1
|
Stewart AG, Fishman JA. Surveillance and prevention of infection in clinical xenotransplantation. Clin Microbiol Rev 2025; 38:e0015023. [PMID: 39887237 PMCID: PMC11905366 DOI: 10.1128/cmr.00150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.
Collapse
Affiliation(s)
- Adam G Stewart
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Luo J, Bian C, Liu M, Fang Y, Jin L, Yu R, Huang H. Research on gene editing and immunosuppressants in kidney xenotransplantation. Transpl Immunol 2025; 89:102184. [PMID: 39900229 DOI: 10.1016/j.trim.2025.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Gene-edited pig organ transplantation can solve the serious shortage of human donor organs. Currently, xenotransplantation is rapidly developing and has made significant breakthroughs. The use of GTKO (Gal knockout) pigs is an important step forward. The subsequent knockout of three genes combined with the transfer of immune-related genes effectively prolonged the survival time of non-human primate (NHP) transplantation in xenotransplantation. Due to the success of allogeneic kidney transplantation on NHP, this gene editing protocol was recently applied to clinical patients. Two patients underwent allogeneic kidney transplantation and survived for 51 days and 47 days. Exceeding the hyperacute rejection period proves that appropriate gene editing strategies and the combination of immunosuppressive agents contribute to the success of xenotransplantation. To further enhance the feasibility of pig kidney xenograft, this article mainly explores the effects of the NHP xenograft gene editing scheme and immunosuppressants on prolonging transplant survival time.
Collapse
Affiliation(s)
- JiaJiao Luo
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - CongWen Bian
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Liu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Fang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Jin
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Yu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - HanFei Huang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Iwanczyk Z, Vasudev K, Cozzi E, Cooper DKC. Contributions of Europeans to Xenotransplantation Research: 1. Pig Organ Xenotransplantation. Transpl Int 2025; 38:14041. [PMID: 40083833 PMCID: PMC11903215 DOI: 10.3389/ti.2025.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Xenotransplantation has a rich history, marked by European pioneers who laid the groundwork for many breakthroughs in the field. Pig organ xenotransplantation offers a solution to the global shortage of deceased human donor organs, whilst allowing the modification of the donor graft itself. The field has continued to garner interest, particularly with the recent advent of simpler and faster genetic-engineering technologies. This review highlights the contributions of European researchers to xenotransplantation, spanning pig kidney, heart, liver, and lung transplantation. Research has focused on (i) identifying and deleting key xenoantigens and modifying the source pig by expression of human "protective" proteins and (ii) testing novel immunosuppressive regimens. These contributions have played key roles in advancing xenotransplantation from the laboratory to early clinical experiments. Europeans have also addressed the potential risks of xenozoonotic infections and the regulatory challenges. The research endeavours of groups in Europe are summarized. Several European researchers moved either permanently or temporarily to US institutions, and their insight and innovations are also highlighted. While we aim to recognize the significant contributions of European physicians and scientists in this article, it is not an exhaustive list of all those who have influenced the field.
Collapse
Affiliation(s)
- Zuzanna Iwanczyk
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Krish Vasudev
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Emanuele Cozzi
- Transplantation Immunology Unit, University of Padua Hospital, Padua, Italy
| | - David K. C. Cooper
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Le Bas-Bernardet S, Blancho G. Progress in Porcine Kidney Transplantation to Non-Human Primates. Transpl Int 2025; 38:14003. [PMID: 40026598 PMCID: PMC11867791 DOI: 10.3389/ti.2025.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Renal xenotransplantation has recently made considerable progress in overcoming the barrier to its use in humans. This progress has been made possible owing to the use of preclinical pig-to-primate models. Overall, renal xenotransplantation has long been associated with lower survival rates than that of porcine hearts (mainly due to its life-sustaining nature). However, the use of the latest strains of genetically modified porcine donors, combined with progress in the control of the anti-porcine immune response and coagulation, has now enabled survival of up to 2 years. Although the pig-to-primate combination has long been considered a perfect reflection of the human situation, it has several limitations, particularly in terms of different natural anti-porcine antibodies. This fact, in association with survival prolongation, which is considered a prerequisite, has led some pioneering teams to cross the line of human application. However, use in humans will remain anecdotal, and further progress in renal xenotransplantation will be difficult to achieve without the use of non-human primates, which will remain complementary, particularly with regard to major innovations that have never been tested in humans.
Collapse
Affiliation(s)
- Stéphanie Le Bas-Bernardet
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Gilles Blancho
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Nantes Université, Service de Néphrologie et Immunologie Clinique, ITUN, Nantes, France
| |
Collapse
|
5
|
Morimoto K, Yamanaka S, Yokoo T. Recent progress in xenotransplantation and its application to pediatric kidney disease. Pediatr Nephrol 2025:10.1007/s00467-025-06664-x. [PMID: 39883132 DOI: 10.1007/s00467-025-06664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Patients with kidney failure require dialysis or kidney transplantation. Kidney transplantation offers great benefits, including reduced mortality; however, many patients who wish to undergo kidney transplantation are unable to do so due to a shortage of donor organs. This shortage is a global issue, and xenotransplantation has emerged as a potential solution. The history of xenotransplantation is characterized by overcoming the immunological challenge of hyperacute rejection. Recently, breakthroughs such as gene-edited pigs and novel immunosuppressants have successfully lowered rejection rates. Recent clinical studies have reported transplants in patients diagnosed with brain death, and in March 2024, a gene-edited pig kidney was transplanted into a patient with kidney failure at Massachusetts General Hospital, marking the first instance of a gene-edited xenotransplantation into a living patient. Our research focuses on applying xenotransplantation in pediatric and obstetric fields, specifically exploring fetal therapy using pig fetal kidneys. We have long been researching the development of a novel kidney replacement therapy involving the transplantation of fetal pig kidneys. Fetal pig kidneys have the advantage of not requiring vascular anastomosis and are less likely to be rejected compared to adult pig kidneys. Currently, we are advancing nonhuman primate studies aimed at clinical trials of pig fetal kidney transplant therapy for fetuses diagnosed with Potter syndrome, characterized by bilateral kidney agenesis. We sincerely hope that xenotransplantation will soon become a viable treatment option for adult, pediatric, and fetal patients with kidney failure.
Collapse
Affiliation(s)
- Keita Morimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Kidney Applied Regenerative Medicine, Project Research Units, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| |
Collapse
|
6
|
Sanatkar SA, Kinoshita K, Maenaka A, Hara H, Cooper DKC. The Evolution of Immunosuppressive Therapy in Pig-to-Nonhuman Primate Organ Transplantation. Transpl Int 2025; 37:13942. [PMID: 39872238 PMCID: PMC11770881 DOI: 10.3389/ti.2024.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
An overview is provided of the evolution of strategies towards xenotransplantation during the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs, pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive therapy. Despite initial challenges, including hyperacute rejection resulting from natural (preformed) antibody binding and complement activation, significant progress has been made through gene editing of the organ-source pigs and refinement of immunosuppressive regimens. Major steps were the identification and deletion of expression of the three known glycan xenoantigens on pig vascular endothelial cells, the transgenic expression of human "protective" proteins, e.g., complement-regulatory, coagulation-regulatory, and anti-inflammatory proteins, and the administration of an immunosuppressive regimen based on blockade of the CD40/CD154 T cell co-stimulation pathway. Efforts to address systemic inflammation followed. The synergy between gene editing and judicious immunomodulation appears to largely prevent graft rejection and is associated with a relatively good safety profile. Though there remains an incidence of severe or persistent proteinuria (nephrotic syndrome) in a minority of cases. This progress offers renewed hope for patients in need of life-saving organ transplants.
Collapse
Affiliation(s)
- S. A. Sanatkar
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - K. Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - A. Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - H. Hara
- The Transplantation Institute at the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - D. K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Sucu S, Yankol Y, Fernandez LA, Ekser B. Liver Xenotransplantation: A Path to Clinical Reality. Transpl Int 2025; 37:14040. [PMID: 39829719 PMCID: PMC11738628 DOI: 10.3389/ti.2024.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Liver xenotransplantation has emerged as a potential solution to the shortage of deceased human donor organs and is now becoming a reality due to recent developments in genetic engineering and immunosuppressive therapy. Early efforts using non-human primates and genetically modified pigs faced significant challenges such as thrombocytopenia and graft rejection. Understanding the mechanism behind those challenges and using novel genetically engineered pigs enabled researchers to overcome some of the hurdles, but more research is needed. However, new advances might allow pig liver xenotransplantation to potentially serve as a bridge to liver allotransplantation or allow native liver regeneration in the near future.
