucas PC, Puhalla SL, Brufsky AM, Hamilton RL, Mathew A, Leone JP, Basudan A, Hudson L, Dwyer R, Das S, O'Connor DP, Buckley PG, Farrell M, Hill ADK, Oesterreich S, Lee AV, Young LS. Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets. J Natl Cancer Inst 2020; 111:388-398. [PMID: 29961873 PMCID: PMC6449168 DOI: 10.1093/jnci/djy110] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Breast cancer brain metastases (BrMs) are defined by complex adaptations to both adjuvant treatment regimens and the brain microenvironment. Consequences of these alterations remain poorly understood, as does their potential for clinical targeting. We utilized genome-wide molecular profiling to identify therapeutic targets acquired in metastatic disease. METHODS Gene expression profiling of 21 patient-matched primary breast tumors and their associated brain metastases was performed by TrueSeq RNA-sequencing to determine clinically actionable BrM target genes. Identified targets were functionally validated using small molecule inhibitors in a cohort of resected BrM ex vivo explants (n = 4) and in a patient-derived xenograft (PDX) model of BrM. All statistical tests were two-sided. RESULTS Considerable shifts in breast cancer cell-specific gene expression profiles were observed (1314 genes upregulated in BrM; 1702 genes downregulated in BrM; DESeq; fold change > 1.5, Padj < .05). Subsequent bioinformatic analysis for readily druggable targets revealed recurrent gains in RET expression and human epidermal growth factor receptor 2 (HER2) signaling. Small molecule inhibition of RET and HER2 in ex vivo patient BrM models (n = 4) resulted in statistically significantly reduced proliferation (P < .001 in four of four models). Furthermore, RET and HER2 inhibition in a PDX model of BrM led to a statistically significant antitumor response vs control (n = 4, % tumor growth inhibition [mean difference; SD], anti-RET = 86.3% [1176; 258.3], P < .001; anti-HER2 = 91.2% [1114; 257.9], P < .01). CONCLUSIONS RNA-seq profiling of longitudinally collected specimens uncovered recurrent gene expression acquisitions in metastatic tumors, distinct from matched primary tumors. Critically, we identify aberrations in key oncogenic pathways and provide functional evidence for their suitability as therapeutic targets. Altogether, this study establishes recurrent, acquired vulnerabilities in BrM that warrant immediate clinical investigation and suggests paired specimen expression profiling as a compelling and underutilized strategy to identify targetable dependencies in advanced cancers.
Collapse
Affiliation(s)
- Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nolan Priedigkeit
- Pharmacology and Chemical Biology.,Women's Cancer Research Center, Magee-Women's Research Institute
| | - Ailís Fagan
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siobhan Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nicola Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Elspeth Ward
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Carlos A Castro
- Women's Cancer Research Center, Magee-Women's Research Institute
| | - Li Zhu
- Biostatistics, University of Pittsburgh Cancer Institute, University of Pittsburgh, PA
| | - George C Tseng
- Biostatistics, University of Pittsburgh Cancer Institute, University of Pittsburgh, PA
| | | | | | | | | | | | | | | | - Lance Hudson
- Surgical Research, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Róisín Dwyer
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | | | | | | | | | - Arnold D K Hill
- Surgical Research, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steffi Oesterreich
- Pharmacology and Chemical Biology.,Women's Cancer Research Center, Magee-Women's Research Institute
| | - Adrian V Lee
- Pharmacology and Chemical Biology.,Human Genetics.,Women's Cancer Research Center, Magee-Women's Research Institute
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
35
|
Androgen receptor-binding sites are highly mutated in prostate cancer. Nat Commun 2020; 11:832. [PMID: 32047165 PMCID: PMC7012874 DOI: 10.1038/s41467-020-14644-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Androgen receptor (AR) signalling is essential in nearly all prostate cancers. Any alterations to AR-mediated transcription can have a profound effect on carcinogenesis and tumor growth. While mutations of the AR protein have been extensively studied, little is known about those somatic mutations that occur at the non-coding regions where AR binds DNA. Using clinical whole genome sequencing, we show that AR binding sites have a dramatically increased rate of mutations that is greater than any other transcription factor and specific to only prostate cancer. Demonstrating this may be common to lineage-specific transcription factors, estrogen receptor binding sites were also found to have elevated rate of mutations in breast cancer. We provide evidence that these mutations at AR binding sites, and likely other related transcription factors, are caused by faulty repair of abasic sites. Overall, this work demonstrates that non-coding AR binding sites are frequently mutated in prostate cancer and can impact enhancer activity.
