1
|
Abstract
Tissue-resident macrophages are present in most tissues with developmental, self-renewal, or functional attributes that do not easily fit into a textbook picture of a plastic and multifunctional macrophage originating from hematopoietic stem cells; nor does it fit a pro- versus anti-inflammatory paradigm. This review presents and discusses current knowledge on the developmental biology of macrophages from an evolutionary perspective focused on the function of macrophages, which may aid in study of developmental, inflammatory, tumoral, and degenerative diseases. We also propose a framework to investigate the functions of macrophages in vivo and discuss how inherited germline and somatic mutations may contribute to the roles of macrophages in diseases.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Maria Pokrovskii
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
2
|
Cox N, Geissmann F. Macrophage ontogeny in the control of adipose tissue biology. Curr Opin Immunol 2019; 62:1-8. [PMID: 31670115 DOI: 10.1016/j.coi.2019.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Macrophages are found in large numbers in the adipose tissue where they closely associate with the adipocytes and the vasculature. Adipose tissue macrophages are a heterogenous population of cells with 'hard wired' diversity brought upon by distinct developmental lineages. The purpose of this review is to provide a brief history of macrophages in control of adipose tissue metabolism with the emphasis on the importance of macrophage ontogeny.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
3
|
Ahn SH, Granger A, Rankin MM, Lam CJ, Cox AR, Kushner JA. Tamoxifen suppresses pancreatic β-cell proliferation in mice. PLoS One 2019; 14:e0214829. [PMID: 31490929 PMCID: PMC6731016 DOI: 10.1371/journal.pone.0214829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen is a mixed agonist/antagonist estrogen analogue that is frequently used to induce conditional gene deletion in mice using Cre-loxP mediated gene recombination. Tamoxifen is routinely employed in extremely high-doses relative to typical human doses to induce efficient gene deletion in mice. Although tamoxifen has been widely assumed to have no influence upon β-cells, the acute developmental and functional consequences of high-dose tamoxifen upon glucose homeostasis and adult β-cells are largely unknown. We tested if tamoxifen influences glucose homeostasis in male mice of various genetic backgrounds. We then carried out detailed histomorphometry studies of mouse pancreata. We also performed gene expression studies with islets of tamoxifen-treated mice and controls. Tamoxifen had modest effects upon glucose homeostasis of mixed genetic background (F1 B6129SF1/J) mice, with fasting hyperglycemia and improved glucose tolerance but without overt effects on fed glucose levels or insulin sensitivity. Tamoxifen inhibited proliferation of β-cells in a dose-dependent manner, with dramatic reductions in β-cell turnover at the highest dose (decreased by 66%). In sharp contrast, tamoxifen did not reduce proliferation of pancreatic acinar cells. β-cell proliferation was unchanged by tamoxifen in 129S2 mice but was reduced in C57Bl6 genetic background mice (decreased by 59%). Gene expression studies revealed suppression of RNA for cyclins D1 and D2 within islets of tamoxifen-treated mice. Tamoxifen has a cytostatic effect on β-cells, independent of changes in glucose homeostasis, in mixed genetic background and also in C57Bl6 mice. Tamoxifen should be used judiciously to inducibly inactivate genes in studies of glucose homeostasis.
Collapse
Affiliation(s)
- Surl-Hee Ahn
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anne Granger
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Matthew M. Rankin
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Carol J. Lam
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Aaron R. Cox
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Jake A. Kushner
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
4
|
Romano SN, Gorelick DA. Crosstalk between nuclear and G protein-coupled estrogen receptors. Gen Comp Endocrinol 2018; 261:190-197. [PMID: 28450143 PMCID: PMC5656538 DOI: 10.1016/j.ygcen.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/04/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
Abstract
In 2005, two groups independently discovered that the G protein-coupled receptor GPR30 binds estradiol in cultured cells and, in response, initiates intracellular signaling cascades Revankar et al. (2005), Thomas et al. (2005). GPR30 is now referred to as GPER, the G-protein coupled estrogen receptor Prossnitz and Arterburn (2015). While studies in animal models are illuminating GPER function, there is controversy as to whether GPER acts as an autonomous estrogen receptor in vivo, or whether GPER interacts with nuclear estrogen receptor signaling pathways in response to estrogens. Here, we review the evidence that GPER acts as an autonomous estrogen receptor in vivo and discuss experimental approaches to test this hypothesis directly. We propose that the degree to which GPER influences nuclear estrogen receptor signaling likely depends on cell type, developmental stage and pathology.
