1
|
Endothelial Cell Metabolism in Vascular Functions. Cancers (Basel) 2022; 14:cancers14081929. [PMID: 35454836 PMCID: PMC9031281 DOI: 10.3390/cancers14081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Recent findings in the field of vascular biology are nourishing the idea that targeting the endothelial cell metabolism may be an alternative strategy to antiangiogenic therapy, as well as a novel therapeutic approach for cardiovascular disease. Deepening the molecular mechanisms regulating how ECs re-adapt their metabolic status in response to the changeable conditions of the tissue microenvironment may be beneficial to develop novel innovative treatments to counteract the aberrant growth of vasculature. Abstract The endothelium is the innermost layer of all blood and lymphatic vessels composed of a monolayer of specialized endothelial cells (ECs). It is regarded as a dynamic and multifunctional endocrine organ that takes part in essential processes, such as the control of blood fluidity, the modulation of vascular tone, the regulation of immune response and leukocyte trafficking into perivascular tissues, and angiogenesis. The inability of ECs to perform their normal biological functions, known as endothelial dysfunction, is multi-factorial; for instance, it implicates the failure of ECs to support the normal antithrombotic and anti-inflammatory status, resulting in the onset of unfavorable cardiovascular conditions such as atherosclerosis, coronary artery disease, hypertension, heart problems, and other vascular pathologies. Notably, it is emerging that the ability of ECs to adapt their metabolic status to persistent changes of the tissue microenvironment could be vital for the maintenance of vascular functions and to prevent adverse vascular events. The main purpose of the present article is to shed light on the unique metabolic plasticity of ECs as a prospective therapeutic target; this may lead to the development of novel strategies for cardiovascular diseases and cancer.
Collapse
|
2
|
Kim TH, Yan JJ, Jang JY, Lee GM, Lee SK, Kim BS, Chung JJ, Kim SH, Jung Y, Yang J. Tissue-engineered vascular microphysiological platform to study immune modulation of xenograft rejection. SCIENCE ADVANCES 2021; 7:7/22/eabg2237. [PMID: 34049875 PMCID: PMC8163083 DOI: 10.1126/sciadv.abg2237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Most of the vascular platforms currently being studied are lab-on-a-chip types that mimic capillary networks and are applied for vascular response analysis in vitro. However, these platforms have a limitation in clearly assessing the physiological phenomena of native blood vessels compared to in vivo evaluation. Here, we developed a simply fabricable tissue-engineered vascular microphysiological platform (TEVMP) with a three-dimensional (3D) vascular structure similar to an artery that can be applied for ex vivo and in vivo evaluation. Furthermore, we applied the TEVMP as ex vivo and in vivo screening systems to evaluate the effect of human CD200 (hCD200) overexpression in porcine endothelial cells (PECs) on vascular xenogeneic immune responses. These screening systems, in contrast to 2D in vitro and cellular xenotransplantation in vivo models, clearly demonstrated that hCD200 overexpression effectively suppressed vascular xenograft rejection. The TEVMP has a high potential as a platform to assess various vascular-related responses.
Collapse
Affiliation(s)
- Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ji-Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Young Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gwang-Min Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea
| | - Jaeseok Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Transplantation Center, Seoul National University hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Venous thrombosis at altitude presents with distinct biochemical profiles: a comparative study from the Himalayas to the plains. Blood Adv 2020; 3:3713-3723. [PMID: 31765479 DOI: 10.1182/bloodadvances.2018024554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2019] [Indexed: 11/20/2022] Open
Abstract
High-altitude (HA) hypoxia exposure is believed to induce venous thromboembolism (VTE) in otherwise healthy individuals, although this needs to be fully established. The present study aims to ascertain the role of HA exposure in aggravating any predisposition toward VTE and to explore whether the etiology of HA-induced VTE is different from that of VTE closer to sea level. We compared manifestation-matched male VTE patients from HA (HAPs) and VTE patients from the plains closer to sea level (SLPs) for 54 parameters, including coagulation-related, fibrinolytic, and thrombophilic variables, as well as markers for stress and inflammatory response and platelet and endothelial activation. Our results established an association between HA hypoxia and VTE in alterations of primarily hemostatic variables. Approximately 96% of HAPs presented with ≥10 altered parameters out of 54 studied compared with 7% of SLPs. Elevated platelet count, von Willebrand factor, and clotting factors and altered coagulation exhibited significant associations with VTE events and altitude exposure (all P < .05). Additionally, most VTEs at HA were associated with younger age groups, unlike those on the plains. A receiver operator characteristic curve analysis revealed differences between HAPs and SLPs for CD40 ligand (area under the curve [AUC], 0.90; 95% confidence interval [CI], 0.84-0.96]), P-selectin (0.79; 0.70-0.88), platelet factor-4 (0.90; 0.84-0.96), intracellular adhesion molecule-1 (0.86; 0.79-0.93), vascular cell adhesion molecule-1 (0.97; 0.95-0.99), vascular endothelial growth factor (0.87; 0.8-0.94), FLT4 (0.94; 0.89-0.99), and Toll-like receptor-2 (0.98; 0.96-1.0) (all P < .05). In conclusion, this study suggests that HA exposure perturbs the molecules associated with vascular integrity and contributes to the early onset of VTE.
Collapse
|
5
|
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2019; 101:78-86. [PMID: 31791693 DOI: 10.1016/j.semcdb.2019.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.
Collapse
Affiliation(s)
- Xuetao Sun
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada
| | - Blessing Nkennor
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Department of Biological Sciences, University of Toronto Scarborough, Canada
| | - Olya Mastikhina
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Kayla Soon
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Sara S Nunes
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
6
|
Chen YF, Yang X, Yang HJ. Heterologous Antibodies Adsorption in Xenotransplantation of a Landrace Piglet Kidney Into a Rhesus Monkey. Transplant Proc 2019; 51:987-992. [PMID: 30979492 DOI: 10.1016/j.transproceed.2019.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND To explore the adsorption of heterologous antibodies in 6 xenotransplants of Landrace piglet kidneys into rhesus monkeys. METHODS The Landrace piglets and rhesus monkeys were used as donors and recipients, respectively. The donor kidney was the left kidney excised from each Landrace piglet and lavaged with University of Wisconsin solution through the renal artery and vein ex vivo. The renal arteriovenous end of the recipient was preserved. After anastomosis of the renal artery and vein with the arteriovenous end of the recipient for reperfusion, a cross-lymphocyte cytotoxicity test of the heterogeneous kidney was performed. RESULTS All 6 Landrace piglet kidneys absorbed heterologous antibodies that were pre-existing in the rhesus macaques' kidneys. The cross-lymphocyte toxicity test was performed after the kidney were completely blackened. The cross-lymphocyte toxicity in all each heterogeneous kidney changed from strong positive to weak positive. CONCLUSIONS Heterologous antibodies were adsorbed in xenotransplants of Landrace piglet kidneys into rhesus monkeys. Xenotransplanted kidney can adsorb heterologous antibodies and consume relevant complements, which is a good model for research of hyperacute rejection in xenotransplantation.
Collapse
Affiliation(s)
- Y-F Chen
- Organ Transplant Center and Hepatobiliary Ward 3, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - X Yang
- Wenjiang District People's Hospital, Chengdu, Sichuan, China
| | - H-J Yang
- Organ Transplant Center and Hepatobiliary Ward 3, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Weiss RA. Infection hazards of xenotransplantation: Retrospect and prospect. Xenotransplantation 2018; 25:e12401. [PMID: 29756309 DOI: 10.1111/xen.12401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
9
|
Affiliation(s)
- M D Dooldeniya
- Department of Immunology, Imperial College, Hammersmith Campus, London W12 0NN, UK
| | - A N Warrens
- Department of Immunology, Imperial College, Hammersmith Campus, London W12 0NN, UK
| |
Collapse
|
10
|
Koopmans J, de Haan A, Bruin E, van der Gun I, van Dijk H, Rozing J, de Leij L, Staal M. Porcine Fetal Ventral Mesencephalic Cells are Targets for Primed Xenoreactive Human T Cells. Cell Transplant 2017; 15:381-7. [PMID: 16970280 DOI: 10.3727/000000006783981846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Xenotransplantation of porcine fetal ventral mesencephalic (pfVM) cells to overcome the dopamine shortage in the striatum of patients with Parkinson's disease seems a viable alternative to allotransplantion of human fetal donor tissue, especially because the latter is complicated by both practical and ethical issues. There is, however, little known about the xenospecific immune responses involved in such an intracerebral xenotransplantation. The aim of our study was to investigate whether 1) naive human peripheral blood mononuclear cells (PMBC) display cytotoxicity against pfVM cells of E28 pig fetuses, and 2) priming of human PBMC by xenogeneic antigen presenting cells (APC) modulates pfVM-directed cellular cytotoxicity. For this purpose fresh PMBC from nine individual donors were primed by incubation with either irradiated pfVM cells or porcine spleen cells (PSC) as APC in the presence of IL-2 for 1 week before assessing cytotoxicity in a 51Cr release assay. Also, direct NK reactivity and antibody-dependent cellular cytotoxicity (ADCC) of fresh PMBC against pfVM cells was assessed. No direct cytotoxicity of naive cells (either NK reactivity or ADCC) against pfVM cells could be determined. Only PMBC primed with PSC were capable of lysing pfVM cells. PBMC primed with pfVM cells did not show cytolytic capacity towards pfVM. Interestingly, large differences in xenospecific T-cell responses exist between individual donor PBMC. Thus, human T cells are capable of killing pfVM cells in a xenoreactive response, but only after priming by donor APC. The large interindividual differences between human donors in their xenoreactive response may influence patient selection for xenotransplantation and chances of graft survival for individual patients.