Collapse
|
36
|
Lange S, Engleitner T, Mueller S, Maresch R, Zwiebel M, González-Silva L, Schneider G, Banerjee R, Yang F, Vassiliou GS, Friedrich MJ, Saur D, Varela I, Rad R. Analysis pipelines for cancer genome sequencing in mice. Nat Protoc 2020; 15:266-315. [PMID: 31907453 DOI: 10.1038/s41596-019-0234-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Mouse models of human cancer have transformed our ability to link genetics, molecular mechanisms and phenotypes. Both reverse and forward genetics in mice are currently gaining momentum through advances in next-generation sequencing (NGS). Methodologies to analyze sequencing data were, however, developed for humans and hence do not account for species-specific differences in genome structures and experimental setups. Here, we describe standardized computational pipelines specifically tailored to the analysis of mouse genomic data. We present novel tools and workflows for the detection of different alteration types, including single-nucleotide variants (SNVs), small insertions and deletions (indels), copy-number variations (CNVs), loss of heterozygosity (LOH) and complex rearrangements, such as in chromothripsis. Workflows have been extensively validated and cross-compared using multiple methodologies. We also give step-by-step guidance on the execution of individual analysis types, provide advice on data interpretation and make the complete code available online. The protocol takes 2-7 d, depending on the desired analyses.
Collapse
Affiliation(s)
- Sebastian Lange
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Sebastian Mueller
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Roman Maresch
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Maximilian Zwiebel
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Laura González-Silva
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | | | | | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Cambridge, UK
- Wellcome Trust-MRC Stem Cell Institute, Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cam bridge, UK
| | - Mathias J Friedrich
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, Munich, Germany
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
37
|
Rose Li Y, Halliwill KD, Adams CJ, Iyer V, Riva L, Mamunur R, Jen KY, Del Rosario R, Fredlund E, Hirst G, Alexandrov LB, Adams D, Balmain A. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat Commun 2020; 11:394. [PMID: 31959748 PMCID: PMC6971050 DOI: 10.1038/s41467-019-14261-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Ionising radiation (IR) is a recognised carcinogen responsible for cancer development in patients previously treated using radiotherapy, and in individuals exposed as a result of accidents at nuclear energy plants. However, the mutational signatures induced by distinct types and doses of radiation are unknown. Here, we analyse the genetic architecture of mammary tumours, lymphomas and sarcomas induced by high (56Fe-ions) or low (gamma) energy radiation in mice carrying Trp53 loss of function alleles. In mammary tumours, high-energy radiation is associated with induction of focal structural variants, leading to genomic instability and Met amplification. Gamma-radiation is linked to large-scale structural variants and a point mutation signature associated with oxidative stress. The genomic architecture of carcinomas, sarcomas and lymphomas arising in the same animals are significantly different. Our study illustrates the complex interactions between radiation quality, germline Trp53 deficiency and tissue/cell of origin in shaping the genomic landscape of IR-induced tumours.
Collapse
Affiliation(s)
- Yun Rose Li
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyle D Halliwill
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Abbvie, Redwood City, CA, 94063, USA
| | - Cassandra J Adams
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Nuffield Department of Medicine, University of Oxford, Oxford OX7DQ, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Laura Riva
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Rashid Mamunur
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Kuang-Yu Jen
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Reyno Del Rosario
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Erik Fredlund
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Doublestrand Bioinformatics, 11331, Stockholm, Sweden
| | - Gillian Hirst
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK.
