1
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Attia MF, Marasco RN, Kwain S, Foxx C, Whitehead DC, Kabanov A, Lee YZ. Toward the Clinical Translation of Safe Intravenous Long Circulating Iodinated Lipid Nanoemulsion Contrast Agents for CT Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610138. [PMID: 39257794 PMCID: PMC11383978 DOI: 10.1101/2024.08.28.610138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Current clinical small molecule x-ray CT agents are effective but pose risks such as nephrotoxicity, short blood circulation time, limiting scan durations, potential thyroid impact, and immune responses. These challenges drive the development of kidney-safe x-ray nanoparticle (NP)-based contrast agents (CAs), though translation to clinical practice is hindered by chemical complexities and potential toxicity. We have engineered an intravenous, injectable, and safe blood pool NP-based CT CAs at a clinical-equivalent dose of ∼300 mgI/kg (∼2 mL/kg), ideal for vascular and hepatic imaging which are limited by clinical agents. Our iodinated lipid nanodroplet emulsions (ILNEs) contrast agent offers high x-ray attenuation thus improved contrast enhancement, extended stability, and exceptional batch-to-batch consistency. It also boasts a straightforward and scalable manufacturing process with minimal protein interaction, prolonged blood residency (∼4h), and hepatic clearance within 3 days, avoiding nephrotoxicity. Studies in vitro, in mice, and 16.6kg porcine animal model studies confirm its safety, cytocompatibility, and absence of tissue damage. Blood, and thyroid-stimulating hormone (TSH) analyses, and kidney and liver function tests, also support further toxicity evaluations for clinical translation.
Collapse
|
3
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Neilio JM, Ginat DT. Emerging Head and Neck Tumor Targeting Contrast Agents for the Purpose of CT, MRI, and Multimodal Diagnostic Imaging: A Molecular Review. Diagnostics (Basel) 2024; 14:1666. [PMID: 39125542 PMCID: PMC11311342 DOI: 10.3390/diagnostics14151666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The diagnosis and treatment of head and neck tumors present significant challenges due to their infiltrative nature and diagnostic hindrances such as the blood-brain barrier. The intricate anatomy of the head and neck region also complicates the clear identification of tumor boundaries and assessment of tumor characteristics. AIM This review aims to explore the efficacy of molecular imaging techniques that employ targeted contrast agents in head and neck cancer imaging. Head and neck cancer imaging benefits significantly from the combined advantages of CT and MRI. CT excels in providing swift, high-contrast images, enabling the accurate localization of tumors, while MRI offers superior soft tissue resolution, contributing to the detailed evaluation of tumor morphology in this region of the body. Many of these novel contrast agents have integration of dual-modal, triple-modal, or even dual-tissue targeting imaging, which have expanded the horizons of molecular imaging. Emerging contrast agents for the purpose of MRI and CT also include the widely used standards in imaging such as gadolinium and iodine-based agents, respectively, but with peptide, polypeptide, or polymeric functionalizations. Relevance for patients. For patients, the development and use of these targeted contrast agents have potentially significant implications. They benefit from the enhanced accuracy of tumor detection and characterization, which are critical for effective treatment planning. Additionally, these agents offer improved imaging contrast with the added benefit of reduced toxicity and bioaccumulation. The summarization of preclinical nanoparticle research in this review serves as a valuable resource for scientists and students working towards advancing tumor diagnosis and treatment with targeted contrast agents.