Collapse
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Edge AS, Gosse ME, Dinsmore J. Xenogeneic Cell Therapy: Current Progress and Future Developments in Porcine Cell Transplantation. Cell Transplant 2017; 7:525-39. [PMID: 9853581 DOI: 10.1177/096368979800700603] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The multitude of distinct cell types present in mature and developing tissues display unique physiologic characteristics. Cellular therapy is a novel technology with the promise of utilizing this diversity to treat a wide range of human degenerative diseases. Intractable diseases, disorders, and injuries are characterized by cell death or aberrant cellular function. Cell transplantation can replace diseased or lost tissue to provide restorative therapy for these conditions. The limited use of cell transplants as a basis for current therapy can, in part, be attributed to the lack of available human cells suitable for transplantation. This has prevented further realization of the promise of cell transplantation as a platform technology. Accordingly, cell-based therapies such as blood transfusions, for which the cells are readily available, are a standard part of current medical practice. Despite numerous attempts to expand primary human cells in tissue culture, current technological limitations of this approach in regard to proliferative capacity and maintenance of the differentiated phenotype has prevented their use for transplantation. Further, use of human stem cells for the derivation of specific cell types for transplantation is an area of future application with great potential, but hurdles remain in regard to deriving and sufficiently expanding these multi-potential cells. Thus, it appears that primary cells are at present a superior source for transplantation. This review focuses on pigs as a source of a variety of primary cells to advance cell therapy to the clinic and implement achievement of its full potential. We outline the advantages and disadvantages of xenogeneic cell therapy while underscoring the utility of transplantable porcine cells for the treatment of human disease. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- A S Edge
- Diacrin Inc., Charlestown, MA 02129, USA
| | | | | |
Collapse
|
12
|
Kim N, Choi J, Kim S, Gwon YD, Cho Y, Yang JM, Oh YK, Kim YB. Transmission of Porcine Endogenous Retrovirus Produced from Different Recipient Cells In Vivo. PLoS One 2016; 11:e0165156. [PMID: 27832080 PMCID: PMC5104465 DOI: 10.1371/journal.pone.0165156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 12/04/2022] Open
Abstract
Humanized pigs have been developed to reduce the incidence of immune rejection in xenotransplantation, but significant concerns remain, such as transmission of viral zoonosis. Porcine endogenous retroviruses (PERV), which exist in the genome of pigs, are produced as infectious virions from all porcine cells and cause zoonosis. Here, we examined the possibility of zoonosis of hosts under conditions of immune suppression or xenotransplantation of cells producing host-adapted viruses. Upon transplantation of PERV-producing porcine cells into mice, no transmission of PERV was detected, whereas, transmission of PERV from mice transplanted with mouse-adapted PERV-producing cells was detected. In addition, the frequency of PERV transmission was increased in CsA treated mice transplanted with PERV-producing murine cells, compared with PERV-producing porcine cells. Transmission of PERV to host animals did not affect weight but immune responses, in particular, the number of T cells from PERV-transmitted mice, were notably reduced. The observed risk of PERV zoonosis highlights the requirement for thorough evaluation of viral zoonosis under particular host conditions, such as immunosuppressive treatment and transplantation with host-adapted virus-producing cells.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Jiwon Choi
- Department of Bio-industrial Technologies, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Sehyun Kim
- Department of Bio-industrial Technologies, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yong-Dae Gwon
- Department of Bio-industrial Technologies, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yeondong Cho
- Department of Bio-industrial Technologies, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Jae Myung Yang
- Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young bong Kim
- Department of Bio-industrial Technologies, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Timsit MO, Branchereau J, Thuret R, Kleinclauss F. [Renal transplantation in 2046: Future and perspectives]. Prog Urol 2016; 26:1132-1142. [PMID: 27665406 DOI: 10.1016/j.purol.2016.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To report major findings that may build the future of kidney transplantation. MATERIAL AND METHODS Relevant publications were identified through Medline (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) database from 1960 to 2016 using the following keywords, in association, "bio-engineering; heterotransplantation; immunomodulation; kidney; regenerative medicine; xenotransplantation". Articles were selected according to methods, language of publication and relevance. A total of 5621 articles were identified including 2264 for xenotransplantation, 1058 for regenerative medicine and 2299 for immunomodulation; after careful selection, 86 publications were eligible for our review. RESULTS Despite genetic constructs, xenotransplantation faces the inevitable obstacle of species barrier. Uncertainty regarding xenograft acceptance by recipients as well as ethical considerations due to the debatable utilization of animal lives, are major limits for its future. Regenerative medicine and tridimensional bioprinting allow successful implantation of organs. Bioengineering, using decellularized tissue matrices or synthetic scaffold, seeded with pluripotent cells and assembled using bioreactors, provide exciting results but remain far for reconstituting renal complexity and vascular patency. Immune tolerance may be achieved through a tough initial T-cell depletion or a combined haplo-identical bone marrow transplant leading to lymphohematopoietic chimerism. CONCLUSION Current researches aim to increase the pool of organs available for transplantation (xenotransplants and bio-artificial kidneys) and to increase allograft survival through the induction of immune tolerance. Reported results suggest the onset of a thrilling new era for renal transplantation providing end-stage renal disease-patients with an improved survival and quality of life.
Collapse
Affiliation(s)
- M-O Timsit
- Service d'urologie, hôpital européen Georges-Pompidou, AP-HP, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France.
| | - J Branchereau
- Service d'urologie et transplantation, CHU de Nantes, 44000 Nantes, France
| | - R Thuret
- Service d'urologie et transplantation rénale, CHU de Montpellier, 34090 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - F Kleinclauss
- Service d'urologie et transplantation rénale, CHRU de Besançon, 25000 Besançon, France; Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France
| |
Collapse
|
14
|
Ock SA, Lee J, Oh KB, Hwang S, Yun IJ, Ahn C, Chee HK, Kim H, Park JB, Kim SJ, Kim Y, Im GS, Park E. Molecular immunology profiles of monkeys following xenografting with the islets and heart of α-1,3-galactosyltransferase knockout pigs. Xenotransplantation 2016; 23:357-69. [PMID: 27511303 DOI: 10.1111/xen.12249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
Effective immunosuppression strategies and genetically modified animals have been used to prevent hyperacute and acute xenograft rejection; however, the underlying mechanisms remain unknown. In this study, we evaluated the expression of a comprehensive set of immune system-related genes (89 genes, including five housekeeping genes) in the blood of cynomolgus monkeys (~5 yr old) used as graft recipients, before and after the xenografting of the islets and heart from single and double α-1,3-galactosyltransferase (GalT) knockout (KO) pigs (<6 weeks old). The immunosuppressive regimen included administration of cobra venom factor, anti-thymocyte globulin, rituximab, and anti-CD154 monoclonal antibodies to recipients before and after grafting. Islets were xenografted into the portal vein in type 1 diabetic monkeys, and the heart was xenografted by heterotopic abdominal heart transplantation. Genes from recipient blood were analyzed using RT(2) profiler PCR arrays and the web-based RT(2) profiler PCR array software v.3.5. Recipients treated with immunosuppressive agents without grafting showed significant downregulation of CCL5, CCR4, CCR6, CD4, CD40LG, CXCR3, FASLG, CXCR3, FOXP3, GATA3, IGNG, L10, IL23A, TRAF6, MAPK8, MIF, STAT4, TBX21, TLR3, TLR7, and TYK2 and upregulation of IFNGR1; thus, genes involved in protection against viral and bacterial infection were downregulated, confirming the risk of infection. Notably, C3-level control resulted in xenograft failure within 2 days because of a 7- to 11-fold increase in all xenotransplanted models. Islet grafting using single GalT-KO pigs resulted in upregulation of CXCL10 and MX1, early inflammation, and acute rejection-associated signals at 2 days after xenografting. We observed at least 5-fold upregulation in recipients transplanted with islets grafts from single (MX1) or double (C3, CCR8, IL6, IL13, IRF6, CXCL10, and MX1) GalT-KO pigs after 77 days; single GalT-KO incurred early losses owing to immune attacks. Our results suggest that this novel, simple, non-invasive, and time-efficient procedure (requiring only 1.5 ml blood) for evaluating graft success, minimizing immune rejection, and blocking infection.
