1
|
Serneels PJ, Schutter JDD, Groef LD, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
Scheijen EE, Veeningen N, Duwé S, Ivanova A, Van Broeckhoven J, Hendrix S, Wilson DM. Temporal and spatial pattern of DNA damage in neurons following spinal cord Injury in mice. J Biomed Sci 2025; 32:12. [PMID: 39844195 PMCID: PMC11756142 DOI: 10.1186/s12929-024-01104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Deficient DNA repair and excessive DNA damage contribute to neurodegenerative disease. However, the role of DNA damage and repair in spinal cord injury (SCI) is unclear. SCI, a debilitating disruption of the structural and biological network of the spinal cord, is characterized by oxidative stress. Nevertheless, the pathophysiological mechanisms leading to neuronal loss following SCI remain incompletely defined. METHODS Using a contusion model, a severe SCI was induced at the L1 spinal level in C57Bl/6J mice. The temporal and spatial presence of DNA damage was then determined via immunolabeling for the DNA damage marker, γH2AX, from 1 h post-injury (hpi) to 28 days post-injury (dpi). RESULTS Our analysis revealed that increased DNA damage foci were present from 1 hpi to 3 dpi in SCI mice relative to controls (sham surgery and naive), with the damage signal spreading over time longitudinally from the affected area to more rostral and caudal regions. Co-labeling of γH2AX with NeuN revealed neuronal specificity of DNA damage, with increased early cell death (pan-nuclear γH2AX) peaking at 1 dpi and apoptosis (cleaved Caspase-3) arising later at 3 dpi. CONCLUSION Our study indicates a possible role of DNA damage in neuronal loss following SCI and highlights the need for early interventions targeting DNA repair to preserve neuronal tissue.
Collapse
Affiliation(s)
- Elle Em Scheijen
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Naomi Veeningen
- Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Sam Duwé
- Advanced Optical Microscopy Centre, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Anna Ivanova
- Data Science Institute, Biomedical Research Institute, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - David M Wilson
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
3
|
de Barros AGC, dos Santos GB, Marcon RM, Cristante AF. Erythropoietin to Treat Spinal Cord Injury: Evaluation of Different Doses and Magnitudes of Trauma in Rats. Global Spine J 2024:21925682241306106. [PMID: 39652832 PMCID: PMC11629366 DOI: 10.1177/21925682241306106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
STUDY DESIGN Experimental spinal cord lesion study. OBJECTIVES To evaluate the effects of erythropoietin at different doses on neural regeneration in rats undergoing spinal cord injury. METHODS Anesthetized Wistar rats were submitted to standardized spinal cord injury and randomized into eight groups, receiving different magnitudes of trauma and single or repeated doses of intraperitoneal erythropoietin (500 or 5000 IU/kg of body weight). We evaluated motor function using BBB scores and sensorimotor behavior by observing the rats walking on a horizontal ladder (at 2, 4, and 6 weeks) and performed histological analysis of the spinal cord after euthanasia. We compared the scores between groups using analysis of variance (ANOVA) and Bonferroni multiple comparisons. RESULTS The experiments were conducted with 10 animals per group (n = 80), none of which died or were excluded. BBB scores increased over time (meaning recovery) in all groups (P < 0.001 for all). From the fourth week, animals receiving lower trauma and higher erythropoietin doses had higher BBB scores than those receiving lower doses. The total number of steps and correct steps taken on the horizontal ladder increased, and slips decreased over time with treatment in all groups. Although the number of errors was different between moments (P < 0.001), it was not different between groups (P = 0.707). Rats receiving higher impact lesions had more spinal cord necrosis and worse recovery of neuronal fibers than the rest. CONCLUSIONS Animals receiving a higher dose of erythropoietin and suffering minor trauma showed better and faster neurological recovery. Repeating erythropoietin after a week showed no benefit.
Collapse
Affiliation(s)
- Alderico Girão Campos de Barros
- Department of Orthopedics and Traumatology, University of São Paulo Institute of Orthopedics and Traumatology, São Paulo, Brasil
| | - Gustavo Bispo dos Santos
- Department of Orthopedics and Traumatology, University of São Paulo Institute of Orthopedics and Traumatology, São Paulo, Brasil
| | - Raphael Martus Marcon
- Department of Orthopedics and Traumatology, University of São Paulo Institute of Orthopedics and Traumatology, São Paulo, Brasil
| | - Alexandre Fogaça Cristante
- Department of Orthopedics and Traumatology, University of São Paulo Institute of Orthopedics and Traumatology, São Paulo, Brasil
| |
Collapse
|
4
|
Al Mamun A, Quan Z, Geng P, Wang S, Shao C, Xiao J. Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies. CNS Neurosci Ther 2024; 30:1-15. [PMID: 39723448 DOI: 10.1111/cns.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a severe neurological disease characterized by significant motor, sensory, and autonomic dysfunctions. SCI is a major global disability cause, often resulting in long-term neurological impairments due to the impeded regeneration and remyelination of axons. A SCI interferes with communication between the brain and the spinal cord networks that control neurological functions. Recent advancements in understanding the molecular and cellular mechanisms of remyelination have opened novel therapeutic interventions. METHOD This review systematically sourced articles related to spinal chord injury, remyelination, regeneration and pathophysiology from major medical databases, including Scopus, PubMed, and Web of Science. RESULTS This review discusses the efficacy of targeted therapy in enhancing myelin repair after SCI by identifying key molecules and signaling pathways. This explores the effectiveness of specific pharmacological agents and biological factors in promoting oligodendrocyte precursor cell proliferation, differentiation, and myelin sheath formation using in vitro and in vivo models. Targeted therapies have shown promising results in improving remyelination, providing hope for functional recovery in SCI patients. CONCLUSIONS This review demonstrates challenges and future perspectives in translating findings into clinical practice, emphasizing safety profiles, delivery method optimization, and combinatory therapy potential. This review also supports the possibility of targeted remyelination therapies as a promising strategy for SCI treatment, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhou Quan
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Tan Y, Lai T, Li Y, Tang Q, Zhang W, Liu Q, Wu S, Peng X, Sui X, Reggiori F, Jiang X, Chen Q, Wang C. An oil-in-gel type of organohydrogel loaded with methylprednisolone for the treatment of secondary injuries following spinal cord traumas. J Control Release 2024; 374:505-524. [PMID: 39182693 DOI: 10.1016/j.jconrel.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The secondary injuries following traumatic spinal cord injury (SCI) is a multiphasic and complex process that is difficult to treat. Although methylprednisolone (MP) is the only available pharmacological regime for SCI treatment, its efficacy remains controversial due to its very narrow therapeutic time window and safety concerns associated with high dosage. In this study, we have developed an oil-in-gel type of organohydrogel (OHG) in which the binary oleic-water phases coexist, for the local delivery of MP. This new OHG is fabricated by a glycol chitosan/oxidized hyaluronic acid hydrophilic network that is uniformly embedded with a biocompatible oil phase, and it can be effectively loaded with MP or other hydrophobic compounds. In addition to spatiotemporally control MP release, this biodegradable OHG also provides a brain tissue-mimicking scaffold that can promote tissue regeneration. OHG remarkably decreases the therapeutic dose of MP in animals and extends its treatment course over 21 d, thereby timely manipulating microglia/macrophages and their associated with signaling molecules to restore immune homeostasis, leading to a long-term functional improvement in a complete transection SCI rat model. Thus, this OHG represents a new type of gel for clinical treatment of secondary injuries in SCI.
Collapse
Affiliation(s)
- Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Ting Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Sihan Wu
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP)&College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaofeng Sui
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
6
|
Coyoy-Salgado A, Segura-Uribe J, Salgado-Ceballos H, Castillo-Mendieta T, Sánchez-Torres S, Freyermuth-Trujillo X, Orozco-Barrios C, Orozco-Suarez S, Feria-Romero I, Pinto-Almazán R, Moralí de la Brena G, Guerra-Araiza C. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines 2024; 12:1478. [PMID: 39062051 PMCID: PMC11274729 DOI: 10.3390/biomedicines12071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The primary mechanism of traumatic spinal cord injury (SCI) comprises the initial mechanical trauma due to the transmission of energy to the spinal cord, subsequent deformity, and persistent compression. The secondary mechanism of injury, which involves structures that remained undamaged after the initial trauma, triggers alterations in microvascular perfusion, the liberation of free radicals and neurotransmitters, lipid peroxidation, alteration in ionic concentrations, and the consequent cell death by necrosis and apoptosis. Research in the treatment of SCI has sought to develop early therapeutic interventions that mitigate the effects of these pathophysiological mechanisms. Clinical and experimental evidence has demonstrated the therapeutic benefits of sex-steroid hormone administration after traumatic brain injury and SCI. The administration of estradiol, progesterone, and testosterone has been associated with neuroprotective effects, better neurological recovery, and decreased mortality after SCI. This review evaluated evidence supporting hormone-related neuroprotection over SCI and the possible underlying mechanisms in animal models. As neuroprotection has been associated with signaling pathways, the effects of these hormones are observed on astrocytes and microglia, modulating the inflammatory response, cerebral blood flow, and metabolism, mediating glutamate excitotoxicity, and their antioxidant effects. Based on the current evidence, it is essential to analyze the benefit of sex steroid hormone therapy in the clinical management of patients with SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Carlos Orozco-Barrios
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Gabriela Moralí de la Brena
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
7
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
8
|
Türk Börü Ü, Kadir Sarıtaş Z, Görücü Özbek F, Bölük C, Acar H, Koç Y, Zeytin Demiral G. Alterations in the spinal cord, trigeminal nerve ganglion, and infraorbital nerve through inducing compression of the dorsal horn region at the upper cervical cord in trigeminal neuralgia. Brain Res 2024; 1832:148842. [PMID: 38447599 DOI: 10.1016/j.brainres.2024.148842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Idiopathic trigeminal neuralgia (TN) cases encountered frequently in daily practice indicate significant gaps that still need to be illuminated in the etiopathogenesis. In this study, a novel TN animal model was developed by compressing the dorsal horn (DH) of the upper cervical spinal cord. METHODS Eighteen rabbits were equally divided into three groups, namely control (CG), sham (SG), and spinal cord compression (SCC) groups. External pressure was applied to the left side at the C3 level in the SCC group. Dorsal hemilaminectomy was performed in the SG, and the operative side was closed without compression. No procedure was implemented in the control group. Samples from the SC, TG, and ION were taken after seven days. For the histochemical staining, damage and axons with myelin were scored using Hematoxylin and Eosin and Toluidine Blue, respectively. Immunohistochemistry, nuclei, apoptotic index, astrocyte activity, microglial labeling, and CD11b were evaluated. RESULTS Mechanical allodynia was observed on the ipsilateral side in the SCC group. In addition, both the TG and ION were partially damaged from SC compression, which resulted in significant histopathological changes and increased the expression of all markers in both the SG and SCC groups compared to that in the CG. There was a notable increase in tissue damage, an increase in the number of apoptotic nuclei, an increase in the apoptotic index, an indication of astrocytic gliosis, and an upsurge in microglial cells. Significant increases were noted in the SG group, whereas more pronounced significant increases were observed in the SCC group. Transmission electron microscopy revealed myelin damage, mitochondrial disruption, and increased anchoring particles. Similar changes were observed to a lesser extent in the contralateral spinal cord. CONCLUSION Ipsilateral trigeminal neuropathic pain was developed due to upper cervical SCC. The clinical finding is supported by immunohistochemical and ultrastructural changes. Thus, alterations in the DH due to compression of the upper cervical region should be considered as a potential cause of idiopathic TN.