Collapse
Affiliation(s)
- Jonathan M. Neilio
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
6
|
Nadel J, Wang X, Saha P, Bongers A, Tumanov S, Giannotti N, Chen W, Vigder N, Chowdhury MM, da Cruz GL, Velasco C, Prieto C, Jabbour A, Botnar RM, Stocker R, Phinikaridou A. Molecular magnetic resonance imaging of myeloperoxidase activity identifies culprit lesions and predicts future atherothrombosis. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae004. [PMID: 38370393 PMCID: PMC10870993 DOI: 10.1093/ehjimp/qyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Aims Unstable atherosclerotic plaques have increased activity of myeloperoxidase (MPO). We examined whether molecular magnetic resonance imaging (MRI) of intraplaque MPO activity predicts future atherothrombosis in rabbits and correlates with ruptured human atheroma. Methods and results Plaque MPO activity was assessed in vivo in rabbits (n = 12) using the MPO-gadolinium (Gd) probe at 8 and 12 weeks after induction of atherosclerosis and before pharmacological triggering of atherothrombosis. Excised plaques were used to confirm MPO activity by liquid chromatography-tandem mass spectrometry (LC-MSMS) and to determine MPO distribution by histology. MPO activity was higher in plaques that caused post-trigger atherothrombosis than plaques that did not. Among the in vivo MRI metrics, the plaques' R1 relaxation rate after administration of MPO-Gd was the best predictor of atherothrombosis. MPO activity measured in human carotid endarterectomy specimens (n = 30) by MPO-Gd-enhanced MRI was correlated with in vivo patient MRI and histological plaque phenotyping, as well as LC-MSMS. MPO-Gd retention measured as the change in R1 relaxation from baseline was significantly greater in histologic and MRI-graded American Heart Association (AHA) type VI than type III-V plaques. This association was confirmed by comparing AHA grade to MPO activity determined by LC-MSMS. Conclusion We show that elevated intraplaque MPO activity detected by molecular MRI employing MPO-Gd predicts future atherothrombosis in a rabbit model and detects ruptured human atheroma, strengthening the translational potential of this approach to prospectively detect high-risk atherosclerosis.
Collapse
Affiliation(s)
- James Nadel
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
- Department of Cardiology, St Vincent’s Hospital, Sydney, NSW, Australia
- Department of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Xiaoying Wang
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Prakash Saha
- Academic Department of Surgery, Cardiovascular Division, King’s College London, London, UK
| | - André Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW, Australia
| | - Sergey Tumanov
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicola Giannotti
- Medical Imaging Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Weiyu Chen
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
| | - Niv Vigder
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
| | | | | | - Carlos Velasco
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Pontificia Universidad Católica de Chile, Institute for Biological and Medical Engineering, Santiago, Chile
| | - Andrew Jabbour
- Department of Cardiology, St Vincent’s Hospital, Sydney, NSW, Australia
- Department of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - René M Botnar
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Pontificia Universidad Católica de Chile, Institute for Biological and Medical Engineering, Santiago, Chile
- King’s BHF Centre of Research Excellence, London, UK
| | - Roland Stocker
- Heart Research Institute, Arterial Inflammation and Redox Biology Group, 7 Eliza St, Newtown, Sydney, NSW 2042, Australia
| | - Alkystis Phinikaridou
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- King’s BHF Centre of Research Excellence, London, UK
| |
Collapse
|
7
|
Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance. Sci Prog 2024; 107:368504241228076. [PMID: 38332327 PMCID: PMC10854387 DOI: 10.1177/00368504241228076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
X-ray computed tomography (CT) and magnetic resonance (MR) imaging are essential tools in modern medical diagnosis and treatment. However, traditional contrast agents are inadequate in the diagnosis of various health conditions. Consequently, the development of targeted nano-contrast agents has become a crucial area of focus in the development of medical image-enhancing contrast agents. To fully understand the current development of nano-contrast agents, this review provides an overview of the preparation methods and research advancements in CT nano-contrast agents, MR nano-contrast agents, and CT/MR multimodal nano-contrast agents described in previous publications. Due to the physicochemical properties of nanomaterials, such as self-assembly and surface modifiability, these specific nano-contrast agents can greatly improve the targeting of lesions through various preparation methods and clearly highlight the distinction between lesions and normal tissues in both CT and MR. As a result, they have the potential to be used in the early stages of disease to improve diagnostic capacity and level in medical imaging.