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
38
|
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:389-401. [PMID: 32130710 DOI: 10.1007/978-3-030-34025-4_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.
Collapse
Affiliation(s)
- N Mendes
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| | - P Dias Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - F Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Mendonça
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - A R Malheiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - A Ribeiro
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - J Carvalho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| | - S Velho
- i3S, Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
- IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
39
|
Niu T, Yang M, Liu Q, Li H, Jiang L, Li F, He X, Wang L, Li J. The Somatic Mutation Hit on Top of Genetic APC mutations Cause Skin Tumor. Transl Oncol 2019; 13:300-307. [PMID: 31877462 PMCID: PMC6931217 DOI: 10.1016/j.tranon.2019.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Inactivation of the adenomatous polyposis coli (APC) gene is the initiating event in familial adenomatous polyposis (FAP) patients. Up to 90% of FAP patients show intestinal tumors and other extracolonic malignancies including hepatoblastomas, desmoid tumors, and brain cancer. APC mutation mice (ApcMin/+ mice) develop benign polyps in the intestinal tract. It has been reported that small numbers of ApcMin/+ mice develop breast carcinomas. Here, we found that approximately 1.6% of ApcMin/+ mice suffered skin neoplasm. The results demonstrated that these skin tumors are not derived from intestinal adenomas. Sequencing of skin tumors of ApcMin/+ mice and ApcMin/+ mice skin. The data showed that somatic mutations and gene expression levels changed greatly in skin tumors compared to control. Similarly, APC mutation accounts for 27% in the patients of nonmelanoma skin carcinomas in cancer database, and two above genes mutation coexist was observed in all patients. Furthermore, using gene mutation reagent (DMBA)-treated ApcMin/+ mice skin, the skin epithelium and glandular begin hyperplasia in ApcMin/+ mice. These findings revealed that the somatic mutation hit on the germline mutation increase the tumor incidence, suggesting that the somatic mutation should be avoided if the germline mutation exists in one body.
Collapse
Affiliation(s)
- Ting Niu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Yang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Liu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haobin Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lingbi Jiang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fanggu Li
- The First Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiangchao Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Abstract
Cancer arises from a single cell through a series of acquired mutations and epigenetic alterations. Tumors gradually develop into a complex tissue comprised of phenotypically heterogeneous cancer cell populations, as well as noncancer cells that make up the tumor microenvironment. The phenotype, or state, of each cancer and stromal cell is influenced by a plethora of cell-intrinsic and cell-extrinsic factors. The diversity of these cellular states promotes tumor progression, enables metastasis, and poses a challenge for effective cancer treatments. Thus, the identification of strategies for the therapeutic manipulation of tumor heterogeneity would have significant clinical implications. A major barrier in the field is the difficulty in functionally investigating heterogeneity in tumors in cancer patients. Here we review how mouse models of human cancer can be leveraged to interrogate tumor heterogeneity and to help design better therapeutic strategies.
Collapse
Affiliation(s)
- Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julien Sage
- Department of Pediatrics and Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
41
|
Korenjak M, Zavadil J. Experimental identification of cancer driver alterations in the era of pan-cancer genomics. Cancer Sci 2019; 110:3622-3629. [PMID: 31594033 PMCID: PMC6890429 DOI: 10.1111/cas.14210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Rapidly accumulating data from large-scale cancer genomics studies have been generating important information about genes and their somatic alterations underlying cell transformation, cancer onset and tumor progression. However, these events are usually defined by using computational techniques, whereas the understanding of their actual functional roles and impact typically warrants validation by experimental means. Critical information has been obtained from targeted genetic perturbation (gene knockout) studies conducted in animals, yet these investigations are cost-prohibitive and time-consuming. In addition, the 3R principles (replacement, reduction, refinement) have been set in place to reduce animal use burden and are increasingly observed in many areas of biomedical research. Consequently, the focus has shifted to new designs of innovative cell-based experimental models of cell immortalization and transformation in which the critical cancer driver events can be introduced by mutagenic insult and studied functionally, at the level of critical phenotypic readouts. From these efforts, primary cell-based selective barrier-bypass models of cell immortalization have emerged as an attractive system that allows studies of the functional relevance of acquired mutations as well as their role as candidate cancer driver events. In this review, we provide an overview of various experimental systems linking carcinogen exposure-driven cell transformation with the study of cancer driver events. We further describe the advantages and disadvantages of the currently available cell-based models while outlining future directions for in vitro modeling and functional testing of cancer driver events.