Collapse
Affiliation(s)
- Ülkü Türk Börü
- Department of Neurology University of Afyonkarahisar Health Sciences, Afyonkarahisar, Turkey
| | - Zülfükar Kadir Sarıtaş
- Department of Surgery, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Fatma Görücü Özbek
- Department of Surgery, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Cem Bölük
- Department of Neurology and Clinical Neurophysiology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey.
| | - Hakan Acar
- Department of Neurology University of Afyonkarahisar Health Sciences, Afyonkarahisar, Turkey
| | - Yusuf Koç
- Department of Surgery, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Gökçe Zeytin Demiral
- Department of Neurology University of Afyonkarahisar Health Sciences, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Yin W, Yang C, Liu D, Cha S, Cai L, Ye G, Song X, Zhang J, Qiu X. Mussel shell-derived pro-regenerative scaffold with conductive porous multi-scale-patterned microenvironment for spinal cord injury repair. Biomed Mater 2024; 19:035041. [PMID: 38626779 DOI: 10.1088/1748-605x/ad3f63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
It is well-established that multi-scale porous scaffolds can guide axonal growth and facilitate functional restoration after spinal cord injury (SCI). In this study, we developed a novel mussel shell-inspired conductive scaffold for SCI repair with ease of production, multi-scale porous structure, high flexibility, and excellent biocompatibility. By utilizing the reducing properties of polydopamine, non-conductive graphene oxide (GO) was converted into conductive reduced graphene oxide (rGO) and crosslinkedin situwithin the mussel shells.In vitroexperiments confirmed that this multi-scale porous Shell@PDA-GO could serve as structural cues for enhancing cell adhesion, differentiation, and maturation, as well as promoting the electrophysiological development of hippocampal neurons. After transplantation at the injury sites, the Shell@PDA-GO provided a pro-regenerative microenvironment, promoting endogenous neurogenesis, triggering neovascularization, and relieving glial fibrosis formation. Interestingly, the Shell@PDA-GO could induce the release of endogenous growth factors (NGF and NT-3), resulting in the complete regeneration of nerve fibers at 12 weeks. This work provides a feasible strategy for the exploration of conductive multi-scale patterned scaffold to repair SCI.
Collapse
Affiliation(s)
- Wenming Yin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Chang Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Dan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Shuhan Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, People's Republic of China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Genlan Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, People's Republic of China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
10
|
Zedde M, Grisendi I, Assenza F, Napoli M, Moratti C, Di Cecco G, D’Aniello S, Valzania F, Pascarella R. Stroke-Induced Secondary Neurodegeneration of the Corticospinal Tract-Time Course and Mechanisms Underlying Signal Changes in Conventional and Advanced Magnetic Resonance Imaging. J Clin Med 2024; 13:1969. [PMID: 38610734 PMCID: PMC11012763 DOI: 10.3390/jcm13071969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Secondary neurodegeneration refers to the final result of several simultaneous and sequential mechanisms leading to the loss of substance and function in brain regions connected to the site of a primary injury. Stroke is one of the most frequent primary injuries. Among the subtypes of post-stroke secondary neurodegeneration, axonal degeneration of the corticospinal tract, also known as Wallerian degeneration, is the most known, and it directly impacts motor functions, which is crucial for the motor outcome. The timing of its appearance in imaging studies is usually considered late (over 4 weeks), but some diffusion-based magnetic resonance imaging (MRI) techniques, as diffusion tensor imaging (DTI), might show alterations as early as within 7 days from the stroke. The different sequential pathological stages of secondary neurodegeneration provide an interpretation of the signal changes seen by MRI in accordance with the underlying mechanisms of axonal necrosis and repair. Depending on the employed MRI technique and on the timing of imaging, different rates and thresholds of Wallerian degeneration have been provided in the literature. In fact, three main pathological stages of Wallerian degeneration are recognizable-acute, subacute and chronic-and MRI might show different changes: respectively, hyperintensity on T2-weighted sequences with corresponding diffusion restriction (14-20 days after the injury), followed by transient hypointensity of the tract on T2-weighted sequences, and by hyperintensity and atrophy of the tract on T2-weighted sequences. This is the main reason why this review is focused on MRI signal changes underlying Wallerian degeneration. The identification of secondary neurodegeneration, and in particular Wallerian degeneration, has been proposed as a prognostic indicator for motor outcome after stroke. In this review, the main mechanisms and neuroimaging features of Wallerian degeneration in adults are addressed, focusing on the time and mechanisms of tissue damage underlying the signal changes in MRI.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Federica Assenza
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (G.D.C.); (S.D.); (R.P.)
| | - Giovanna Di Cecco
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (G.D.C.); (S.D.); (R.P.)
| | - Serena D’Aniello
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (G.D.C.); (S.D.); (R.P.)
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (G.D.C.); (S.D.); (R.P.)
| |
Collapse
|
11
|
McCallum S, Suresh KB, Islam T, Saustad AW, Shelest O, Patil A, Lee D, Kwon B, Yenokian I, Kawaguchi R, Beveridge CH, Manchandra P, Randolph CE, Meares GP, Dutta R, Plummer J, Knott SRV, Chopra G, Burda JE. Lesion-remote astrocytes govern microglia-mediated white matter repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585251. [PMID: 38558977 PMCID: PMC10979953 DOI: 10.1101/2024.03.15.585251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using multiple transcriptional profiling methods, we interrogated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury (SCI). We show that LRAs acquire a spectrum of molecularly distinct, neuroanatomically restricted reactivity states that evolve after SCI. We identify transcriptionally unique reactive LRAs in degenerating white matter that direct the specification and function of local microglia that clear lipid-rich myelin debris to promote tissue repair. Fueling this LRA functional adaptation is Ccn1 , which encodes for a secreted matricellular protein. Loss of astrocyte CCN1 leads to excessive, aberrant activation of local microglia with (i) abnormal molecular specification, (ii) dysfunctional myelin debris processing, and (iii) impaired lipid metabolism, culminating in blunted debris clearance and attenuated neurological recovery from SCI. Ccn1 -expressing white matter astrocytes are specifically induced by local myelin damage and generated in diverse demyelinating disorders in mouse and human, pointing to their fundamental, evolutionarily conserved role in white matter repair. Our findings show that LRAs assume regionally divergent reactivity states with functional adaptations that are induced by local context-specific triggers and influence disorder outcome. Astrocytes tile the central nervous system (CNS) where they serve vital roles that uphold healthy nervous system function, including regulation of synapse development, buffering of neurotransmitters and ions, and provision of metabolic substrates 1 . In response to diverse CNS insults, astrocytes exhibit disorder-context specific transformations that are collectively referred to as reactivity 2-5 . The characteristics of regionally and molecularly distinct reactivity states are incompletely understood. The mechanisms through which distinct reactivity states arise, how they evolve or resolve over time, and their consequences for local cell function and CNS disorder progression remain enigmatic. Immediately adjacent to CNS lesions, border-forming astrocytes (BFAs) undergo transcriptional reprogramming and proliferation to form a neuroprotective barrier that restricts inflammation and supports axon regeneration 6-9 . Beyond the lesion, spared but dynamic regions of the injured CNS exhibit varying degrees of synaptic circuit remodeling and progressive cellular responses to secondary damage that have profound consequences for neural repair and recovery 10,11 . Throughout these cytoarchitecturally intact, but injury-reactive regions, lesion-remote astrocytes (LRAs) intermingle with neurons and glia, undergo little to no proliferation, and exhibit varying degrees of cellular hypertrophy 7,12,13 . The molecular and functional properties of LRAs remain grossly undefined. Therapeutically harnessing spared regions of the injured CNS will require a clearer understanding of the accompanying cellular and molecular landscape. Here, we leveraged integrative transcriptional profiling methodologies to identify multiple spatiotemporally resolved, molecularly distinct states of LRA reactivity within the injured spinal cord. Computational modeling of LRA-mediated heterotypic cell interactions, astrocyte-specific conditional gene deletion, and multiple mouse models of acute and chronic CNS white matter degeneration were used to interrogate a newly identified white matter degeneration-reactive astrocyte subtype. We define how this reactivity state is induced and its role in governing the molecular and functional specification of local microglia that clear myelin debris from the degenerating white matter to promote repair.