Collapse
Affiliation(s)
- Serkan Sucu
- Division of Transplant Surgery, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Surgery, Koc University School of Medicine, Istanbul, Türkiye
| | - Yucel Yankol
- Division of Transplant Surgery, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Luis A. Fernandez
- Division of Transplant Surgery, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
8
|
Kakuta Y, Miyagawa S, Matsumura S, Higa-Maegawa Y, Fukae S, Tanaka R, Nakazawa S, Yamanaka K, Kawamura T, Saito S, Miyagawa S, Nonomura N. Complement and complement regulatory protein in allogeneic and xenogeneic kidney transplantation. Transplant Rev (Orlando) 2025; 39:100885. [PMID: 39536474 DOI: 10.1016/j.trre.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Kidney transplantation is the most optimal treatment for patients with end-stage renal disease, offering significant improvements in patient outcomes over dialysis. However, the potential for immune rejection, where the recipient's immune system attacks the transplanted kidney, can compromise transplant success. The complement system, a key component of the immune response, plays a crucial role in both acute and chronic rejection, including T-cell- and antibody-mediated rejection. Understanding and controlling the complement system is essential for managing rejection and enhancing graft survival and overall success of kidney transplantation. In allogeneic transplantation, complement activation through various pathways contributes to graft damage and failure. Recent advancements in genetic engineering enable the development of transgenic pigs expressing human complement regulatory proteins, which display potential for reducing rejection in xenotransplantation. Despite these advances, the complex mechanisms of complement activation and regulation are not fully understood, necessitating further research. This review examines the role of the complement system in kidney transplantation, explores the latest developments in complement regulatory strategies, and discusses potential therapeutic approaches to improve transplant outcomes.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Japan.
| | - Soichi Matsumura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Yoko Higa-Maegawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shota Fukae
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Ryo Tanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Kazuaki Yamanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
9
|
Kang M, Park HK, Kim KS, Choi D. Animal models for transplant immunology: bridging bench to bedside. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:354-376. [PMID: 39233453 PMCID: PMC11732767 DOI: 10.4285/ctr.24.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 09/06/2024]
Abstract
The progress of transplantation has been propelled forward by animal experiments. Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Hwon Kyum Park
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
10
|
Nawalaniec JT, Landino SM, O JM, Miller CL, Dehnadi A, Hanekamp I, Muoio JM, Winter C, Hays N, Allan JS, Madsen JC. A novel technique for heart-thymus en bloc transplantation in nonhuman primates. Sci Rep 2024; 14:31930. [PMID: 39738516 PMCID: PMC11686112 DOI: 10.1038/s41598-024-83378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
The thymus is a rich source of regulatory T cells and plays a role in self-tolerance. Therefore, transplantation of a vascularized donor thymus may facilitate the induction of tolerance in recipients of a cotransplanted heart allograft. To investigate this hypothesis, we developed a new technique to procure the heart and thymus en bloc from juvenile donors and transplant the composite allograft into thymectomized recipients. Thymic function was monitored by serial biopsy and flow cytometry of peripheral blood. Heart-thymus en bloc transplantation resulted in immediate revascularization of the heart and donor thymus with maintenance of normal thymic architecture, even in biopsies taken months after transplantation. Heart-thymus en bloc transplantation requires minimal modification to current heart procurement techniques. Here, we describe the details of the preparation, procurement, transplantation, and postoperative monitoring for this model, with the intention that this technique could be implemented by other investigators to study the effects of heart and thymus cotransplantation. This method could ultimately offer a new approach to tolerance induction in children.
Collapse
Affiliation(s)
- James T Nawalaniec
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Samantha M Landino
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Jane M O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Cynthia L Miller
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Abbas Dehnadi
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel Hanekamp
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Jayne Marie Muoio
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Casey Winter
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole Hays
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - James S Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA.
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, WHT-05-510C, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Yang S, Zhang M, Wei H, Zhang B, Peng J, Shang P, Sun S. Research prospects for kidney xenotransplantation: a bibliometric analysis. Ren Fail 2024; 46:2301681. [PMID: 38391160 PMCID: PMC10916899 DOI: 10.1080/0886022x.2023.2301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Xenograft kidney transplantation has been receiving increasing attention. The purpose of this study is to use bibliometric analysis to identify papers in this research field and explore their current status and development trends. METHODS Using the data in the Web of Science core database from Clarivate Analytics as the object of study, we used 'TS = Kidney OR Renal AND xenotransplantation' as the search term to find all literature from 1980 to 2 November 2022. RESULTS In total, 1005 articles were included. The United States has the highest number of publications and has made significant contributions in this field. Harvard University was at the forefront of this study. Professor Cooper has published 114 articles in this field. Xenotransplantation has the largest number of relevant articles. Transplantation was the most cited journal. High-frequency keywords illustrated the current state of development and future trends in xenotransplantation. The use of transgenic pigs and the development of coordinated co-stimulatory blockers have greatly facilitated progress in xenotransplantation research. We found that 'co-stimulation blockade', 'xenograft survival', 'pluripotent stem cell', 'translational research', and 'genetic engineering' were likely to be the focus of attention in the coming years. CONCLUSIONS This study screened global publications related to xenogeneic kidney transplantation; analyzed their literature metrology characteristics; identified the most cited articles in the research field; understood the current situation, hot spots, and trends of global research; and provided future development directions for researchers and practitioners.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Wei
- Department of Urology, Qingdao University Hospital, Qingdao, China
| | - Bin Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiang Peng
- Department of Orthopaedics, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Panfeng Shang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shengkun Sun
- Department of Urology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
12
|
Wang Y, Chen G, Pan D, Guo H, Jiang H, Wang J, Feng H, He S, Du J, Zhang M, Li T, Wang Y, Yu H, Gan H, Wen Q, Song Z, Li D, Yu Y, Wang H, Li B, You Y, Zhou S, Wang M, Liu L, Xu L, Yang M, Pei H, Zhang K, Chen ZK. Pig-to-human kidney xenotransplants using genetically modified minipigs. Cell Rep Med 2024; 5:101744. [PMID: 39317190 PMCID: PMC11513830 DOI: 10.1016/j.xcrm.2024.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
This study develops an observational model to assess kidney function recovery and xenogeneic immune responses in kidney xenotransplants, focusing on gene editing and immunosuppression. Two brain-dead patients undergo single kidney xenotransplantation, with kidneys donated by minipigs genetically modified to include triple-gene knockouts (GGTA1, β4GalNT2, CMAH) and human gene transfers (hCD55 or hCD55/hTBM). Renal xenograft functions are fully restored; however, immunosuppression without CD40-CD154 pathway blockade is ineffective in preventing acute rejection by day 12. This rejection manifests as both T cell-mediated rejection and antibody-mediated rejection (AMR), confirmed by natural killer (NK) cell and macrophage infiltration in sequential xenograft biopsies. Despite donor pigs being pathogen free before transplantation, xenografts and recipient organs test positive for porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) by the end of the observation period, indicating reactivation and contributing to significant immunopathological changes. This study underscores the critical need for extended clinical observation and comprehensive evaluation using deceased human models to advance xenograft success.
Collapse
Affiliation(s)
- Yi Wang
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dengke Pan
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Hui Guo
- Institute of Organ Transplantation, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Jiang
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Jianli Wang
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Songzhe He
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Jiaxiang Du
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Man Zhang
- Institute of Organ Transplantation, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Yong Wang
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Hang Yu
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Huiling Gan
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Quan Wen
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Zhian Song
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Desheng Li
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Yifan Yu
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Huanliang Wang
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Bing Li
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Yong You
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Shen Zhou
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Mingfa Wang
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Lili Liu
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Liang Xu
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Meng Yang
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Hua Pei
- The Second Affiliated Hospital and the Transplantation Institute, Hainan Medical University, Hainan, China
| | - Kang Zhang
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Zhonghua K Chen
- Institute of Organ Transplantation, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Pan W, Zhang W, Zheng B, Camellato BR, Stern J, Lin Z, Khodadadi-Jamayran A, Kim J, Sommer P, Khalil K, Weldon E, Bai J, Zhu Y, Meyn P, Heguy A, Mangiola M, Griesemer A, Keating BJ, Montgomery RA, Xia B, Boeke JD. Cellular dynamics in pig-to-human kidney xenotransplantation. MED 2024; 5:1016-1029.e4. [PMID: 38776915 DOI: 10.1016/j.medj.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING This work was supported by NIH RM1HG009491 and DP5OD033430.
Collapse
Affiliation(s)
- Wanqing Pan
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Binghan Zheng
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan R Camellato
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey Stern
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories (ABL), NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Jacqueline Kim
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Philip Sommer
- Department of Anesthesiology, Perioperative Care & Pain Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Karen Khalil
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA
| | - Elaina Weldon
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jiangshan Bai
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Peter Meyn
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Massimo Mangiola
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA
| | - Adam Griesemer
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Brendan J Keating
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert A Montgomery
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY 10016, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Bo Xia
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Society of Fellows, Harvard University, Cambridge, MA 02138, USA.