Collapse
Affiliation(s)
- Jianjun Lai
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhizeng Luo
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
| | - Liting Chen
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhibing Wu
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
8
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
10
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Boswell-Patterson CA, Hétu MF, Pang SC, Herr JE, Zhou J, Jain S, Bambokian A, Johri AM. Novel theranostic approaches to neovascularized atherosclerotic plaques. Atherosclerosis 2023; 374:1-10. [PMID: 37149970 DOI: 10.1016/j.atherosclerosis.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
As the global burden of atherosclerotic cardiovascular disease continues to rise, there is an increased demand for improved imaging techniques for earlier detection of atherosclerotic plaques and new therapeutic targets. Plaque lesions, vulnerable to rupture and thrombosis, are thought to be responsible for the majority of cardiovascular events, and are characterized by a large lipid core, a thin fibrous cap, and neovascularization. In addition to supplying the plaque core with increased inflammatory factors, these pathological neovessels are tortuous and leaky, further increasing the risk of intraplaque hemorrhage. Clinically, plaque neovascularization has been shown to be a significant and independent predictor of adverse cardiovascular outcomes. Microvessels can be detected through contrast-enhanced ultrasound (CEUS) imaging, however, clinical assessment in vivo is generally limited to qualitative measures of plaque neovascularization. There is no validated standard for quantitative assessment of the microvessel networks found in plaques. Advances in our understanding of the pathological mechanisms underlying plaque neovascularization and its significant role in the morbidity and mortality associated with atherosclerosis have made it an attractive area of research in translational medicine. Current areas of research include the development of novel therapeutic and diagnostic agents to target plaque neovascularization stabilization. With recent progress in nanotechnology, nanoparticles have been investigated for their ability to specifically target neovascularization. Contrast microbubbles have been similarly engineered to carry loads of therapeutic agents and can be visualized using CEUS. This review summarizes the pathogenesis, diagnosis, clinical significance of neovascularization, and importantly the emerging areas of theranostic tool development.
Collapse
Affiliation(s)
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Julia E Herr
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Jianhua Zhou
- Department of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shagun Jain
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Alexander Bambokian
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada.
| |
Collapse
|
12
|
Su L, Dalby KS, Luehmann H, Elkassih SA, Cho S, He X, Detering L, Lin YN, Kang N, Moore DA, Laforest R, Sun G, Liu Y, Wooley KL. Ultrasmall, elementary and highly translational nanoparticle X-ray contrast media from amphiphilic iodinated statistical copolymers. Acta Pharm Sin B 2023; 13:1660-1670. [PMID: 37139426 PMCID: PMC10149980 DOI: 10.1016/j.apsb.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022] Open
Abstract
To expand the single-dose duration over which noninvasive clinical and preclinical cancer imaging can be conducted with high sensitivity, and well-defined spatial and temporal resolutions, a facile strategy to prepare ultrasmall nanoparticulate X-ray contrast media (nano-XRCM) as dual-modality imaging agents for positron emission tomography (PET) and computed tomography (CT) has been established. Synthesized from controlled copolymerization of triiodobenzoyl ethyl acrylate and oligo(ethylene oxide) acrylate monomers, the amphiphilic statistical iodocopolymers (ICPs) could directly dissolve in water to afford thermodynamically stable solutions with high aqueous iodine concentrations (>140 mg iodine/mL water) and comparable viscosities to conventional small molecule XRCM. The formation of ultrasmall iodinated nanoparticles with hydrodynamic diameters of ca. 10 nm in water was confirmed by dynamic and static light scattering techniques. In a breast cancer mouse model, in vivo biodistribution studies revealed that the 64Cu-chelator-functionalized iodinated nano-XRCM exhibited extended blood residency and higher tumor accumulation compared to typical small molecule imaging agents. PET/CT imaging of tumor over 3 days showed good correlation between PET and CT signals, while CT imaging allowed continuous observation of tumor retention even after 10 days post-injection, enabling longitudinal monitoring of tumor retention for imaging or potentially therapeutic effect after a single administration of nano-XRCM.