Collapse
|
12
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
13
|
Guo Y, Mehrabian Z, Milbrandt J, DiAntonio A, Bernstein SL. Synergistic Protection of Retinal Ganglion Cells (RGCs) by SARM1 Inactivation with CNTF in a Rodent Model of Nonarteritic Anterior Ischemic Optic Neuropathy. Cells 2024; 13:202. [PMID: 38334594 PMCID: PMC10854792 DOI: 10.3390/cells13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
We evaluated whether inhibiting sterile alpha and (Toll/interleukin receptor (TIR)) motif-containing 1 (SARM1) activity protects retinal ganglion cells (RGCs) following ischemic axonopathy (rodent nonarteritic anterior ischemic optic neuropathy: rNAION) by itself and combined with ciliary neurotrophic factor (CNTF). Genetically modified SARM1(-) rats were rNAION-induced in one eye and compared against equivalently induced wild-type animals of the same background. Optic nerve (ON) diameters were quantified using optical coherence tomography (SD-OCT). RGCs were quantified 30 d post-induction using retinal stereology for Brn3a(+) nuclei. ON sections were analyzed by TEM and immunohistochemistry. SARM1(-)(-) and WT animals were then bilaterally sequentially rNAION-induced. One eye received intravitreal vehicle injection following induction; the contralateral side received CNTF and was analyzed 30 d post-induction. Inhibiting SARM1 activity suppressed axonal collapse following ischemic axonopathy. SARM1(-) animals significantly reduced RGC loss, compared with WT animals (49.4 ± 6.8% RGC loss in SARM1(-) vs. 63.6 ± 3.2% sem RGC loss in WT; Mann-Whitney one-tailed U-test, (p = 0.049)). IVT-CNTF treatment vs. IVT-vehicle in SARM1(-) animals further reduced RGC loss by 24% at 30 d post-induction, but CNTF did not, by itself, improve long-term RGC survival in WT animals compared with vehicle (Mann-Whitney one-tailed t-test; p = 0.033). While inhibiting SARM1 activity is itself neuroprotective, combining SARM1 inhibition and CNTF treatment generated a long-term, synergistic neuroprotective effect in ischemic neuropathy. Combinatorial treatments for NAION utilizing independent neuroprotective mechanisms may thus provide a greater effect than individual treatment modalities.
Collapse
Affiliation(s)
- Yan Guo
- Departments of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (Y.G.); (Z.M.)
| | - Zara Mehrabian
- Departments of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (Y.G.); (Z.M.)
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA;
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA;
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L. Bernstein
- Departments of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (Y.G.); (Z.M.)
- Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
He K, Yu H, Zhang J, Wu L, Han D, Ma R. A bibliometric analysis of the research hotspots and frontiers related to cell death in spinal cord injury. Front Neurol 2024; 14:1280908. [PMID: 38249747 PMCID: PMC10797099 DOI: 10.3389/fneur.2023.1280908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Background Spinal cord injury (SCI) is a severe central nervous trauma that can cause serious consequences. Cell death is emerging as a common pathogenesis after SCI. In the last two decades, numerous studies have been published in the field of cell death after SCI. However, it is still rare to find relevant bibliometric analyses. This bibliometric study aims to visually represent global research trends in the field of cell death after SCI. Methods Bibliometric data were sourced from the Web of Science Core Collection (WoSCC) database. VOSviewer, CiteSpace, and R software ("bibliometrix" package) were used to analyze and visualize bibliometric data. Annual scientific production, countries/regions, institutions, authors, journals, highly cited papers, keywords, and literature co-citation were evaluated to determine research performance. Results An analysis of 5,078 publications extracted from the WoSCC database revealed a fluctuating yet persistent growth in the field of cell death after SCI over the past 23 years. China and the United States, contributing 69% of the total publications, were the main driving force in this field. The Wenzhou Medical University from China contributed to the most papers. In terms of authors, Salvatore Cuzzocrea from the University of Messina had the highest number of publications. The "Journal of Neurotrauma" was the top journal in terms of the number of publications, however, the "Journal of Neuroscience" was the top journal in terms of the number of citations. The theme of the highly cited articles mainly focused on the mechanism of cell death after SCI. The keyword and literature co-citation analysis mainly focused on the mode of cell death, mechanism research of cell death, and functional recovery after SCI. Conclusion This study analyzes the research hotspots, frontiers, and development trends in the field of cell death after SCI, which is important for future studies.
Collapse
Affiliation(s)
- Kelin He
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Han Yu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jieqi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Wu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
| | - Dexiong Han
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
| | - Ruijie Ma
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Baaklini CS, Ho MFS, Lange T, Hammond BP, Panda SP, Zirngibl M, Zia S, Himmelsbach K, Rana H, Phillips B, Antoszko D, Ibanga J, Lopez M, Lee KV, Keough MB, Caprariello AV, Kerr BJ, Plemel JR. Microglia promote remyelination independent of their role in clearing myelin debris. Cell Rep 2023; 42:113574. [PMID: 38100356 DOI: 10.1016/j.celrep.2023.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss. While therapies exist to slow MS progression, no treatment currently exists for remyelination. Remyelination, linked to reduced disability in MS, relies on microglia and monocyte-derived macrophages (MDMs). This study aims to understand the role of microglia during remyelination by lineage tracing and depleting them. Microglial lineage tracing reveals that both microglia and MDMs initially accumulate, but microglia later dominate the lesion. Microglia and MDMs engulf equal amounts of inhibitory myelin debris, but after microglial depletion, MDMs compensate by engulfing more myelin debris. Microglial depletion does, however, reduce the recruitment and proliferation of oligodendrocyte progenitor cells (OPCs) and impairs their subsequent differentiation and remyelination. These findings underscore the essential role of microglia during remyelination and offer insights for enhancing this process by understanding microglial regulation of remyelination.
Collapse
Affiliation(s)
- Charbel S Baaklini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Madelene F S Ho
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tristan Lange
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sharmistha P Panda
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Martin Zirngibl
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kassandre Himmelsbach
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Heli Rana
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Braxton Phillips
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daria Antoszko
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jeremies Ibanga
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mizuki Lopez
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kelly V Lee
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael B Keough
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 1N4, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
17
|
Vij R, Kim H, Park H, Cheng T, Lotfi D, Chang D. Functional recovery of a 41-year-old quadriplegic spinal cord injury patient following multiple intravenous infusions of autologous adipose-derived mesenchymal stem cells: a case report. FRONTIERS IN TRANSPLANTATION 2023; 2:1287508. [PMID: 38993875 PMCID: PMC11235215 DOI: 10.3389/frtra.2023.1287508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Spinal cord injury (SCI) is a debilitating disease with clinical manifestations ranging from incomplete neurological deficits affecting sensory and motor functions to complete paralysis. Recent advancements in stem cell research have elucidated the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of patients with SCI. Here, we present a case of a 41-year-old quadriplegic male individual who experienced a traumatic C-5 incomplete SCI, after slipping off a boat in Florida Keys on August 4, 2017. He was diagnosed with C5-C6 Grade 2 anterolisthesis with flexion teardrop fracture of the anterior C6 with jumped facet on the right and perched facet on the left at C5-C6 with spinal canal stenosis. On September 12, 2019, an Individual Expanded Access Protocol was approved for administration of multiple infusions of autologous, adipose-derived MSCs (adMSCs) for the treatment of this quadriplegic incomplete C5-6 SCI patient. Thirty-four (34) recurrent infusions each with 200 million cells were administered, over a period of ∼2.5 years, which resulted in significant improvements in his quality-of-life as demonstrated by substantial improvements in SCIM-III (Spinal Cord Independence Measure III) scores. Additionally, electromyography/nerve conduction velocity (EMG/NCV) studies showed improvements in the patient's motor and sensory function. No safety concerns were presented, and no serious adverse events were reported during the entire course of treatment. Multiple intravenous infusions of autologous HB-adMSCs for treatment of SCI demonstrated significant enhancements in the patient's neurological function with improved quality-of-life. Further research is needed to evaluate the results of this study.