Collapse
Affiliation(s)
- Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
42
|
Yoshioka KI, Matsuno Y, Hyodo M, Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes. Cancers (Basel) 2019; 11:cancers11111643. [PMID: 31653100 PMCID: PMC6895985 DOI: 10.3390/cancers11111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The development of cancer is driven by genomic instability and mutations. In general, cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated with genomic destabilization and its relationship with the clonal evolution of cells over the course of cancer development, focusing especially on mechanistic aspects.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
43
|
Cui L, Cheng Z, Hu K, Pang Y, Liu Y, Qian T, Quan L, Dai Y, Pang Y, Ye X, Shi J, Fu L. Prognostic value of the PDLIM family in acute myeloid leukemia. Am J Transl Res 2019; 11:6124-6131. [PMID: 31632581 PMCID: PMC6789254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Acute myeloid leukemia (AML) is a genetically complex, highly aggressive hematological malignancy. Prognosis is usually with grim. PDZ and LIM domain proteins (PDLIM) are involved in the regulation of a variety of biological processes, including cytoskeletal organization, cell differentiation, organ development, neural signaling or tumorigenesis. The clinical and prognostic value of the PDLIM family in AML is unclear. To understand the role of PDLIM expression in AML, The Cancer Genome Atlas (TCGA) database was screened and 155 de novo AML patients with complete clinical information and the expression data of the PDLIM family were included in the study. The clinical and molecular characteristics associated with the expression of different members of the PDLIM family were summarized using various statistical methods. In 84 patients who only received chemotherapy, univariate analysis indicated that high expression of PDLIM2 or PDLIM7 was associated with shorter EFS and OS (both P<0.05 for PDLIM2, and both P<0.01 for PDLIM7). Multivariate analysis suggested that high expression of PDLIM7 was an independent risk factor for EFS and OS (both P<0.05). In the other 71 patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), survival was unaffected by PDLIM expressions. In summary, high expression of PDLIM2 and PDLIM7, especially the latter, could serve as adverse prognostic factors for AML, but their prognostic effects could be reversed by allo-HSCT.
Collapse
Affiliation(s)
- Longzhen Cui
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
- Translational Medicine Center, Huaihe Hospital of Henan UniversityKaifeng 475000, Henan, China
- Department of Hematology, Huaihe Hospital of Henan UniversityKaifeng 475000, Henan, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third HospitalBeijing 100191, China
| | - Yifan Pang
- Department of Medicine, William Beaumont HospitalRoyal Oak, MI 48073, USA
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan UniversityKaifeng 475000, Henan, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
| | - Yifeng Dai
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Ying Pang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
| | - Jinlong Shi
- Department of Medical Big Data, Chinese PLA General HospitalBeijing 100853, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510260, Guangdong, China
- Department of Hematology, Huaihe Hospital of Henan UniversityKaifeng 475000, Henan, China
| |
Collapse
|
44
|
|
45
|
