1
|
Du T, Han Y, Han H, Xu T, Yan Y, Wu J, Li Y, Liu C, Liao X, Dong Y, Chen D, Ou J, Lin S, Huang ZP. The tRNA methyltransferase Mettl1 governs ketogenesis through translational regulation and drives metabolic reprogramming in cardiomyocyte maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1438-1453. [PMID: 39587264 DOI: 10.1038/s44161-024-00565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024]
Abstract
After birth, the heart undergoes a shift in energy metabolism and cytoarchitecture to enhance efficient energy production and cardiac contraction, which is essential for postnatal development and growth. However, the precise mechanisms regulating this process remain elusive. Here we show that the RNA modification enzyme Mettl1 is a critical regulator of postnatal metabolic reprogramming and cardiomyocyte maturation in mice, primarily through its influence on the translation of the rate-limiting ketogenesis enzyme Hmgcs2. Our findings reveal that ketogenesis is vital for the postnatal transition of fuel from glucose to fatty acids in cardiomyocytes, achieved by modulating tricarboxylic acid cycle-related enzymatic activity via lysine β-hydroxybutyrylation protein modification. Loss of Mettl1 results in aberrant metabolic reprogramming and cardiomyocyte immaturity, leading to heart failure, although some clinical features can be rescued by β-hydroxybutyrate supplementation. Our study provides mechanistic insights into how Mettl1 regulates metabolic reprogramming in neonatal cardiomyocytes and highlights the importance of ketogenesis in cardiomyocyte maturation.
Collapse
Affiliation(s)
- Tailai Du
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yanchuang Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Hui Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Ting Xu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Youchen Yan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Jialing Wu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yan Li
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Demeng Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingsong Ou
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Shuibin Lin
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China.
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2024:10.1007/s12011-024-04450-8. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Du XJ, She G, Wu W, Deng XL. Coupling of β-adrenergic and Hippo pathway signaling: Implications for heart failure pathophysiology and metabolic therapy. Mitochondrion 2024; 78:101941. [PMID: 39122227 DOI: 10.1016/j.mito.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Activation of the sympatho-β-adrenergic receptor (βAR) system is the hallmark of heart disease with adverse consequences that facilitate the onset and progression of heart failure (HF). Use of β-blocking drugs has become the front-line therapy for HF. Last decade has witnessed progress in research demonstrating a pivotal role of Hippo pathway in cardiomyopathy and HF. Clinical studies have revealed myocardial Hippo pathway activation/YAP-TEAD1 inactivation in several types of human cardiomyopathy. Experimental activation of cardiac Hippo signaling or inhibition of YAP-TEAD1 have been shown to leads dilated cardiomyopathy with severe mitochondrial dysfunction and metabolic reprogramming. Studies have also convincingly shown that stimulation of βAR activates cardiac Hippo pathway with inactivation of the down-stream effector molecules YAP/TAZ. There is strong evidence for the adverse consequences of the βAR-Hippo signaling leading to HF. In addition to promoting cardiomyocyte death and fibrosis, recent progress is the demonstration of mitochondrial dysfunction and metabolic reprogramming mediated by βAR-Hippo pathway signaling. Activation of cardiac βAR-Hippo signaling is potent in downregulating a range of mitochondrial and metabolic genes, whereas expression of pro-inflammatory and pro-fibrotic factors are upregulated. Coupling of βAR-Hippo pathway signaling is mediated by several kinases, mechanotransduction and/or Ca2+ signaling, and can be blocked by β-antagonists. Demonstration of the converge of βAR signaling and Hippo pathway bears implications for a better understanding on the role of enhanced sympathetic nervous activity, efficacy of β-antagonists, and metabolic therapy targeting this pathway in HF. In this review we summarize the progress and discuss future research directions in this field.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia,.
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Cardiology, Shaanxi Provincial Hospital and the Third Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
4
|
Zheng Y, Xu Y, Ji L, San W, Shen D, Zhou Q, Meng G, Shi J, Chen Y. Roles of distinct nuclear receptors in diabetic cardiomyopathy. Front Pharmacol 2024; 15:1423124. [PMID: 39114353 PMCID: PMC11303215 DOI: 10.3389/fphar.2024.1423124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetes mellitus induces a pathophysiological disorder known as diabetic cardiomyopathy and may eventually cause heart failure. Diabetic cardiomyopathy is manifested with systolic and diastolic contractile dysfunction along with alterations in unique cardiomyocyte proteins and diminished cardiomyocyte contraction. Multiple mechanisms contribute to the pathology of diabetic cardiomyopathy, mainly including abnormal insulin metabolism, hyperglycemia, glycotoxicity, cardiac lipotoxicity, endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, calcium treatment damage, programmed myocardial cell death, improper Renin-Angiotensin-Aldosterone System activation, maladaptive immune modulation, coronary artery endothelial dysfunction, exocrine dysfunction, etc. There is an urgent need to investigate the exact pathogenesis of diabetic cardiomyopathy and improve the diagnosis and treatment of this disease. The nuclear receptor superfamily comprises a group of transcription factors, such as liver X receptor, retinoid X receptor, retinoic acid-related orphan receptor-α, retinoid receptor, vitamin D receptor, mineralocorticoid receptor, estrogen-related receptor, peroxisome proliferatoractivated receptor, nuclear receptor subfamily 4 group A 1(NR4A1), etc. Various studies have reported that nuclear receptors play a crucial role in cardiovascular diseases. A recently conducted work highlighted the function of the nuclear receptor superfamily in the realm of metabolic diseases and their associated complications. This review summarized the available information on several important nuclear receptors in the pathophysiology of diabetic cardiomyopathy and discussed future perspectives on the application of nuclear receptors as targets for diabetic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yongji Xu
- School of Medicine, Nantong University, Nantong, China
| | - Li Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Danning Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qianyou Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
5
|
Qu H, Liu X, Zhu J, He N, He Q, Zhang L, Wang Y, Gong X, Xiong X, Liu J, Wang C, Yang G, Yang Q, Luo G, Zhu Z, Zheng Y, Zheng H. Mitochondrial glycerol 3-phosphate dehydrogenase deficiency exacerbates lipotoxic cardiomyopathy. iScience 2024; 27:109796. [PMID: 38832016 PMCID: PMC11145339 DOI: 10.1016/j.isci.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