Collapse
Affiliation(s)
- Ridhima Vij
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
| | - Hosu Kim
- Cell Production, Hope Biosciences, Sugar Land, TX, United States
| | - Hyeonggeun Park
- Cell Production, Hope Biosciences, Sugar Land, TX, United States
| | - Thanh Cheng
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
| | - Djamchid Lotfi
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
| | - Donna Chang
- Clinical Research, Hope Biosciences Research Foundation, Sugar Land, TX, United States
- Cell Production, Hope Biosciences, Sugar Land, TX, United States
| |
Collapse
|
18
|
Li Q, Sandoval A, Chen B. Advancing spinal cord injury research with optical clearing, light sheet microscopy, and artificial intelligence-based image analysis. Neural Regen Res 2023; 18:2661-2662. [PMID: 37449611 DOI: 10.4103/1673-5374.373708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Qiang Li
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo Sandoval
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bo Chen
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Pukos N, Marion CM, Arnold WD, Noble BT, Popovich PG, McTigue DM. Chronic demyelination and myelin repair after spinal cord injury in mice: A potential link for glutamatergic axon activity. Glia 2023; 71:2096-2116. [PMID: 37208933 PMCID: PMC10330449 DOI: 10.1002/glia.24382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Our prior work examining endogenous repair after spinal cord injury (SCI) in mice revealed that large numbers of new oligodendrocytes (OLs) are generated in the injured spinal cord, with peak oligodendrogenesis between 4 and 7 weeks post-injury (wpi). We also detected new myelin formation over 2 months post-injury (mpi). Our current work significantly extends these results, including quantification of new myelin through 6 mpi and concomitant examination of indices of demyelination. We also examined electrophysiological changes during peak oligogenesis and a potential mechanism driving OL progenitor cell (OPC) contact with axons. Results reveal peak in remyelination occurs during the 3rd mpi, and that myelin generation continues for at least 6 mpi. Further, motor evoked potentials significantly increased during peak remyelination, suggesting enhanced axon potential conduction. Interestingly, two indices of demyelination, nodal protein spreading and Nav1.2 upregulation, were also present chronically after SCI. Nav1.2 was expressed through 10 wpi and nodal protein disorganization was detectable throughout 6 mpi suggesting chronic demyelination, which was confirmed with EM. Thus, demyelination may continue chronically, which could trigger the long-term remyelination response. To examine a potential mechanism that may initiate post-injury myelination, we show that OPC processes contact glutamatergic axons in the injured spinal cord in an activity-dependent manner. Notably, these OPC/axon contacts were increased 2-fold when axons were activated chemogenetically, revealing a potential therapeutic target to enhance post-SCI myelin repair. Collectively, results show the surprisingly dynamic nature of the injured spinal cord over time and that the tissue may be amenable to treatments targeting chronic demyelination.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio, USA
| | - Christina M Marion
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - W David Arnold
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio, USA
- Division of Neuromuscular Disorders, Department of Neurology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Physical Medicine and Rehabilitation, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Benjamin T Noble
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
21
|
Zhang J, Yao Y, Wu JS, Rolls ET, Sun CC, Bu LH, Lu JF, Lin CP, Feng JF, Mao Y, Zhou LF. The cortical regions and white matter tracts underlying auditory comprehension in patients with primary brain tumor. Hum Brain Mapp 2023; 44:1603-1616. [PMID: 36515634 PMCID: PMC9921237 DOI: 10.1002/hbm.26161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
The comprehension of spoken language is one of the most essential language functions in humans. However, the neurological underpinnings of auditory comprehension remain under debate. Here we used multi-modal neuroimaging analyses on a group of patients with low-grade gliomas to localize cortical regions and white matter tracts responsible for auditory language comprehension. Region-of-interests and voxel-level whole-brain analyses showed that cortical areas in the posterior temporal lobe are crucial for language comprehension. The fiber integrity assessed with diffusion tensor imaging of the arcuate fasciculus and the inferior longitudinal fasciculus was strongly correlated with both auditory comprehension and the grey matter volume of the inferior temporal and middle temporal gyri. Together, our findings provide direct evidence for an integrated network of auditory comprehension whereby the superior temporal gyrus and sulcus, the posterior parts of the middle and inferior temporal gyri serve as auditory comprehension cortex, and the arcuate fasciculus and the inferior longitudinal fasciculus subserve as crucial structural connectivity. These findings provide critical evidence on the neural underpinnings of language comprehension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.,National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jin-Song Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, UK.,Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.,Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Ce-Chen Sun
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Ling-Hao Bu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jun-Feng Lu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Department of Computer Science, University of Warwick, Coventry, UK.,Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Liang-Fu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
22
|
Overexpression of the X-Linked Inhibitor of Apoptosis Protein (XIAP) in Neurons Improves Cell Survival and the Functional Outcome after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032791. [PMID: 36769152 PMCID: PMC9917926 DOI: 10.3390/ijms24032791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Mechanical trauma to the spinal cord causes extensive neuronal death, contributing to the loss of sensory-motor and autonomic functions below the injury location. Apoptosis affects neurons after spinal cord injury (SCI) and is associated with increased caspase activity. Cleavage of X-linked inhibitor of apoptosis protein (XIAP) after SCI may contribute to this rise in caspase activity. Accordingly, we have shown that the elevation of XIAP resulted in increased neuronal survival after SCI and improved functional recovery. Therefore, we hypothesise that neuronal overexpression of XIAP can be neuroprotective after SCI with improved functional recovery. In line with this, studies of a transgenic mice with overexpression of XIAP in neurons revealed that higher levels of XIAP after spinal cord trauma favours neuronal survival, tissue preservation, and motor recovery after the spinal cord trauma. Using human SH-SY5Y cells overexpressing XIAP, we further showed that XIAP reduced caspase activity and apoptotic cell death after pro-apoptotic stimuli. In conclusion, this study shows that the levels of XIAP expression are an important factor for the outcome of spinal cord trauma and identifies XIAP as an important therapeutic target for alleviating the deleterious effects of SCI.
Collapse
|
23
|
Kim MW, Kang CN, Choi SH. Update of the Natural History, Pathophysiology, and Treatment Strategies of Degenerative Cervical Myelopathy: A Narrative Review. Asian Spine J 2023; 17:213-221. [PMID: 36787787 PMCID: PMC9977993 DOI: 10.31616/asj.2022.0440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Cervical myelopathy is a clinical syndrome resulting in symptoms of neurologic deficits due to prolonged spinal cord compression or ischemia in the cervical spine. Spinal cord compression can be caused by ossification of the posterior longitudinal ligament and hypertrophy of ligamentun flavum in addition to degenerative cervical spondylosis, degenerative disc disease, and progressive cervical kyphosis. Degenerative cervical myelopathy (DCM) is a series of disease entities caused by spinal cord compression by various nontraumatic and non-infectious causes. The pathophysiology of DCM includes spinal cord structure and function abnormalities caused by both static and dynamic factors. Surgical decompression for patients with moderate to severe cervical myelopathy not only inhibits the progression of neurological deterioration, but also improves functional status, pain, and quality of life. However, the role of nonsurgical treatment in patients with mild spinal cord compression is controversial. In general, patients with cervical myelopathies who do not undergo surgery have a poor prognosis. Appropriate surgical treatment is recommended when spinal cord compression is confirmed on image study in patients with reasonable symptoms of cervical myelopathy. The patient's overall health, degree of compression, presence of concurrent cervical radiculopathy, and cervical spine alignment, in addition to lesion location and etiology, should be considered when determining an appropriate surgical procedure. This review covers the updated issues, including pathophysiology, clinical manifestations, differential diagnosis, and available treatments for DCM.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Orthopaedic Surgery, Busan Medical Center, Pusan,
Korea
| | - Chang-Nam Kang
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul,
Korea
| | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul,
Korea
| |
Collapse
|
24
|
Liu NK, Deng LX, Wang M, Lu QB, Wang C, Wu X, Wu W, Wang Y, Qu W, Han Q, Xia Y, Ravenscraft B, Li JL, You SW, Wipf P, Han X, Xu XM. Restoring mitochondrial cardiolipin homeostasis reduces cell death and promotes recovery after spinal cord injury. Cell Death Dis 2022; 13:1058. [PMID: 36539405 PMCID: PMC9768173 DOI: 10.1038/s41419-022-05369-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Alterations in phospholipids have long been associated with spinal cord injury (SCI). However, their specific roles and signaling cascades in mediating cell death and tissue repair remain unclear. Here we investigated whether alterations of cardiolipin (CL), a family of mitochondrion-specific phospholipids, play a crucial role in mitochondrial dysfunction and neuronal death following SCI. Lipidomic analysis was used to determine the profile of CL alteration in the adult rat spinal cord following a moderate contusive SCI at the 10th thoracic (T10) level. Cellular, molecular, and genetic assessments were performed to determine whether CL alterations mediate mitochondrial dysfunction and neuronal death after SCI, and, if so, whether reversing CL alteration leads to neuroprotection after SCI. Using lipidomic analysis, we uncovered CL alterations at an early stage of SCI. Over 50 distinct CL species were identified, of which 50% showed significantly decreased abundance after SCI. The decreased CL species contained mainly polyunsaturated fatty acids that are highly susceptible to peroxidation. In parallel, 4-HNE, a lipid peroxidation marker, significantly increased after SCI. We found that mitochondrial oxidative stress not only induced CL oxidation, but also resulted in CL loss by activating cPLA2 to hydrolyze CL. CL alterations induced mitochondrial dysfunction and neuronal death. Remarkably, pharmacologic inhibition of CL alterations with XJB-5-131, a novel mitochondria-targeted electron and reactive oxygen species scavenger, reduced cell death, tissue damage and ameliorated motor deficits after SCI in adult rats. These findings suggest that CL alteration could be a novel mechanism that mediates injury-induced neuronal death, and a potential therapeutic target for ameliorating secondary SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Miao Wang
- Frontage Laboratories, Exton, PA, 19341, USA
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chunyan Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baylen Ravenscraft
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Si-Wei You
- Institute of Neuroscience, The Fourth Military Medical University, Xi'an, P. R. China
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xianlin Han
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
25
|
Kim DH, Cho HJ, Park CY, Cho MS, Kim DW. Transplantation of PSA-NCAM-Positive Neural Precursors from Human Embryonic Stem Cells Promotes Functional Recovery in an Animal Model of Spinal Cord Injury. Tissue Eng Regen Med 2022; 19:1349-1358. [PMID: 36036887 PMCID: PMC9679075 DOI: 10.1007/s13770-022-00483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) results in permanent impairment of motor and sensory functions at and below the lesion site. There is no therapeutic option to the functional recovery of SCI involving diverse injury responses of different cell types in the lesion that limit endogenous nerve regeneration. In this regard, cell replacement therapy utilizing stem cells or their derivatives has become a highly promising approach to promote locomotor recovery. For this reason, the demand for a safe and efficient multipotent cell source that can differentiate into various neural cells is increasing. In this study, we evaluated the efficacy and safety of human polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive neural precursor cells (hNPCsPSA-NCAM+) as a treatment for SCI. METHODS One hundred thousand hNPCsPSA-NCAM+ isolated from human embryonic stem cell-derived NPCs were transplanted into the lesion site by microinjection 7 days after contusive SCI at the thoracic level. We examined the histological characteristics of the graft and behavioral improvement in the SCI rats 10 weeks after transplantation. RESULTS Locomotor activity improvement was estimated by the Basso-Beattie-Bresnahan locomotor rating scale. Behavioral tests revealed that the transplantation of the hNPCsPSA-NCAM+ into the injured spinal cords of rats significantly improved locomotor function. Histological examination showed that hNPCsPSA-NCAM+ had differentiated into neural cells and successfully integrated into the host tissue with no evidence of tumor formation. We investigated cytokine expressions, which led to the early therapeutic effect of hNPCsPSA-NCAM+, and found that some undifferentiated NPCs still expressed midkine, a well-known neurotrophic factor involved in neural development and inflammatory responses, 10 weeks after transplantation. CONCLUSION Our results demonstrate that hNPCsPSA-NCAM+ serve as a safe and efficient cell source which has the potential to improve impaired motor function following SCI.
