1
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
He Y, Zhang H, Yang Y, Yu X, Zhang X, Xing Q, Zhang G. Using Metabolomics in Diabetes Management with Traditional Chinese Medicine: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1813-1837. [PMID: 34961417 DOI: 10.1142/s0192415x21500865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The incidence of diabetes worldwide continues to rise, placing a huge economic and medical burden on human society. More than 90% of diabetic cases are type 2 diabetes (T2D). At present, the pathogenesis of T2D is not yet fully understood. Metabolomics uses high-resolution analytical techniques (typically NMR and MS) to help identify biomarkers associated with the risk of T2D and reveal potential pathogenesis. Many metabolites such as branched-chain amino acids (BCAAs), aromatic amino acids, glycine, 2-hydroxybutyric acid (2-HB), lysophosphatidylcholine (LPC) (18:2), and trehalose have proven to be biomarkers of T2D. Insulin resistance (IR) induced by BCAA in T2D mice is related to the activation of mammalian target of rapamycin (mTOR) and phosphorylation of insulin receptor substrate-1 (IRS1). Incomplete LCFA [Formula: see text]-oxidation promote acylcarnitine byproduct accumulation and stimulates proinflammatory NF[Formula: see text]B-related pathways to inhibit insulin action. Traditional Chinese Medicine (TCM) presents unique advantages in the treatment of T2D. Multiple metabolites and metabolic pathways have been identified in the treatment of TCM, providing valuable biomarkers and novel targets for drug therapy and pharmacological mechanism. Therefore, this paper reviews the modern achievements of metabolomics in T2D research and the progress of TCM management in recent years, in order to provide valuable information for related research.
Collapse
Affiliation(s)
- Yanling He
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Hefang Zhang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China.,Department of Endocrinology, First Affiliated Hospital of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050011, P. R. China
| | - Yufei Yang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Xianghui Yu
- Department of Endocrinology, First Affiliated Hospital of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050011, P. R. China
| | - Xiao Zhang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Qiaolin Xing
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China
| | - Gengliang Zhang
- Graduate School of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050091, P. R. China.,Department of Endocrinology, First Affiliated Hospital of Hebei University of Traditional, Chinese Medicine, Shijiazhuang 050011, P. R. China
| |
Collapse
|
3
|
Phillips JD. Heme biosynthesis and the porphyrias. Mol Genet Metab 2019; 128:164-177. [PMID: 31326287 PMCID: PMC7252266 DOI: 10.1016/j.ymgme.2019.04.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Porphyrias, is a general term for a group of metabolic diseases that are genetic in nature. In each specific porphyria the activity of specific enzymes in the heme biosynthetic pathway is defective and leads to accumulation of pathway intermediates. Phenotypically, each disease leads to either neurologic and/or photocutaneous symptoms based on the metabolic intermediate that accumulates. In each porphyria the distinct patterns of these substances in plasma, erythrocytes, urine and feces are the basis for diagnostically defining the metabolic defect underlying the clinical observations. Porphyrias may also be classified as either erythropoietic or hepatic, depending on the principal site of accumulation of pathway intermediates. The erythropoietic porphyrias are congenital erythropoietic porphyria (CEP), and erythropoietic protoporphyria (EPP). The acute hepatic porphyrias include ALA dehydratase deficiency porphyria, acute intermittent porphyria (AIP), hereditary coproporphyria (HCP) and variegate porphyria (VP). Porphyria cutanea tarda (PCT) is the only porphyria that has both genetic and/or environmental factors that lead to reduced activity of uroporphyrinogen decarboxylase in the liver. Each of the 8 enzymes in the heme biosynthetic pathway have been associated with a specific porphyria (Table 1). Mutations affecting the erythroid form of ALA synthase (ALAS2) are most commonly associated with X-linked sideroblastic anemia, however, gain-of-function mutations of ALAS2 have also been associated with a variant form of EPP. This overview does not describe the full clinical spectrum of the porphyrias, but is meant to be an overview of the biochemical steps that are required to make heme in both erythroid and non-erythroid cells.