Hidaka T, Fujimura T, Aiba S. Aryl Hydrocarbon Receptor Modulates Carcinogenesis and Maintenance of Skin Cancers. Front Med (Lausanne) 2019; 6:194. [PMID: 31552251 PMCID: PMC6736988 DOI: 10.3389/fmed.2019.00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that responds to a wide range of chemicals, including chemical carcinogens such as dioxins and carcinogenic polyaromatic hydrocarbons, and induces a battery of genes associated with detoxification, proliferation, and immune regulation. Recent reports suggest that AHR plays an important role in carcinogenesis and maintenance of various types of skin cancers. Indeed, AHR is a susceptibility gene for squamous cell carcinoma and a prognostic factor for melanoma and Merkel cell carcinoma. In addition, the carcinogenic effects of ultraviolet (UV) and chemical carcinogens, both of which are major environmental carcinogenetic factors of skin, are at least partly mediated by AHR, which regulates UV-induced inflammation and apoptosis, the DNA repair system, and metabolic activation of chemical carcinogens. Furthermore, AHR modulates the efficacy of key therapeutic agents in melanoma. AHR activation induces the expression of resistance genes against the inhibitors of V600E mutated B-Raf proto-oncogene, serine/threonine kinase (BRAF) in melanoma and upregulation of programmed cell death protein 1 (PD-1) in tumor-infiltrating T cells surrounding melanoma. Taken together, these findings underscore the importance of AHR in the biology of skin cancers. Development of therapeutic agents that modulate AHR activity is a promising strategy to advance chemoprevention and chemotherapy for skin cancers.
Collapse
Affiliation(s)
- Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
46
|
Fougner C, Bergholtz H, Kuiper R, Norum JH, Sørlie T. Claudin-low-like mouse mammary tumors show distinct transcriptomic patterns uncoupled from genomic drivers. Breast Cancer Res 2019; 21:85. [PMID: 31366361 PMCID: PMC6670237 DOI: 10.1186/s13058-019-1170-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Claudin-low breast cancer is a molecular subtype associated with poor prognosis and without targeted treatment options. The claudin-low subtype is defined by certain biological characteristics, some of which may be clinically actionable, such as high immunogenicity. In mice, the medroxyprogesterone acetate (MPA) and 7,12-dimethylbenzanthracene (DMBA)-induced mammary tumor model yields a heterogeneous set of tumors, a subset of which display claudin-low features. Neither the genomic characteristics of MPA/DMBA-induced claudin-low tumors nor those of human claudin-low breast tumors have been thoroughly explored. METHODS The transcriptomic characteristics and subtypes of MPA/DMBA-induced mouse mammary tumors were determined using gene expression microarrays. Somatic mutations and copy number aberrations in MPA/DMBA-induced tumors were identified from whole exome sequencing data. A publicly available dataset was queried to explore the genomic characteristics of human claudin-low breast cancer and to validate findings in the murine tumors. RESULTS Half of MPA/DMBA-induced tumors showed a claudin-low-like subtype. All tumors carried mutations in known driver genes. While the specific genes carrying mutations varied between tumors, there was a consistent mutational signature with an overweight of T>A transversions in TG dinucleotides. Most tumors carried copy number aberrations with a potential oncogenic driver effect. Overall, several genomic events were observed recurrently; however, none accurately delineated claudin-low-like tumors. Human claudin-low breast cancers carried a distinct set of genomic characteristics, in particular a relatively low burden of mutations and copy number aberrations. The gene expression characteristics of claudin-low-like MPA/DMBA-induced tumors accurately reflected those of human claudin-low tumors, including epithelial-mesenchymal transition phenotype, high level of immune activation, and low degree of differentiation. There was an elevated expression of the immunosuppressive genes PTGS2 (encoding COX-2) and CD274 (encoding PD-L1) in human and murine claudin-low tumors. CONCLUSIONS Our findings show that the claudin-low breast cancer subtype is not demarcated by specific genomic aberrations, but carries potentially targetable characteristics warranting further research.