Collapse
Affiliation(s)
- Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Hyun-Ju Cho
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Chul-Yong Park
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea
| | - Myung Soo Cho
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- S.Biomedics Co., Ltd, 2nd Floor, 28 Seongsui-ro 26-gil, Seongdong-gu, Seoul, 04797, South Korea.
| |
Collapse
|
26
|
Liu Z, Guo S, Dong L, Wu P, Li K, Li X, Li X, Qian H, Fu Q. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment. Mater Today Bio 2022; 16:100425. [PMID: 36186847 PMCID: PMC9523385 DOI: 10.1016/j.mtbio.2022.100425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injury (SCI) is a serious disease of the central nervous system that is associated with a poor prognosis; furthermore, existing clinical treatments cannot restore nerve function in an effective manner. Inflammatory responses and the increased production of reactive oxygen species (ROS) in the microenvironment of the lesion are major obstacles that inhibit the recovery of SCI. Small extracellular vesicles (sEVs), derived from mesenchymal stem cells, are suitable options for cell-free therapy and have been shown to exert therapeutic effects in SCI, thus providing a potential strategy for microenvironment regulation. However, the effective retention, controlled release, and integration of small extracellular vesicles into injured spinal cord tissue are still a major challenge. Herein, we fabricated an N-acryloyl glycinamide/gelatin methacrylate/Laponite/Tannic acid (NAGA/GelMA/LPN/TA, NGL/T) hydrogel with sustainable sEV release (sEVs-NGL/T) to promote the recovery of motor function after SCI. The newly developed functional sEVs-NGL/T hydrogel exhibited excellent antioxidant properties in an H2O2-simulated peroxidative microenvironment in vitro. Implantation of the functional sEVs-NGL/T hydrogel in vivo could encapsulate sEVs, exhibiting efficient retention and the sustained release of sEVs, thereby synergistically inducing significant restoration of motor function and urinary tissue preservation. These positive effects can be attributed to the effective mitigation of the inflammatory and ROS microenvironment. Therefore, sEVs-NGL/T therapy provides a promising strategy for the sEV-based therapy in the treatment of SCI by comprehensively regulating the pathological microenvironment.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- 8-OHdG, 8-hydroxy-2′-deoxyguanosine
- ChAT, choline acetyl transferase
- GFAP, glial fibrillary acidic protein
- HucMSCs, Human umbilical cord mesenchymal stem cells
- Hydrogel
- Mesenchymal stem cell
- NF, neurofilament
- NGL/T, N-acryloyl glycinamide/gelatinmethacrylate/Laponite/Tannic acid
- ROS, reactive oxygen species
- Reactive oxygen species
- SCI, spinal cord injury
- Small extracellular vesicle
- Spinal cord injury
- Tannic acid
- sEVs, small extracellular vesicles
Collapse
Affiliation(s)
- Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Song Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Lanlan Dong
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240, PR China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kewei Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240, PR China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, PR China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| |
Collapse
|
27
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Graber M, Nägele F, Röhrs BT, Hirsch J, Pölzl L, Moriggl B, Mayr A, Troger F, Kirchmair E, Wagner JF, Nowosielski M, Mayer L, Voelkl J, Tancevski I, Meyer D, Grimm M, Knoflach M, Holfeld J, Gollmann-Tepeköylü C. Prevention of Oxidative Damage in Spinal Cord Ischemia Upon Aortic Surgery: First-In-Human Results of Shock Wave Therapy Prove Safety and Feasibility. J Am Heart Assoc 2022; 11:e026076. [PMID: 36216458 DOI: 10.1161/jaha.122.026076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Spinal cord ischemia (SCI) remains a devastating complication after aortic dissection or repair. A primary hypoxic damage is followed by a secondary damage resulting in further cellular loss via apoptosis. Affected patients have a poor prognosis and limited therapeutic options. Shock wave therapy (SWT) improves functional outcome, neuronal degeneration and survival in murine spinal cord injury. In this first-in-human study we treated 5 patients with spinal cord ischemia with SWT aiming to prove safety and feasibility. Methods and Results Human neurons were subjected to ischemic injury with subsequent SWT. Reactive oxygen species and cellular apoptosis were quantified using flow cytometry. Signaling of the antioxidative transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) and immune receptor Toll-like receptor 3 (TLR3) were analyzed. To assess whether SWT act via a conserved mechanism, transgenic tlr3-/- zebrafish created via CRISPR/Cas9 were subjected to spinal cord injury. To translate our findings into a clinical setting, 5 patients with SCI underwent SWT. Baseline analysis and follow-up (6 months) included assessment of American Spinal Cord Injury Association (ASIA) impairment scale, evaluation of Spinal Cord Independence Measure score and World Health Organization Quality of Life questionnaire. SWT reduced the number of reactive oxygen species positive cells and apoptosis upon ischemia via induction of the antioxidative factor nuclear factor erythroid 2-related factor 2. Inhibition or deletion of tlr3 impaired axonal growth after spinal cord lesion in zebrafish, whereas tlr3 stimulation enhanced spinal regeneration. In a first-in-human study, we treated 5 patients with SCI using SWT (mean age, 65.3 years). Four patients presented with acute aortic dissection (80%), 2 of them exhibited preoperative neurological symptoms (40%). Impairment was ASIA A in 1 patient (20%), ASIA B in 3 patients (60%), and ASIA D in 1 patient (20%) at baseline. At follow-up, 2 patients were graded as ASIA A (40%) and 3 patients as ASIA B (60%). Spinal cord independence measure score showed significant improvement. Examination of World Health Organization Quality of Life questionnaires revealed increased scores at follow-up. Conclusions SWT reduces oxidative damage upon SCI via immune receptor TLR3. The first-in-human application proved safety and feasibility in patients with SCI. SWT could therefore become a powerful regenerative treatment option for this devastating injury.
Collapse
Affiliation(s)
- Michael Graber
- Department of Cardiac Surgery Medical University of Innsbruck Austria
| | - Felix Nägele
- Department of Cardiac Surgery Medical University of Innsbruck Austria
| | | | - Jakob Hirsch
- Department of Cardiac Surgery Medical University of Innsbruck Austria
| | - Leo Pölzl
- Department of Cardiac Surgery Medical University of Innsbruck Austria
| | - Bernhard Moriggl
- Division of Clinical and Functional Anatomy Medical University of Innsbruck Austria
| | - Agnes Mayr
- Department of Radiology Medical University of Innsbruck Austria
| | - Felix Troger
- Department of Radiology Medical University of Innsbruck Austria
| | - Elke Kirchmair
- Department of Cardiac Surgery Medical University of Innsbruck Austria
| | | | | | - Lukas Mayer
- Department of Neurology Medical University of Innsbruck Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology Johannes Kepler University Linz Linz Austria.,Department of Nephrology and Medical Intensive Care Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Germany
| | - Ivan Tancevski
- Department of Internal Medicine II Medical University of Innsbruck Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI University of Innsbruck Austria
| | - Michael Grimm
- Department of Cardiac Surgery Medical University of Innsbruck Austria
| | | | - Johannes Holfeld
- Department of Cardiac Surgery Medical University of Innsbruck Austria
| | | |
Collapse
|
29
|
The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun 2022; 13:5786. [PMID: 36184639 PMCID: PMC9527244 DOI: 10.1038/s41467-022-33463-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Spinal cord injury (SCI) triggers neuroinflammation, and subsequently secondary degeneration and oligodendrocyte (OL) death. We report that the alarmin interleukin (IL)-1α is produced by damaged microglia after SCI. Intra-cisterna magna injection of IL-1α in mice rapidly induces neutrophil infiltration and OL death throughout the spinal cord, mimicking the injury cascade seen in SCI sites. These effects are abolished through co-treatment with the IL-1R1 antagonist anakinra, as well as in IL-1R1-knockout mice which demonstrate enhanced locomotor recovery after SCI. Conditional restoration of IL-1R1 expression in astrocytes or endothelial cells (ECs), but not in OLs or microglia, restores IL-1α-induced effects, while astrocyte- or EC-specific Il1r1 deletion reduces OL loss. Conditioned medium derived from IL-1α-stimulated astrocytes results in toxicity for OLs; further, IL-1α-stimulated astrocytes generate reactive oxygen species (ROS), and blocking ROS production in IL-1α-treated or SCI mice prevented OL loss. Thus, after SCI, microglia release IL-1α, inducing astrocyte- and EC-mediated OL degeneration.