Collapse
Affiliation(s)
- John D Phillips
- Division of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America.
| |
Collapse
|
4
|
Progress in Metabonomics of Type 2 Diabetes Mellitus. Molecules 2018; 23:molecules23071834. [PMID: 30041493 PMCID: PMC6100487 DOI: 10.3390/molecules23071834] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
With the improvement of living standards and a change in lifestyle, the incidence of type 2 diabetes mellitus (T2DM) is increasing. Its etiology is too complex to be completely understand yet. Metabonomics techniques are used to study the changes of metabolites and metabolic pathways before and after the onset of diabetes and make it more possible to further understand the pathogenesis of T2DM and improve its prediction, early diagnosis, and treatment. In this review, we summarized the metabonomics study of T2DM in recent years and provided a theoretical basis for the study of pathogenesis and the effective prevention and treatment of T2DM.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The aim of this paper is to review psychiatric manifestations, comorbidities, and psychopharmacological management in individuals with acute porphyria (AP). RECENT FINDINGS Recent literature begins to clarify associations between AP, schizophrenia, bipolar disorder, and other psychopathology. Broad psychiatric symptoms have been associated to acute porphyria (AP) and correspond to a spectrum of heterogeneous manifestations such as anxiety, affective alterations, behavioral changes, personality, and psychotic symptoms. These symptoms may be difficult to identify as being related to porphyria since symptoms may arise at any time during the disease process. In addition, these patients may present psychiatric conditions secondary to the disease, such as adjustment disorder and substance use disorders. Timely diagnosis and appropriate treatment of psychiatric manifestations positively impact the course of the disease.
Collapse
|
6
|
|
7
|
Chung J, Wittig JG, Ghamari A, Maeda M, Dailey TA, Bergonia H, Kafina MD, Coughlin EE, Minogue CE, Hebert AS, Li L, Kaplan J, Lodish HF, Bauer DE, Orkin SH, Cantor AB, Maeda T, Phillips JD, Coon JJ, Pagliarini DJ, Dailey HA, Paw BH. Erythropoietin signaling regulates heme biosynthesis. eLife 2017; 6. [PMID: 28553927 PMCID: PMC5478267 DOI: 10.7554/elife.24767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/28/2017] [Indexed: 11/13/2022] Open
Abstract
Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development. DOI:http://dx.doi.org/10.7554/eLife.24767.001 Heme is an iron-containing compound that is important for all living things, from bacteria to humans. Our red blood cells use heme to carry oxygen and deliver it throughout the body. The amount of heme that is produced must be tightly regulated. Too little or too much heme in a person’s red blood cells can lead to blood-related diseases such as anemia and porphyria. Yet, while scientists knew the enzymes needed to make heme, they did not know how these enzymes were controlled. Now, Chung et al. show that an important signaling molecule called erythropoietin controls how much heme is produced when red blood cells are made. The experiments used a combination of red blood cells from humans and mice as well as zebrafish, which are useful model organisms because their blood develops in a similar way to humans. When Chung et al. inhibited components of erythropoietin signaling, heme production was blocked too and the red blood cells could not work properly. These new findings pave the way to look at human patients with blood-related disorders to determine if they have defects in the erythropoietin signaling cascade. In the future, this avenue of research might lead to better treatments for a variety of blood diseases in humans. DOI:http://dx.doi.org/10.7554/eLife.24767.002
Collapse
Affiliation(s)
- Jacky Chung
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Johannes G Wittig
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Alireza Ghamari
- Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Manami Maeda
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Tamara A Dailey
- Department of Microbiology, University of Georgia, Athens, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Hector Bergonia
- Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, United States
| | - Martin D Kafina
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | | | - Catherine E Minogue
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | | | - Liangtao Li
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Jerry Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Daniel E Bauer
- Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Stuart H Orkin
- Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Alan B Cantor
- Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Takahiro Maeda
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - John D Phillips
- Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, United States
| | - Joshua J Coon
- Genome Center of Wisconsin, Madison, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Harry A Dailey
- Department of Microbiology, University of Georgia, Athens, United States.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Barry H Paw
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
8
|
Norton J, Hymers C, Stein P, Jenkins JM, Bew D. Acute Porphyria Presenting as Major Trauma: Case Report and Literature Review. J Emerg Med 2016; 51:e115-e122. [PMID: 27624508 DOI: 10.1016/j.jemermed.2016.06.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acute porphyria is historically known as "the little imitator" in reference to its reputation as a notoriously difficult diagnosis. Variegate porphyria is one of the four acute porphyrias, and can present with both blistering cutaneous lesions and acute neurovisceral attacks involving abdominal pain, neuropsychiatric features, neuropathy, hyponatremia, and a vast array of other nonspecific clinical features. CASE REPORT A 40-year-old man presented to the Emergency Department (ED) as a major trauma call, having been found in an "acutely confused state" surrounded by broken glass. Primary survey revealed: hypertension, tachycardia, abdominal pain, severe agitation, and confusion with an encephalopathy consistent with acute delirium, a Glasgow Coma Scale score of 13, and head-to-toe "burn-like" abrasions. Computed tomography was unremarkable, and blood tests demonstrated hyponatremia, acute kidney injury, and a neutrophilic leukocytosis. The next of kin eventually revealed a past medical history of variegate porphyria. The patient was experiencing an acute attack and received supportive management prior to transfer to intensive care, subsequently making a full recovery. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case highlights the importance of recognizing acute medical conditions in patients thought to be suffering from major trauma. Acute porphyria should be considered in any patient with abdominal pain in combination with neuropsychiatric features, motor neuropathy, or hyponatremia. Patients often present to the ED without any medical history, and accurate diagnosis can be essential in the acute setting to minimize morbidity and mortality. The label of the major trauma call must be taken with great caution, and a broad differential diagnosis must be maintained throughout a diligent and thorough primary survey.
Collapse
Affiliation(s)
- Joel Norton
- School of Medical Education, King's College London, London, UK
| | - Christine Hymers
- Department of Emergency Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Penelope Stein
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Duncan Bew
- Department of Trauma and Emergency Surgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Ramanujam VMS, Anderson KE. Porphyria Diagnostics-Part 1: A Brief Overview of the Porphyrias. CURRENT PROTOCOLS IN HUMAN GENETICS 2015; 86:17.20.1-17.20.26. [PMID: 26132003 PMCID: PMC4640448 DOI: 10.1002/0471142905.hg1720s86] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porphyria diseases are a group of metabolic disorders caused by abnormal functioning of heme biosynthesis enzymes and characterized by excessive accumulation and excretion of porphyrins and their precursors. Precisely which of these chemicals builds up depends on the type of porphyria. Porphyria is not a single disease but a group of nine disorders: acute intermittent porphyria (AIP), hereditary coproporphyria (HCP), variegate porphyria (VP), δ-aminolevulinic acid dehydratase deficiency porphyria (ADP), porphyria cutanea tarda (PCT), hepatoerythropoietic porphyria (HEP), congenital erythropoietic porphyria (CEP), erythropoietic protoporphyria (EPP), and X-linked protoporphyria (XLP). Each porphyria results from overproduction of heme precursors secondary to partial deficiency or, in XLP, increased activity of one of the enzymes of heme biosynthesis. Taken together, all forms of porphyria afflict fewer than 200,000 people in the United States. Based on European studies, the most common porphyria, PCT, has a prevalence of 1 in 10,000, the most common acute porphyria, AlP, has a prevalence of ∼1 in 20,000, and the most common erythropoietic porphyria, EPP, is estimated at 1 in 50,000 to 75,000. CEP is extremely rare, with prevalence estimates of 1 in 1,000,000 or less. Only six cases of ADP are documented. The current porphyria literature is very exhaustive and a brief overview of porphyria diseases is essential in order for the reader to better appreciate the relevance of this area of research prior to undertaking biochemical diagnostics procedures. This unit summarizes the current knowledge on the classification, clinical features, etiology, pathogenesis, and genetics of porphyria diseases.