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
14
|
Abe T, Endo K, Hanazono Y, Kobayashi E. In Vivo Luciferin-Luciferase Reaction in Micro-Mini Pigs Using Xenogeneic Rat Bone Marrow Transplantation. Int J Mol Sci 2024; 25:8609. [PMID: 39201296 PMCID: PMC11354750 DOI: 10.3390/ijms25168609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Luminescent technology based on the luciferin-luciferase reaction has been extensively employed across various disciplines as a quantitative imaging modality. Owing to its non-invasive imaging capacity, it has evolved as a valuable in vivo bioimaging tool, particularly in small animal models in fields such as gene and cell therapies. We have previously successfully generated rats with a systemic expression of the luciferase gene at the Rosa26 locus. In this study, we transplanted bone marrow from these rats into micro-mini pigs and used in vivo imaging to non-invasively analyze the dynamics of the transplanted cells. In addition, we established that the rat-to-pig transplantation system is a discordant system, similar to the pig-to-human transplantation system. Thus, rat-to-pig transplantation may provide a clinically appropriate large animal model for pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Tomoyuki Abe
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kazuhiro Endo
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yutaka Hanazono
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Eiji Kobayashi
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
15
|
Hisadome Y, Eisenson DL, Santillan MR, Iwase H, Yamada K. Pretransplant Screening for Prevention of Hyperacute Graft Loss in Pig-to-primate Kidney Xenotransplantation. Transplantation 2024; 108:1749-1759. [PMID: 39042769 DOI: 10.1097/tp.0000000000004958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Xenotransplantation using pig organs is now a clinical reality. However, the process for xenograft recipient screening lacks clarity and scientific rigor: no established thresholds exist to determine which levels of preformed antipig natural antibodies (Nabs) will be safe for clinical xenograft transplantation, and hyperacute rejection (HAR) or acute humoral xenograft rejection (AHXR), which still impacts pig-to-primate kidney xenograft survivals, may impede broader application of pig-to-human clinical xenograft transplantation. METHODS We retrospectively examined 28 cases of pig-to-baboon kidney xenotransplantation using GalTKO±human complement regulatory protein (hCRP)-transgenic (Tg) pig donors, as well as 6 cases of triple-KO multi-Tg (10GE) pig donors, and developed screening algorithms to predict risk of HAR/AHXR based on recipient antipig Nab levels. Preformed Nabs were evaluated using both complement-dependent cytotoxicity and antibody (IgM and IgG) binding flow-cytometry assays. RESULTS High complement-dependent cytotoxicity was associated with HAR/AHXR as expected. However, we also found that high levels of IgG were independently associated with HAR/AHXR, and we developed 2 indices to interpret and predict the risk of IgG-mediated HAR/AHXR. CONCLUSIONS Based on the data in this study, we have established a new 2-step screening, which will be used for future clinical kidney xenotransplantation trials.
Collapse
Affiliation(s)
- Yu Hisadome
- Department of Surgery, Division of Transplantation, The Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | |
Collapse
|
16
|
Peterson L, Yacoub MH, Ayares D, Yamada K, Eisenson D, Griffith BP, Mohiuddin MM, Eyestone W, Venter JC, Smolenski RT, Rothblatt M. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol Rev 2024; 104:1409-1459. [PMID: 38517040 PMCID: PMC11390123 DOI: 10.1152/physrev.00041.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.
Collapse
Affiliation(s)
- Leigh Peterson
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | | | - David Ayares
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - Kazuhiko Yamada
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Daniel Eisenson
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Bartley P Griffith
- University of Maryland Medical Center, Baltimore, Maryland, United States
| | | | - Willard Eyestone
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - J Craig Venter
- J. Craig Venter Institute, Rockville, Maryland, United States
| | | | - Martine Rothblatt
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| |
Collapse
|
17
|
Yang C, Wei Y, Li X, Xu K, Huo X, Chen G, Zhao H, Wang J, Wei T, Qing Y, Guo J, Zhao H, Zhang X, Jiao D, Xiong Z, Jamal MA, Zhao HY, Wei HJ. Production of Four-Gene (GTKO/hCD55/hTBM/hCD39)-Edited Donor Pigs and Kidney Xenotransplantation. Xenotransplantation 2024; 31:e12881. [PMID: 39185796 DOI: 10.1111/xen.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The number of multigene-modified donor pigs for xenotransplantation is increasing with the advent of gene-editing technologies. However, it remains unclear which gene combination is suitable for specific organ transplantation. METHODS In this study, we utilized CRISPR/Cas9 gene editing technology, piggyBac transposon system, and somatic cell cloning to construct GTKO/hCD55/hTBM/hCD39 four-gene-edited cloned (GEC) pigs and performed kidney transplantation from pig to rhesus monkey to evaluate the effectiveness of these GEC pigs. RESULTS First, 107 cell colonies were obtained through drug selection, of which seven were 4-GE colonies. Two colonies were selected for somatic cell nuclear transfer (SCNT), resulting in seven fetuses, of which four were GGTA1 biallelic knockout. Out of these four, two fetuses had higher expression of hCD55, hTBM, and hCD39. Therefore, these two fetuses were selected for two consecutive rounds of cloning, resulting in 97 live piglets. After phenotype identification, the GGTA1 gene of these pigs was inactivated, and hCD55, hTBM, and hCD39 were expressed in cells and multiple tissues. Furthermore, the numbers of monkey IgM and IgG binding to the peripheral blood mononuclear cells (PBMCs) of the 4-GEC pigs were markedly reduced. Moreover, 4-GEC porcine PBMCs had greater survival rates than those from wild-type pigs through complement-mediated cytolysis assays. In pig-to-monkey kidney xenotransplantation, the kidney xenograft successfully survived for 11 days. All physiological and biochemical indicators were normal, and no hyperacute rejection or coagulation abnormalities were found after transplantation. CONCLUSION These results indicate that the GTKO/hCD55/hTBM/hCD39 four-gene modification effectively alleviates immune rejection, and the pig kidney can functionally support the recipient monkey's life.
Collapse
Affiliation(s)
- Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yunfang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinglong Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaoying Huo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Hongfang Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiong Zhang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhe Xiong
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
18
|
Manook M, Olaso D, Anwar I, DeLaura I, Yoon J, Bae Y, Barbas A, Shaw B, Moris D, Song M, Farris AB, Stiede K, Youd M, Knechtle S, Kwun J. Prolonged xenokidney graft survival in sensitized NHP recipients by expression of multiple human transgenes in a triple knockout pig. Sci Transl Med 2024; 16:eadk6152. [PMID: 38865482 PMCID: PMC11328991 DOI: 10.1126/scitranslmed.adk6152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Genetic modification of porcine donors, combined with optimized immunosuppression, has been shown to improve outcomes of experimental xenotransplant. However, little is known about outcomes in sensitized recipients, a population that could potentially benefit the most from the clinical implementation of xenotransplantation. Here, five highly allosensitized rhesus macaques received a porcine kidney from GGTA1 (α1,3-galactosyltransferase) knockout pigs expressing the human CD55 transgene (1KO.1TG) and were maintained on an anti-CD154 monoclonal antibody (mAb)-based immunosuppressive regimen. These recipients developed de novo xenoreactive antibodies and experienced xenograft rejection with evidence of thrombotic microangiopathy and antibody-mediated rejection (AMR). In comparison, three highly allosensitized rhesus macaques receiving a kidney from GGTA1, CMAH (cytidine monophospho-N-acetylneuraminic acid hydroxylase), and b4GNT2/b4GALNT2 (β-1,4-N-acetyl-galactosaminyltransferase 2) knockout pigs expressing seven human transgenes including human CD46, CD55, CD47, THBD (thrombomodulin), PROCR (protein C receptor), TNFAIP3 (tumor necrosis factor-α-induced protein 3), and HMOX1 (heme oxygenase 1) (3KO.7TG) experienced significantly prolonged graft survival and reduced AMR, associated with dampened post-transplant humoral responses, early monocyte and neutrophil activation, and T cell repopulation. After withdrawal of all immunosuppression, recipients who received kidneys from 3KO.7TG pigs rejected the xenografts via AMR. These data suggest that allosensitized recipients may be suitable candidates for xenografts from genetically modified porcine donors and could benefit from an optimized immunosuppression regimen designed to target the post-transplant humoral response, thereby avoiding AMR.
Collapse
Affiliation(s)
- Miriam Manook
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Danae Olaso
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Imran Anwar
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Isabel DeLaura
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Janghoon Yoon
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yeeun Bae
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew Barbas
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brian Shaw
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dimitrios Moris
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mingqing Song
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alton B Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Stuart Knechtle
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jean Kwun
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Eisenson DL, Iwase H, Chen W, Hisadome Y, Cui W, Santillan MR, Schulick AC, Gu D, Maxwell A, Koenig K, Sun Z, Warren D, Yamada K. Combined islet and kidney xenotransplantation for diabetic nephropathy: an update in ongoing research for a clinically relevant application of porcine islet transplantation. Front Immunol 2024; 15:1351717. [PMID: 38476227 PMCID: PMC10927755 DOI: 10.3389/fimmu.2024.1351717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Combined islet and kidney xenotransplantation for the treatment of diabetic nephropathy represents a compelling and increasingly relevant therapeutic possibility for an ever-growing number of patients who would benefit from both durable renal replacement and cure of the underlying cause of their renal insufficiency: diabetes. Here we briefly review immune barriers to islet transplantation, highlight preclinical progress in the field, and summarize our experience with combined islet and kidney xenotransplantation, including both challenges with islet-kidney composite grafts as well as our recent success with sequential kidney followed by islet xenotransplantation in a pig-to-baboon model.
Collapse
Affiliation(s)
- Daniel L. Eisenson
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hayato Iwase
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weili Chen
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wanxing Cui
- Cell Therapy and Manufacturing, Medstar Georgetown University Hospital, Washington DC, United States
| | - Michelle R. Santillan
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander C. Schulick
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Du Gu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amanda Maxwell
- Research Animal Resources, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristy Koenig
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel Warren
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Xu H, He X. Developments in kidney xenotransplantation. Front Immunol 2024; 14:1242478. [PMID: 38274798 PMCID: PMC10808336 DOI: 10.3389/fimmu.2023.1242478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
The search for kidney xenografts that are appropriate for patients with end-stage renal disease has been ongoing since the beginning of the last century. The major cause of xenograft loss is hyperacute and acute rejection, and this has almost been overcome via scientific progress. The success of two pre-clinical trials of α1,3-galactosyltransferase gene-knockout porcine kidneys in brain-dead patients in 2021 triggered research enthusiasm for kidney xenotransplantation. This minireview summarizes key issues from an immunological perspective: the discovery of key xenoantigens, investigations into key co-stimulatory signal inhibition, gene-editing technology, and immune tolerance induction. Further developments in immunology, particularly immunometabolism, might help promote the long-term outcomes of kidney xenografts.