Metabolic diseases such as obesity and diabetes induce lipotoxic cardiomyopathy, which is characterized by myocardial lipid accumulation, dysfunction, hypertrophy, fibrosis and mitochondrial dysfunction. Here, we identify that mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is a pivotal regulator of cardiac fatty acid metabolism and function in the setting of lipotoxic cardiomyopathy. Cardiomyocyte-specific deletion of mGPDH promotes high-fat diet induced cardiac dysfunction, pathological hypertrophy, myocardial fibrosis, and lipid accumulation. Mechanically, mGPDH deficiency inhibits the expression of desuccinylase SIRT5, and in turn, the hypersuccinylates majority of enzymes in the fatty acid oxidation (FAO) cycle and promotes the degradation of these enzymes. Moreover, manipulating SIRT5 abolishes the effects of mGPDH ablation or overexpression on cardiac function. Finally, restoration of mGPDH improves lipid accumulation and cardiomyopathy in both diet-induced and genetic obese mouse models. Thus, our study indicates that targeting mGPDH could be a promising strategy for lipotoxic cardiomyopathy in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Hua Qu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiaran Zhu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Niexia He
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qingshan He
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xin Xiong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Gang Luo
- Department of Orthopedics, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, the Third Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Rubio-Tomás T, Soler-Botija C, Martínez-Estrada O, Villena JA. Transcriptional control of cardiac energy metabolism in health and disease: Lessons from animal models. Biochem Pharmacol 2024; 224:116185. [PMID: 38561091 DOI: 10.1016/j.bcp.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR-70013, Crete, Greece
| | - Carolina Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBER on Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
7
|
Wang X, Feng L, Lu Y, Zhang H. miR-122/PPARβ axis is involved in hypoxic exercise and modulates fatty acid metabolism in skeletal muscle of obese rats. Heliyon 2024; 10:e26572. [PMID: 38434053 PMCID: PMC10906430 DOI: 10.1016/j.heliyon.2024.e26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hypoxic exercise is an effective intervention for obesity, because it promotes weight loss by regulating fatty acid (FA) metabolism. The regulation of peroxisome proliferator-activated receptor β (PPARβ) by miR-122 may be involved in this process, but the detailed mechanisms are unknown. In order to address this issue, we probed how miR-122 affected the expression of factors associated with FA metabolism in skeletal muscle of obese rats undergoing hypoxic training. By injecting adeno-associated virus 9 containing miR-122 overexpression vector or miR-122 inhibitor into skeletal muscles of rats with a 4-week hypoxic exercise regimen, the miR-122 expression level can be regulated. Body composition and blood lipid levels were analyzed, and PPARβ, carnitine palmitoyltransferase 1b (CPT1b), acetylCoA carboxylase 2 (ACC2), and FA synthase (FAS) mRNA and protein levels were evaluated using quantitative reverse transcription quantitative PCR(RT-qPCR) and Western blot analysis. We found that miR-122 overexpression increased low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels and decreased PPARβ, ACC2, and FAS expression. Conversely, miR-122 inhibition decreased TG level, increased high-density lipoprotein cholesterol (HDL-C) level, and upregulated PPARβ, ACC2, FAS, and CPT1b. These data indicated that the negative regulation of PPARβ by miR-122 promotes FA metabolism by altering the levels of the factors related to FA metabolism in skeletal muscle of obese rat under hypoxic training, thus providing molecular-level insight into the beneficial effects of this intervention.
Collapse
Affiliation(s)
- Xuebing Wang
- College of Physical Education, Guangxi University, Nanning, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
8
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Yang G, Zhang Q, Dong C, Hou G, Li J, Jiang X, Xin Y. Nrf2 prevents diabetic cardiomyopathy via antioxidant effect and normalization of glucose and lipid metabolism in the heart. J Cell Physiol 2024; 239:e31149. [PMID: 38308838 DOI: 10.1002/jcp.31149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3β/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guowen Hou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Zhao T, Ma A, Huang Z, Liu Z, Sun Z, Zhu L, Chang H. pparβ regulates lipid catabolism by mediating acox and cpt-1 genes in Scophthalmus maximus under heat stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:295-305. [PMID: 38386263 DOI: 10.1007/s10695-024-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Peroxisome proliferator-activated receptor β (pparβ) is a key gene-regulating lipid metabolism pathway, but its function in turbot remains unclear. In this study, the CDS of pparβ was cloned from kidney for the first time. The CDS sequence length was 1533 bp encoding 510 amino acids. Structural analysis showed that the pparβ protein contained a C4 zinc finger and HOLI domain, suggesting that the pparβ gene of turbot has high homology with the PPAR gene of other species. The high expression patterns of pparβ, acox, and cpt-1 at high temperatures, as shown through qPCR, indicated that high temperatures activated the transcriptional activity of pparβ and increased the activity of the acox and cpt-1 genes. The expression of acox and cpt-1 was significantly inhibited when pparβ was downregulated using RNAi technology and inhibitor treatments, suggesting that pparβ positively regulated acox and cpt-1 expression at high temperatures and, thus, modulates lipid catabolism activity. These results demonstrate that pparβ is involved in the regulation of lipid metabolism at high temperatures and expand a new perspective for studying the regulation of lipid metabolism in stress environments of teleost.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Aijun Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Zhihui Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Zhifeng Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Zhibin Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Liguang Zhu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Haowen Chang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| |
Collapse
|
11
|
Sandroni PB, Schroder MA, Hawkins HT, Bailon JD, Huang W, Hagen JT, Montgomery M, Hong SJ, Chin AL, Zhang J, Rodrigo MC, Kim B, Simpson PC, Schisler JC, Ellis JM, Fisher-Wellman KH, Jensen BC. The alpha-1A adrenergic receptor regulates mitochondrial oxidative metabolism in the mouse heart. J Mol Cell Cardiol 2024; 187:101-117. [PMID: 38331556 PMCID: PMC10861168 DOI: 10.1016/j.yjmcc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
AIMS The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic β-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart. METHODS We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic β-AR activation and myocardial infarction on selected mitochondrial functions. RESULTS We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The β-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction. CONCLUSIONS Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.
Collapse
Affiliation(s)
- Peyton B Sandroni
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Melissa A Schroder
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Hunter T Hawkins
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Julian D Bailon
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - James T Hagen
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - McLane Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Seok J Hong
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Andrew L Chin
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Jiandong Zhang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Manoj C Rodrigo
- Cytokinetics, Inc., South San Francisco, CA, United States of America
| | - Boa Kim
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America; Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Jonathan C Schisler
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Jessica M Ellis
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Brian C Jensen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America.