Collapse
Affiliation(s)
- Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea. ,
| | - Jungkyu Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Curie Ahn
- Transplantation Center, Seoul National University Hospital, Seoul, Korea.,Designed Animal & Transplantation Research Institute, Institute of Green BioScience & Technology, Seoul National University, Pyeongchang, Gangwon-do, Korea
| | - Hyun Keun Chee
- Department of Cardiothoracic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Hwajung Kim
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - EungWoo Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| |
Collapse
|
15
|
Kennedy AR, Maity A, Sanzari JK. A Review of Radiation-Induced Coagulopathy and New Findings to Support Potential Prevention Strategies and Treatments. Radiat Res 2016; 186:121-40. [PMID: 27459701 DOI: 10.1667/rr14406.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Results from our recent studies have led to the novel hypothesis that radiation-induced coagulopathy (RIC) and associated hemorrhage occurring as part of the acute radiation syndrome (ARS) is a major cause of death resulting from radiation exposure in large mammals, including humans. This article contains information related to RIC, as well as potential strategies for the prevention and treatment of RIC. In addition, new findings are reported here on the occurrence of RIC biomarkers in humans exposed to radiation. To determine whether irradiated humans have RIC biomarkers, blood samples were obtained from radiotherapy patients who received treatment for different types of malignancies. Blood samples from allogeneic hematopoietic cell transplantation (allo-HCT) patients obtained before, during and after irradiation indicated that exposure led to prolonged clot formation times, increased levels of thrombin-antithrombin III (TAT) complex and increased circulating nucleosome/histone (cNH) levels, which suggest potential coagulopathies in the allo-HCT patients. Since these allo-HCT patients received chemotherapy prior to radiotherapy, it is possible that the chemical agents could have influenced the observed results. Frozen plasma samples from radiotherapy patients with prostate, lung and breast cancer were also obtained for analyses of cNH levels. The results indicated that some of these patients had very high cNH blood levels. Analysis of cNH levels in plasma samples from irradiated ferrets also indicated increased cNH levels compared to preirradiation baseline levels. The results from irradiated animals and some radiotherapy patients suggest the possibility that anti-histone antibodies, which block the toxic effects of elevated cNH levels in the blood, might be useful as therapeutic agents for adverse biological radiation-induced effects. The detection of increased levels of cNH in some radiotherapy patient blood samples demonstrates its potential as a biomarker for diagnosing and/or predicting the propensity for developing coagulopathies/hemorrhage, offering possible treatment options with personalized medicine therapies for cancer patients.
Collapse
Affiliation(s)
- Ann R Kennedy
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jenine K Sanzari
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Iwase H, Ezzelarab MB, Ekser B, Cooper DKC. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation 2014; 21:201-20. [PMID: 24571124 DOI: 10.1111/xen.12085] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022]
Abstract
Xenotransplantation could resolve the increasing discrepancy between the availability of deceased human donor organs and the demand for transplantation. Most advances in this field have resulted from the introduction of genetically engineered pigs, e.g., α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for one or more human complement-regulatory proteins (e.g., CD55, CD46, CD59). Failure of these grafts has not been associated with the classical features of acute humoral xenograft rejection, but with the development of thrombotic microangiopathy in the graft and/or consumptive coagulopathy in the recipient. Although the precise mechanisms of coagulation dysregulation remain unclear, molecular incompatibilities between primate coagulation factors and pig natural anticoagulants exacerbate the thrombotic state within the xenograft vasculature. Platelets play a crucial role in thrombosis and contribute to the coagulation disorder in xenotransplantation. They are therefore important targets if this barrier is to be overcome. Further genetic manipulation of the organ-source pigs, such as pigs that express one or more coagulation-regulatory genes (e.g., thrombomodulin, endothelial protein C receptor, tissue factor pathway inhibitor, CD39), is anticipated to inhibit platelet activation and the generation of thrombus. In addition, adjunctive pharmacologic anti-platelet therapy may be required. The genetic manipulations that are currently being tested are reviewed, as are the potential pharmacologic agents that may prove beneficial.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
17
|
Ezzelarab MB, Liu YW, Lin CC, Long C, Ayares D, Dorling A, Cooper DKC. Role of P-selectin and P-selectin glycoprotein ligand-1 interaction in the induction of tissue factor expression on human platelets after incubation with porcine aortic endothelial cells. Xenotransplantation 2014; 21:16-24. [DOI: 10.1111/xen.12068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Mohamed B. Ezzelarab
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Yueh Wei Liu
- Department of Surgery; Kaohsiung Chang Gung Memorial Hospital; Kaoksiung Taiwan
| | - Chih Che Lin
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
- Department of Surgery; Kaohsiung Chang Gung Memorial Hospital; Kaoksiung Taiwan
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | | | - Anthony Dorling
- Division of Transplantation Immunology and Mucosal Biology; MRC Centre for Transplantation; King's College London; Guy's Hospital; London UK
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
18
|
Abstract
Adenosine triphosphate (ATP) is essential for the myriad of metabolic processes upon which life is based and is known widely as the universal energy currency unit of intracellular biologic reactions. ATP, adenosine diphosphate, adenosine, as well as other purines and pyrimidines also serve as ubiquitous extracellular mediators which function through the activation of specific receptors (viz. P2 receptors for nucleotides and purinergic P1 receptors for adenosine). Extracellular nucleotides are rapidly converted to nucleosides, such as adenosine, by highly regulated plasma membrane ectonucleotidases that modulate many of the normal biological and metabolic processes in the liver - such as gluconeogenesis and insulin signaling. Under inflammatory conditions, as with ischemia reperfusion, sepsis or metabolic stress, ATP and other nucleotides can also act as 'damage-associated molecular patterns' causing inflammasome activation in innate immune cells and endothelium resulting in tissue damage. The phosphohydrolysis of ATP by ectonucleotidases, such as those of the CD39/ENTPD family, results in the generation of immune suppressive adenosine, which in turn markedly limits inflammatory processes. Experimental studies by others and our group have implicated purinergic signaling in experimental models of hepatic ischemia reperfusion and inflammation, transplant rejection, hepatic regeneration, steatohepatitis, fibrosis and cancer, amongst others. Expression of ectonucleotidases on sinusoidal endothelial, stellate or immune cells allows for homeostatic integration and linking of the control of vascular inflammatory and immune cell reactions in the liver. CD39 expression also identifies hepatic myeloid dendritic cells and efficiently distinguishes T-regulatory-type cells from other resting or activated T cells. Our evolving data strongly indicate that CD39 serves as a key 'molecular switch' and is an integral component of the suppressive machinery of myeloid, dendritic and T cells. Increased understanding of mechanisms of extracellular ATP scavenging and specifically conversion to nucleosides by ectonucleotidases of the CD39 family have also led to novel insights into the exquisite balance of nucleotide P2-receptor and adenosinergic P1-receptor signaling in inflammatory and hepatic diseases. Further, CD39 and other ectonucleotidases exhibit genetic polymorphisms in humans which alter levels of expression/function and are associated with predisposition to inflammatory and immune diseases, diabetes and vascular calcification, amongst other problems. Development of therapeutic strategies targeting purinergic signaling and ectonucleotidases offers promise for the management of disordered inflammation and aberrant immune reactivity.