Collapse
Affiliation(s)
| | - Xiaozhou He
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
21
|
Loupy A, Goutaudier V, Giarraputo A, Mezine F, Morgand E, Robin B, Khalil K, Mehta S, Keating B, Dandro A, Certain A, Tharaux PL, Narula N, Tissier R, Giraud S, Hauet T, Pass HI, Sannier A, Wu M, Griesemer A, Ayares D, Tatapudi V, Stern J, Lefaucheur C, Bruneval P, Mangiola M, Montgomery RA. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet 2023; 402:1158-1169. [PMID: 37598688 DOI: 10.1016/s0140-6736(23)01349-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Cross-species immunological incompatibilities have hampered pig-to-human xenotransplantation, but porcine genome engineering recently enabled the first successful experiments. However, little is known about the immune response after the transplantation of pig kidneys to human recipients. We aimed to precisely characterise the early immune responses to the xenotransplantation using a multimodal deep phenotyping approach. METHODS We did a complete phenotyping of two pig kidney xenografts transplanted to decedent humans. We used a multimodal strategy combining morphological evaluation, immunophenotyping (IgM, IgG, C4d, CD68, CD15, NKp46, CD3, CD20, and von Willebrand factor), gene expression profiling, and whole-transcriptome digital spatial profiling and cell deconvolution. Xenografts before implantation, wild-type pig kidney autografts, as well as wild-type, non-transplanted pig kidneys with and without ischaemia-reperfusion were used as controls. FINDINGS The data collected from xenografts suggested early signs of antibody-mediated rejection, characterised by microvascular inflammation with immune deposits, endothelial cell activation, and positive xenoreactive crossmatches. Capillary inflammation was mainly composed of intravascular CD68+ and CD15+ innate immune cells, as well as NKp46+ cells. Both xenografts showed increased expression of genes biologically related to a humoral response, including monocyte and macrophage activation, natural killer cell burden, endothelial activation, complement activation, and T-cell development. Whole-transcriptome digital spatial profiling showed that antibody-mediated injury was mainly located in the glomeruli of the xenografts, with significant enrichment of transcripts associated with monocytes, macrophages, neutrophils, and natural killer cells. This phenotype was not observed in control pig kidney autografts or in ischaemia-reperfusion models. INTERPRETATION Despite favourable short-term outcomes and absence of hyperacute injuries, our findings suggest that antibody-mediated rejection in pig-to-human kidney xenografts might be occurring. Our results suggest specific therapeutic targets towards the humoral arm of rejection to improve xenotransplantation results. FUNDING OrganX and MSD Avenir.
Collapse
Affiliation(s)
- Alexandre Loupy
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France; Department of Kidney Transplantation, Necker Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France.
| | - Valentin Goutaudier
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France; Department of Kidney Transplantation, Necker Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alessia Giarraputo
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France; Cardiovascular Pathology and Pathological Anatomy, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Fariza Mezine
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Erwan Morgand
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Blaise Robin
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Karen Khalil
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Pharmacy, NYU Langone Health, New York, NY, USA
| | - Sapna Mehta
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Brendan Keating
- Division of Transplantation, Department of Surgery, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anaïs Certain
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center, PARCC, INSERM U970, Université Paris Cité, Paris, France
| | - Navneet Narula
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Renaud Tissier
- Ecole Nationale Vétérinaire d'Alfort, IMRB, After ROSC Network, Maisons-Alfort, France
| | - Sébastien Giraud
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Thierry Hauet
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Harvey I Pass
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, NY, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Aurélie Sannier
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France; Department of Pathology, Bichat Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Ming Wu
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Adam Griesemer
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Vasishta Tatapudi
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey Stern
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Carmen Lefaucheur
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France; Kidney Transplant Department, Saint-Louis Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Patrick Bruneval
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France; Department of Pathology, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Massimo Mangiola
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert A Montgomery
- NYU Langone Transplant Institute, NYU Langone Health, New York, NY, USA; Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Hess NR, Kaczorowski DJ. The history of cardiac xenotransplantation: early attempts, major advances, and current progress. FRONTIERS IN TRANSPLANTATION 2023; 2:1125047. [PMID: 38993853 PMCID: PMC11235224 DOI: 10.3389/frtra.2023.1125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
In light of ongoing shortage of donor organs for transplantation, alternative sources for donor organ sources have been examined to address this supply-demand mismatch. Of these, xenotransplantation, or the transplantation of organs across species, has been considered, with early applications dating back to the 1600s. The purpose of this review is to summarize the early experiences of xenotransplantation, with special focus on heart xenotransplantation. It aims to highlight the important ethical concerns of animal-to-human heart xenotransplantation, identify the key immunological barriers to successful long-term xenograft survival, as well as summarize the progress made in terms of development of pharmacological and genetic engineering strategies to address these barriers. Lastly, we discuss more recent attempts of porcine-to-human heart xenotransplantation, as well as provide some commentary on the current concerns and possible applications for future clinical heart xenotransplantation.
Collapse
Affiliation(s)
- Nicholas R. Hess
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David J. Kaczorowski
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Habibabady Z, McGrath G, Kinoshita K, Maenaka A, Ikechukwu I, Elias GF, Zaletel T, Rosales I, Hara H, Pierson RN, Cooper DKC. Antibody-mediated rejection in xenotransplantation: Can it be prevented or reversed? Xenotransplantation 2023; 30:e12816. [PMID: 37548030 PMCID: PMC11101061 DOI: 10.1111/xen.12816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.
Collapse
Affiliation(s)
- Zahra Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ileka Ikechukwu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela F. Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Tjasa Zaletel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Naso F, Colli A, Zilla P, Calafiore AM, Lotan C, Padalino MA, Sturaro G, Gandaglia A, Spina M. Correlations between the alpha-Gal antigen, antibody response and calcification of cardiac valve bioprostheses: experimental evidence obtained using an alpha-Gal knockout mouse animal model. Front Immunol 2023; 14:1210098. [PMID: 37426661 PMCID: PMC10327888 DOI: 10.3389/fimmu.2023.1210098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Preformed antibodies against αGal in the human and the presence of αGal antigens on the tissue constituting the commercial bioprosthetic heart valves (BHVs, mainly bovine or porcine pericardium), lead to opsonization of the implanted BHV, leading to deterioration and calcification. Murine subcutaneous implantation of BHVs leaflets has been widely used for testing the efficacy of anti-calcification treatments. Unfortunately, commercial BHVs leaflets implanted into a murine model will not be able to elicit an αGal immune response because such antigen is expressed in the recipient and therefore immunologically tolerated. Methods This study evaluates the calcium deposition on commercial BHV using a new humanized murine αGal knockout (KO) animal model. Furtherly, the anti-calcification efficacy of a polyphenol-based treatment was deeply investigated. By using CRISPR/Cas9 approach an αGal KO mouse was created and adopted for the evaluation of the calcific propensity of original and polyphenols treated BHV by subcutaneous implantation. The calcium quantification was carried out by plasma analysis; the immune response evaluation was performed by histology and immunological assays. Anti-αGal antibodies level in KO mice increases at least double after 2 months of implantation of original commercial BHV compared to WT mice, conversely, the polyphenols-based treatment seems to effectively mask the antigen to the KO mice's immune system. Results Commercial leaflets explanted after 1 month from KO mice showed a four-time increased calcium deposition than what was observed on that explanted from WT. Polyphenol treatment prevents calcium deposition by over 99% in both KO and WT animals. The implantation of commercial BHV leaflets significantly stimulates the KO mouse immune system resulting in massive production of anti-Gal antibodies and the exacerbation of the αGal-related calcific effect if compared with the WT mouse. Discussion The polyphenol-based treatment applied in this investigation showed an unexpected ability to inhibit the recognition of BHV xenoantigens by circulating antibodies almost completely preventing calcific depositions compared to the untreated counterpart.
Collapse
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation Srl, Este, Padua, Italy
| | - Andrea Colli
- Cardiac Surgery Unit, Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Peter Zilla
- Christian Barnard Department of Cardiothoracic Surgery, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Chaim Lotan
- Hadassah University Hospital - Cardiovascular Division, Ein Kerem, Jerusalem, Israel
| | - Massimo A. Padalino
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | | | - Michele Spina
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Koh J, Chee HK, Kim KH, Jeong IS, Kim JS, Lee CH, Seo JW. Historical Review and Future of Cardiac Xenotransplantation. Korean Circ J 2023; 53:351-366. [PMID: 37271743 DOI: 10.4070/kcj.2022.0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Along with the development of immunosuppressive drugs, major advances on xenotransplantation were achieved by understanding the immunobiology of xenograft rejection. Most importantly, three predominant carbohydrate antigens on porcine endothelial cells were key elements provoking hyperacute rejection: α1,3-galactose, SDa blood group antigen, and N-glycolylneuraminic acid. Preformed antibodies binding to the porcine major xenoantigen causes complement activation and endothelial cell activation, leading to xenograft injury and intravascular thrombosis. Recent advances in genetic engineering enabled knock-outs of these major xenoantigens, thus producing xenografts with less hyperacute rejection rates. Another milestone in the history of xenotransplantation was the development of co-stimulation blockaded strategy. Unlike allotransplantation, xenotransplantation requires blockade of CD40-CD40L pathway to prevent T-cell dependent B-cell activation and antibody production. In 2010s, advanced genetic engineering of xenograft by inducing the expression of multiple human transgenes became available. So-called 'multi-gene' xenografts expressing human transgenes such as thrombomodulin and endothelial protein C receptor were introduced, which resulted in the reduction of thrombotic events and improvement of xenograft survival. Still, there are many limitations to clinical translation of cardiac xenotransplantation. Along with technical challenges, zoonotic infection and physiological discordances are major obstacles. Social barriers including healthcare costs also need to be addressed. Although there are several remaining obstacles to overcome, xenotransplantation would surely become the novel option for millions of patients with end-stage heart failure who have limited options to traditional therapeutics.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Keun Chee
- Department of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyung-Hee Kim
- Division of Cardiology, Incheon Sejong Hospital, Incheon, Korea
| | - In-Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Jung-Sun Kim
- Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Chang-Ha Lee
- Department of Thoracic and Cardiovascular Surgery, Bucheon Sejong Hospital, Bucheon, Korea
| | - Jeong-Wook Seo
- Department of Pathology, Incheon Sejong Hospital, Incheon, Korea.