Collapse
|
30
|
Prasse T, Hofstetter CP. Editorial. Unleashing embryonic stem cells for treatment of human spinal cord injury. J Neurosurg Spine 2022; 37:317-319. [PMID: 35364572 DOI: 10.3171/2022.1.spine211573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Zhang Y, Li AA, Xiao SN, Zhong NS, Tong WL, Wang SJ, Liu JM, Liu ZL. A Bibliometric Analysis of Publications on Spinal Cord Injury Treatment With Glucocorticoids Using VOSviewer. Front Public Health 2022; 10:907372. [PMID: 36003626 PMCID: PMC9393342 DOI: 10.3389/fpubh.2022.907372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023] Open
Abstract
Background Spinal cord injury (SCI) has devastating physical and social consequences for patients. Systemic administration of methylprednisolone (MP) at a higher dosage though can reduce neurological deficits following acute SCI. Still, this treatment regimen is controversial, owing to the apparent dose-related side effects and relatively minor improvement in neurological function. Therefore, this study aimed at the bibliometric analysis of published literature related to SCI treatment, which may lead to future research trends. Methods The literature published relating to SCI and using glucocorticoids for its treatment between 1982 and 2022 was collected and scanned in the Web of Science collection database using the keywords glucocorticoid, dexamethasone, MP, corticosteroids, and SCI, followed by using VOSviewer for bibliometric analysis of these articles. Results A total of 1,848 published articles and 7,448 authors on SCI and glucocorticoid usage were identified. The SCI total link strength accounts for 1,341, and MP for 762 has a strong link to neuroprotection and inflammation. The mean citation count for the top 20 most-cited articles was 682 (range: 358–1,828), where most of these were descriptive studies having focused on clinical features. The Journal of Neurotrauma was the highest-ranked journal with 6,010 citations. A total of 69 articles were published by Michael G Fehlings from the University of Toronto with 6,092 citations. The University of Toronto has published 90-related manuscripts with 7,632 citations. In contrast, 800 articles were published in the United States, with 39,633 citations and total link strength of 5,714. The second-ranked country was China, with 241 published articles and 3,403 citations. Conclusions The research published on applying MP in treating SCI has increased with time. Although the United States has made a significant global contribution to this important field of research, it requires rigorous clinical trials designed to verify the therapeutic role of MP in SCI and its appropriate dosage to find solutions for neurological recovery.
Collapse
Affiliation(s)
- Yu Zhang
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - An-An Li
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Shi-Ning Xiao
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Nan-Shan Zhong
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Wei-Lai Tong
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Shi-Jiang Wang
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Jia-Ming Liu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Zhi-Li Liu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
- *Correspondence: Zhi-Li Liu
| |
Collapse
|
32
|
Corrigendum: Purinergic signaling systems across comparative models of spinal cord injury. Neural Regen Res 2022; 18:689-696. [PMID: 36018196 PMCID: PMC9727416 DOI: 10.4103/1673-5374.350234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
[This corrects the article DOI: 10.4103/1673-5374.338993].
Collapse
|
33
|
Behroozi Z, Ramezani F, Nasirinezhad F. Human umbilical cord blood-derived platelet -rich plasma: a new window for motor function recovery and axonal regeneration after spinal cord injury. Physiol Behav 2022; 252:113840. [PMID: 35525286 DOI: 10.1016/j.physbeh.2022.113840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There are complex mechanisms for reducing intrinsic repairability and neuronal regeneration following spinal cord injury (SCI). Platelet-rich plasma (PRP) is a rich source of growth factors and has been used to motivate the regeneration of peripheral nerves in neurodegenerative disorders. However, only a few studies have shown the effects of PRP on the SCI models. METHODS We investigated whether PRP derived from human umbilical cord blood (HUCB-PRP) could recover motor function in animals with spinal cord injury. Sixty adult male Wistar rats were randomly divided into 6 groups (n=60) as control, sham (laminectomy without induction of spinal cord injury), SCI, vehicle (SCI+ Platelet-Poor Plasma), PRP2day (SCI+PRP injection 2 days after SCI), and PRP14day (SCI+PRP injection 14 days after SCI). SCI was performed at the T12-T13 level. BBB test was carried out weekly after injury for six weeks. Caspase3 expression was determined using the Immunohistochemistry technique. The expression of GSK3β, CSF-tau, and MAG was determined using the Western blot technique. Data were analyzed by PRISM & SPSS software. RESULTS HUCB-PRP treated animals showed a higher locomotor function recovery than those in the SCI group (p<0.0001). The level of caspase3, GSK3β and CSF- Tau reduced and the MAG level in the spinal cord increased by the injection of HUCB-PRP in SCI animals. CONCLUSION Injection of HUCB-PRP enhanced hind limb locomotor performance by modulation of caspase3, GSK3β, CSF-tau, and MAG expression. Using HUCB-PRP could be a new therapeutic option for recovering motor function and axonal regeneration after SCI.
Collapse
Affiliation(s)
- Zahra Behroozi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran.
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Farinaz Nasirinezhad
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Department of Physiology, Iran University of Medical Sciences; Center for Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10071559. [PMID: 35884864 PMCID: PMC9312482 DOI: 10.3390/biomedicines10071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The central nervous system microRNA miR-138-5p has attracted much attention in cancer research because it inhibits pro-apoptotic genes including CASP3. We hypothesize that miR-138-5p downregulation after SCI leads to overexpression of pro-apoptotic genes, sensitizing neural cells to noxious stimuli. This study aimed to identify miR-138-5p targets among pro-apoptotic genes overexpressed following SCI and to confirm that miR-138-5p modulates cell death in neural cells. Gene expression and histological analyses revealed that the drop in miR-138-5p expression after SCI is due to the massive loss of neurons and oligodendrocytes and its downregulation in neurons. Computational analyses identified 176 potential targets of miR-138-5p becoming dysregulated after SCI, including apoptotic proteins CASP-3 and CASP-7, and BAK. Reporter, RT-qPCR, and immunoblot assays in neural cell cultures confirmed that miR-138-5p targets their 3′UTRs, reduces their expression and the enzymatic activity of CASP-3 and CASP-7, and protects cells from apoptotic stimuli. Subsequent RT-qPCR and histological analyses in a rat model of SCI revealed that miR-138-5p downregulation correlates with the overexpression of its pro-apoptotic targets. Our results suggest that the downregulation of miR-138-5p after SCI may have deleterious effects on neural cells, particularly on spinal neurons.
Collapse
|
35
|
Chu Z, Lu Y, Qin R, Dong Y. LncRNA KCNQ1OT1 promotes the apoptosis and inflammatory response of microglia by regulating the miR-589-5p/NPTN axis after spinal cord injury. AN ACAD BRAS CIENC 2022; 94:e20210188. [PMID: 35703693 DOI: 10.1590/0001-3765202220210188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating traumatic condition accompanied with excessive inflammatory response and apoptosis of microglia. Long noncoding RNAs (lncRNAs) have been confirmed to be key regulators of cell inflammatory response. Nevertheless, the role of lncRNA KCNQ1OT1 in microglia apoptosis or inflammatory response after SCI remains to be explored. Our study focused on exploring the role and mechanism of KCNQ1OT1 in microglia after SCI. RT-qPCR showed that SCI induced the increase of KCNQ1OT1 level in mice spinal cord. Inhibition of KCNQ1OT1 suppressed the inflammatory response and apoptosis of microglia. In addition, KCNQ1OT1 was proved to bind with miR-589-5p, and NPTN was directly targeted by miR-589-5p. Furthermore, KCNQ1OT1 was negatively correlated with miR-589-5p and positively associated with NPTN. Rescue assays indicated that NPTN overexpression reversed the anti-inflammatory and anti-apoptosis effects of KCNQ1OT1 silencing. In summary, these data revealed that KCNQ1OT1 promoted inflammatory response and apoptosis of microglia by regulating the miR-589-5p/NPTN axis after SCI, which may offer a novel promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Zhaoming Chu
- Department of Orthopedics, The First People's Hospital of Lianyungang, No 6. Zhenhua East Road, Lianyungang 222000, Jiangsu, China
| | - You Lu
- Department of Orthopedics, The First People's Hospital of Lianyungang, No 6. Zhenhua East Road, Lianyungang 222000, Jiangsu, China
| | - Rujie Qin
- Department of Orthopedics, The First People's Hospital of Lianyungang, No 6. Zhenhua East Road, Lianyungang 222000, Jiangsu, China
| | - Yuefu Dong
- Department of Orthopedics, The First People's Hospital of Lianyungang, No 6. Zhenhua East Road, Lianyungang 222000, Jiangsu, China
| |
Collapse
|
36
|
Ibrahim S, Nasution IFA, Danil M, Sadewo W, Widyawati T, Eyanoer PC, Dharmajaya R, Ritarwan K, Riawan W, Loe ML, Hutagalung TR. Olive Polyphenol as Neuroprotective in Chronic Cervical Myelopathy Rabbit Model. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Olive polyphenols are known to be an anti-oxidants and anti-inflammatory agents.
AIM: The purpose of this study was to determine the potential neuroprotective effect on chronic cervical myelopathy rabbit model.
METHODS: This study was divided into six groups; control negative (Sham-Operated) group, control positive 1 and 2, treatment groups 1, 2, and 3. Olive leaf extract (OLE) gives 350 mg/kg BW and spinal cord sample was taken at the compression level C5. Histopathological assessment and immunohistochemistry of neurofilaments (NF), S-100, brain derived neurotrophic factor (BDNF), and evaluation of functional motoric outcome were done before animals were terminated.
RESULTS: Chronic cervical myelopathy in rabbit model causes decreased expression of NF, S-100, BDNF, and decreased motor function. Oral administration of OLE increased the expression of these biomarkers and improved motor function outcomes.
DISCUSSION: These findings indicate that OLE may be effective in protecting chronic cervical myelopathy in rabbit model.