Collapse
Affiliation(s)
- Byron P Vaughn
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
19
|
Iwase H, Ekser B, Hara H, Phelps C, Ayares D, Cooper DKC, Ezzelarab MB. Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation 2013; 21:72-83. [PMID: 24188473 DOI: 10.1111/xen.12073] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/02/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Coagulation disorders remain barriers to successful pig-to-primate organ xenotransplantation. In vitro, we investigated the impact of pig genetic modifications on human platelet aggregation in response to pig aortic endothelial cells (pAEC). METHODS In comparison to human (h)AEC and wild-type (WT) pAEC, the expression of human complement- (CD46, CD55) or coagulation (thrombomodulin [TBM], endothelial protein C receptor [EPCR]) -regulatory proteins on pAEC from WT or α1,3-galactosyltransferase gene-knockout (GTKO) pigs was studied by flow cytometry. Using platelet-aggregometry, human whole blood platelet aggregation was evaluated after co-incubation with various AEC. Further, the inhibitory effect on aggregation of heparin, low molecular weight heparin, and hirudin was assessed. RESULTS Heparin, low molecular weight heparin and hirudin almost completely prevented platelet aggregation induced by WT pAEC. The level of expression of human CD46, CD55, TBM and EPCR on pAEC was comparable to that on hAEC. Platelet aggregation induced by all genetically modified pAEC was significantly less (P < 0.05) than that by WT pAEC (which was 54%). GTKO/CD46/TBM pAEC induced the least platelet aggregation (27%)-a reduction of almost 50%-but this remained significantly greater (P < 0.01) than aggregation induced by hAEC (4%). There was significant positive correlation between reduction of aggregation and TBM or EPCR expression on pAEC (r = 0.89 and r = 0.86, respectively; P < 0.05). Platelet aggregation induced by GTKO/CD46/TBM pAEC in the presence of hirudin (1 IU/ml) was comparable to platelet aggregation induced by hAEC. CONCLUSIONS Genetic modification of pAEC is associated with significant reduction of human platelet aggregation in vitro. With concomitant thrombin inhibition, platelet aggregation was comparable to that stimulated by hAEC.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Defibrotide: properties and clinical use of an old/new drug. Vascul Pharmacol 2013; 59:1-10. [PMID: 23680861 DOI: 10.1016/j.vph.2013.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 12/30/2022]
Abstract
The drug named defibrotide (DFT) has been studied for many years. It has been shown to possess many activities: profibrinolytic, antithrombotic-thrombolytic, antiischemic (heart, liver, kidney, skin, brain), antishock, antiatherosclerotic, antirejection and anti-angiogenic. The previously displayed activities, as antithrombotic, profibrinolytic and anti-inflammatory, suggested its use in vascular disorders, as in the treatment of peripheral obliterative arterial disease and in thrombophlebitis. Some years after, the use of DFT in hepatic veno-occlusive disease has been also proposed. Even if DFT was considered for long time a multi-target drug, now it could be considered on the whole as a drug able to protect endothelium against activation. The present work reviews the more important experimental and clinical studies performed to detect DFT effects.
Collapse
|
21
|
Shen Z, Ye W, Ten X. Suppression of NF-kappaB p65 expression attenuates delayed xenograft rejection. Xenotransplantation 2013; 20:123-30. [PMID: 23489828 DOI: 10.1111/xen.12027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/17/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Delayed xenograft rejection (DXR) involves type II vascular endothelial cell (VEC) activation including upregulation of pro-inflammatory genes, which contributes to infiltration into the graft and a complex process of cytokine production. Approaches to prevent DXR have shown limited success. In this study, we modified heart donors using siRNA in an attempt to attenuate DXR and to improve xenograft survival in the mouse-to-rat heterotopic heart transplant model. METHODS siRNA technology was used to inhibit NF-kappaB p65 gene expression in vivo in mice. After the donor was transfected with siRNA, the effects of NF-kappaB siRNA on DXR and expression of NF-kappaB and pro-inflammatory genes were evaluated in a concordant mouse-to-rat cardiac xenograft model. RESULTS Treatment of NF-kappaB siRNA prolonged median heart graft survival time in the recipient rats from 1.7 days in a PBS control group to 5.4 days in the NF-kappaB siRNA-treated group (P < 0.05). Compared with normal mouse hearts, the NF-kappaB p65 mRNA relative levels following siRNA injection in the donors decreased significantly (approximately 70% reduction) in grafts harvested 12 h after transplantation. The mRNA levels of VCAM-1, ICAM-1, and interleukin-1 displayed a similar reduction. Histological evaluation using light and electron microscopy showed that damage of endothelial cells after NF-kappaB siRNA treament occured at a later time. CONCLUSION Transfection of NF-kappaB p65 siRNA in donor animals can delay the emergence of DXR. This treatment may be used as part of strategies to minimize the complex and multi-faceted rejection responses in vascularized xenografts.
Collapse
Affiliation(s)
- Zhenya Shen
- Department of Cardiovascular Surgery of the First affiliated Hospital, Institute for Cardiovascular Science of Soochow University, Suzhou, Jiangsu 215006, China.
| | | | | |
Collapse
|
22
|
|
23
|
Human leukocytes regulate ganglioside expression in cultured micro-pig aortic endothelial cells. Lab Anim Res 2012; 28:255-63. [PMID: 23326286 PMCID: PMC3542384 DOI: 10.5625/lar.2012.28.4.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 01/01/2023] Open
Abstract
Gangliosides are ubiquitous components of the membranes of mammalian cells that are thought to play important roles in various cell functions such as cell-cell interaction, cell adhesion, cell differentiation, growth control, and signaling. However, the role that gangliosides play in the immune rejection response after xenotransplantation is not yet clearly understood. In this study, the regulatory effects of human leukocytes on ganglioside expression in primary cultured micro-pig aortic endothelial cells (PAECs) were investigated. To determine the impact of human leukocytes on the expression of gangliosides in PAECs, we performed high-performance thin layer chromatography (HPTLC) in PAECs incubated with FBS, FBS containing human leukocytes, human serum containing human leukocytes, and FBS containing TNF-α. Both HPTLC and immunohistochemistry analyses revealed that PAECs incubated with FBS predominantly express the gangliosides GM3, GM1, and GD3. However, the expression of GM1 significantly decreased in PAECs incubated for 5 h with TNF-α (10 ng/mL), 10% human serum containing human leukocytes, and 10% FBS containing human leukocytes. Taken together, these results suggest that human leukocytes induced changes in the expression profile of ganglioside GM1 similar to those seen upon treatment of PAECs with TNF-α. This finding may be relevant for designing future therapeutic strategies intended to prolong xenograft survival.
Collapse
|
24
|
Luan NM, Iwata H. Xenotransplantation of islets enclosed in agarose microcapsule carrying soluble complement receptor 1. Biomaterials 2012; 33:8075-81. [DOI: 10.1016/j.biomaterials.2012.07.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
25
|
Lee KG, Lee H, Ha JM, Lee YK, Kang HJ, Park CG, Kim SJ. Increased human tumor necrosis factor-α levels induce procoagulant change in porcine endothelial cells in vitro. Xenotransplantation 2012; 19:186-95. [PMID: 22702470 DOI: 10.1111/j.1399-3089.2012.00704.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Intravascular thrombosis and systemic coagulation abnormalities are major hurdles to successful xenotransplantation and are signs of acute humoral rejection. Increased expression of tissue factor (TF) is associated with the development of microvascular thrombosis in xenografts. To develop an effective strategy to prevent accelerated coagulation in xenografts, we investigated the mechanism by which porcine endothelial cells (PECs) become procoagulant after contact with human blood. METHODS The changes in TF mRNA levels and activity in PECs after incubation with 20% human serum or human bioactive molecules, including C5a, tumor necrosis factor-α (TNFα) and interleukin (IL)-1α, were evaluated using real-time PCR and the factor Xa chromogenic assay, respectively. The procoagulant changes in PECs by these agonists were evaluated by measuring the coagulation time of human citrated plasma suspended with PECs pretreated with each agonist. TF expression and coagulation times were also assessed in PECs transfected with short interfering RNA (siRNA) designed to knock down porcine TF. We also examined the production of proinflammatory cytokines in human whole-blood or plasma after contact with PECs, which were screened using the cytometric bead array system. TNFα levels were measured using ELISA in whole-blood after contact with PECs, with or without the addition of xenoreactive antibodies or C1 esterase inhibitor. RESULTS Porcine TF mRNA and activity in PECs were up-regulated in response to human TNFα and IL-1α but were not affected by C5a or 20% human serum. Up-regulation of TF expression by human TNFα or IL-1α shortened PEC-induced coagulation time, while siRNA-mediated knockdown of TF expression prolonged coagulation time. The incubation of PECs with human whole-blood led to a significant increase in human TNFα levels in the blood, which was promoted by the addition of xenoreactive antibodies and prevented by C1 esterase inhibitor. CONCLUSIONS Human TNFα level increases in human blood after contact with PECs, which is attributed to xenoreactive antibody binding and subsequent complement activation. Human TNFα induces procoagulant changes in PECs with increased TF expression. This study suggests that human TNFα may be one of the mediators linking complement activation with procoagulant changes in the xenoendothelium.