Collapse
Affiliation(s)
- Shannon N Romano
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, USA
| | - Daniel A Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, USA.
| |
Collapse
|
5
|
Zhang R, Wang Y, Li R, Chen G. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism. Int J Mol Sci 2015; 16:14210-44. [PMID: 26110391 PMCID: PMC4490549 DOI: 10.3390/ijms160614210] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- State Food and Drug Administration Hubei Center for Medical Equipment Quality Supervision and Testing, 666 High-Tech Avenue, Wuhan 430000, China.
| | - Yueqiao Wang
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Rui Li
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, 1215 West Cumberland Avenue, Knoxville, TN 37996, USA.
| |
Collapse
|
6
|
Abstract
The discovery of retinoic acid receptors arose from research into how vitamins are essential for life. Early studies indicated that Vitamin A was metabolized into an active factor, retinoic acid (RA), which regulates RNA and protein expression in cells. Each step forward in our understanding of retinoic acid in human health was accomplished by the development and application of new technologies. Development cDNA cloning techniques and discovery of nuclear receptors for steroid hormones provided the basis for identification of two classes of retinoic acid receptors, RARs and RXRs, each of which has three isoforms, α, β and ɣ. DNA manipulation and crystallographic studies revealed that the receptors contain discrete functional domains responsible for binding to DNA, ligands and cofactors. Ligand binding was shown to induce conformational changes in the receptors that cause release of corepressors and recruitment of coactivators to create functional complexes that are bound to consensus promoter DNA sequences called retinoic acid response elements (RAREs) and that cause opening of chromatin and transcription of adjacent genes. Homologous recombination technology allowed the development of mice lacking expression of retinoic acid receptors, individually or in various combinations, which demonstrated that the receptors exhibit vital, but redundant, functions in fetal development and in vision, reproduction, and other functions required for maintenance of adult life. More recent advancements in sequencing and proteomic technologies reveal the complexity of retinoic acid receptor involvement in cellular function through regulation of gene expression and kinase activity. Future directions will require systems biology approaches to decipher how these integrated networks affect human stem cells, health, and disease.
Collapse
|
7
|
Tata JR. The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta Gen Subj 2012; 1830:3860-6. [PMID: 22450156 DOI: 10.1016/j.bbagen.2012.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early studies on the mechanism of action of thyroid hormone (TH) measured changes in enzyme activities following the addition of l-thyroxine (T4) and 3, 3', 5-triiodothyronine (T3) to tissue extracts and purified enzymes. SCOPE OF REVIEW As techniques for isolation of mitochondria, ribosomes, nuclei and chromatin, were increasingly refined, it became possible to study complex cellular processes, such as oxidative phosphorylation, protein synthesis, transcription and chromosomal structure. Uncoupling of oxidative phosphorylation and direct action on protein synthesis as mechanisms of action of TH, proposed in the 1950s and 1960s, were found to be untenable as mechanisms of physiological action because of inappropriate experimental conditions. MAJOR CONCLUSIONS Several findings in the 1960s and 1970s, mainly 1) that near-physiological doses of T3 stimulated transcription measured in vivo or in nuclei isolated from tissues of rats and frog tadpoles, 2) the inhibition of hormone action by inhibitors of transcription and 3) the rapid and almost identical kinetics of accumulation of labelled hormone and RNA synthesis in target cell nuclei, pointed to the cell nucleus as a major site of its action. The application of technologies of recombinant DNA, gene cloning and DNA sequencing in the mid-1980s allowed the identification and understanding of the structure and function of nuclear receptors of TH. GENERAL SIGNIFICANCE This review traces the road leading to the nuclear receptors of thyroid hormone, thus explaining how the hormone influences gene expression. It also illustrates the importance of how new concepts originate from the progression of technological innovations. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Jamshed R Tata
- National Institute for Medical Research, Mill Hill, London NW7 2HA, UK.
| |
Collapse
|
8
|
Tata JR. Looking for the mechanism of action of thyroid hormone. J Thyroid Res 2011; 2011:730630. [PMID: 21804933 PMCID: PMC3143456 DOI: 10.4061/2011/730630] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/29/2011] [Indexed: 02/02/2023] Open
Abstract
The mechanisms of action of thyroid hormone (TH), characterized by multiple physiological activities, proposed over the last 80 years are a reflection of the progression of our knowledge about eukaryotic signalling processes. The cumulative knowledge gained raises the question as to what is so special about the action of this hormone. The discovery in the 1980s that TH receptors belong to the family of nuclear transcription factors that regulate the expression of hormonal target genes was an important milestone. TH receptors are highly organized within the chromatin structure, which itself is modified by several chromosomal and nonchromosomal factors, in the presence and absence of the hormone. Recently, some investigators have suggested that TH acts via both genomic and nongenomic mechanisms and introduced the concept of networking within cellular complexes. While one cannot as yet precisely describe the mechanism of thyroid hormone action, I will attempt here to point out the present thinking and future directions to achieve this goal in the light of the historical background.