| |
Collapse
|
12
|
Li X, Wang N, Gui M, Wang C, Ding Y, Bai B, Li C, Zhang J, Fang L. Quantitative proteomics reveals PPAR signaling pathway regulates the cardiomyocyte activity of neonatal mouse heart. Proteomics 2023; 23:e2200330. [PMID: 37271885 DOI: 10.1002/pmic.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases (CVDs) are among the most morbid and deadly types of diseases worldwide, while the existing therapeutic approaches all have their limitations. Mouse heart undergoes a very complex postnatal developmental process, including the 1-week window in which cardiomyocytes (CMs) maintain relatively high cell activity. The underlying mechanism provides an attractive direction for CVDs treatment. Herein, we collected ventricular tissues from mice of different ages from E18.5D to P8W and performed iTRAQ-based quantitative proteomics to characterize the atlas of cardiac development. A total of 3422 proteins were quantified at all selected time points, revealing critical proteomic changes related to cardiac developmental events such as the metabolic transition from glycolysis to beta-oxidation. A cluster of significantly dysregulated proteins containing proteins that have already been reported to be associated with cardiac regeneration (Erbb2, Agrin, and Hmgb) was identified. Meanwhile, the peroxisome proliferator-activated receptor (PPAR) signaling pathway (Cpt1α, Hmgcs2, Plin2, and Fabp4) was also found specifically enriched. We further revealed that bezafibrate, a pan-activator of PPAR signaling pathway markedly enhanced H9C2 cardiomyocyte activity via enhancing Cpt1α expression. This work provides new hint that activation of PPAR signaling pathway could potentially be a therapeutic strategy for the treatment of CVDs.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Nannan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Minhui Gui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Reproductive Medicine of Nanjing Medical University, Nanjing, China
| | - Yibing Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Center for Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine of Nanjing Medical University, Nanjing, China
| | - Jingzi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Mukherjee AG, Renu K, Gopalakrishnan AV, Jayaraj R, Dey A, Vellingiri B, Ganesan R. Epicardial adipose tissue and cardiac lipotoxicity: A review. Life Sci 2023; 328:121913. [PMID: 37414140 DOI: 10.1016/j.lfs.2023.121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat 131001, India; Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
14
|
He H, Zhong Y, Wang H, Tang PMK, Xue VW, Chen X, Chen J, Huang X, Wang C, Lan H. Smad3 Mediates Diabetic Dyslipidemia and Fatty Liver in db/db Mice by Targeting PPARδ. Int J Mol Sci 2023; 24:11396. [PMID: 37511155 PMCID: PMC10380492 DOI: 10.3390/ijms241411396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Transforming growth factor-β (TGF-β)/Smad3 signaling has been shown to play important roles in fibrotic and inflammatory diseases. However, the role of Smad3 in dyslipidemia and non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes remains unclear, and whether targeting Smad3 has a therapeutic effect on these metabolic abnormalities remains unexplored. These topics were investigated in this study in Smad3 knockout (KO)-db/db mice and by treating db/db mice with a Smad3-specific inhibitor SIS3. Compared to Smad3 wild-type (WT)-db/db mice, Smad3 KO-db/db mice were protected against dyslipidemia and NAFLD. Similarly, treatment of db/db mice with SIS3 at week 4 before the onset of type 2 diabetes until week 12 was capable of lowering blood glucose levels and improving diabetic dyslipidemia and NAFLD. In addition, using RNA-sequencing, the potential Smad3-target genes related to lipid metabolism was identified in the liver tissues of Smad3 KO/WT mice, and the regulatory mechanisms were investigated. Mechanistically, we uncovered that Smad3 targeted peroxisome proliferator-activated receptor delta (PPARδ) to induce dyslipidemia and NAFLD in db/db mice, which was improved by genetically deleting and pharmacologically inhibiting Smad3.
Collapse
Affiliation(s)
- Huijun He
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yu Zhong
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Honglian Wang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Vivian Weiwen Xue
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xiaocui Chen
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jiaoyi Chen
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xiaoru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Huiyao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
15
|
Xu J, Qian B, Wang F, Huang Y, Yan X, Li P, Zhang Q, Li Y, Sun K. Global Profile of tRNA-Derived Small RNAs in Pathological Cardiac Hypertrophy Plasma and Identification of tRF-21-NB8PLML3E as a New Hypertrophy Marker. Diagnostics (Basel) 2023; 13:2065. [PMID: 37370960 DOI: 10.3390/diagnostics13122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It remains unclear whether transfer RNA-derived small RNAs (tsRNAs) play a role in pathological cardiac hypertrophy (PCH). We aimed to clarify the expression profile of tsRNAs and disclose their relationship with the clinical phenotype of PCH and the putative role. METHODS Small RNA sequencing was performed on the plasma of PCH patients and healthy volunteers. In the larger sample size and angiotensin II (Ang II)-stimulated H9c2 cells, the data were validated by real-time qPCR. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were examined in Ang II-stimulated H9c2 cells. The potential role of tsRNAs in the pathogenesis of PCH was explored by bioinformatics analysis. RESULTS A total of 4185 differentially expressed tsRNAs were identified, of which four and five tsRNAs were observed to be significantly upregulated and downregulated, respectively. Of the five downregulated tsRNAs, four were verified to be significantly downregulated in the larger sample group, including tRF-30-3JVIJMRPFQ5D, tRF-16-R29P4PE, tRF-21-NB8PLML3E, and tRF-21-SWRYVMMV0, and the AUC values for diagnosis of concentric hypertrophy were 0.7893, 0.7825, 0.8475, and 0.8825, respectively. The four downregulated tsRNAs were negatively correlated with the left ventricular posterior wall dimensions in PCH patients (r = -0.4227; r = -0.4517; r = -0.5567; r = -0.4223). The levels of ANP and BNP, as well as cell size, were decreased in Ang II-stimulated H9c2 cells with 21-NB8PLML3E mimic transfection. Bioinformatics analysis revealed that the target genes of tRF-21-NB8PLML3E were mainly enriched in the metabolic pathway and involved in the regulation of ribosomes. CONCLUSIONS The plasma tRF-21-NB8PLML3E might be considered as a biomarker and offers early screening potential in patients with PCH.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Buyun Qian
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ying Huang
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Xinxin Yan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ping Li
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
| |
Collapse
|
16
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
17
|
Chirico N, Kessler EL, Maas RGC, Fang J, Qin J, Dokter I, Daniels M, Šarić T, Neef K, Buikema JW, Lei Z, Doevendans PA, Sluijter JPG, van Mil A. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:531. [PMID: 36575473 PMCID: PMC9795728 DOI: 10.1186/s13287-022-03209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor β/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.
Collapse
Affiliation(s)
- Nino Chirico
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elise L. Kessler
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renée G. C. Maas
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Juntao Fang
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jiabin Qin
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Dokter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Daniels
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tomo Šarić
- grid.6190.e0000 0000 8580 3777Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Neef
- grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.491096.3Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jan-Willem Buikema
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Lozano J, Rai A, Lees JG, Fang H, Claridge B, Lim SY, Greening DW. Scalable Generation of Nanovesicles from Human-Induced Pluripotent Stem Cells for Cardiac Repair. Int J Mol Sci 2022; 23:14334. [PMID: 36430812 PMCID: PMC9696585 DOI: 10.3390/ijms232214334] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) from stem cells have shown significant therapeutic potential to repair injured cardiac tissues and regulate pathological fibrosis. However, scalable generation of stem cells and derived EVs for clinical utility remains a huge technical challenge. Here, we report a rapid size-based extrusion strategy to generate EV-like membranous nanovesicles (NVs) from easily sourced human iPSCs in large quantities (yield 900× natural EVs). NVs isolated using density-gradient separation (buoyant density 1.13 g/mL) are spherical in shape and morphologically intact and readily internalised by human cardiomyocytes, primary cardiac fibroblasts, and endothelial cells. NVs captured the dynamic proteome of parental cells and include pluripotency markers (LIN28A, OCT4) and regulators of cardiac repair processes, including tissue repair (GJA1, HSP20/27/70, HMGB1), wound healing (FLNA, MYH9, ACTC1, ILK), stress response/translation initiation (eIF2S1/S2/S3/B4), hypoxia response (HMOX2, HSP90, GNB1), and extracellular matrix organization (ITGA6, MFGE8, ITGB1). Functionally, NVs significantly promoted tubule formation of endothelial cells (angiogenesis) (p < 0.05) and survival of cardiomyocytes exposed to low oxygen conditions (hypoxia) (p < 0.0001), as well as attenuated TGF-β mediated activation of cardiac fibroblasts (p < 0.0001). Quantitative proteome profiling of target cell proteome following NV treatments revealed upregulation of angiogenic proteins (MFGE8, MYH10, VDAC2) in endothelial cells and pro-survival proteins (CNN2, THBS1, IGF2R) in cardiomyocytes. In contrast, NVs attenuated TGF-β-driven extracellular matrix remodelling capacity in cardiac fibroblasts (ACTN1, COL1A1/2/4A2/12A1, ITGA1/11, THBS1). This study presents a scalable approach to generating functional NVs for cardiac repair.