Collapse
Affiliation(s)
- Kyoung Geun Lee
- Division of Biotechnology, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Development and tolerization of hyperacute rejection in a transgenic mouse graft versus host model. Transplantation 2012; 94:234-40. [PMID: 22797707 DOI: 10.1097/tp.0b013e31825ccb91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The hyperacute rejection mediated by preexisting antibodies is a major impediment to the success of transplants across allogeneic and xenogeneic barriers. We report a new mouse model that allows us to not only monitor the sensitization of B cells mediating the hyperacute response but also validate therapeutic strategies for tolerizing them. MODEL The new model system uses 5C.C7,RAG2 T-cell receptor transgenic T cells and B10.S(9R),CD3[Latin Small Letter Open E] hosts for adoptive transfer experiments. RESULTS AND CONCLUSIONS In the allogeneic hosts, transgenic T cells expanded briefly before being chronically deleted. Once the deletion was initiated, a second graft of donor cells was used to assess a hyperacute response. The rapid rejection of the second cohort correlated with the appearance of donor-specific antibodies in the serum. Interestingly, chronically stimulated T cells were relatively resistant to hyperacute rejection, suggesting an explanation for the slower rejection kinetics of the first cohort even as the second cohort of identical donor cells was being hyperacutely rejected. Finally, we could tolerize the potential for a hyperacute response, by pretreating recipients with a single infusion of naive donor B cells before the first T-cell transfer. This treatment not only abrogated the development of a hyperacute response but also allowed the primary graft to survive in vivo for extended periods.
Collapse
|
27
|
Scalea J, Hanecamp I, Robson SC, Yamada K. T-cell-mediated immunological barriers to xenotransplantation. Xenotransplantation 2012; 19:23-30. [PMID: 22360750 DOI: 10.1111/j.1399-3089.2011.00687.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Xenotransplantion remains the most viable option for significant expansion of the donor organ pool in clinical transplantation. With the advent of nuclear transfer technologies, the production of transgenic swine has become a possibility. These animals have allowed transplant investigators to overcome humoral mechanisms of hyperacute xenograft rejection in experimental pig-to-non-human primate models. However, other immunologic barriers preclude long-term acceptance of xenografts. This review article focuses on a major feature of xenogeneic rejection: xenogeneic T cell responses. Evidence obtained from both small and large animal models, particularly those using either islet cells or kidneys, have demonstrated that T cell responses play a major role in xenogeneic rejection, and that immunosuppression alone is likely incapable of completely suppressing these responses. Additionally, both the direct and indirect pathway of antigen presentation appear to be involved in these anti donor processes. Enhanced understanding of (i) CD47 and its role in transduced xeno-bone marrow (ii) CD39 and its role in coagulation dysregulation and (iii) thymic transplantation have provided us with encouraging results. Presently, experiments evaluating the possibility of xenogeneic tolerance are underway.
Collapse
Affiliation(s)
- Joseph Scalea
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
28
|
Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, Ayares D, Nagashima H, Baars W, Schwinzer R, Wolf E. Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation 2012; 19:40-51. [PMID: 22360752 DOI: 10.1111/j.1399-3089.2011.00688.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Efficient and precise techniques for the genetic modification of pigs facilitate the generation of tailored donor animals for xenotransplantation. Numerous transgenic pig lines exist with the focus on inhibition of the complement system and of humoral immune responses. In addition, immune cell-based responses need to be controlled to prevent pig-to-primate xenograft rejection. Expression of human (hu) TNF-related apoptosis-inducing ligand (TRAIL) on porcine cells has the potential to ameliorate human T cell responses. METHODS We generated transgenic pigs expressing human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (huTRAIL) under the control of either the mouse H2K(b) promoter or a CMV enhancer/chicken β-actin (CAG) promoter, the latter one (CAG-huTRAIL) on a GGTA1 knockout/huCD46 transgenic background. The biological activity of huTRAIL was demonstrated by its apoptosis-inducing effect on Jurkat lymphoma cells. To clarify whether huTRAIL affects also primary immune cells and whether its effects depend on the presence of co-stimulatory molecules, we exposed human peripheral blood mononuclear cells (PBMC) or isolated T cells to huTRAIL-expressing porcine fibroblasts or dendritic cells in vitro. RESULTS H2Kb-huTRAIL transgenic pigs express huTRAIL mainly in the spleen and secondary lymphoid tissues. The CAG-huTRAIL construct facilitated huTRAIL expression in multiple organs, the level being at least one order of magnitude higher than in H2Kb-huTRAIL transgenic pigs. Incubation with huTRAIL-expressing H2Kb-huTRAIL transgenic porcine dendritic cells decreased human T cell proliferation significantly without any signs of apoptosis. In spite of the high transgene expression level, CAG-huTRAIL transgenic fibroblasts did not affect proliferation of human PBMC, independent of their activation state. CONCLUSIONS These results suggest huTRAIL expression on porcine dendritic cells as a possible strategy to attenuate T cell responses against pig-to-primate xenografts.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ekser B, Lin CC, Long C, Echeverri GJ, Hara H, Ezzelarab M, Bogdanov VY, Stolz DB, Enjyoji K, Robson SC, Ayares D, Dorling A, Cooper DKC, Gridelli B. Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transpl Int 2012; 25:882-96. [PMID: 22642260 DOI: 10.1111/j.1432-2277.2012.01506.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Upregulation of tissue factor (TF) expression on activated donor endothelial cells (ECs) triggered by the immune response (IR) has been considered the main initiator of consumptive coagulopathy (CC). In this study, we aimed to identify potential factors in the development of thrombocytopenia and CC after genetically engineered pig liver transplantation in baboons. Baboons received a liver from either an α1,3-galactosyltransferase gene-knockout (GTKO) pig (n = 1) or a GTKO pig transgenic for CD46 (n = 5) with immunosuppressive therapy. TF exposure on recipient platelets and peripheral blood mononuclear cell (PBMCs), activation of donor ECs, platelet and EC microparticles, and the IR were monitored. Profound thrombocytopenia and thrombin formation occurred within minutes of liver reperfusion. Within 2 h, circulating platelets and PBMCs expressed functional TF, with evidence of aggregation in the graft. Porcine ECs were negative for expression of P- and E-selectin, CD106, and TF. The measurable IR was minimal, and the severity and rapidity of thrombocytopenia were not alleviated by prior manipulation of the IR. We suggest that the development of thrombocytopenia/CC may be associated with TF exposure on recipient platelets and PBMCs (but possibly not with activation of donor ECs). Recipient TF appears to initiate thrombocytopenia/CC by a mechanism that may be independent of the IR.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shimizu A, Yamada K, Robson SC, Sachs DH, Colvin RB. Pathologic characteristics of transplanted kidney xenografts. J Am Soc Nephrol 2011; 23:225-35. [PMID: 22114174 DOI: 10.1681/asn.2011040429] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For xenotransplantation to become a clinical reality, we need to better understand the mechanisms of graft rejection or acceptance. We examined pathologic changes in α1,3-galactosyltransferase gene-knockout pig kidneys transplanted into baboons that were treated with a protocol designed to induce immunotolerance through thymic transplantation (n=4) or were treated with long-term immunosuppressants (n=3). Hyperacute rejection did not occur in α1,3-galactosyltransferase gene-knockout kidney xenografts. By 34 days, acute humoral rejection led to xenograft loss in all three xenografts in the long-term immunosuppression group. The failing grafts exhibited thrombotic microangiopathic glomerulopathy with multiple platelet-fibrin microthrombi, focal interstitial hemorrhage, and acute cellular xenograft rejection. Damaged glomeruli showed IgM, IgG, C4d, and C5b-9 deposition. They also demonstrated endothelial cell death, diffuse endothelial procoagulant activation with high expression of tissue factor and vWF, and low expression of the ectonucleotidase CD39. In contrast, in the immunotolerance group, two of four grafts had normal graft function and no pathologic findings of acute or chronic rejection at 56 and 83 days. One of the remaining kidneys had mild but transient graft dysfunction with reversible, mild microangiopathic glomerulopathy, probably associated with preformed antibodies. The other kidney in the immunotolerance group developed unstable graft function at 81 days and developed chronic xenograft glomerulopathy. In summary, the success of pig-to-primate xenotransplantation may necessitate immune tolerance to inhibit acute humoral and cellular xenograft rejection.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Numerous epidemiological studies have shown that children who grow up on traditional farms are protected from asthma, hay fever and allergic sensitization. Early-life contact with livestock and their fodder, and consumption of unprocessed cow's milk have been identified as the most effective protective exposures. Studies of the immunobiology of farm living point to activation and modulation of innate and adaptive immune responses by intense microbial exposures and possibly xenogeneic signals delivered before or soon after birth.