| |
Collapse
|
26
|
Shih S, Askinas C, Caughey S, Vernice N, Berri N, Dong X, Spector JA. Sourcing and development of tissue for transplantation in reconstructive surgery: A narrative review. J Plast Reconstr Aesthet Surg 2023; 83:266-275. [PMID: 37279636 DOI: 10.1016/j.bjps.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023]
Abstract
The wealth of allogeneic and xenogeneic tissue products available to plastic and reconstructive surgeons has allowed for the development of novel surgical solutions to challenging clinical problems, often obviating the need to inflict donor site morbidity. Allogeneic tissue used for reconstructive surgery enters the tissue industry through whole body donation or reproductive tissue donation and has been regulated by the FDA as human cells, tissues, and cellular and tissue-based products (HCT/Ps) since 1997. Tissue banks offering allogeneic tissue can also undergo voluntary regulation by the American Association of Tissue Banks (AATB). Tissue prepared for transplantation is sterilized and can be processed into soft tissue or bone allografts for use in surgical reconstruction, whereas non-transplant tissue is prepared for clinical training and drug, medical device, and translational research. Xenogeneic tissue, which is most often derived from porcine or bovine sources, is also commercially available and is subject to strict regulations for animal breeding and screening for infectious diseases. Although xenogeneic products have historically been decellularized for use as non-immunogenic tissue products, recent advances in gene editing have opened the door to xenograft organ transplants into human patients. Herein, we describe an overview of the modern sourcing, regulation, processing, and applications of tissue products relevant to the field of plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Sabrina Shih
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Carly Askinas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Sarah Caughey
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Nicholas Vernice
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Nabih Berri
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Xue Dong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Jason A Spector
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America.
| |
Collapse
|
27
|
Mubarak M. Transitioning of renal transplant pathology from allograft to xenograft and tissue engineering pathology: Are we prepared? World J Transplant 2023; 13:86-95. [PMID: 36968134 PMCID: PMC10037233 DOI: 10.5500/wjt.v13.i3.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023] Open
Abstract
Currently, the most feasible and widely practiced option for patients with end-stage organ failure is the transplantation of part of or whole organs, either from deceased or living donors. However, organ shortage has posed and is still posing a big challenge in this field. Newer options being explored are xenografts and engineered/bioengineered tissues/organs. Already small steps have been taken in this direction and sooner or later, these will become a norm in this field. However, these developments will pose different challenges for the diagnosis and management of problems as compared with traditional allografts. The approach to pathologic diagnosis of dysfunction in these settings will likely be significantly different. Thus, there is a need to increase awareness and prepare transplant diagnosticians to meet this future challenge in the field of xenotransplantation/ regenerative medicine. This review will focus on the current status of transplant pathology and how it will be changed in the future with the emerging scenario of routine xenotransplantation.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
28
|
Cooper DKC, Pierson RN. Milestones on the path to clinical pig organ xenotransplantation. Am J Transplant 2023; 23:326-335. [PMID: 36775767 PMCID: PMC10127379 DOI: 10.1016/j.ajt.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Progress in pig organ xenotransplantation has been made largely through (1) genetic engineering of the organ-source pig to protect its tissues from the human innate immune response, and (2) development of an immunosuppressive regimen based on blockade of the CD40/CD154 costimulation pathway to prevent the adaptive immune response. In the 1980s, after transplantation into nonhuman primates (NHPs), wild-type (genetically unmodified) pig organs were rejected within minutes or hours. In the 1990s, organs from pigs expressing a human complement-regulatory protein (CD55) transplanted into NHPs receiving intensive conventional immunosuppressive therapy functioned for days or weeks. When costimulation blockade was introduced in 2000, the adaptive immune response was suppressed more readily. The identification of galactose-α1,3-galactose as the major antigen target for human and NHP anti-pig antibodies in 1991 allowed for deletion of expression of galactose-α1,3-galactose in 2003, extending pig graft survival for up to 6 months. Subsequent gene editing to overcome molecular incompatibilities between the pig and primate coagulation systems proved additionally beneficial. The identification of 2 further pig carbohydrate xenoantigens allowed the production of 'triple-knockout' pigs that are preferred for clinical organ transplantation. These combined advances enabled the first clinical pig heart transplant to be performed and opened the door to formal clinical trials.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Arabi TZ, Sabbah BN, Lerman A, Zhu XY, Lerman LO. Xenotransplantation: Current Challenges and Emerging Solutions. Cell Transplant 2023; 32:9636897221148771. [PMID: 36644844 PMCID: PMC9846288 DOI: 10.1177/09636897221148771] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To address the ongoing shortage of organs available for replacement, xenotransplantation of hearts, corneas, skin, and kidneys has been attempted. However, a major obstacle facing xenotransplants is rejection due to a cycle of immune reactions to the graft. Both adaptive and innate immune systems contribute to this cycle, in which natural killer cells, macrophages, and T-cells play a significant role. While advancements in the field of genetic editing can circumvent some of these obstacles, biomarkers to identify and predict xenograft rejection remain to be standardized. Several T-cell markers, such as CD3, CD4, and CD8, are useful in both the diagnosis and prediction of xenograft rejection. Furthermore, an increase in the levels of various circulating DNA markers and microRNAs is also predictive of xenograft rejection. In this review, we summarize recent findings on the advancements in xenotransplantation, with a focus on pig-to-human, the role of immunity in xenograft rejection, and its biomarkers.
Collapse
Affiliation(s)
- Tarek Ziad Arabi
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA,College of Medicine, Alfaisal
University, Riyadh, Saudi Arabia
| | - Belal Nedal Sabbah
- College of Medicine, Alfaisal
University, Riyadh, Saudi Arabia,Department of Urology, Mayo Clinic,
Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic,
Rochester, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA,Xiang-Yang Zhu, Division of Nephrology and
Hypertension, Mayo Clinic, 200 First Street SW., Rochester, MN 55905, USA.
| | - Lilach O. Lerman
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Cooper DKC, Habibabady Z, Kinoshita K, Hara H, Pierson RN. The respective relevance of sensitization to alloantigens and xenoantigens in pig organ xenotransplantation. Hum Immunol 2023; 84:18-26. [PMID: 35817653 PMCID: PMC10154072 DOI: 10.1016/j.humimm.2022.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antibody-mediated rejection is a major cause of graft injury and contributes to failure of pig xenografts in nonhuman primates (NHPs). Most 'natural' or elicited antibodies found in humans and NHPs are directed against pig glycan antigens, but antibodies binding to swine leukocyte antigens (SLA) have also been detected. Of clinical importance is (i) whether the presence of high levels of antibodies directed towards human leukocyte antigens (HLA) (i.e., high panel-reactive antibodies) would be detrimental to the outcome of a pig organ xenograft; and (ii) whether, in the event of sensitization to pig antigens, a subsequent allotransplant would be at increased risk of graft failure due to elicited anti-pig antibodies that cross-react with human HLA or other antigens. SUMMARY A literature review of pig-to-primate studies indicates that relatively few highly-HLA-sensitized humans have antibodies that cross-react with pigs, predicting that most would not be at increased risk of rejecting an organ xenograft. Furthermore, the existing evidence indicates that sensitization to pig antigens will probably not elicit increased alloantibody titers; if so, 'bridging' with a pig organ could be carried out without increased risk of subsequent antibody-mediated allograft failure. KEY MESSAGE These issues have important implications for the design and conduct of clinical xenotransplantation trials.
Collapse
Affiliation(s)
- D K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Z Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - K Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - H Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - R N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Choe YH, Sorensen J, Garry DJ, Garry MG. Blastocyst complementation and interspecies chimeras in gene edited pigs. Front Cell Dev Biol 2022; 10:1065536. [PMID: 36568986 PMCID: PMC9773398 DOI: 10.3389/fcell.2022.1065536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The only curative therapy for many endstage diseases is allograft organ transplantation. Due to the limited supply of donor organs, relatively few patients are recipients of a transplanted organ. Therefore, new strategies are warranted to address this unmet need. Using gene editing technologies, somatic cell nuclear transfer and human induced pluripotent stem cell technologies, interspecies chimeric organs have been pursued with promising results. In this review, we highlight the overall technical strategy, the successful early results and the hurdles that need to be addressed in order for these approaches to produce a successful organ that could be transplanted in patients with endstage diseases.