Collapse
Affiliation(s)
| | - Karl Elmo Anderson
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109
| |
Collapse
|
10
|
Besur S, Hou W, Schmeltzer P, Bonkovsky HL. Clinically important features of porphyrin and heme metabolism and the porphyrias. Metabolites 2014; 4:977-1006. [PMID: 25372274 PMCID: PMC4279155 DOI: 10.3390/metabo4040977] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/29/2023] Open
Abstract
Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease) and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow). We also describe salient clinical, laboratory and genetic features of the eight types of porphyria.
Collapse
Affiliation(s)
- Siddesh Besur
- Department of Medicine and Center for Liver Disease, Carolinas HealthCare System, Charlotte, NC 28204, USA.
| | - Wehong Hou
- Department of Research and the Liver, Digestive, and Metabolic Disorders Laboratory, Carolinas HealthCare System, Charlotte, NC 28203, USA.
| | - Paul Schmeltzer
- Department of Medicine and Center for Liver Disease, Carolinas HealthCare System, Charlotte, NC 28204, USA.
| | - Herbert L Bonkovsky
- Department of Medicine, Universities of CT, Farmington, CT 06030 and North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Abstract
The high prevalence of diabetes and diabetic complications has caused a huge burden on the modern society. Although scientific advances have led to effective strategies for preventing and treating diabetes over the past several decades, little progress has been made toward curing the disease or even getting it under control, from a public health and overall societal standpoint. There is still a lack of reliable biomarkers indicative of metabolic alterations associated with diabetes and different drug responses, highlighting the need for the development of early diagnostic and prognostic markers for diabetes and diabetic complications. The emergence of metabolomics has allowed researchers to systemically measure the small molecule metabolites, which are sensitive to the changes of both environmental and genetic factors and therefore, could be regarded as the link between genotypes and phenotypes. During the last decade, the progression made in metabolomics has provided insightful information on disease development and disease onset prediction. Recent studies using metabolomics approach coupled with statistical tools to predict incident diabetes revealed a number of metabolites that are significantly altered, including branched-chain and aromatic amino acids, such as isoleucine, leucine, valine, tyrosine and phenylalanine, as diagnostic or highly-significant predictors of future diabetes. This review summarizes the current findings of metabolomic studies in human investigations with the most common form of diabetes, type 2 diabetes.
Collapse
|
12
|
Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2013; 8:615. [PMID: 23010998 PMCID: PMC3472689 DOI: 10.1038/msb.2012.43] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/15/2012] [Indexed: 01/04/2023] Open
Abstract
A targeted metabolomics approach was used to identify candidate biomarkers of pre-diabetes. The relevance of the identified metabolites is further corroborated with a protein-metabolite interaction network and gene expression data. ![]()
Three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine C2) were found with significantly altered levels in pre-diabetic individuals compared with normal controls. Lower levels of glycine and LPC (18:2) were found to predict risks for pre-diabetes and type 2 diabetes (T2D). Seven T2D-related genes (PPARG, TCF7L2, HNF1A, GCK, IGF1, IRS1 and IDE) are functionally associated with the three identified metabolites. The unique combination of methodologies, including prospective population-based and nested case–control, as well as cross-sectional studies, was essential for the identification of the reported biomarkers.
Type 2 diabetes (T2D) can be prevented in pre-diabetic individuals with impaired glucose tolerance (IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre-diabetes. We quantified 140 metabolites for 4297 fasting serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic variation in pre-diabetic individuals that are distinct from known diabetes risk indicators, such as glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT individuals as compared to those with normal glucose tolerance, with P-values ranging from 2.4 × 10−4 to 2.1 × 10−13. Lower levels of glycine and LPC were found to be predictors not only for IGT but also for T2D, and were independently confirmed in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Using metabolite–protein network analysis, we identified seven T2D-related genes that are associated with these three IGT-specific metabolites by multiple interactions with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D.