Collapse
|
32
|
Millard AL, Spirig R, Mueller NJ, Seebach JD, Rieben R. Inhibition of direct and indirect TLR-mediated activation of human NK cells by low molecular weight dextran sulfate. Mol Immunol 2010; 47:2349-58. [DOI: 10.1016/j.molimm.2010.05.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 05/05/2010] [Indexed: 11/16/2022]
|
33
|
Lin CC, Ezzelarab M, Shapiro R, Ekser B, Long C, Hara H, Echeverri G, Torres C, Watanabe H, Ayares D, Dorling A, Cooper DK. Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am J Transplant 2010; 10:1556-68. [PMID: 20642682 PMCID: PMC2914318 DOI: 10.1111/j.1600-6143.2010.03147.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Consumptive coagulopathy (CC) remains a challenge in pig-to-primate organ xenotransplantation (Tx). This study investigated the role of tissue factor (TF) expression on circulating platelets and peripheral blood mononuclear cells (PBMCs). Baboons (n = 9) received a kidney graft from pigs that were either wild-type (n = 2), alpha1,3-galactosyltransferase gene-knockout (GT-KO; n = 1) or GT-KO and transgenic for the complement-regulatory protein, CD46 (GT-KO/CD46, n = 6). In the baboon where the graft developed hyperacute rejection (n = 1), the platelets and PBMCs expressed TF within 4 h of Tx. In the remaining baboons, TF was detected on platelets on post-Tx day 1. Subsequently, platelet-leukocyte aggregation developed with formation of thrombin. In the six baboons with CC, TF was not detected on baboon PBMCs until CC was beginning to develop. Graft histopathology showed fibrin deposition and platelet aggregation (n = 6), but with only minor or no features indicating a humoral immune response (n = 3), and no macrophage, B or T cell infiltration (n = 6). Activation of platelets to express TF was associated with the initiation of CC, whereas TF expression on PBMCs was concomitant with the onset of CC, often in the relative absence of features of acute humoral xenograft rejection. Prevention of recipient platelet activation may be crucial for successful pig-to-primate kidney Tx.
Collapse
Affiliation(s)
- Chih Che Lin
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
- Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaoksiung, Taiwan
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | - Ron Shapiro
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | - Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | - Gabriel Echeverri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | - Corin Torres
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | - Hiroshi Watanabe
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | | | - Anthony Dorling
- MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK
| | - David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| |
Collapse
|
34
|
Abstract
The growing numbers of potential transplant recipients on waiting lists is increasingly disproportionate to the supply of cadaveric donor organs. The hope for the next 20 years is that supply will satisfy demand. This requires both a reduction in indications for the procedure and an increase in the transplants performed. A multi-pronged approach is needed to increase cadaveric organ donation, generating enthusiasm for donation among both the general public and hospital staff. Accurate assessment of marginal grafts with stringent criteria known to predict graft function will diminish wastage of organs. Methods of rehabilitating marginal grafts during extracorporeal perfusion will increase organ availability. Supply of non-heart beating donors can be greatly expanded and protocols developed with ethical consent to optimize their initial function despite warm ischemia. Splitting livers that fulfill selection criteria, thus providing for two recipients, should be universally applied with acceptable incentives to those units who do not directly benefit. A proportion of recipients, though not those transplanted for autoimmune disease, will be spared the side-effects of immunosuppression thanks to immune tolerance. Protocols for close monitoring of those patients for rejection during treatment withdrawal must be carefully observed. In addition to gene therapy, it is highly likely that hepatocyte transplantation will replace orthotopic grafting in patients without cirrhosis, especially for inherited metabolic diseases. It is much more difficult to envisage that heterologous stem cell transplantation or xenotransplantation will have clinical impact in the next 20 years, although research in those areas has obvious long-term potential.
Collapse
Affiliation(s)
- M Thamara P R Perera
- The Liver Unit, University Hospital Birmingham NHS Trust, Queen Elizabeth Hospital, Birmingham, UK
| | | | | |
Collapse
|
35
|
Hawksworth JS, Elster EA, Fryer D, Sheppard F, Morthole V, Krishnamurthy G, Tomori T, Brown TS, Tadaki DK. Evaluation of lyophilized platelets as an infusible hemostatic agent in experimental non-compressible hemorrhage in swine. J Thromb Haemost 2009; 7:1663-71. [PMID: 19656278 DOI: 10.1111/j.1538-7836.2009.03562.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Human lyophilized platelets hold promise as a novel hemostatic infusion agent for the control of traumatic hemorrhage. Rehydrated, lyophilized platelets (Stasix) were investigated as an infusible hemostatic agent in experimental non-compressible hemorrhage, using a porcine liver injury model. METHODS Yorkshire swine underwent a grade III liver injury and uncontrolled bleeding. After 15 min, animals were infused with Stasix (n = 10) or normal saline vehicle (n = 10). At 2 h, the liver was repaired, and the animals were monitored for another4 h. Resuscitation, including blood transfusion, was administered during the hospital phase. Laboratory data, including arterial blood gas, complete blood count, thromboelastography (TEG), and coagulation parameters, were collected. All animals underwent necropsy with complete histopathologic examination. RESULTS Overall survival in the Stasix group [8/10 (80%)] was significantly higher than in the control group [2/10 (20%)] (P = 0.023). Mean total blood loss index (g kg(-1)) was lower in Stasix-treated animals (22.2 +/- 3.5) than in control animals (34.7 +/- 3.4) (P = 0.019). Hemodynamic parameters were improved in the Stasix group, and a trend towards higher hemoglobin and lower lactate was observed. Coagulation and TEG parameters were not different between the groups. One surviving animal in the Stasix group had evidence of thrombi on necropsy. CONCLUSIONS This is the first reported study to evaluate rehydrated, lyophilized platelets as an infusible hemostatic agent for non-compressible hemorrhage. Stasix improved survival and reduced blood loss in a liver injury porcine model. However, evidence of thrombotic complications warrants further investigation prior to human use in the setting of traumatic hemorrhage.
Collapse
Affiliation(s)
- J S Hawksworth
- Combat Casualty Care, Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim NY, Lee D, Lee J, Park EW, Jung WW, Yang JM, Kim YB. Characterization of the replication-competent porcine endogenous retrovirus class B molecular clone originated from Korean domestic pig. Virus Genes 2009; 39:210-6. [DOI: 10.1007/s11262-009-0377-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 06/06/2009] [Indexed: 10/20/2022]
|
37
|
Knosalla C, Yazawa K, Behdad A, Bodyak N, Shang H, Bühler L, Houser S, Gollackner B, Griesemer A, Schmitt-Knosalla I, Schuurman HJ, Awwad M, Sachs DH, Cooper DKC, Yamada K, Usheva A, Robson SC. Renal and cardiac endothelial heterogeneity impact acute vascular rejection in pig-to-baboon xenotransplantation. Am J Transplant 2009; 9:1006-16. [PMID: 19422330 PMCID: PMC2824173 DOI: 10.1111/j.1600-6143.2009.02602.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Xenograft outcomes are dictated by xenoantigen expression, for example, Gal alpha1, 3Gal (Gal), but might also depend on differing vascular responses. We investigated whether differential vascular gene expression in kidney and cardiac xenografts correlate with development of thrombotic microangiopathy (TM) and consumptive coagulation (CC). Immunosuppressed baboons underwent miniswine or hDAF pig kidney (n = 6) or heart (n = 7), or Gal-transferase gene-knockout (GalT-KO) (thymo)kidney transplantation (n = 14). Porcine cDNA miniarrays determined donor proinflammatory, apoptosis-related and vascular coagulant/fibrinolytic gene expression at defined time points; validated by mRNA, protein levels and immunopathology. hDAF-transgenic and GalT-KO xenografts, (particularly thymokidneys) exhibited prolonged survival. CC was seen with Gal-expressing porcine kidneys (3 of 6), only 1 of 7 baboons postcardiac xenotransplantation and was infrequent following GalT-KO grafts (1 of 14). Protective-type genes (heme oxygenase-I, superoxide dismutases and CD39) together with von Willebrand factor and P-selectin were upregulated in all renal grafts. Transcriptional responses in Gal-expressing xenografts were comparable to those seen in the infrequent GalT-KO rejection. In cardiac xenografts, fibrin deposition was associated with increased plasminogen activator inhibitor-1 expression establishing that gene expression profiles in renal and cardiac xenografts differ in a quantitative manner. These findings suggest that therapeutic targets may differ for renal and cardiac xenotransplants.