Collapse
Affiliation(s)
- Yong-ho Choe
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Sorensen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Mary G. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
32
|
Lei T, Chen L, Wang K, Du S, Gonelle-Gispert C, Wang Y, Buhler LH. Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: The first clinical steps. Front Immunol 2022; 13:1031185. [PMID: 36561750 PMCID: PMC9766364 DOI: 10.3389/fimmu.2022.1031185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation has the potential to solve the shortfall of human organ donors. Genetically modified pigs have been considered as potential animal donors for human xenotransplantation and have been widely used in preclinical research. The genetic modifications aim to prevent the major species-specific barriers, which include humoral and cellular immune responses, and physiological incompatibilities such as complement and coagulation dysfunctions. Genetically modified pigs can be created by deleting several pig genes related to the synthesis of various pig specific antigens or by inserting human complement- and coagulation-regulatory transgenes. Finally, in order to reduce the risk of infection, genes related to porcine endogenous retroviruses can be knocked down. In this review, we focus on genetically modified pigs and comprehensively summarize the immunological mechanism of xenograft rejection and recent progress in preclinical and clinical studies. Overall, both genetically engineered pig-based xenografts and technological breakthroughs in the biomedical field provide a promising foundation for pig-to-human xenotransplantation in the future.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kejing Wang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | | | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H. Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Lu TY, Xu XL, Du XG, Wei JH, Yu JN, Deng SL, Qin C. Advances in Innate Immunity to Overcome Immune Rejection during Xenotransplantation. Cells 2022; 11:cells11233865. [PMID: 36497122 PMCID: PMC9735653 DOI: 10.3390/cells11233865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transplantation is an effective approach for treating end-stage organ failure. There has been a long-standing interest in xenotransplantation as a means of increasing the number of available organs. In the past decade, there has been tremendous progress in xenotransplantation accelerated by the development of rapid gene-editing tools and immunosuppressive therapy. Recently, the heart and kidney from pigs were transplanted into the recipients, which suggests that xenotransplantation has entered a new era. The genetic discrepancy and molecular incompatibility between pigs and primates results in barriers to xenotransplantation. An increasing body of evidence suggests that innate immune responses play an important role in all aspects of the xenogeneic rejection. Simultaneously, the role of important cellular components like macrophages, natural killer (NK) cells, and neutrophils, suggests that the innate immune response in the xenogeneic rejection should not be underestimated. Here, we summarize the current knowledge about the innate immune system in xenotransplantation and highlight the key issues for future investigations. A better understanding of the innate immune responses in xenotransplantation may help to control the xenograft rejection and design optimal combination therapies.
Collapse
Affiliation(s)
- Tian-Yu Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Xue-Ling Xu
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu-Guang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Hua Wei
- Cardiovascular Surgery Department, Center of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jia-Nan Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Correspondence: (S.-L.D.); (C.Q.)
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Changping National Laboratory (CPNL), Beijing 102206, China
- Correspondence: (S.-L.D.); (C.Q.)
| |
Collapse
|
34
|
Garry DJ, Weiner JI, Greising SM, Garry MG, Sachs DH. Mechanisms and strategies to promote cardiac xenotransplantation. J Mol Cell Cardiol 2022; 172:109-119. [PMID: 36030840 DOI: 10.1016/j.yjmcc.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
End stage heart failure is a terminal disease, and the only curative therapy is orthotopic heart transplantation. Due to limited organ availability, alternative strategies have received intense interest for treatment of patients with advanced heart failure. Recent studies using gene-edited porcine organs suggest that cardiac xenotransplantation may provide a future source of organs. In this review, we highlight the historical milestones for cardiac xenotransplantation and the gene editing strategies designed to overcome immunological barriers, which have culminated in a recent cardiac pig-to-human xenotransplant. We also discuss recent results of studies on the engineering of human-porcine chimeric organs that may provide an alternative and complementary strategy to overcome some of the major immunological barriers to producing a new source of transplantable organs.
Collapse
Affiliation(s)
- Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, United States of America; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; NorthStar Genomics, Eagan, MN, United States of America.
| | - Joshua I Weiner
- Departments of Surgery, Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, United States of America; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; NorthStar Genomics, Eagan, MN, United States of America
| | - David H Sachs
- Departments of Surgery, Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America; Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
35
|
Eisenson DL, Hisadome Y, Santillan MR, Yamada K. Progress in islet xenotransplantation: Immunologic barriers, advances in gene editing, and tolerance induction strategies for xenogeneic islets in pig-to-primate transplantation. FRONTIERS IN TRANSPLANTATION 2022; 1:989811. [PMID: 38390384 PMCID: PMC10883655 DOI: 10.3389/frtra.2022.989811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Islet transplantation has emerged as a curative therapy for diabetes in select patients but remains rare due to shortage of suitable donor pancreases. Islet transplantation using porcine islets has long been proposed as a solution to this organ shortage. There have already been several small clinical trials using porcine islets in humans, but results have been mixed and further trials limited by calls for more rigorous pre-clinical data. Recent progress in heart and kidney xenograft transplant, including three studies of pig-to-human xenograft transplant, have recaptured popular imagination and renewed interest in clinical islet xenotransplantation. This review outlines immunologic barriers to islet transplantation, summarizes current strategies to overcome these barriers with a particular focus on approaches to induce tolerance, and describes an innovative strategy for treatment of diabetic nephropathy with composite islet-kidney transplantation.
Collapse
Affiliation(s)
- Daniel L Eisenson
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Yu Hisadome
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | | | - Kazuhiko Yamada
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
36
|
Anwar IJ, DeLaura I, Ladowski J, Gao Q, Knechtle SJ, Kwun J. Complement-targeted therapies in kidney transplantation-insights from preclinical studies. Front Immunol 2022; 13:984090. [PMID: 36311730 PMCID: PMC9606228 DOI: 10.3389/fimmu.2022.984090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of the complement system contributes to solid-organ graft dysfunction and failure. In kidney transplantation, the complement system is implicated in the pathogenesis of antibody- and cell-mediated rejection, ischemia-reperfusion injury, and vascular injury. This has led to the evaluation of select complement inhibitors (e.g., C1 and C5 inhibitors) in clinical trials with mixed results. However, the complement system is highly complex: it is composed of more than 50 fluid-phase and surface-bound elements, including several complement-activated receptors-all potential therapeutic targets in kidney transplantation. Generation of targeted pharmaceuticals and use of gene editing tools have led to an improved understanding of the intricacies of the complement system in allo- and xeno-transplantation. This review summarizes our current knowledge of the role of the complement system as it relates to rejection in kidney transplantation, specifically reviewing evidence gained from pre-clinical models (rodent and nonhuman primate) that may potentially be translated to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
37
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Wang W, Lu J, Song Y, Zeng C, Wang Y, Yang C, Huang B, Dai Y, Yang J, Lai L, Wang L, Cai D, Bai X. Repair of bone defects in rhesus monkeys with α1,3-galactosyltransferase-knockout pig cancellous bone. Front Bioeng Biotechnol 2022; 10:990769. [PMID: 36172016 PMCID: PMC9510634 DOI: 10.3389/fbioe.2022.990769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Since xenografts offer a wide range of incomparable advantages, they can be a better option than allografts but only if the possibility of immunological rejection can be eliminated. In this study, we investigated the ability of α1,3-galactosyltransferase (α1,3-GT) gene knockout (GTKO) pig cancellous bone to promote the repair of a femoral condyle bone defect and its influence on heterologous immune rejection. Materials and methods: Cylindrical bone defects created in a rhesus monkey model were transplanted with GTKO bone, WT bone or left empty. For immunological evaluation, T lymphocyte subsets CD4+ and CD8+ in peripheral blood were assayed by flow cytometry, and the IL-2 and IFN-γ contents of peripheral blood serum were analyzed by ELISA at 2, 5, 7, 10, and 14 days post-surgery. Micro-CT scans and histological assessment were conducted at 4 and 8 weeks after implantation. Results: Compared with WT-pig bone, the heterologous immunogenicity of GTKO-pig bone was reduced. The defect filled with fresh GTKO-pig bone was tightly integrated with the graft. Histological analysis showed that GTKO-pig cancellous bone showed better osseointegration and an appropriate rate of resorption. Osteoblast phenotype progression in the GTKO group was not affected, which revealed that GTKO-pig bone could not only fill and maintain the bone defect, but also promote new bone formation. Conclusion: GTKO-pig cancellous bone decreased the ratio of CD4+ to CD8+ T cells and cytokines (IFN-γ and IL-2) to inhibit xenotransplant rejection. Moreover, GTKO group increased more bone formation by micro-CT analysis and osteoblastic markers (Runx2, OSX and OCN). Together, GTKO-pig cancellous bone showed better bone repair than WT-pig cancellous bone.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Jiansen Lu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Song
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Chun Zeng
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongkui Wang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Yang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Dai
- State Key Laboratory of Reproductive Medicine, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Liping Wang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Daozhang Cai, ; Xiaochun Bai,
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Daozhang Cai, ; Xiaochun Bai,
| |
Collapse
|
39
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
40
|
Huang B, Zeng Z, Zhang CC, Schreiber ME, Li Z. Approaches to kidney replacement therapies—opportunities and challenges. Front Cell Dev Biol 2022; 10:953408. [PMID: 35982852 PMCID: PMC9380013 DOI: 10.3389/fcell.2022.953408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
One out of seven people develop chronic kidney disease (CKD). When kidney function continues to decline, CKD patients may develop end-stage renal disease (ESRD, or kidney failure). More than 2 out of 1,000 adults develop ESRD and these patients must live on dialysis or get a kidney transplant to survive. Each year, more than $51 billion is spent to treat patients with ESRD in the United States. In addition, ESRD greatly reduces longevity and quality of life for patients. Compared to dialysis, kidney transplant offers the best chance of survival, but few donor organs are available. Thus, there is an urgent need for innovative solutions that address the shortage of kidneys available for transplantation. Here we summarize the status of current approaches that are being developed to solve the shortage of donor kidneys. These include the bioartificial kidney approach which aims to make a portable dialysis device, the recellularization approach which utilizes native kidney scaffold to make an engineered kidney, the stem cell-based approach which aims to generate a kidney de novo by recapitulating normal kidney organogenesis, the xenotransplantation approach which has the goal to make immunocompatible pig kidneys for transplantation, and the interspecies chimera approach which has potential to generate a human kidney in a host animal. We also discuss the interconnections among the different approaches, and the remaining challenges of translating these approaches into novel therapies.