Collapse
Affiliation(s)
- Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jarmon G. Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Shiang Y. Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Melbourne, VIC 3010, Australia
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
19
|
The Potential Role of PPARs in the Fetal Origins of Adult Disease. Cells 2022; 11:cells11213474. [PMID: 36359869 PMCID: PMC9653757 DOI: 10.3390/cells11213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis holds that events during early development have a profound impact on one’s risk for the development of future adult disease. Studies from humans and animals have demonstrated that many diseases can begin in childhood and are caused by a variety of early life traumas, including maternal malnutrition, maternal disease conditions, lifestyle changes, exposure to toxins/chemicals, improper medication during pregnancy, and so on. Recently, the roles of Peroxisome proliferator-activated receptors (PPARs) in FOAD have been increasingly appreciated due to their wide variety of biological actions. PPARs are members of the nuclear hormone receptor subfamily, consisting of three distinct subtypes: PPARα, β/δ, and γ, highly expressed in the reproductive tissues. By controlling the maturation of the oocyte, ovulation, implantation of the embryo, development of the placenta, and male fertility, the PPARs play a crucial role in the transition from embryo to fetus in developing mammals. Exposure to adverse events in early life exerts a profound influence on the methylation pattern of PPARs in offspring organs, which can affect development and health throughout the life course, and even across generations. In this review, we summarize the latest research on PPARs in the area of FOAD, highlight the important role of PPARs in FOAD, and provide a potential strategy for early prevention of FOAD.
Collapse
|
20
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Raja R, Fonseka O, Ganenthiran H, Andrea-Ruiz-Velasco, Liu W. The multifaceted roles of ER and Golgi in metabolic cardiomyopathy. Front Cardiovasc Med 2022; 9:999044. [PMID: 36119738 PMCID: PMC9479098 DOI: 10.3389/fcvm.2022.999044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Metabolic cardiomyopathy is a significant global financial and health challenge; however, pathophysiological mechanisms governing this entity remain poorly understood. Among the main features of metabolic cardiomyopathy, the changes to cellular lipid metabolism have been studied and targeted for the discovery of novel treatment strategies obtaining contrasting results. The endoplasmic reticulum (ER) and Golgi apparatus (GA) carry out protein modification, sorting, and secretion activities that are more commonly studied from the perspective of protein quality control; however, they also drive the maintenance of lipid homeostasis. In response to metabolic stress, ER and GA regulate the expression of genes involved in cardiac lipid biogenesis and participate in lipid droplet formation and degradation. Due to the varied roles these organelles play, this review will focus on recapitulating the alterations and crosstalk between ER, GA, and lipid metabolism in cardiac metabolic syndrome.
Collapse
Affiliation(s)
| | | | | | - Andrea-Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Xing G, Meng L, Cao S, Liu S, Wu J, Li Q, Huang W, Zhang L. PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep 2022; 23:e52280. [PMID: 35703725 PMCID: PMC9346473 DOI: 10.15252/embr.202052280] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/04/2023] Open
Abstract
Ferroptosis is an iron‐dependent form of non‐apoptotic cell death implicated in liver, brain, kidney, and heart pathology. How ferroptosis is regulated remains poorly understood. Here, we show that PPARα suppresses ferroptosis by promoting the expression of glutathione peroxidase 4 (Gpx4) and by inhibiting the expression of the plasma iron carrier TRF. PPARα directly induces Gpx4 expression by binding to a PPRE element within intron 3. PPARα knockout mice develop more severe iron accumulation and ferroptosis in the liver when fed a high‐iron diet than wild‐type mice. Ferrous iron (Fe2+) triggers ferroptosis via Fenton reactions and ROS accumulation. We further find that a rhodamine‐based "turn‐on" fluorescent probe(probe1) is suitable for the in vivo detection of Fe2+. Probe1 displays high selectivity towards Fe2+, and exhibits a stable response for Fe2+ with a concentration of 20 μM in tissue. Our data thus show that PPARα activation alleviates iron overload‐induced ferroptosis in mouse livers through Gpx4 and TRF, suggesting that PPARα may be a promising therapeutic target for drug discovery in ferroptosis‐related tissue injuries. Moreover, we identified a fluorescent probe that specifically labels ferrous ions and can be used to monitor Fe2+in vivo.
Collapse
Affiliation(s)
- Guowei Xing
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Lihua Meng
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shiyao Cao
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shenghui Liu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jiayan Wu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Qian Li
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
23
|
Defining the molecular underpinnings controlling cardiomyocyte proliferation. Clin Sci (Lond) 2022; 136:911-934. [PMID: 35723259 DOI: 10.1042/cs20211180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022]
Abstract
Shortly after birth, mammalian cardiomyocytes (CM) exit the cell cycle and cease to proliferate. The inability of adult CM to replicate renders the heart particularly vulnerable to injury. Restoration of CM proliferation would be an attractive clinical target for regenerative therapies that can preserve contractile function and thus prevent the development of heart failure. Our review focuses on recent progress in understanding the tight regulation of signaling pathways and their downstream molecular mechanisms that underly the inability of CM to proliferate in vivo. In this review, we describe the temporal expression of cell cycle activators e.g., cyclin/Cdk complexes and their inhibitors including p16, p21, p27 and members of the retinoblastoma gene family during gestation and postnatal life. The differential impact of members of the E2f transcription factor family and microRNAs on the regulation of positive and negative cell cycle factors is discussed. This review also highlights seminal studies that identified the coordination of signaling mechanisms that can potently activate CM cell cycle re-entry including the Wnt/Ctnnb1, Hippo, Pi3K-Akt and Nrg1-Erbb2/4 pathways. We also present an up-to-date account of landmark studies analyzing the effect of various genes such as Argin, Dystrophin, Fstl1, Meis1, Pitx2 and Pkm2 that are responsible for either inhibition or activation of CM cell division. All these reports describe bona fide therapeutically targets that could guide future clinical studies toward cardiac repair.