Collapse
Affiliation(s)
- Lu Su
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB 5600, The Netherlands
| | - Kellie S. Dalby
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sussana A. Elkassih
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Sangho Cho
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Xun He
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yen-Nan Lin
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Nari Kang
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | | | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Guorong Sun
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. Wooley
- Department of Chemistry, Department of Materials Science and Engineering, and Department of Chemical Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
13
|
Wang Q, Wang T, Lio C, Yu X, Chen X, Liu L, Wu Y, Huang H, Qing L, Luo P. Surface hydrolysis-designed AuNPs-zwitterionic-glucose as a novel tool for targeting macrophage visualization and delivery into infarcted hearts. J Control Release 2023; 356:678-690. [PMID: 36898530 DOI: 10.1016/j.jconrel.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Macrophages, innate immune cells, are key players in the maintenance of myocardial homeostasis under normal conditions and tissue repair after injury. The infiltration of macrophages into the injured heart makes them a potentially appealing vehicle for noninvasive imaging and targeted drug delivery of myocardial infarction (MI). In this study, we demonstrated the use of surface hydrolysis-designed AuNPs-zwitterionic-glucose to label macrophages and track their infiltration into isoproterenol hydrochloride (ISO)-induced MI sites noninvasively using CT. The AuNPs-zwitterionic-glucose did not affect the viability or cytokine release of macrophages and were highly taken up by these cells. The in vivo CT images were obtained on Day 4, Day 6, Day 7, and Day 9, and the attenuation was seen to increase in the heart over time compared to the Day 4 scan. In vitro analysis also confirmed the presence of macrophages around injured cardiomyocytes. Additionally, we also addressed the concern of cell tracking or merely AuNP tracking, which is the inherent problem for any form of nanoparticle-labeled cell tracking by using zwitterionic and glucose-functionalized AuNPs. The glucose coated on the surface of AuNPs-zwit-glucose will be hydrolyzed in macrophages, forming only zwitterionic protected AuNPs that cannot be taken up again by endogenous cells in vivo. This will greatly improve the accuracy and precision of imaging and target delivery. We believe this is the first study to noninvasively visualize the infiltration of macrophages into MI hearts using CT, which could be used for imaging and evaluating the possibility of macrophage-mediated delivery in infarcted hearts.
Collapse
Affiliation(s)
- Qianlong Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Tiantian Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chonkit Lio
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Xina Yu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Xiaoyi Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Lancong Liu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Youjiao Wu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Linsen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
14
|
Photon-Counting Computed Tomography (PCCT): Technical Background and Cardio-Vascular Applications. Diagnostics (Basel) 2023; 13:diagnostics13040645. [PMID: 36832139 PMCID: PMC9955798 DOI: 10.3390/diagnostics13040645] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is a new advanced imaging technique that is going to transform the standard clinical use of computed tomography (CT) imaging. Photon-counting detectors resolve the number of photons and the incident X-ray energy spectrum into multiple energy bins. Compared with conventional CT technology, PCCT offers the advantages of improved spatial and contrast resolution, reduction of image noise and artifacts, reduced radiation exposure, and multi-energy/multi-parametric imaging based on the atomic properties of tissues, with the consequent possibility to use different contrast agents and improve quantitative imaging. This narrative review first briefly describes the technical principles and the benefits of photon-counting CT and then provides a synthetic outline of the current literature on its use for vascular imaging.
Collapse
|
15
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
16
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
17
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
18
|
Li X, Wu M, Li J, Guo Q, Zhao Y, Zhang X. Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications. Front Pharmacol 2022; 13:906512. [PMID: 36313319 PMCID: PMC9606597 DOI: 10.3389/fphar.2022.906512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis plaques caused by cerebrovascular and coronary artery disease have been the leading cause of death and morbidity worldwide. Precise assessment of the degree of atherosclerotic plaque is critical for predicting the risk of atherosclerosis plaques and monitoring postinterventional outcomes. However, traditional imaging techniques to predict cardiocerebrovascular events mainly depend on quantifying the percentage reduction in luminal diameter, which would immensely underestimate non-stenotic high-risk plaque. Identifying the degree of atherosclerosis plaques still remains highly limited. vNanomedicine-based imaging techniques present unique advantages over conventional techniques due to the superior properties intrinsic to nanoscope, which possess enormous potential for characterization and detection of the features of atherosclerosis plaque vulnerability. Here, we review recent advancements in the development of targeted nanomedicine-based approaches and their applications to atherosclerosis plaque imaging and risk stratification. Finally, the challenges and opportunities regarding the future development and clinical translation of the targeted nanomedicine in related fields are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
19
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
20
|
Ligand-Specific Nano-Contrast Agents Promote Enhanced Breast Cancer CT Detection at 0.5 mg Au. Int J Mol Sci 2022; 23:ijms23179926. [PMID: 36077324 PMCID: PMC9456125 DOI: 10.3390/ijms23179926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
For many cancer types, being undetectable from early symptoms or blood tests, or often detected at late stages, medical imaging emerges as the most efficient tool for cancer screening. MRI, ultrasound, X-rays (mammography), and X-ray CT (CT) are currently used in hospitals with variable costs. Diagnostic materials that can detect breast tumors through molecular recognition and amplify the signal at the targeting site in combination with state-of-the-art CT techniques, such as dual-energy CT, could lead to a more precise detection and assist significantly in image-guided intervention. Herein, we have developed a ligand-specific X-ray contrast agent that recognizes α5β1 integrins overexpressed in MDA-MB-231 breast cancer cells for detection of triple (−) cancer, which proliferates very aggressively. In vitro studies show binding and internalization of our nanoprobes within those cells, towards uncoated nanoparticles (NPs) and saline. In vivo studies show high retention of ~3 nm ligand-PEG-S-AuNPs in breast tumors in mice (up to 21 days) and pronounced CT detection, with statistical significance from saline and iohexol, though only 0.5 mg of metal were utilized. In addition, accumulation of ligand-specific NPs is shown in tumors with minimal presence in other organs, relative to controls. The prolonged, low-metal, NP-enhanced spectral-CT detection of triple (−) breast cancer could lead to breakthrough advances in X-ray cancer diagnostics, nanotechnology, and medicine.