Collapse
|
13
|
Chen BC, Griffey RT. A case report of porphyria variegata management in the emergency department. J Emerg Med 2010; 43:e235-8. [PMID: 20417053 DOI: 10.1016/j.jemermed.2010.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/10/2009] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Porphyria variegata (VP) is one of the hepatic porphyrias that results from the deficiency of protoporphyrinogen oxidase, an enzyme in the heme synthesis pathway. The name porphyria variegata refers to its many presentations, which include various neuropsychiatric and cutaneous manifestations. Emergency department (ED) presentations due to VP are most commonly neuropathic abdominal pain. CASE REPORT We present the case of a 57-year-old woman presenting to an ED with abdominal pain consistent with prior VP attacks. In addition to analgesics and supportive care, infusion of intravenous dextrose resulted in improvement in her symptoms. CONCLUSION Intravenous dextrose and heme administration remain the first-line treatment for abdominal pain attributable to known acute hepatic porphyria attacks. Recently, the mechanism of action of carbohydrates in treating porphyria has been elucidated. Current information on this illness and ED management are discussed.
Collapse
Affiliation(s)
- Betty C Chen
- Division of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
14
|
Handschin C. The biology of PGC-1α and its therapeutic potential. Trends Pharmacol Sci 2009; 30:322-9. [PMID: 19446346 DOI: 10.1016/j.tips.2009.03.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 02/06/2023]
Abstract
In eukaryotes, cellular and systemic metabolism is primarily controlled by mitochondrial activity. The peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) is an important regulator of mitochondrial biogenesis and function. Furthermore, PGC-1alpha controls many of the phenotypic adaptations of oxidative tissues to external and internal perturbations. By contrast, dysregulated metabolic plasticity is involved in the etiology of numerous diseases. Accordingly, modulation of PGC-1alpha levels and activity has recently been proposed as a therapeutic option for several pathologies. However, pharmacological interventions aimed at PGC-1alpha have to overcome inherent limitations of targeting a coactivator protein. Here, I focus on the recent breakthroughs in the identification of physiological and pathophysiological contexts involving PGC-1alpha. In addition, perspectives regarding the therapeutic importance of PGC-1alpha-controlled cellular and systemic metabolism are outlined.
Collapse
Affiliation(s)
- Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.
| |
Collapse
|
15
|
Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006; 27:728-35. [PMID: 17018837 DOI: 10.1210/er.2006-0037] [Citation(s) in RCA: 874] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many biological programs are regulated at the transcriptional level. This is generally achieved by the concerted actions of several transcription factors. Recent findings have shown that, in many cases, transcriptional coactivators coordinate the overall regulation of the biological programs. One of the best-studied examples of coactivator control of metabolic pathways is the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) family. These proteins are strong activators of mitochondrial function and are thus dominant regulators of oxidative metabolism in a variety of tissues. The PGC-1 coactivators themselves are subject to powerful regulation at the transcriptional and posttranslational levels. Recent studies have elucidated the function of the PGC-1 coactivators in different tissues and have highlighted the implications of PGC-1 dysregulation in diseases such as diabetes, obesity, cardiomyopathy, or neurodegeneration.
Collapse
Affiliation(s)
- Christophe Handschin
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
16
|
Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:723-36. [PMID: 16839620 DOI: 10.1016/j.bbamcr.2006.05.005] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/30/2022]
Abstract
Most iron in mammalian systems is routed to mitochondria to serve as a substrate for ferrochelatase. Ferrochelatase inserts iron into protoporphyrin IX to form heme which is incorporated into hemoglobin and cytochromes, the dominant hemoproteins in mammals. Tissue-specific regulatory features characterize the heme biosynthetic pathway. In erythroid cells, regulation is mediated by erythroid-specific transcription factors and the availability of iron as Fe/S clusters. In non-erythroid cells the pathway is regulated by heme-mediated feedback inhibition. All of the enzymes in the heme biosynthetic pathway have been crystallized and the crystal structures have permitted detailed analyses of enzyme mechanisms. All of the genes encoding the heme biosynthetic enzymes have been cloned and mutations of these genes are responsible for a group of human disorders designated the porphyrias and for X-linked sideroblastic anemia. The biochemistry, structural biology and the mechanisms of tissue-specific regulation are presented in this review along with the key features of the porphyric disorders.
Collapse
Affiliation(s)
- Richard S Ajioka
- Department of Internal Medicine, Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|