Collapse
|
24
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
25
|
Wickramasinghe NM, Sachs D, Shewale B, Gonzalez DM, Dhanan-Krishnan P, Torre D, LaMarca E, Raimo S, Dariolli R, Serasinghe MN, Mayourian J, Sebra R, Beaumont K, Iyengar S, French DL, Hansen A, Eschenhagen T, Chipuk JE, Sobie EA, Jacobs A, Akbarian S, Ischiropoulos H, Ma'ayan A, Houten SM, Costa K, Dubois NC. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2022; 29:559-576.e7. [PMID: 35325615 PMCID: PMC11072853 DOI: 10.1016/j.stem.2022.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/30/2021] [Accepted: 02/24/2022] [Indexed: 02/09/2023]
Abstract
Pluripotent stem-cell-derived cardiomyocytes (PSC-CMs) provide an unprecedented opportunity to study human heart development and disease, but they are functionally and structurally immature. Here, we induce efficient human PSC-CM (hPSC-CM) maturation through metabolic-pathway modulations. Specifically, we find that peroxisome-proliferator-associated receptor (PPAR) signaling regulates glycolysis and fatty acid oxidation (FAO) in an isoform-specific manner. While PPARalpha (PPARa) is the most active isoform in hPSC-CMs, PPARdelta (PPARd) activation efficiently upregulates the gene regulatory networks underlying FAO, increases mitochondrial and peroxisome content, enhances mitochondrial cristae formation, and augments FAO flux. PPARd activation further increases binucleation, enhances myofibril organization, and improves contractility. Transient lactate exposure, which is frequently used for hPSC-CM purification, induces an independent cardiac maturation program but, when combined with PPARd activation, still enhances oxidative metabolism. In summary, we investigate multiple metabolic modifications in hPSC-CMs and identify a role for PPARd signaling in inducing the metabolic switch from glycolysis to FAO in hPSC-CMs.
Collapse
Affiliation(s)
- Nadeera M Wickramasinghe
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Sachs
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M Gonzalez
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Priyanka Dhanan-Krishnan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denis Torre
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth LaMarca
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Serena Raimo
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Mayourian
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Srinivas Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deborah L French
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Arne Hansen
- University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Jacobs
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Costa
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole C Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Zhao M, Wei H, Li C, Zhan R, Liu C, Gao J, Yi Y, Cui X, Shan W, Ji L, Pan B, Cheng S, Song M, Sun H, Jiang H, Cai J, Garcia-Barrio MT, Chen YE, Meng X, Dong E, Wang DW, Zheng L. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nat Commun 2022; 13:1757. [PMID: 35365608 PMCID: PMC8976029 DOI: 10.1038/s41467-022-29060-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO. Intestinal microbiota alterations may affect heart function through the production of gut-derived metabolites. Here the authors found that gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent fatty acid oxidation.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Cui
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenxin Shan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Si Cheng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, 100050, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haipeng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Cai
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minerva T Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China. .,Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
27
|
Yamada M, Suzuki J, Sato S, Zenimaru Y, Saito R, Konoshita T, Kraemer FB, Ishizuka T. Hormone-sensitive lipase protects adipose triglyceride lipase-deficient mice from lethal lipotoxic cardiomyopathy. J Lipid Res 2022; 63:100194. [PMID: 35283217 PMCID: PMC9062333 DOI: 10.1016/j.jlr.2022.100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
|
28
|
Important Functions and Molecular Mechanisms of Mitochondrial Redox Signaling in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11030473. [PMID: 35326123 PMCID: PMC8944689 DOI: 10.3390/antiox11030473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are important organelles that act as a primary site to produce reactive oxygen species (ROS). Additionally, mitochondria play a pivotal role in the regulation of Ca2+ signaling, fatty acid oxidation, and ketone synthesis. Dysfunction of these signaling molecules leads to the development of pulmonary hypertension (PH), atherosclerosis, and other vascular diseases. Features of PH include vasoconstriction and pulmonary artery (PA) remodeling, which can result from abnormal proliferation, apoptosis, and migration of PA smooth muscle cells (PASMCs). These responses are mediated by increased Rieske iron–sulfur protein (RISP)-dependent mitochondrial ROS production and increased mitochondrial Ca2+ levels. Mitochondrial ROS and Ca2+ can both synergistically activate nuclear factor κB (NF-κB) to trigger inflammatory responses leading to PH, right ventricular failure, and death. Evidence suggests that increased mitochondrial ROS and Ca2+ signaling leads to abnormal synthesis of ketones, which play a critical role in the development of PH. In this review, we discuss some of the recent findings on the important interactive role and molecular mechanisms of mitochondrial ROS and Ca2+ in the development and progression of PH. We also address the contributions of NF-κB-dependent inflammatory responses and ketone-mediated oxidative stress due to abnormal regulation of mitochondrial ROS and Ca2+ signaling in PH.
Collapse
|
29
|
Exploring the Pattern of Metabolic Alterations Causing Energy Imbalance via PPARα Dysregulation in Cardiac Muscle During Doxorubicin Treatment. Cardiovasc Toxicol 2022; 22:436-461. [PMID: 35157213 DOI: 10.1007/s12012-022-09725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity by anthracycline antineoplastic drug doxorubicin is one of the systemic toxicity of the cardiovascular system. The mechanism responsible for doxorubicin cardiotoxicity and lipid metabolism remains elusive. The current study tested the hypotheses that the role of peroxisome proliferator-activated receptor α (PPARα) in the progress of doxorubicin-induced cardiomyopathy and its mechanism behind lipid metabolism. In the present study, male rats were subjected to intraperitoneal injection (5-week period) of doxorubicin with different dosages such as low dosage (1.5 mg/kg body weight) and high dosage (15 mg/kg body weight) to induce doxorubicin cardiomyopathy. Myocardial PPARα was impaired in both low dosage and high dosage of doxorubicin-treated rats in a dose-dependent manner. The attenuated level of PPARα impairs the expression of the genes involved in mitochondrial transporter, fatty acid transportation, lipolysis, lipid metabolism, and fatty acid oxidation. Moreover, it disturbs the reverse triacylglycerol transporter apolipoprotein B-100 (APOB) in the myocardium. Doxorubicin elevates the circulatory lipid profile and glucose. Further aggravated lipid profile in circulation impedes the metabolism of lipid in cardiac tissue, which causes a lipotoxic condition in the heart and subsequently associated disease for the period of doxorubicin treatment. Elevated lipids in the circulation translocate into the heart dysregulates lipid metabolism in the heart, which causes augmented oxidative stress and necro-apoptosis and mediates lipotoxic conditions. This finding determines the mechanistic role of doxorubicin-disturbed lipid metabolism via PPARα, which leads to cardiac dysfunction.
Collapse
|
30
|
Yarmohammadi F, Hayes AW, Karimi G. Targeting PPARs Signaling Pathways in Cardiotoxicity by Natural Compounds. Cardiovasc Toxicol 2022; 22:281-291. [DOI: 10.1007/s12012-021-09715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
|
31
|
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
33
|
Wang C, Cui R, Niu C, Zhong X, Zhu Q, Ji D, Li X, Zhang H, Liu C, Zhou L, Li Y, Xu G, Wei Y. Low-dose PCB126 exposure disrupts cardiac metabolism and causes hypertrophy and fibrosis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118079. [PMID: 34488161 DOI: 10.1016/j.envpol.2021.118079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The residue of polychlorinated biphenyls (PCBs) exists throughout the environment and humans are subject to long-term exposure. As such, the potential environmental and health risk caused by low-dose exposure to PCBs has attracted much attention. 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126), the highest toxicity compound among dioxin-like-PCBs, has been widely used and mass-produced. Cardiotoxicity is PCB126's crucial adverse effect. Maintaining proper metabolism underlies heart health, whereas the impact of PCB126 exposure on cardiac metabolic patterns has yet to be elucidated. In this study, we administered 0.5 and 50 μg/kg bw of PCB126 to adult male mice weekly by gavage for eight weeks. Pathological results showed that low-dose PCB126 exposure induced heart injury. Metabolomic analysis of the heart tissue exposed to low-dose PCB126 identified 59 differential metabolites that were involved in lipid metabolism, amino acid metabolism, and the tricarboxylic acid (TCA) cycle. Typical metabolomic characteristic of cardiac hypertrophy was reflected by accumulation of fatty acids (e.g. palmitic, palmitoleic, and linoleic acid), and disturbance of carbohydrates including D-glucose and intermediates in TCA cycle (fumaric, succinic, and citric acid). Low-dose PCB126 exposure increased glycine and threonine, the amino acids necessary for the productions of collagen and elastin. Besides, PCB126-exposed mice exhibited upregulation of collagen synthesis enzymes and extracellular matrix proteins, indicative of cardiac fibrosis. Moreover, the expression of genes related to TGFβ/PPARγ/MMP-2 signaling pathway was perturbed in the PCB126-treated hearts. Together, our results reveal that low-dose PCB126 exposure disrupts cardiac metabolism correlated with hypertrophy and fibrosis. This study sheds light on the underlying mechanism of PCBs' cardiotoxicity and identifies potential sensitive biomarkers for environmental monitoring.