Collapse
Affiliation(s)
- C. Knosalla
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yazawa
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Behdad
- Transplantation and Liver Centers, Beth Israel-Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - N. Bodyak
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - H. Shang
- Transplantation and Liver Centers, Beth Israel-Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - L. Bühler
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. Houser
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - B. Gollackner
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Griesemer
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - I. Schmitt-Knosalla
- Laboratory of Immunogenetics and Transplantation, Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | | | - M. Awwad
- Previously at Immerge BioTherapeutics, Cambridge, MA
| | - D. H. Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - D. K. C. Cooper
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Usheva
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - S. C. Robson
- Transplantation and Liver Centers, Beth Israel-Deaconess Medical Center/Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Kim HK, Kim JE, Wi HC, Lee SW, Kim JY, Kang HJ, Kim YT. Aurintricarboxylic acid inhibits endothelial activation, complement activation, and von Willebrand factor secretion in vitro and attenuates hyperacute rejection in an ex vivo model of pig-to-human pulmonary xenotransplantation. Xenotransplantation 2009; 15:246-56. [PMID: 18957047 DOI: 10.1111/j.1399-3089.2008.00481.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the xenotransplantation of vascularized organs, such as the lung, a large area of endothelial cell layer is a big hurdle to be overcome. We investigated the potential protective effect of aurintricarboxylic acid (ATA), a known inhibitor of platelet adhesion, on endothelial damage induced by xenogeneic serum. We also assessed its role in hyperacute xenograft rejection using a porcine ex vivo lung perfusion model. METHODS Porcine endothelial cells were incubated with human serum and other inflammatory stimuli. For the evaluation of von Willebrand factor (vWF) secretion and tissue factor (TF) expression, we used human endothelial cells. E-selectin expression, complement activation, TF expression and platelet activation were investigated by flow cytometry. In an ex vivo porcine lung perfusion model, the porcine lungs were perfused with fresh human whole blood: unmodified blood (n = 5), ATA-treated blood (n = 5), and ATA and lepirudin-treated blood (n = 5). RESULTS Aurintricarboxylic acid significantly inhibited TNF-alpha- or lipopolysaccharide-induced endothelial E-selectin expression in a dose-dependent manner. ATA also prevented human serum induced-E-selectin expression and human monocytic cell adhesion to porcine endothelial cells. Moreover, ATA abolished thrombin-induced vWF secretion as well as complement activation. However, ATA induced endothelial TF expression and platelet activation in vitro. In ex-vivo experiments, ATA treatment improved pulmonary function and attenuated sequestration of leukocytes. Although ATA did not influence thrombin generation, we were able to minimize its activity by adding lepirudin to the blood with ATA. CONCLUSIONS Our study demonstrated in vitro protective effect of ATA on the inhibition of endothelial activation and vWF secretion and confirmed detrimental effect of ATA on induction of endothelial TF and platelet activation. The combination of ATA and lepirudin may act beneficially by preventing coagulation perturbation while maintaining improved xenograft survival.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Hisashi Y, Yamada K, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Colvin RB, Shimizu A. Rejection of cardiac xenografts transplanted from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) pigs to baboons. Am J Transplant 2008; 8:2516-26. [PMID: 19032222 PMCID: PMC2836186 DOI: 10.1111/j.1600-6143.2008.02444.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine donors in discordant xenotransplantation has extended the survival of cardiac xenografts in baboons following transplantation. Eight baboons received heterotopic cardiac xenografts from GalT-KO swine and were treated with a chronic immunosuppressive regimen. The pathologic features of acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR) and chronic rejection were assessed in the grafts. No hyperacute rejection developed and one graft survived up to 6 months after transplantation. However, all GalT-KO heart grafts underwent graft failure with AHXR, ACXR and/or chronic rejection. AHXR was characterized by interstitial hemorrhage and multiple thrombi in vessels of various sizes. ACXR was characterized by TUNEL(+) graft cell injury with the infiltration of T cells (including CD3 and TIA-1(+) cytotoxic T cells), CD4(+) cells, CD8(+) cells, macrophages and a small number of B and NK cells. Chronic xenograft vasculopathy, a manifestation of chronic rejection, was characterized by arterial intimal thickening with TUNEL(+) dead cells, antibody and complement deposition, and/or cytotoxic T-cell infiltration. In conclusion, despite the absence of the Gal epitope, acute and chronic antibody and cell-mediated rejection developed in grafts, maintained by chronic immunosupression, presumably due to de novo responses to non-Gal antigens.
Collapse
Affiliation(s)
- Y. Hisashi
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Kuwaki
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Y.-L Tseng
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - F. J. M. F. Dor
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. L Houser
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. C. Robson
- Department of Medicine, Transplant Center, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | | | - D. K. C. Cooper
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - D. H. Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - R. B. Colvin
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Immerge BioTherapeutics Inc., Cambridge, MA, Department of Pathology, Nippon Medical School, Tokyo, Japan,Corresponding author: Akira Shimizu,
| |
Collapse
|
40
|
Benatuil L, Kaye J, Cretin N, Godwin JG, Cariappa A, Pillai S, Iacomini J. Ig knock-in mice producing anti-carbohydrate antibodies: breakthrough of B cells producing low affinity anti-self antibodies. THE JOURNAL OF IMMUNOLOGY 2008; 180:3839-48. [PMID: 18322191 DOI: 10.4049/jimmunol.180.6.3839] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural Abs specific for the carbohydrate Ag Galalpha1-3Galbeta1-4GlcNAc-R (alphaGal) play an important role in providing protective host immunity to various pathogens; yet little is known about how production of these or other anti-carbohydrate natural Abs is regulated. In this study, we describe the generation of Ig knock-in mice carrying functionally rearranged H chain and L chain variable region genes isolated from a B cell hybridoma producing alphaGal-specific IgM Ab that make it possible to examine the development of B cells producing anti-carbohydrate natural Abs in the presence or absence of alphaGal as a self-Ag. Knock-in mice on a alphaGal-deficient background spontaneously developed alphaGal-specific IgM Abs of a sufficiently high titer to mediate rejection of alphaGal expressing cardiac transplants. In the spleen of these mice, B cells expressing alphaGal-specific IgM are located in the marginal zone. In knock-in mice that express alphaGal, B cells expressing the knocked in BCR undergo negative selection via receptor editing. Interestingly, production of low affinity alphaGal-specific Ab was observed in mice that express alphaGal that carry two copies of the knocked in H chain. We suggest that in these mice, receptor editing functioned to lower the affinity for self-Ag below a threshold that would result in overt pathology, while allowing development of low affinity anti-self Abs.
Collapse
Affiliation(s)
- Lorenzo Benatuil
- Transplantation Research Center, Brigham and Women's Hospital, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Yamada K, Colvin RB. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1471-81. [PMID: 18467706 DOI: 10.2353/ajpath.2008.070672] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heterotopic cardiac xenotransplantation from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine to baboons was performed to characterize immunological reaction to the xenograft in the absence of anti-Gal antibody-mediated rejection. Eight baboons received heterotopic cardiac xenografts from GalT-KO porcine donors. All baboons were treated with chronic immunosuppressive therapy. Both histological and immunohistochemical studies were performed on biopsy and graftectomy samples. No hyperacute rejection was observed. Three baboons were euthanized or died 16 to 56 days after transplantation. The other five grafts ceased beating between days 59 and 179 (median, 78 days). All failing grafts exhibited thrombotic microangiopathy (TM) with platelet-rich fibrin thrombi in the microvasculature, myocardial ischemia and necrosis, and focal interstitial hemorrhage. TM developed in parallel with increases in immunoglobulin (IgM and IgG) and complement (C3, C4d, and C5b-9) deposition, as well as with subsequent increases in both TUNEL(+) endothelial cell death and procoagulant activation (increased expression of both tissue factor and von Willebrand factor and decreased expression of CD39). CD3(+) T-cell infiltration occurred in all grafts and weakly correlated with the development of TM. In conclusion, although the use of GalT-KO swine donors prevented hyperacute rejection and prolonged graft survival, slowly progressive humoral rejection--probably associated with non-Gal antibodies to the xenograft--and disordered thromboregulation represent major immunological barriers to long-term xenograft survival.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Because of the apparent mechanistic similarities between antibody-mediated rejection of ABO-incompatible organ allografts and vascularized xenografts, there is hope that strategies to enable transplantation across the ABO barrier may also be effective in curbing xenograft rejection. This paper discusses the molecular similarities and differences between an ABO-incompatible allograft and a porcine xenograft in terms of their interactions with the immune system.