Collapse
Affiliation(s)
- Christian Fougner
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Helga Bergholtz
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Raoul Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jens Henrik Norum
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway. .,Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
47
|
Enrichment of AT-TA transversion at 5'-CAG-3' motif is not a unique mutational signature of aristolochic acid. SCIENCE CHINA-LIFE SCIENCES 2019; 62:974-977. [PMID: 31187304 DOI: 10.1007/s11427-019-9566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
48
|
Tijhuis AE, Johnson SC, McClelland SE. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol Cytogenet 2019; 12:17. [PMID: 31114634 PMCID: PMC6518824 DOI: 10.1186/s13039-019-0429-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Many cancers possess an incorrect number of chromosomes, a state described as aneuploidy. Aneuploidy is often caused by Chromosomal Instability (CIN), a process of continuous chromosome mis-segregation. CIN is believed to endow tumours with enhanced evolutionary capabilities due to increased intratumour heterogeneity, and facilitating adaptive resistance to therapies. Recently, however, additional consequences and associations with CIN have been revealed, prompting the need to understand this universal hallmark of cancer in a multifaceted context. This review is focused on the investigation of possible links between CIN, metastasis and the host immune system in cancer development and treatment. We specifically focus on these links since most cancer deaths are due to the consequences of metastasis, and immunotherapy is a rapidly expanding novel avenue of cancer therapy.
Collapse
Affiliation(s)
- Andréa E. Tijhuis
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Sarah C. Johnson
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Sarah E. McClelland
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| |
Collapse
|
49
|
Zhivagui M, Ng AWT, Ardin M, Churchwell MI, Pandey M, Renard C, Villar S, Cahais V, Robitaille A, Bouaoun L, Heguy A, Guyton KZ, Stampfer MR, McKay J, Hollstein M, Olivier M, Rozen SG, Beland FA, Korenjak M, Zavadil J. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res 2019; 29:521-531. [PMID: 30846532 PMCID: PMC6442384 DOI: 10.1101/gr.242453.118] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Humans are frequently exposed to acrylamide, a probable human carcinogen found in commonplace sources such as most heated starchy foods or tobacco smoke. Prior evidence has shown that acrylamide causes cancer in rodents, yet epidemiological studies conducted to date are limited and, thus far, have yielded inconclusive data on association of human cancers with acrylamide exposure. In this study, we experimentally identify a novel and unique mutational signature imprinted by acrylamide through the effects of its reactive metabolite glycidamide. We next show that the glycidamide mutational signature is found in a full one-third of approximately 1600 tumor genomes corresponding to 19 human tumor types from 14 organs. The highest enrichment of the glycidamide signature was observed in the cancers of the lung (88% of the interrogated tumors), liver (73%), kidney (>70%), bile duct (57%), cervix (50%), and, to a lesser extent, additional cancer types. Overall, our study reveals an unexpectedly extensive contribution of acrylamide-associated mutagenesis to human cancers.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alvin W T Ng
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Manuraj Pandey
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Claire Renard
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Stephanie Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Liacine Bouaoun
- Environment and Radiation Section, International Agency for Research on Cancer, Lyon 69008, France
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center, New York University, Langone Medical Center, New York, New York 10016, USA
| | - Kathryn Z Guyton
- IARC Monographs Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Monica Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
- Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds LS2 9JT, United Kingdom
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| |
Collapse
|
50
|