Collapse
Affiliation(s)
- Biao Huang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zipeng Zeng
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chennan C. Zhang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Megan E. Schreiber
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhongwei Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Deptartment of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Zhongwei Li,
| |
Collapse
|
41
|
Ko N, Shim J, Kim HJ, Lee Y, Park JK, Kwak K, Lee JW, Jin DI, Kim H, Choi K. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model. Sci Rep 2022; 12:9611. [PMID: 35688851 PMCID: PMC9187654 DOI: 10.1038/s41598-022-13536-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pig-to-human organ transplantation is a feasible solution to resolve the shortage of organ donors for patients that wait for transplantation. To overcome immunological rejection, which is the main hurdle in pig-to-human xenotransplantation, various engineered transgenic pigs have been developed. Ablation of xeno-reactive antigens, especially the 1,3-Gal epitope (GalT), which causes hyperacute rejection, and insertion of complement regulatory protein genes, such as hCD46, hCD55, and hCD59, and genes to regulate the coagulation pathway or immune cell-mediated rejection may be required for an ideal xenotransplantation model. However, the technique for stable and efficient expression of multi-transgenes has not yet been settled to develop a suitable xenotransplantation model. To develop a stable and efficient transgenic system, we knocked-in internal ribosome entry sites (IRES)-mediated transgenes into the α 1,3-galactosyltransferase (GGTA1) locus so that expression of these transgenes would be controlled by the GGTA1 endogenous promoter. We constructed an IRES-based polycistronic hCD55/hCD39 knock-in vector to target exon4 of the GGTA1 gene. The hCD55/hCD39 knock-in vector and CRISPR/Cas9 to target exon4 of the GGTA1 gene were co-transfected into white yucatan miniature pig fibroblasts. After transfection, hCD39 expressed cells were sorted by FACS. Targeted colonies were verified using targeting PCR and FACS analysis, and used as donors for somatic cell nuclear transfer. Expression of GalT, hCD55, and hCD39 was analyzed by FACS and western blotting. Human complement-mediated cytotoxicity and human antibody binding assays were conducted on peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs), and deposition of C3 by incubation with human complement serum and platelet aggregation were analyzed in GGTA1 knock-out (GTKO)/CD55/CD39 pig cells. We obtained six targeted colonies with high efficiency of targeting (42.8% of efficiency). Selected colony and transgenic pigs showed abundant expression of targeted genes (hCD55 and hCD39). Knocked-in transgenes were expressed in various cell types under the control of the GGTA1 endogenous promoter in GTKO/CD55/CD39 pig and IRES was sufficient to express downstream expression of the transgene. Human IgG and IgM binding decreased in GTKO/CD55/CD39 pig and GTKO compared to wild-type pig PBMCs and RBCs. The human complement-mediated cytotoxicity of RBCs and PBMCs decreased in GTKO/CD55/CD39 pig compared to cells from GTKO pig. C3 was also deposited less in GTKO/CD55/CD39 pig cells than wild-type pig cells. The platelet aggregation was delayed by hCD39 expression in GTKO/CD55/CD39 pig. In the current study, knock-in into the GGTA1 locus and GGTA1 endogenous promoter-mediated expression of transgenes are an appropriable strategy for effective and stable expression of multi-transgenes. The IRES-based polycistronic transgene vector system also caused sufficient expression of both hCD55 and hCD39. Furthermore, co-transfection of CRISPR/Cas9 and the knock-in vector not only increased the knock-in efficiency but also induced null for GalT by CRISPR/Cas9-mediated double-stranded break of the target site. As shown in human complement-mediated lysis and human antibody binding to GTKO/CD55/CD39 transgenic pig cells, expression of hCD55 and hCD39 with ablation of GalT prevents an effective immunological reaction in vitro. As a consequence, our technique to produce multi-transgenic pigs could improve the development of a suitable xenotransplantation model, and the GTKO/CD55/CD39 pig developed could prolong the survival of pig-to-primate xenotransplant recipients.
Collapse
Affiliation(s)
- Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jae-Kyung Park
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kyungmin Kwak
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Dajeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
42
|
Eisenson DL, Hisadome Y, Yamada K. Progress in Xenotransplantation: Immunologic Barriers, Advances in Gene Editing, and Successful Tolerance Induction Strategies in Pig-To-Primate Transplantation. Front Immunol 2022; 13:899657. [PMID: 35663933 PMCID: PMC9157571 DOI: 10.3389/fimmu.2022.899657] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Organ transplantation is the most effective treatment for end stage organ failure, but there are not enough organs to meet burgeoning demand. One potential solution to this organ shortage is xenotransplantation using pig tissues. Decades of progress in xenotransplantation, accelerated by the development of rapid genome editing tools, particularly the advent of CRISPR-Cas9 gene editing technologies, have enabled remarkable advances in kidney and heart xenotransplantation in pig-to-nonhuman primates. These breakthroughs in large animal preclinical models laid the foundation for three recent pig-to-human transplants by three different groups: two kidney xenografts in brain dead recipients deemed ineligible for transplant, and one heart xenograft in the first clinical grade study of pig-to-human transplantation. However, despite tremendous progress, recent data including the first clinical case suggest that gene-modification alone will not overcome all xenogeneic immunologic barriers, and thus an active and innovative immunologic strategy is required for successful xenotransplantation. This review highlights xenogeneic immunologic barriers, advances in gene editing, and tolerance-inducing strategies in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Daniel L Eisenson
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Yu Hisadome
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Department of Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
43
|
Boulet J, Cunningham JW, Mehra MR. Cardiac Xenotransplantation. JACC Basic Transl Sci 2022; 7:716-729. [PMID: 35958689 PMCID: PMC9357575 DOI: 10.1016/j.jacbts.2022.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 10/27/2022]
|
44
|
Montgomery RA, Stern JM, Lonze BE, Tatapudi VS, Mangiola M, Wu M, Weldon E, Lawson N, Deterville C, Dieter RA, Sullivan B, Boulton G, Parent B, Piper G, Sommer P, Cawthon S, Duggan E, Ayares D, Dandro A, Fazio-Kroll A, Kokkinaki M, Burdorf L, Lorber M, Boeke JD, Pass H, Keating B, Griesemer A, Ali NM, Mehta SA, Stewart ZA. Results of Two Cases of Pig-to-Human Kidney Xenotransplantation. N Engl J Med 2022; 386:1889-1898. [PMID: 35584156 DOI: 10.1056/nejmoa2120238] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenografts from genetically modified pigs have become one of the most promising solutions to the dearth of human organs available for transplantation. The challenge in this model has been hyperacute rejection. To avoid this, pigs have been bred with a knockout of the alpha-1,3-galactosyltransferase gene and with subcapsular autologous thymic tissue. METHODS We transplanted kidneys from these genetically modified pigs into two brain-dead human recipients whose circulatory and respiratory activity was maintained on ventilators for the duration of the study. We performed serial biopsies and monitored the urine output and kinetic estimated glomerular filtration rate (eGFR) to assess renal function and xenograft rejection. RESULTS The xenograft in both recipients began to make urine within moments after reperfusion. Over the 54-hour study, the kinetic eGFR increased from 23 ml per minute per 1.73 m2 of body-surface area before transplantation to 62 ml per minute per 1.73 m2 after transplantation in Recipient 1 and from 55 to 109 ml per minute per 1.73 m2 in Recipient 2. In both recipients, the creatinine level, which had been at a steady state, decreased after implantation of the xenograft, from 1.97 to 0.82 mg per deciliter in Recipient 1 and from 1.10 to 0.57 mg per deciliter in Recipient 2. The transplanted kidneys remained pink and well-perfused, continuing to make urine throughout the study. Biopsies that were performed at 6, 24, 48, and 54 hours revealed no signs of hyperacute or antibody-mediated rejection. Hourly urine output with the xenograft was more than double the output with the native kidneys. CONCLUSIONS Genetically modified kidney xenografts from pigs remained viable and functioning in brain-dead human recipients for 54 hours, without signs of hyperacute rejection. (Funded by Lung Biotechnology.).