Collapse
|
37
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
38
|
Abstract
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Collapse
Affiliation(s)
- Stuart Stokes
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| | - Martin Drozda
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| | - Christopher Lee
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| |
Collapse
|
39
|
Slater PG, Domínguez-Romero ME, Villarreal M, Eisner V, Larraín J. Mitochondrial function in spinal cord injury and regeneration. Cell Mol Life Sci 2022; 79:239. [PMID: 35416520 PMCID: PMC11072423 DOI: 10.1007/s00018-022-04261-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.
Collapse
Affiliation(s)
- Paula G Slater
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | - Miguel E Domínguez-Romero
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Verónica Eisner
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| |
Collapse
|
40
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
41
|
Clinical Trials Using Mesenchymal Stem Cells for Spinal Cord Injury: Challenges in Generating Evidence. Cells 2022; 11:cells11061019. [PMID: 35326470 PMCID: PMC8946989 DOI: 10.3390/cells11061019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) remains an important public health problem which often causes permanent loss of muscle strength, sensation, and function below the site of the injury, generating physical, psychological, and social impacts throughout the lives of the affected individuals, since there are no effective treatments available. The use of stem cells has been investigated as a therapeutic approach for the treatment of SCI. Although a significant number of studies have been conducted in pre-clinical and clinical settings, so far there is no established cell therapy for the treatment of SCI. One aspect that makes it difficult to evaluate the efficacy is the heterogeneity of experimental designs in the clinical trials that have been published. Cell transplantation methods vary widely among the trials, and there are still no standardized protocols or recommendations for the therapeutic use of stem cells in SCI. Among the different cell types, mesenchymal stem/stromal cells (MSCs) are the most frequently tested in clinical trials for SCI treatment. This study reviews the clinical applications of MSCs for SCI, focusing on the critical analysis of 17 clinical trials published thus far, with emphasis on their design and quality. Moreover, it highlights the need for more evidence-based studies designed as randomized controlled trials and potential challenges to be addressed in context of stem cell therapies for SCI.
Collapse
|
42
|
Kuchta K, Aritake K, Urade Y, Tung NH, Yuan CS, Sasaki Y, Shimizu K, Shoyama Y. Preventing Dementia Using Saffron, The Kampo Medicine, Kamiuntanto, and Their Combination, Kamiuntantokabankoka. Front Pharmacol 2022; 12:779821. [PMID: 35310894 PMCID: PMC8931200 DOI: 10.3389/fphar.2021.779821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
The objective of this review is to evaluate the anti-dementia activities of saffron and its combination with Kampo medicine. The Kampo formula Kamiuntanto composed of 13 crude drugs is well known for its anti-dementia activity. A significant increase in choline acetyltransferase activity and mRNA levels were observed. Polygala radix was identified as the most essential component drug in Kamiuntanto, probably due to the saponins, tenuifolin, and sinapinic acid. Ginseng was also identified as an essential Kamiuntanto component in terms of its synergistic functions with Polygala radix. Saffron, which was recommended in the Bencao Gangmu for memory and dementia, and is used as an anti-spasmodic, anti-catarrhal, and sedative herbal drug. Saffron and its major constituent, crocin were shown to enhance learning-memory, non-rapid eye movement (rem) sleep, and inhibit depression and neuronal cell death due to strong anti-oxidant and anti-inflammation activities. In addition based on the epidemiological studies such as the treatment of sleeping disorders and the clinical trials of saffron for Alzheimer patients, we demonstrated the indirect and direct anti-dementia activities of crocin and saffron.
Collapse
Affiliation(s)
- Kenny Kuchta
- Forschungsstelle für Fernöstliche Medizin, Department of Vegetation Analysis and Phytodiversity, Albrecht von Haller Institute of Plant Sciences, Georg August University, Göttingen, Germany
| | | | | | | | - Chun-Su Yuan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| | - Yui Sasaki
- Association for Health Economics Research and Social Insurance and Welfare, Tokyo, Japan
| | - Koichi Shimizu
- Association for Health Economics Research and Social Insurance and Welfare, Tokyo, Japan
| | - Yukihiro Shoyama
- Faculty of Pharmacy, Nagasaki International University, Sasebo, Japan
- *Correspondence: Yukihiro Shoyama,
| |
Collapse
|
43
|
Turner S, Sunshine MD, Chandran V, Smuder AJ, Fuller DD. Hyperbaric oxygen therapy after mid-cervical spinal contusion injury. J Neurotrauma 2022; 39:715-723. [PMID: 35152735 PMCID: PMC9081027 DOI: 10.1089/neu.2021.0412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy is frequently used to treat peripheral wounds or decompression sickness. Evidence suggests that HBO therapy can provide neuroprotection and has an anti-inflammatory impact after neurological injury, including spinal cord injury (SCI). Our primary purpose was to conduct a genome-wide screening of mRNA expression changes in the injured spinal cord after HBO therapy. An mRNA gene array was used to evaluate samples taken from the contused region of the spinal cord following a lateralized mid-cervical contusion injury in adult female rats. HBO therapy consisted of daily, 1-h sessions (3.0 ATA, 100% O2) initiated on the day of SCI and continued for 10 days. Gene set enrichment analyses indicated that HBO upregulated genes in pathways associated with electron transport, mitochondrial function, and oxidative phosphorylation, and downregulated genes in pathways associated with inflammation (including cytokines and nuclear factor kappa B [NF-κB]) and apoptotic signaling. In a separate cohort, spinal cord histology was performed to verify whether the HBO treatment impacted neuronal cell counts or inflammatory markers. Compared with untreated rats, there were increased NeuN positive cells in the spinal cord of HBO-treated rats (p = 0.004). We conclude that HBO therapy, initiated shortly after SCI and continued for 10 days, can alter the molecular signature of the lesioned spinal cord in a manner consistent with a neuroprotective impact.
Collapse
Affiliation(s)
- Sara Turner
- University of Florida, Physical Therapy, Gainesville, Florida, United States
| | - Michael D. Sunshine
- University of Florida, 3463, Physical Therapy, 1149 South Newell Drive, L1-168, Gainesville, Florida, United States, 32601
- University of Florida
| | | | - Ashley J Smuder
- University of Florida, Applied Physiology and Kinesiology, Gainesville, Florida, United States
| | - David D Fuller
- University of Florida, Physical Therapy, 100 S. Newell Dr., PO Box 100154, Gainesville, Florida, United States, 32610
| |
Collapse
|
44
|
Cheng P, Liao HY, Zhang HH. The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma 2022; 25:101760. [PMID: 35070684 PMCID: PMC8762069 DOI: 10.1016/j.jcot.2022.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, a complex pathologic process that can eventually lead to severe neurological dysfunction. The Wnt/mTOR signaling pathway is a pervasive signaling cascade that regulates a wide range of physiological processes during embryonic development, from stem cell pluripotency to cell fate. Numerous studies have reported that Wnt/mTOR signaling pathway plays an important role in neural development, synaptogenesis, neuron growth, differentiation and survival after the central nervous system (CNS) is damaged. Wnt/mTOR also plays an important role in regulating various pathophysiological processes after spinal cord injury (SCI). After SCI, Wnt/mTOR signal regulates the physiological and pathological processes of neural stem cell proliferation and differentiation, neuronal axon regeneration, neuroinflammation and pain through multiple pathways. Due to the characteristics of the Wnt signal in SCI make it a potential therapeutic target of SCI. In this paper, the characteristics of Wnt/mTOR signal, the role of Wnt/mTOR pathway on SCI and related mechanisms are reviewed, and some unsolved problems are discussed. It is hoped to provide reference value for the research field of the role of Wnt/mTOR pathway in SCI, and provide a theoretical basis for biological therapy of SCI.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| | - Hai-Yang Liao
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 342800, PR China
| | - Hai-Hong Zhang
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| |
Collapse
|
45
|
Huang Y, Li S, Chen H, Feng L, Yuan W, Han T. Butorphanol reduces the neuronal inflammatory response and apoptosis via inhibition of p38/JNK/ATF2/p53 signaling. Exp Ther Med 2022; 23:229. [PMID: 35222706 PMCID: PMC8815053 DOI: 10.3892/etm.2022.11151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yingsi Huang
- Department of Anesthesiology, Hainan Hospital of The Chinese PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Suhua Li
- Department of Orthopedic Surgery, Hainan Hospital of The Chinese PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Huaxin Chen
- Department of Anesthesiology, Hainan Hospital of The Chinese PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Long Feng
- Department of Anesthesiology, Hainan Hospital of The Chinese PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Weixiu Yuan
- Department of Anesthesiology, Hainan Hospital of The Chinese PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Tao Han
- Department of Orthopedic Surgery, Hainan Hospital of The Chinese PLA General Hospital, Sanya, Hainan 572013, P.R. China
| |
Collapse
|
46
|
Wang XX, Cui LL, Gan SF, Zhang ZR, Xiao J, Li CH, Luo F. Inhibition of Oligodendrocyte Apoptosis in the Prelimbic Medial Prefrontal Cortex Prevents Fentanyl-induced Hyperalgesia in Rats. THE JOURNAL OF PAIN 2022; 23:1035-1050. [PMID: 35021116 DOI: 10.1016/j.jpain.2021.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Opioid-induced hyperalgesia (OIH) is a problem associated with prolonged use of opioids in chronic pain management, and its effective treatment has been hampered by lack of mechanistic evidence. Oligodendrocytes have recently been linked with several pain-related diseases; however, little is known its role in OIH. The prelimbic medial prefrontal cortex (PL-mPFC) has emerged as a significant center of pain regulation, and is rich in oligodendrocytes. Herein we explored the effect of oligodendrocyte apoptosis of PL-mPFC on OIH. Using a fentanyl-induced rat model of OIH and proteomics analysis of the PL-mPFC, we observed a downregulation in 5 types of myelin-related proteins originating from oligodendrocytes; this was further verified by western blotting. Meanwhile, cleaved-caspase 3 (an apoptosis marker) was increased, whereas the oligodendrocyte precursor cell (OPC) marker NG2 remained unchanged. These results suggest that downregulated myelin-related proteins may be associated with oligodendrocyte apoptosis rather than a reduction in their generating source, and immunohistochemistry confirmed this hypothesis. Behaviorally, prophylactic blockade of oligodendrocyte apoptosis by microinjection of z-DEVD-fmk into the PL-mPFC prevented fentanyl-induced mechanical and thermal hyperalgesia, but downregulated myelin basic protein (mbp) gradually recovered in 12 h. We suggest that OIH may be primed in part via oligodendrocyte apoptosis in the PL-mPFC. PERSPECTIVE: In this study we showed that oligodendrocyte apoptosis in the PL-mPFC is a key trigger for fentanyl-induced hyperalgesia. Targeting oligodendrocyte apoptosis in the PL-mPFC may prevented hyperalgesia priming induced by fentanyl.