Collapse
|
43
|
Zhang B, Zhang A, Zhao Y. Platelet aggregation and thrombosis in xenotransplantation between pigs and humans. Thromb Res 2008; 121:433-41. [PMID: 17644165 DOI: 10.1016/j.thromres.2007.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 02/27/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Allografts are currently short for clinical potential recipients. Organs and tissues from pigs could be a potential alternative source for clinical transplantation because of their high similarity in anatomical and physiological aspects. Thrombosis could be a consequence of the immunological response or the physiological incompatibilities in cell and molecular levels across species. Platelets play an essential role in haemostasis and the incompatibility of platelets between pigs and humans could be related to rejection and dysfunction of xenografts. Pig blood components, including plasma, leukocytes, red blood cells and platelets, could induce aggregation of human platelets directly, which then resulted in severe thrombosis after xenotransplantation. On the other hand, the existence of potential incompatibilities in coagulation and fibrinolytic system between pigs and humans in the context of xenotransplantation is an important consideration. Here we reviewed platelet incompatibility between pigs and humans related to thrombosis after xenotransplantation, and contribution of immunosuppressive agents to minimizing thrombosis and rejection.
Collapse
Affiliation(s)
- Baojun Zhang
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Datun Road 5, Beijing, China, 100101, China
| | | | | |
Collapse
|
44
|
Reduced Fibrin Deposition and Intravascular Thrombosis in hDAF Transgenic Pig Hearts Perfused With Tirofiban. Transplantation 2007; 84:1667-76. [DOI: 10.1097/01.tp.0000295742.45413.dc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
|
46
|
Takei Y, Maruyama A, Ikejima K, Enomoto N, Yamashina S, Lemasters JJ, Sato N. Genetic manipulation of sinusoidal endothelial cells. J Gastroenterol Hepatol 2007; 22 Suppl 1:S68-72. [PMID: 17567471 DOI: 10.1111/j.1440-1746.2006.04657.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Altered gene expression in liver sinusoidal endothelial cells (SEC) is associated with a variety of aspects of liver pathophysiology. It is, therefore, possible to envision a new therapeutic strategy for treatment of intractable liver diseases and achievement of graft-specific immunotolerance through modulation of SEC functions by genetic engineering. The SEC possesses unique hyaluronan receptors that recognize and internalize hyaluronic acid (HA). This characteristic was used in the development of a system for targeting foreign DNA to SEC. A gene carrier system was prepared by coupling HA oligomers to poly L-lysine (PLL) in a 1:1 weight ratio by reductive amination reaction. The resulting copolymer (PLL-g-HA) was mixed with various amounts of DNA in 154 mM NaCl. Inter-polyelectrolyte complex formation between PLL-g-HA and DNA exhibited minimal self-aggregation, explaining the highly soluble nature of the complex. Complex formation between PLL-g-HA and DNA was further assessed with a gel retardation assay. The titration point representing the minimum proportion of PLL-g-HA required to retard the DNA completely occurred at a 1:1 copolymer (based on PLL) to DNA charge ratio. Following intravenous injection of (32)P-labeled pSV beta-Gal plasmid complexed to PLL-g-HA in Wistar rats, >90% of the injected counts were shown to be taken up by the liver. Further, it was shown that the PLL-g-HA/DNA complex was distributed exclusively in the SEC. At 72 h after injection of 90 mug of pSV beta-Gal in a PLL-g-HA-complexed form, a large number of SEC expressing beta-galactosidase were detected. So, the PLL-g-HA/DNA system permits targeted delivery of exogenous nucleotide agents selectively to the liver SEC, providing a novel strategy for manipulation of SEC functions.
Collapse
Affiliation(s)
- Yoshiyuki Takei
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Wu G, Pfeiffer S, Schröder C, Zhang T, Nguyen BN, Kelishadi S, Atkinson JB, Schuurman HJ, White DJG, Azimzadeh AM, Pierson RN. Coagulation cascade activation triggers early failure of pig hearts expressing human complement regulatory genes. Xenotransplantation 2007; 14:34-47. [PMID: 17214703 DOI: 10.1111/j.1399-3089.2006.00362.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hyperacute rejection (HAR) and early graft failure (EGF) have been described in a minority of pig-to-baboon heart transplants using organs transgenic for human complement regulatory proteins (hCRP). Here we investigate the role of coagulation cascade activation in the pathogenesis of HAR and EGF in a consecutive series where a high incidence of these outcomes was observed. METHODS Twenty-eight naïve wild-caught Papio anubis baboons received heterotopic heart transplants from pigs transgenic for hDAF (n = 23) or hMCP (n = 5). Immunosuppression consisted of cyclosporine A, cyclophosphamide and MMF (n = 18) or anti-CD154 mAb (IDEC-131) and ATG (n = 10). Eleven received anti-Gal carbohydrates (GAS914, n = 8, or NEX1285, n = 3), of which four also underwent extracorporeal immunoadsorption (EIA), and 12 also received pharmacologic complement inhibitors (C1 INH, n = 9, or APT070, n = 3). RESULTS Excluding one technical failure, 14 of 27 transplants (11 hDAF, 3 hMCP) exhibited either HAR (n = 10) or EGF (n = 4). Surprisingly, neither complement inhibition (with C1 INH or APT070) nor anti-Gal antibody depletion with GAS914, NEX1285, or additional EIA consistently prevented HAR or EGF despite low or undetectable complement deposition. Strikingly, most grafts with HAR/EGF exhibited prominent fibrinogen and platelet deposition associated with systemic coagulation cascade activation, consistent with non-physiologic intravascular coagulation, in many instances despite little evidence for antibody-mediated complement activation. CONCLUSION We conclude that dysregulated coagulation correlates closely with and probably causes primary failure of pig hearts transgenic for hCRP. These data support efforts to define effective strategies to prevent dysregulated coagulation in pig organ xenografts.
Collapse
Affiliation(s)
- Guosheng Wu
- Baltimore VAMC, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shimizu A, Yamada K. Pathology of renal xenograft rejection in pig to non-human primate transplantation. Clin Transplant 2006; 20 Suppl 15:46-52. [PMID: 16848876 DOI: 10.1111/j.1399-0012.2006.00550.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Xenotransplantation has the potential to alleviate the critical shortage of organs for transplantation in humans. Miniature swine are a promising donor species for xenotransplantation. However, when swine organs are transplanted into primates, hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR), and chronic xenograft rejection prevent successful engraftment. Developing a suitable regimen for preventing xenograft rejection requires the ability to accurately diagnosis the severity and type of rejection in the graft. For this purpose, histopathology remains the most definitive and reliable tool. We discuss here the characteristic features of xenograft rejection in a preclinical pig-to-non-human primate transplantation model. In miniature swine to baboon xenotransplantation, marked interstitial hemorrhage develops in HAR, and renal microvascular injury develops with multiple platelet-fibrin microthrombi in both HAR and AHXR. T-cell-mediated cellular immunity plays an important role in ACXR. Chronic humoral and cellular rejection may induce chronic xenograft rejection, and will be a major cause of graft loss in discordant xenotransplantation.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
50
|
Abstract
The lack of cadaver donors and the high requirements for organs cannot be met by present sources, leading to the need for xenoorgans or stem cell-derived tissues/organs. Actually, despite experimental suggestions, scientific and ethical doubts have been raised by both the scientific community and international organizations (World Health Organization, 1998; European Council of Parliamentary Assembly, 1999). Thus, to balance the shortage of organs, laws allowing living organ donations have been issued in several countries, including Italy, where there is an increasingly favorable attention to organ transplantation from living donors. Because of the prohibition of body commercialization issued by the Oviedo Convention (1997), the bioethics and legal debate as well as issued laws concern 2 major closely related aspects: the health-defense of the donor who accepts a decreased well-being and the counterbalanced possibility of an economic advantage/indemnity.
Collapse
Affiliation(s)
- P Frati
- Department of Forensic Medicine, University of Rome La Sapienza, Neuromed Institute, Pozzilli, Rome, Italy.
| |
Collapse
|