Collapse
Affiliation(s)
- Robert A Montgomery
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Jeffrey M Stern
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Bonnie E Lonze
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Vasishta S Tatapudi
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Massimo Mangiola
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Ming Wu
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Elaina Weldon
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Nikki Lawson
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Cecilia Deterville
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Rebecca A Dieter
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Brigitte Sullivan
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Gabriella Boulton
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Brendan Parent
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Greta Piper
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Philip Sommer
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Samantha Cawthon
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Erin Duggan
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - David Ayares
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Amy Dandro
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Ana Fazio-Kroll
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Maria Kokkinaki
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Lars Burdorf
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Marc Lorber
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Jef D Boeke
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Harvey Pass
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Brendan Keating
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Adam Griesemer
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Nicole M Ali
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Sapna A Mehta
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| | - Zoe A Stewart
- From the New York University (NYU) Langone Transplant Institute (R.A.M., J.M.S., B.E.L., V.S.T., M.M., E.W., N.L., C.D., R.A.D., B.S., G.B., G.P., N.M.A., S.A.M., Z.A.S.), the Departments of Pathology (M.W.), Anesthesia (P.S.), Biochemistry and Molecular Pharmacology (J.D.B.), and Cardiothoracic Surgery (H.P.), and the Institute for Systems Genetics (J.D.B.), NYU Langone Health, the Department of Population Health, Division of Medical Ethics (B.P.), NYU Grossman School of Medicine (S.C.), and the Columbia Center for Translational Immunology and the Department of Surgery, Columbia University (E.D., A.G.) - all in New York; Revivicor, Blacksburg, VA (D.A., A.D., A.F.-K., M.K., L.B.); United Therapeutics, Silver Spring, MD (M.L.); and the Department of Surgery, University of Pennsylvania, Philadelphia (B.K.)
| |
Collapse
|
45
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
46
|
Porrett PM, Orandi BJ, Kumar V, Houp J, Anderson D, Cozette Killian A, Hauptfeld-Dolejsek V, Martin DE, Macedon S, Budd N, Stegner KL, Dandro A, Kokkinaki M, Kuravi KV, Reed RD, Fatima H, Killian JT, Baker G, Perry J, Wright ED, Cheung MD, Erman EN, Kraebber K, Gamblin T, Guy L, George JF, Ayares D, Locke JE. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant 2022; 22:1037-1053. [PMID: 35049121 DOI: 10.1111/ajt.16930] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023]
Abstract
A radical solution is needed for the organ supply crisis, and the domestic pig is a promising organ source. In preparation for a clinical trial of xenotransplantation, we developed an in vivo pre-clinical human model to test safety and feasibility tenets established in animal models. After performance of a novel, prospective compatible crossmatch, we performed bilateral native nephrectomies in a human brain-dead decedent and subsequently transplanted two kidneys from a pig genetically engineered for human xenotransplantation. The decedent was hemodynamically stable through reperfusion, and vascular integrity was maintained despite the exposure of the xenografts to human blood pressure. No hyperacute rejection was observed, and the kidneys remained viable until termination 74 h later. No chimerism or transmission of porcine retroviruses was detected. Longitudinal biopsies revealed thrombotic microangiopathy that did not progress in severity, without evidence of cellular rejection or deposition of antibody or complement proteins. Although the xenografts produced variable amounts of urine, creatinine clearance did not recover. Whether renal recovery was impacted by the milieu of brain death and/or microvascular injury remains unknown. In summary, our study suggests that major barriers to human xenotransplantation have been surmounted and identifies where new knowledge is needed to optimize xenotransplantation outcomes in humans.
Collapse
Affiliation(s)
- Paige M Porrett
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Babak J Orandi
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Vineeta Kumar
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Julie Houp
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Douglas Anderson
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - A Cozette Killian
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | | | | | - Sara Macedon
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Natalie Budd
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Katherine L Stegner
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Amy Dandro
- Revivicor, Inc, Blacksburg, Virginia, USA
| | | | | | - Rhiannon D Reed
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Huma Fatima
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - John T Killian
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Gavin Baker
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Jackson Perry
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Emma D Wright
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Matthew D Cheung
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Elise N Erman
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Karl Kraebber
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Tracy Gamblin
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Linda Guy
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - James F George
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | | | - Jayme E Locke
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
47
|
Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, Yilmaz S, Akbulut S, Ekser B. Current Barriers to Clinical Liver Xenotransplantation. Front Immunol 2022; 13:827535. [PMID: 35281047 PMCID: PMC8904558 DOI: 10.3389/fimmu.2022.827535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Burcin Ekser,
| |
Collapse
|
48
|
The MHC-characterized Miniature Swine: Lessons Learned From a 40-Year Experience in Transplantation. Transplantation 2021; 106:928-937. [PMID: 34720103 DOI: 10.1097/tp.0000000000003977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last 40 y, a specialized herd of miniature swine has been intentionally bred to develop lines of animals homozygous for the swine major histocompatibility complex (MHC), which have facilitated transplantation studies across reproducible MHC and minor antigen mismatch barriers. These MHC-characterized miniature swine (Mc-MS) have been used for the study of novel surgical techniques, various approaches to tolerance induction of solid organ and vascularized composite allografts, as well as studies of the immunobiology of allografts and xenografts. Mc-MS possess characteristics that are highly advantageous to these studies, and their continued use will likely continue to play an important role in bridging "bench-to-cage-to bedside" therapies in the field of transplantation. In this review, we highlight the seminal contributions of the Mc-MS model to the field and analyze their role in the broader context of large animal models in transplantation research.
Collapse
|
49
|
Gras-Peña R, Danzl NM, Khosravi-Maharlooei M, Campbell SR, Ruiz AE, Parks CA, Suen Savage WM, Holzl MA, Chatterjee D, Sykes M. Human stem cell-derived thymic epithelial cells enhance human T-cell development in a xenogeneic thymus. J Allergy Clin Immunol 2021; 149:1755-1771. [PMID: 34695489 PMCID: PMC9023620 DOI: 10.1016/j.jaci.2021.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Generation of thymic tissue from pluripotent stem cells would provide therapies for acquired and congenital thymic insufficiency states. OBJECTIVES This study aimed to generate human thymic epithelial progenitors from human embryonic stem cells (hES-TEPs) and to assess their thymopoietic function in vivo. METHODS This study differentiated hES-TEPs by mimicking developmental queues with FGF8, retinoic acid, SHH, Noggin, and BMP4. Their function was assessed in reaggregate cellular grafts under the kidney capsule and in hybrid thymi by incorporating them into swine thymus (SwTHY) grafts implanted under the kidney capsules of immunodeficient mice that received human hematopoietic stem and progenitor cells (hHSPCs) intravenously. RESULTS Cultured hES-TEPs expressed FOXN1 and formed colonies expressing EPCAM and both cortical and medullary thymic epithelial cell markers. In thymectomized immunodeficient mice receiving hHSPCs, hES-TEPs mixed with human thymic mesenchymal cells supported human T-cell development. Hypothesizing that support from non-epithelial thymic cells might allow long-term function of hES-TEPs, the investigators injected them into SwTHY tissue, which supports human thymopoiesis in NOD severe combined immunodeficiency IL2Rγnull mice receiving hHSPCs. hES-TEPs integrated into SwTHY grafts, enhanced human thymopoiesis, and increased peripheral CD4+ naive T-cell reconstitution. CONCLUSIONS This study has developed and demonstrated in vivo thymopoietic function of hES-TEPs generated with a novel differentiation protocol. The SwTHY hybrid thymus model demonstrates beneficial effects on human thymocyte development of hES-TEPs maturing in the context of a supportive thymic structure.
Collapse
Affiliation(s)
- Rafael Gras-Peña
- Columbia Center for Human Development, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Amanda E Ruiz
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Christopher A Parks
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - William Meng Suen Savage
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Markus A Holzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Debanjana Chatterjee
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Department of Surgery and Department of Microbiology and Immunology, Columbia University, New York, NY.
| |
Collapse
|
50
|
Foote JB, Jagdale A, Yamamoto T, Hara H, Bikhet MH, Schuurman HJ, Nguyen HQ, Ezzelarab M, Ayares D, Anderson DJ, Fatima H, Eckhoff DE, Cooper DKC, Iwase H. Histopathology of pig kidney grafts with/without expression of the carbohydrate Neu5Gc in immunosuppressed baboons. Xenotransplantation 2021; 28:e12715. [PMID: 34644438 DOI: 10.1111/xen.12715] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pigs deficient in three glycosyltransferase enzymes (triple-knockout [TKO] pigs, that is, not expressing the three known carbohydrate xenoantigens) and expressing 'protective' human transgenes are considered a likely source of organs for transplantation into human recipients. Some human sera have no or minimal natural antibody binding to red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) from TKO pigs. However, all Old World monkeys exhibit natural antibody binding to TKO pig cells. The xenoantigen targets of Old World monkey natural antibodies are postulated to be carbohydrate moieties exposed when the expression of the carbohydrate N-glycolylneuraminic acid (Neu5Gc) is deleted. The aim of this study was to compare the survival in baboons and histopathology of renal grafts from pigs that either (a) expressed Neu5Gc (GTKO pigs; Group 1) or (b) did not express Neu5Gc (GTKO/CMAHKO [DKO] or TKO pigs; Group 2). METHODS Life-supporting renal transplants were carried out using GTKO (n = 5) or DKO/TKO (n = 5) pig kidneys under an anti-CD40mAb-based immunosuppressive regimen. RESULTS Group 1 baboons survived longer than Group 2 baboons (median 237 vs. 35 days; mean 196 vs. 57 days; p < 0.07) and exhibited histopathological features of antibody-mediated rejection in only two kidneys. Group 2 exhibited histopathological features of antibody-mediated rejection in all five grafts, with IgM and IgG binding to renal interstitial arteries and peritubular capillaries. Rejection-free survival was significantly longer in Group 1 (p < 0.05). CONCLUSIONS The absence of expression of Neu5Gc on pig kidney grafts is associated with increased binding of baboon antibodies to pig endothelium and reduced graft survival.
Collapse
Affiliation(s)
- Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhijit Jagdale
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Takayuki Yamamoto
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hidetaka Hara
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohamed H Bikhet
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Huy Q Nguyen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Douglas J Anderson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin E Eckhoff
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - David K C Cooper
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hayato Iwase
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|