Collapse
Affiliation(s)
- Xi-Xi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling-Ling Cui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Fei Gan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze-Ru Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen-Hong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Almeida CA, Torres-Espin A, Huie JR, Sun D, Noble-Haeusslein LJ, Young W, Beattie MS, Bresnahan JC, Nielson JL, Ferguson AR. Excavating FAIR Data: the Case of the Multicenter Animal Spinal Cord Injury Study (MASCIS), Blood Pressure, and Neuro-Recovery. Neuroinformatics 2022; 20:39-52. [PMID: 33651310 PMCID: PMC9015816 DOI: 10.1007/s12021-021-09512-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 01/07/2023]
Abstract
Meta-analyses suggest that the published literature represents only a small minority of the total data collected in biomedical research, with most becoming 'dark data' unreported in the literature. Dark data is due to publication bias toward novel results that confirm investigator hypotheses and omission of data that do not. Publication bias contributes to scientific irreproducibility and failures in bench-to-bedside translation. Sharing dark data by making it Findable, Accessible, Interoperable, and Reusable (FAIR) may reduce the burden of irreproducible science by increasing transparency and support data-driven discoveries beyond the lifecycle of the original study. We illustrate feasibility of dark data sharing by recovering original raw data from the Multicenter Animal Spinal Cord Injury Study (MASCIS), an NIH-funded multi-site preclinical drug trial conducted in the 1990s that tested efficacy of several therapies after a spinal cord injury (SCI). The original drug treatments did not produce clear positive results and MASCIS data were stored in boxes for more than two decades. The goal of the present study was to independently confirm published machine learning findings that perioperative blood pressure is a major predictor of SCI neuromotor outcome (Nielson et al., 2015). We recovered, digitized, and curated the data from 1125 rats from MASCIS. Analyses indicated that high perioperative blood pressure at the time of SCI is associated with poorer health and worse neuromotor outcomes in more severe SCI, whereas low perioperative blood pressure is associated with poorer health and worse neuromotor outcome in moderate SCI. These findings confirm and expand prior results that a narrow window of blood-pressure control optimizes outcome, and demonstrate the value of recovering dark data for assessing reproducibility of findings with implications for precision therapeutic approaches.
Collapse
Affiliation(s)
- Carlos A Almeida
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, USA
| | - Abel Torres-Espin
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, USA
| | - J Russell Huie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, USA
| | - Dongming Sun
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, New Brunswick, NJ, USA
| | - Linda J Noble-Haeusslein
- Department of Neurology, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
| | - Wise Young
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, New Brunswick, NJ, USA
| | - Michael S Beattie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline C Bresnahan
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L Nielson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.
| | - Adam R Ferguson
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center, University of California San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
48
|
Kim GU, Sung SE, Kang KK, Choi JH, Lee S, Sung M, Yang SY, Kim SK, Kim YI, Lim JH, Seo MS, Lee GW. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222413672. [PMID: 34948463 PMCID: PMC8703906 DOI: 10.3390/ijms222413672] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.
Collapse
Affiliation(s)
- Gang-Un Kim
- Department of Orthopedic Surgery, Hanil General Hospital, 308 Uicheon-ro, Dobong-gu, Seoul 01450, Korea;
| | - Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Sijoon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Minkyoung Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | | | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| | - Gun Woo Lee
- Cellexobio, Co. Ltd., Daegu 42415, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| |
Collapse
|
49
|
Sydney-Smith JD, Spejo AB, Warren PM, Moon LDF. Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair. Exp Neurol 2021; 348:113945. [PMID: 34896114 DOI: 10.1016/j.expneurol.2021.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Via the peripheral and autonomic nervous systems, the spinal cord directly or indirectly connects reciprocally with many body systems (muscular, intengumentary, respiratory, immune, digestive, excretory, reproductive, cardiovascular, etc). Accordingly, spinal cord injury (SCI) can result in catastrophe for multiple body systems including muscle paralysis affecting movement and loss of normal sensation, as well as neuropathic pain, spasticity, reduced fertility and autonomic dysreflexia. Treatments and cure for an injured spinal cord will likely require access of therapeutic agents across the blood-CNS (central nervous system) barrier. However, some types of repair within the CNS may be possible by targeting treatment to peripherally located cells or by delivering Adeno-Associated Viral vectors (AAVs) by peripheral routes (e.g., intrathecal, intravenous). This review will consider some future possibilities for SCI repair generated by therapeutic peripheral gene delivery. There are now six gene therapies approved worldwide as safe and effective medicines of which three were created by modification of the apparently nonpathogenic Adeno-Associated Virus. One of these AAVs, Zolgensma, is injected intrathecally for treatment of spinal muscular atrophy in children. One day, delivery of AAVs into peripheral tissues might improve recovery after spinal cord injury in humans; we discuss experiments by us and others delivering transgenes into nerves or muscles for sensorimotor recovery in animal models of SCI or of stroke including human Neurotrophin-3. We also describe ongoing efforts to develop AAVs that are delivered to particular targets within and without the CNS after peripheral administration using capsids with improved tropisms, promoters that are selective for particular cell types, and methods for controlling the dose and duration of expression of a transgene. In conclusion, in the future, minimally invasive administration of AAVs may improve recovery after SCI with minimal side effects.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Aline B Spejo
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Philippa M Warren
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom.
| |
Collapse
|
50
|
Faw TD, Lakhani B, Schmalbrock P, Knopp MV, Lohse KR, Kramer JLK, Liu H, Nguyen HT, Phillips EG, Bratasz A, Fisher LC, Deibert RJ, Boyd LA, McTigue DM, Basso DM. Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury. Exp Neurol 2021; 346:113853. [PMID: 34464653 PMCID: PMC10084731 DOI: 10.1016/j.expneurol.2021.113853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Experience-dependent white matter plasticity offers new potential for rehabilitation-induced recovery after neurotrauma. This first-in-human translational experiment combined myelin water imaging in humans and genetic fate-mapping of oligodendrocyte lineage cells in mice to investigate whether downhill locomotor rehabilitation that emphasizes eccentric muscle actions promotes white matter plasticity and recovery in chronic, incomplete spinal cord injury (SCI). In humans, of 20 individuals with SCI that enrolled, four passed the imaging screen and had myelin water imaging before and after a 12-week (3 times/week) downhill locomotor treadmill training program (SCI + DH). One individual was excluded for imaging artifacts. Uninjured control participants (n = 7) had two myelin water imaging sessions within the same day. Changes in myelin water fraction (MWF), a histopathologically-validated myelin biomarker, were analyzed in a priori motor learning and non-motor learning brain regions and the cervical spinal cord using statistical approaches appropriate for small sample sizes. PDGFRα-CreERT2:mT/mG mice, that express green fluorescent protein on oligodendrocyte precursor cells and subsequent newly-differentiated oligodendrocytes upon tamoxifen-induced recombination, were either naive (n = 6) or received a moderate (75 kilodyne), contusive SCI at T9 and were randomized to downhill training (n = 6) or unexercised groups (n = 6). We initiated recombination 29 days post-injury, seven days prior to downhill training. Mice underwent two weeks of daily downhill training on the same 10% decline grade used in humans. Between-group comparison of functional (motor and sensory) and histological (oligodendrogenesis, oligodendroglial/axon interaction, paranodal structure) outcomes occurred post-training. In humans with SCI, downhill training increased MWF in brain motor learning regions (postcentral, precuneus) and mixed motor and sensory tracts of the ventral cervical spinal cord compared to control participants (P < 0.05). In mice with thoracic SCI, downhill training induced oligodendrogenesis in cervical dorsal and lateral white matter, increased axon-oligodendroglial interactions, and normalized paranodal structure in dorsal column sensory tracts (P < 0.05). Downhill training improved sensorimotor recovery in mice by normalizing hip and knee motor control and reducing hyperalgesia, both of which were associated with new oligodendrocytes in the cervical dorsal columns (P < 0.05). Our findings indicate that eccentric-focused, downhill rehabilitation promotes white matter plasticity and improved function in chronic SCI, likely via oligodendrogenesis in nervous system regions activated by the training paradigm. Together, these data reveal an exciting role for eccentric training in white matter plasticity and sensorimotor recovery after SCI.
Collapse
Affiliation(s)
- Timothy D Faw
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - Bimal Lakhani
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Petra Schmalbrock
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael V Knopp
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - Keith R Lohse
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT 84112, USA; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108, USA
| | - John L K Kramer
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hanwen Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Huyen T Nguyen
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - Eileen G Phillips
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Bratasz
- Small Animal Imaging Shared Resources, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Lesley C Fisher
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Rochelle J Deibert
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Dana M McTigue
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - D Michele Basso
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|