Collapse
Affiliation(s)
- Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qicheng Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianjie Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanli Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Vascular endothelial growth factor ameliorated palmitate-induced cardiomyocyte injury via JNK pathway. In Vitro Cell Dev Biol Anim 2021; 57:886-895. [PMID: 34791626 PMCID: PMC8632857 DOI: 10.1007/s11626-021-00616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/02/2022]
Abstract
Enhanced apoptosis of cardiomyocytes in suffering overloaded saturated fatty acids (SFAs) can result in myocardial infarction and cardiac dysfunction. The function of vascular endothelial growth factor (VEGF) in cardiomyocyte protection was not clearly described. To investigate the preservative effects of VEGF sensitization on ceramide-mediated programmed cell death of cardiomyocytes, palmitate-induced injury in H9c2 cells was established as an in vitro model. Results revealed that 0.5 mM palmitate application effectively led to debased viability and activated apoptotic factors. A significant time-dependent relation between PAL and cardiomyocyte injury was observed. The apoptosis rate was increased greatly after 16 h of treatment with 0.5 mM PAL. In addition, cell viability was restored by VEGF overexpression during treatment with 0.5 mM PAL. Reduced apoptosis rate and expression of caspase 3, Bax, and NF-κB p65 were observed in this process, while boosted Bcl-2, p-JNK/JNK expression and activity of caspase 3 were checked. However, p-ERK/ERK levels did not exhibit a significant change. These findings indicated the protective effects of VEGF in confronting the ceramide-induced cardiomyocyte apoptosis, and would devote therapeutic targets for cardiovascular safeguard in dealing with fatty acid stress.
Collapse
|
35
|
Ma H, Guo X, Cui S, Wu Y, Zhang Y, Shen X, Xie C, Li J. Dephosphorylation of AMP-activated kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction. Kidney Int 2021; 101:315-330. [PMID: 34774556 DOI: 10.1016/j.kint.2021.10.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Kidney tubular epithelial cells are high energy-consuming epithelial cells that depend mainly on fatty acid oxidation for an energy supply. AMP-activated protein kinase (AMPK) is a key regulator of energy production in most cells, but the function of AMPK in tubular epithelial cells in acute kidney disease is unclear. Here, we found a rapid decrease in Thr172-AMPKα phosphorylation after ischemia/reperfusion in both in vivo and in vitro models. Mice with kidney tubular epithelial cell-specific AMPKα deletion exhibited exacerbated kidney impairment and apoptosis of tubular epithelial cells after ischemia/reperfusion. AMPKα deficiency was accompanied by the accumulation of lipid droplets in the kidney tubules and the elevation of ceramides and free fatty acid levels following ischemia/reperfusion injury. Mechanistically, ischemia/reperfusion triggered ceramide production and activated protein phosphatase PP2A, which dephosphorylated Thr172-AMPKα. Decreased AMPK activity repressed serine/threonine kinase ULK1-mediated autophagy and impeded clearance of the dysfunctional mitochondria. Targeting the PP2A-AMPK axis by the allosteric AMPK activator C24 restored fatty acid oxidation and reduced tubular cell apoptosis during ischemia/reperfusion-induced injury, by antagonizing PP2A dephosphorylation and promoting the mitophagy process. Thus, our study reveals that AMPKα plays an important role in protecting against tubular epithelial cell injury in ischemia/reperfusion-induced acute kidney injury. Hence, activation of AMPK could be a potential therapeutic strategy for acute kidney injury treatment.
Collapse
Affiliation(s)
- Haijian Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongmei Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangming Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Shandong, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| |
Collapse
|
36
|
Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders. Arch Pharm Res 2021; 44:839-856. [PMID: 34664210 DOI: 10.1007/s12272-021-01352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined by abnormal accumulation of extracellular matrix, which can affect virtually every organ system under diseased conditions. Fibrotic tissue remodeling often leads to organ dysfunction and is highly associated with increased morbidity and mortality. The disease burden caused by fibrosis is substantial, and the medical need for effective antifibrotic therapies is essential. Significant progress has been made in understanding the molecular mechanism and pathobiology of fibrosis, such as transforming growth factor-β (TGF-β)-mediated signaling pathways. However, owing to the complex and dynamic properties of fibrotic disorders, there are currently no therapeutic options that can prevent or reverse fibrosis. Recent studies have revealed that alterations in fatty acid metabolic processes are common mechanisms and core pathways that play a central role in different fibrotic disorders. Excessive lipid accumulation or defective fatty acid oxidation is associated with increased lipotoxicity, which directly contributes to the development of fibrosis. Genetic alterations or pharmacologic targeting of fatty acid metabolic processes have great potential for the inhibition of fibrosis development. Furthermore, mechanistic studies have revealed active interactions between altered metabolic processes and fibrosis development. Several well-known fibrotic factors change the lipid metabolic processes, while altered metabolic processes actively participate in fibrosis development. This review summarizes the recent evidence linking fatty acid metabolism and fibrosis, and provides new insights into the pathogenesis of fibrotic diseases for the development of drugs for fibrosis prevention and treatment.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
37
|
Lipotoxicity: a driver of heart failure with preserved ejection fraction? Clin Sci (Lond) 2021; 135:2265-2283. [PMID: 34643676 PMCID: PMC8543140 DOI: 10.1042/cs20210127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health concern, with rising incidence alongside high morbidity and mortality. However, the pathophysiology of HFpEF is not yet fully understood. The association between HFpEF and the metabolic syndrome (MetS) suggests that dysregulated lipid metabolism could drive diastolic dysfunction and subsequent HFpEF. Herein we summarise recent advances regarding the pathogenesis of HFpEF in the context of MetS, with a focus on impaired lipid handling, myocardial lipid accumulation and subsequent lipotoxicity.