Collapse
Affiliation(s)
- Jamshed R Tata
- Division of Developmental Biology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 2HA, UK
| |
Collapse
|
9
|
A-González N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta Mol Basis Dis 2010; 1812:982-94. [PMID: 21193033 DOI: 10.1016/j.bbadis.2010.12.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 12/30/2022]
Abstract
The liver X receptors (LXRα and LXRβ) are members of the nuclear receptor family of transcription factors that play essential roles in the transcriptional control of lipid metabolism. LXRs are endogenously activated by modified forms of cholesterol known as oxysterols and control the expression of genes important for cholesterol uptake, efflux, transport, and excretion in multiple tissues. In addition to their role as cholesterol sensors, a number of studies have implicated LXRs in the modulation of innate and adaptive immune responses. Both through activation and repression mechanisms, LXRs regulate diverse aspects of inflammatory gene expression in macrophages. The ability of LXRs to coordinate metabolic and immune responses constitutes an attractive therapeutic target for the treatment of chronic inflammatory disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Noelia A-González
- Department of Biochemistry and Molecular Biology, Universidad de Las Palmas de Gran Canaria, ULPGC, Las Palmas, Spain
| | | |
Collapse
|
10
|
|
11
|
Zhang Y, Liang J, Li Y, Xuan C, Wang F, Wang D, Shi L, Zhang D, Shang Y. CCCTC-binding factor acts upstream of FOXA1 and demarcates the genomic response to estrogen. J Biol Chem 2010; 285:28604-13. [PMID: 20610384 DOI: 10.1074/jbc.m110.149658] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription activation by estrogen receptor (ER) is rapid and dynamic. How the prompt and precise ER response is established and maintained is still not fully understood. Here, we report that two boundary elements surrounding the well defined ERalpha target TFF1 locus are occupied by the CCCTC-binding factor (CTCF). These elements are separated by 40 kb but cluster in the nuclear space depending on CTCF but independent of estrogen and transcription. In contrast, in estrogen non-responsive breast cancer cells, the spatial proximity of these two elements is lost and the entire locus instead displays a polycomb repressive complex 2-controlled heterochromatin characteristic. We showed that CTCF acts upstream of the "pioneer" factor FOXA1 in determining the genomic response to estrogen. We propose that the CTCF-bound boundary elements demarcate active versus inactive regions, building a framework of adjacent chromosome territory that predisposes ERalpha-regulated transcription.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Karpen SJ, Trauner M. The new therapeutic frontier--nuclear receptors and the liver. J Hepatol 2010; 52:455-62. [PMID: 20133000 DOI: 10.1016/j.jhep.2009.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/20/2009] [Accepted: 10/09/2009] [Indexed: 02/07/2023]
Abstract
A joint EASL/AASLD Monothematic Conference on 'Nuclear Receptors and Liver Disease' was held from February 27th to March 1st, 2009, in Vienna, Austria, to discuss the latest advances at the forefront of basic and clinical nuclear receptor research and its potential implications for liver diseases. This article reports the highlights of the conference and summarizes the main conclusions emphasizing the relevance for clinical and experimental hepatology. The confluence of nuclear receptors as central transcriptional regulators, acting as sensors and adaptors to many of the small molecules present in the intracellular milieu of all the cells of the liver, provides a current framework to address a broader physiological understanding of the liver. The next stage will be the design and testing of safe and effective therapeutics.