Dodagatta-Marri E, Meyer DS, Reeves MQ, Paniagua R, To MD, Binnewies M, Broz ML, Mori H, Wu D, Adoumie M, Del Rosario R, Li O, Buchmann T, Liang B, Malato J, Arce Vargus F, Sheppard D, Hann BC, Mirza A, Quezada SA, Rosenblum MD, Krummel MF, Balmain A, Akhurst RJ. α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J Immunother Cancer 2019. [PMID: 30832732 DOI: 10.1186/s40425-018-0493-9.pmid:30832732;pmcid:pmc6399967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Checkpoint blockade immunotherapy has improved metastatic cancer patient survival, but response rates remain low. There is an unmet need to identify mechanisms and tools to circumvent resistance. In human patients, responses to checkpoint blockade therapy correlate with tumor mutation load, and intrinsic resistance associates with pre-treatment signatures of epithelial mesenchymal transition (EMT), immunosuppression, macrophage chemotaxis and TGFβ signaling. METHODS To facilitate studies on mechanisms of squamous cell carcinoma (SCC) evasion of checkpoint blockade immunotherapy, we sought to develop a novel panel of murine syngeneic SCC lines reflecting the heterogeneity of human cancer and its responses to immunotherapy. We characterized six Kras-driven cutaneous SCC lines with a range of mutation loads. Following implantation into syngeneic FVB mice, we examined multiple tumor responses to α-PD-1, α-TGFβ or combinatorial therapy, including tumor growth rate and regression, tumor immune cell composition, acquired tumor immunity, and the role of cytotoxic T cells and Tregs in immunotherapy responses. RESULTS We show that α-PD-1 therapy is ineffective in establishing complete regression (CR) of tumors in all six SCC lines, but causes partial tumor growth inhibition of two lines with the highest mutations loads, CCK168 and CCK169. α-TGFβ monotherapy results in 20% CR and 10% CR of established CCK168 and CCK169 tumors respectively, together with acquisition of long-term anti-tumor immunity. α-PD-1 synergizes with α-TGFβ, increasing CR rates to 60% (CCK168) and 20% (CCK169). α-PD-1 therapy enhances CD4 + Treg/CD4 + Th ratios and increases tumor cell pSmad3 expression in CCK168 SCCs, whereas α-TGFβ antibody administration attenuates these effects. We show that α-TGFβ acts in part through suppressing immunosuppressive Tregs induced by α-PD-1, that limit the anti-tumor activity of α-PD-1 monotherapy. Additionally, in vitro and in vivo, α-TGFβ acts directly on the tumor cell to attenuate EMT, to activate a program of gene expression that stimulates immuno-surveillance, including up regulation of genes encoding the tumor cell antigen presentation machinery. CONCLUSIONS We show that α-PD-1 not only initiates a tumor rejection program, but can induce a competing TGFβ-driven immuno-suppressive program. We identify new opportunities for α-PD-1/α-TGFβ combinatorial treatment of SCCs especially those with a high mutation load, high CD4+ T cell content and pSmad3 signaling. Our data form the basis for clinical trial of α-TGFβ/α-PD-1 combination therapy (NCT02947165).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers
- CD4 Lymphocyte Count
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Drug Synergism
- Epithelial-Mesenchymal Transition
- Humans
- Immunohistochemistry
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Signal Transduction/drug effects
- Smad3 Protein/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
Collapse
Affiliation(s)
- E Dodagatta-Marri
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - D S Meyer
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - M Q Reeves
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - R Paniagua
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Department of Dermatology, UCSF, San Francisco, CA, USA
| | - M D To
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - M Binnewies
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - M L Broz
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - H Mori
- Center for Comparative Medicine UC Davis, Davis, CA, USA
| | - D Wu
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - M Adoumie
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - R Del Rosario
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - O Li
- Department of Medicine, UCSF, San Francisco, CA, USA
| | - T Buchmann
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - B Liang
- Xoma Corporation, Berkeley, CA, USA
| | - J Malato
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - F Arce Vargus
- Cancer Immunology Unit, Immune Regulation and Tumour Immunotherapy Lab, University College London, London, UK
| | | | - B C Hann
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - A Mirza
- Department of Medicine, UCSF, San Francisco, CA, USA
| | - S A Quezada
- Cancer Immunology Unit, Immune Regulation and Tumour Immunotherapy Lab, University College London, London, UK
| | - M D Rosenblum
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Department of Dermatology, UCSF, San Francisco, CA, USA
| | - M F Krummel
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- Department of Pathology, UCSF, San Francisco, CA, USA
- UCSF Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - A Balmain
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
- UCSF Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA, USA
| | - R J Akhurst
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA.
- UCSF Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Anatomy, UCSF, San Francisco, CA, USA.
| |
Collapse
|