Collapse
|
38
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
39
|
Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168297. [PMID: 34444046 PMCID: PMC8391744 DOI: 10.3390/ijerph18168297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Right ventricular (RV) function is the main determinant of the outcome of patients with pulmonary hypertension (PH). RV dysfunction develops gradually and worsens progressively over the course of PH, resulting in RV failure and premature death. Currently, approved therapies for the treatment of left ventricular failure are not established for the RV. Furthermore, the direct effects of specific vasoactive drugs for treatment of pulmonary arterial hypertension (PAH, Group 1 of PH) on RV are not fully investigated. Pulmonary artery banding (PAB) allows to study the pathogenesis of RV failure solely, thereby testing potential therapies independently of pulmonary vascular changes. This review aims to discuss recent studies of the mechanisms of RV remodeling and RV-directed therapies based on the PAB model.
Collapse
|
40
|
Paredes A, Santos-Clemente R, Ricote M. Untangling the Cooperative Role of Nuclear Receptors in Cardiovascular Physiology and Disease. Int J Mol Sci 2021; 22:ijms22157775. [PMID: 34360540 PMCID: PMC8346021 DOI: 10.3390/ijms22157775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The heart is the first organ to acquire its physiological function during development, enabling it to supply the organism with oxygen and nutrients. Given this early commitment, cardiomyocytes were traditionally considered transcriptionally stable cells fully committed to contractile function. However, growing evidence suggests that the maintenance of cardiac function in health and disease depends on transcriptional and epigenetic regulation. Several studies have revealed that the complex transcriptional alterations underlying cardiovascular disease (CVD) manifestations such as myocardial infarction and hypertrophy is mediated by cardiac retinoid X receptors (RXR) and their partners. RXRs are members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and drive essential biological processes such as ion handling, mitochondrial biogenesis, and glucose and lipid metabolism. RXRs are thus attractive molecular targets for the development of effective pharmacological strategies for CVD treatment and prevention. In this review, we summarize current knowledge of RXR partnership biology in cardiac homeostasis and disease, providing an up-to-date view of the molecular mechanisms and cellular pathways that sustain cardiomyocyte physiology.
Collapse
|
41
|
Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021; 9:673839. [PMID: 34307357 PMCID: PMC8293691 DOI: 10.3389/fcell.2021.673839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained through the dynamic processes of fusion and fission. Mitochondria are involved in many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune cell activation, redox signaling, apoptosis, and inflammation, among others. Under stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential (MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated. mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and release interleukin, an event that eventually leads to tissue damage and inflammatory responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3 through the production of mitochondrial ROS, which together aggravate accumulating mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are risk factors for the progression of CVD, which are closely related to mitochondrial dynamics. Mitochondrial dynamics may represent a new target in the treatment of atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to correct mitochondrial dysfunction represent a few directions for future research on therapeutic intervention and amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
43
|
Papatheodorou I, Galatou E, Panagiotidis GD, Ravingerová T, Lazou A. Cardioprotective Effects of PPARβ/δ Activation against Ischemia/Reperfusion Injury in Rat Heart Are Associated with ALDH2 Upregulation, Amelioration of Oxidative Stress and Preservation of Mitochondrial Energy Production. Int J Mol Sci 2021; 22:6399. [PMID: 34203800 PMCID: PMC8232596 DOI: 10.3390/ijms22126399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor β/δ (PPARβ/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARβ/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARβ/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARβ/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARβ/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARβ/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARβ/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.
Collapse
Affiliation(s)
- Ioanna Papatheodorou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| | - Eleftheria Galatou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| | - Georgios-Dimitrios Panagiotidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| | - Táňa Ravingerová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dúbravská cesta, 84104 Bratislava, Slovakia;
| | - Antigone Lazou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| |
Collapse
|
44
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
45
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
46
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021; 11:1098-1116. [PMID: 34094822 PMCID: PMC8144890 DOI: 10.1016/j.apsb.2020.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a global public health problem with high morbidity and mortality. A large number of studies have shown that HF is caused by severe energy metabolism disorders, which result in an insufficient heart energy supply. This deficiency causes cardiac pump dysfunction and systemic energy metabolism failure, which determine the development of HF and recovery of heart. Current HF therapy acts by reducing heart rate and cardiac preload and afterload, treating the HF symptomatically or delaying development of the disease. Drugs aimed at cardiac energy metabolism have not yet been developed. In this review, we outline the main characteristics of cardiac energy metabolism in healthy hearts, changes in metabolism during HF, and related pathways and targets of energy metabolism. Finally, we discuss drugs that improve cardiac function via energy metabolism to provide new research ideas for the development and application of drugs for treating HF.
Collapse
|
47
|
SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail Rev 2021; 27:961-980. [PMID: 33713009 DOI: 10.1007/s10741-021-10096-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Heart failure (HF) often coexists with insulin resistance (IR), and the incidence of HF in type 2 diabetes mellitus (T2DM) patients is significantly higher. The reciprocal relationship between HF and IR has long been recognized, and the integration complicates the therapy of both. A number of mechanisms ascribe to the progression of cardiac IR, in which the main factors are the shift of myocardial substrate metabolism. Studies have found that SGLT2 inhibitors, an anti-diabetic drug, can improve the cardiac prognosis of patients with T2DM, which may be at least partially due to the relief of cardiac IR. Basic and clinical studies have revealed the important role of cardiac IR in the pathogenesis and progression of HF, and studies suggest that energy metabolism plays an important role in the pathogenesis of cardiac IR and HF. SGLT2 inhibitors mediated cardiovascular benefits through various mechanisms such as improving substrate utilization and improving myocardial energy. The regulation of SGLT2 inhibitors on cardiac energy status including carbohydrates, fatty acids (FA), amino acids and ketones, ATP transfer to the cytoplasm, and mitochondrial functional status have received extensive attention in HF, but its specific mechanism of action is still unclear. Therefore, this article reviews the relationship between IR and HF from the perspective of energy metabolism; subsequently, targeting energy metabolism discusses the pivotal role of SGLT2 inhibitors in improving cardiac IR and HF based on basic and clinical research evidences, and sought to clarify the molecular mechanism involved. (Fig. 1).
Collapse
|
48
|
Rubio B, Mora C, Pintado C, Mazuecos L, Fernández A, López V, Andrés A, Gallardo N. The nutrient sensing pathways FoxO1/3 and mTOR in the heart are coordinately regulated by central leptin through PPARβ/δ. Implications in cardiac remodeling. Metabolism 2021; 115:154453. [PMID: 33249043 DOI: 10.1016/j.metabol.2020.154453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cardiovascular disease in obese individuals with type 2 diabetes is often associated with hyperleptinemia and leptin resistance, while other studies support that leptin has cardioprotective effects. Besides, the role of leptin in regulating cardiac atrophy or hypertrophy remains to be clearly defined. In fact, in rats with normal leptin sensitivity, the molecular underpinnings of the effects of central leptin regulating cardiac structural pathways remain poorly understood. OBJECTIVE Hence, we assessed the effects of intracerebroventricular (icv) leptin infusion on cardiac remodeling analyzing FOXO1/3 and mTORC1 pathways, focusing special attention to PPARβ/δ as mediator of central leptin's effects on cardiac metabolism. METHODS Male 3-months-old Wistar rats, infused with icv leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally with the specific PPARβ/δ antagonist GSK0660, at 1 mg/kg per day along leptin treatment. RESULTS Central leptin regulated dynamically, in an opposite manner, the network between FOXOs and mTORC1 and induced an atrophy-related gene program in cardiac tissue. Leptin activated the anti-hypertrophic kinase GSK3β and increased the protein levels of muscle-specific ubiquitin ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/Atrogin-1 involved in limiting cardiac hypertrophy. FOXO1 activity and the expression of their target genes, Sod2 and Lpl, were also increased in the heart upon central leptin infusion. Besides, Beclin-1 and LC3B-II, gene products of the autophagic pathway response, were upregulated, while the content and expression levels of phenotypic markers of cardiac hypertrophy as ANP and β-myosin heavy chain, gene product of Myh7 were significantly decreased. On the other hand, mTORC1 activity and OXPHOS protein levels were decreased suggesting a key role of central leptin preventing cardiac oxidative stress. In fact, the content of carbonylated proteins, TBARS and ROS/RSN were not increased in cardiac tissue in response to central leptin infusion. Finally, the pharmacological inhibition of PPARβ/δ, via in vivo administration of the selective antagonist GSK0660, blunted the induction of FOXO1/3, Atrogin-1, MuRF1 and GSK3β in the heart mediated by icv leptin infusion. CONCLUSIONS Our results demonstrate that, in lean rats with normal leptin sensitivity, central leptin regulates nutrient sensing pathways in heart contributing to balance cardiac remodeling through the anti- and pro-hypertrophic programs, and in this process is involved PPARβ/δ.