Collapse
|
21
|
Veerabathiran R, Mohammed V, Kalarani IB. Nanomedicine in Neuroscience: An Application Towards the Treatment of
Various Neurological Diseases. CURRENT NANOMEDICINE 2022; 12:84-92. [DOI: 10.2174/2468187312666220516144008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2023]
Abstract
Absatract:
The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely com-pacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedi-cal techniques that may allow for resolving these issues, including the ability to cross the blood-brain barrier. It has substantially explored nanoparticles in the previous century, contributing to sub-stantial progress in biomedical studies and medical procedures. Using many synthesized nanoparti-cles on the molecular level has given many potential gains in various domains of regenerative medi-cine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the deliv-ery mechanism.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| |
Collapse
|
22
|
Sun Y, Liu M, Xiao Y, Chen Y. A novel molecular communication inspired detection method for the evolution of atherosclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106756. [PMID: 35320741 DOI: 10.1016/j.cmpb.2022.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerosis is a leading cause of potentially serious cardiovascular diseases such as heart attack, stroke, and peripheral artery disease. Due to the prolonged and non-reversible process of thickening arteries walls, atherosclerosis plaques in the blood vessels are formed that restrict the blood flow. Early detection plays a vital role in minimizing the risk as there is no reliable method to detect the early stage of the disease. This paper proposes a novel atherosclerosis detection method based on the emerging paradigm of molecular communications. The work could pave the way to implement a low-cost and straightforward early detection method of atherosclerosis in the future. METHODS We used COMSOL to model the physical field, coupled the fluid module and the fluid particle tracking module, and mapped the contrast agent into nanoparticles (NPs). The NPs are released at the entrance of the blood vessel and received at the exit of the blood vessel, while NPs are propagating through different arterial stenosis. The arrival probability of NPs is defined as the ratio of the number of NPs that reach the outlet to the total number of released NPs. As a result of atherosclerosis, the arrival probability of Nps is affected by the dynamic flow nature changes, thereby reflecting the arterial stenosis degree. Furthermore, we introduce the multi-release method in this study, which has a similar concept of Inter-symbol interference in traditional communication. This multi-release method leads the overlapping concentrations of NPs remaining in the vessels and enhances the differences of arrival probability in different degrees of stenosis, which increases the chance of more observable results. RESULTS The assessment of arterial stenosis degree can be from the early stage to the late stage of the disease. To evaluate the arterial stenosis degree, we analyzed the Poincaré maps, representing the arrival probability of NPs at different arterial stenosis. Moreover, we could directly use data to quantify the pathological process at various stages. The difference between the data results obtained through multiple release methods is more prominent than a single-released method. CONCLUSIONS This research proposes a new atherosclerosis detection method based on molecular communication, that is, to evaluate the arterial stenosis degree by modelling and using statistical data of NPs emission and reception in blood vessels. This method can not only use a simple method to detect the early stage of the disease. In addition, we can directly use data to quantify the pathological process of each stage, which is straightforward to assist doctors and may reduce the labour cost of traditional detection.