Collapse
Affiliation(s)
- Saul J Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Liver Center, Baylor College of Medicine, Pediatrics/Liver Center, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
13
|
Antony P, Sigüeiro R, Huet T, Sato Y, Ramalanjaona N, Rodrigues LC, Mouriño A, Moras D, Rochel N. Structure−Function Relationships and Crystal Structures of the Vitamin D Receptor Bound 2α-Methyl-(20S,23S)- and 2α-Methyl-(20S,23R)-epoxymethano-1α,25-dihydroxyvitamin D3. J Med Chem 2010; 53:1159-71. [DOI: 10.1021/jm9014636] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pierre Antony
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Rita Sigüeiro
- Departamento de Química Orgánica and Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Spain
| | - Tiphaine Huet
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Yoshiteru Sato
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Nick Ramalanjaona
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Luis Cezar Rodrigues
- Departamento de Química Orgánica and Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Spain
| | - Antonio Mouriño
- Departamento de Química Orgánica and Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Spain
| | - Dino Moras
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Natacha Rochel
- Département de Biologie et de Génomique Structurales, Centre National de la Recherche Scientifique, Institut National de la Santé de la Recherche Médicale, Université de Strasbourg, CEBGS-IGBMC (Centre Européen de Biologie et Génomique Structurale—Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 Rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
14
|
Abstract
Retinoids (vitamin A) are crucial for most forms of life. In chordates, they have important roles in the developing nervous system and notochord and many other embryonic structures, as well as in maintenance of epithelial surfaces, immune competence, and reproduction. The ability of all-trans retinoic acid to regulate expression of several hundred genes through binding to nuclear transcription factors is believed to mediate most of these functions. The role of all-trans retinoic may extend beyond the regulation of gene transcription because a large number of noncoding RNAs also are regulated by retinoic acid. Additionally, extra-nuclear mechanisms of action of retinoids are also being identified. In organisms ranging from prokaryotes to humans, retinal is covalently linked to G protein-coupled transmembrane receptors called opsins. These receptors function as light-driven ion pumps, mediators of phototaxis, or photosensory pigments. In vertebrates phototransduction is initiated by a photochemical reaction where opsin-bound 11-cis-retinal is isomerized to all-trans-retinal. The photosensitive receptor is restored via the retinoid visual cycle. Multiple genes encoding components of this cycle have been identified and linked to many human retinal diseases. Central aspects of vitamin A absorption, enzymatic oxidation of all-trans retinol to all-trans retinal and all-trans retinoic acid, and esterification of all-trans retinol have been clarified. Furthermore, specific binding proteins are involved in several of these enzymatic processes as well as in delivery of all-trans retinoic acid to nuclear receptors. Thus, substantial progress has been made in our understanding of retinoid metabolism and function. This insight has improved our view of retinoids as critical molecules in vision, normal embryonic development, and in control of cellular growth, differentiation, and death throughout life.
Collapse
Affiliation(s)
- Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
15
|
Nagy L, Schüle R, Gronemeyer H. Twenty years of nuclear receptors: Conference on Nuclear Receptors: from Chromatin to Disease. EMBO Rep 2006; 7:579-84. [PMID: 16729019 PMCID: PMC1479599 DOI: 10.1038/sj.embor.7400711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/19/2006] [Indexed: 11/08/2022] Open
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem ter 1, H-4010 Debrecen, Hungary.
| | | | | |
Collapse
|
16
|
Marino M, Ascenzi P. Do steroid hormones function via multiple signaling pathways? IUBMB Life 2005; 57:825-7. [PMID: 16393786 DOI: 10.1080/15216540500415628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Italy.
| | | |
Collapse
|
17
|
Szutorisz H, Dillon N, Tora L. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 2005; 30:593-9. [PMID: 16126390 DOI: 10.1016/j.tibs.2005.08.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/04/2005] [Accepted: 08/16/2005] [Indexed: 11/23/2022]
Abstract
Activation of eukaryotic genes requires a tight temporal control of trans-acting-factor binding to different types of sequence elements. General transcription factors (GTFs) have a central role in the regulation of RNA polymerase II (Pol II) function because they are involved in the initiation of transcription at all class II promoters. Recent studies have shown that GTFs and Pol II are recruited to enhancer elements and that this binding is an early event in gene activation. We propose that an important role of some enhancers is to function as nucleation centres for the assembly of the pre-initiation complex to regulate the timing of gene activation during development, differentiation and the cell cycle.
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Jamshed R Tata
- Jamshed R. Tata is at the National Institute for Medical Research in London, UK.
| |
Collapse
|
19
|
Chambon P. The Nuclear Receptor Superfamily: A Personal Retrospect on the First Two Decades. Mol Endocrinol 2005; 19:1418-28. [PMID: 15914711 DOI: 10.1210/me.2005-0125] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Pierre Chambon
- Institut Clinique de la Souris, Collège de France, BP 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|