Collapse
Affiliation(s)
- Blanca Rubio
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Mora
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Pintado
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Lorena Mazuecos
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alejandro Fernández
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Virginia López
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Antonio Andrés
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| | - Nilda Gallardo
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
49
|
Kuo MW, Tsai HH, Wang SH, Chen YY, Yu AL, Yu J. Yulink, predicted from evolutionary analysis, is involved in cardiac function. J Biomed Sci 2021; 28:7. [PMID: 33423678 PMCID: PMC7798328 DOI: 10.1186/s12929-020-00701-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022] Open
Abstract
Background The comparative evolutionary genomics analysis was used to study the functions of novel Ka/Ks-predicted human exons in a zebrafish model. The Yulink (MIOS, Entrez Gene: 54,468), a conserved gene from zebrafish to human with WD40 repeats at N-terminus, was identified and found to encode an 875 amino acid in human. The biological function of this Yulink gene in cardiomyocytes remains unexplored. The purpose of this study is to determine the involvement of Yulink in the functions of cardiomyocytes and to investigate its molecular regulatory mechanism. Methods Knockdown of Yulink was performed using morpholino or shRNA in zebrafish, mouse HL-1 cardiomyocytes, and human iPSC-derived cardiomyocytes. The expression levels of mRNA and protein were quantified by qPCR and western blots. Other methods including DNA binding, ligand uptake, agonists treatment and Ca2+ imaging assays were used to study the molecular regulatory mechanism by Yulink. Statistical data were shown as mean ± SD or mean ± standard error. Results The knockdown of yulink with three specific morpholinos in zebrafish resulted in cardiac dysfunctions with pericardial edema, decreased heart beats and cardiac output. The Yulink knockdown in mouse HL-1 cardiomyocytes disrupted Ca2+ cycling, reduced DNA binding activity of PPARγ (peroxisome proliferator-activated receptor gamma) and resulted in a reduction of Serca2 (sarcoplasmic reticulum Ca2+ ATPase 2) expression. Expression of Serca2 was up-regulated by PPARγ agonists and down-regulated by PPARγ-shRNA knockdown, suggesting that Yulink regulates SERCA2 expression through PPARγ in mouse HL-1 cardiomyocytes. On the other hand, YULINK, PPARγ or SERCA2 over-expression rescued the phenotypes of Yulink KD cells. In addition, knockdown of YULINK in human iPSC-derived cardiomyocytes also disrupted Ca2+ cycling via decreased SERCA2 expression. Conclusions Overall, our data showed that Yulink is an evolutionarily conserved gene from zebrafish to human. Mechanistically Yulink regulated Serca2 expression in cardiomyocytes, presumably mediated through PPARγ nuclear entry. Deficiency of Yulink in mouse and human cardiomyocytes resulted in irregular Ca2+ cycling, which may contribute to arrhythmogenesis.
Collapse
Affiliation(s)
- Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Hsiu-Hui Tsai
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Yi-Yin Chen
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.,Department of Pediatrics, University of California, San Diego, CA, USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
50
|
Flees JJ, Ganguly B, Dridi S. Phytogenic feed additives improve broiler feed efficiency via modulation of intermediary lipid and protein metabolism-related signaling pathways. Poult Sci 2020; 100:100963. [PMID: 33652544 PMCID: PMC7936186 DOI: 10.1016/j.psj.2020.12.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 12/20/2020] [Indexed: 11/30/2022] Open
Abstract
Diets enriched with phytogenic feed additives (PFA) such as AV/HGP/16 premix (AVHGP), Superliv concentrate premix (SCP), and bacteriostatic herbal growth promotor (BHGP) with essential oils have been shown to improve feed efficiency (FE) in broilers. This FE improvement was achieved via modulation of hypothalamic neuropeptides, which results despite feed intake reduction, in increased breast yield without changes in body weight compared to the control group. To gain further insights into the mode of action of these PFA, the present study aimed to determine the potential involvement of signaling pathways associated with lipid and protein metabolism. One day-old male Cobb 500 chicks were randomly assigned into 1 of 4 treatments, comprising 8 replicates per treatment in a completely randomized design. The dietary treatments included a basal diet (control) or 0.55 g/kg diet of AVHGP, SCP, or BHGP. The birds had ad libitum access to water and feed. On day 35, after blood sampling, the liver, abdominal adipose tissue (AT), and breast muscle samples were collected. The levels of phosphorylated mechanistic target of rapamycin (mTOR)Ser2481 as well as its levels of mRNA and those of its downstream mediator RPS6B1 were significantly upregulated in the muscle of the PFA-fed groups compared with the control group. In the liver, the phosphorylated levels of acetyl-CoA carboxylase alpha at Ser79, the rate-limiting enzyme in fat synthesis, was significantly induced in the PFA-fed groups compared with the control group, indicating a lower hepatic lipogenesis. The hepatic expression of hepatic triglyceride lipase (LIPC) and adipose triglyceride lipase (ATGL) was significantly upregulated in the AVHGP-fed group compared with the control group. These hepatic changes were accompanied by a significant downregulation of hepatic sterol regulatory element-binding protein cleavage-activating protein in all the PFA groups and an upregulation of peroxisome proliferator–activated receptor alpha and gamma in the SCP-fed compared with the control group. In the AT, the mRNA abundances of ATGL and LIPC were significantly increased in both SCP- and BHGP-fed birds compared with the control group. Together these data indicate that PFA improve FE via modulation of muscle mTOR pathway and hepatic lipolytic/lipogenic programs, thus, favoring muscle protein synthesis and lowering hepatic lipogenesis.
Collapse
Affiliation(s)
- Joshua J Flees
- Center of Excellence For Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | - Bhaskar Ganguly
- Clinical Research, Ayurvet Limited, Baddi, Himachal Pradesh 173205, India
| | - Sami Dridi
- Center of Excellence For Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| |
Collapse
|