Collapse
Affiliation(s)
- Yue Sun
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Meiling Liu
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yue Xiao
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yifan Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
23
|
Feher A, Baldassarre LA, Sinusas AJ. Novel Cardiac Computed Tomography Methods for the Assessment of Anthracycline Induced Cardiotoxicity. Front Cardiovasc Med 2022; 9:875150. [PMID: 35571206 PMCID: PMC9094702 DOI: 10.3389/fcvm.2022.875150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most frequently utilized anti-cancer therapies; however, their use is frequently associated with off-target cardiotoxic effects. Cardiac computed tomography (CCT) is a validated and rapidly evolving technology for the evaluation of cardiac structures, coronary anatomy and plaque, cardiac function and preprocedural planning. However, with emerging new techniques, CCT is rapidly evolving to offer information beyond the evaluation of cardiac structure and epicardial coronary arteries to provide details on myocardial deformation, extracellular volume, and coronary vasoreactivity. The potential for molecular imaging in CCT is also growing. In the current manuscript we review these emerging computed tomography techniques and their potential role in the evaluation of anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Attila Feher
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Attila Feher,
| | - Lauren A. Baldassarre
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Albert J. Sinusas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
24
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol 2022; 19:228-249. [PMID: 34759324 PMCID: PMC8580169 DOI: 10.1038/s41569-021-00629-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology could improve our understanding of the pathophysiology of atherosclerosis and contribute to the development of novel diagnostic and therapeutic strategies to further reduce the risk of cardiovascular disease. Macrophages have key roles in atherosclerosis progression and, therefore, macrophage-associated pathological processes are important targets for both diagnostic imaging and novel therapies for atherosclerosis. In this Review, we highlight efforts in the past two decades to develop imaging techniques and to therapeutically manipulate macrophages in atherosclerotic plaques with the use of rationally designed nanoparticles. We review the latest progress in nanoparticle-based imaging modalities that can specifically target macrophages. Using novel molecular imaging technology, these modalities enable the identification of advanced atherosclerotic plaques and the assessment of the therapeutic efficacy of medical interventions. Additionally, we provide novel perspectives on how macrophage-targeting nanoparticles can deliver a broad range of therapeutic payloads to atherosclerotic lesions. These nanoparticles can suppress pro-atherogenic macrophage processes, leading to improved resolution of inflammation and stabilization of plaques. Finally, we propose future opportunities for novel diagnostic and therapeutic strategies and provide solutions to challenges in this area for the purpose of accelerating the clinical translation of nanomedicine for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
26
|
Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater Today Bio 2022; 14:100249. [PMID: 35434594 PMCID: PMC9006854 DOI: 10.1016/j.mtbio.2022.100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Despite extensive efforts to provide early diagnosis and adequate treatment regimens, detection of MI still faces major limitations and pathological MI complications continue to threaten the recovery of survivors. Polymeric nanoparticles (NPs) represent novel noninvasive drug delivery systems for the diagnosis and treatment of MI and subsequent prevention of fatal heart failure. In this review, we cover the recent advances in polymeric NP-based diagnostic and therapeutic approaches for MI and their application as multifunctional theranostic tools. We also discuss the in vivo behavior and toxicity profile of polymeric NPs, their application in noninvasive imaging, passive, and active drug delivery, and use in cardiac regenerative therapy. We conclude with the challenges faced with polymeric nanosystems and suggest future efforts needed for clinical translation.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Duaa Fahs
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Batoul Maatouk
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Brouna Safi
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| |
Collapse
|
27
|
Woźniak M, Płoska A, Siekierzycka A, Dobrucki LW, Kalinowski L, Dobrucki IT. Molecular Imaging and Nanotechnology-Emerging Tools in Diagnostics and Therapy. Int J Mol Sci 2022; 23:ijms23052658. [PMID: 35269797 PMCID: PMC8910312 DOI: 10.3390/ijms23052658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine is emerging as a new goal in the diagnosis and treatment of diseases. This approach aims to establish differences between patients suffering from the same disease, which allows to choose the most effective treatment. Molecular imaging (MI) enables advanced insight into molecule interactions and disease pathology, improving the process of diagnosis and therapy and, for that reason, plays a crucial role in personalized medicine. Nanoparticles are widely used in MI techniques due to their size, high surface area to volume ratio, and multifunctional properties. After conjugation to specific ligands and drugs, nanoparticles can transport therapeutic compounds directly to their area of action and therefore may be used in theranostics—the simultaneous implementation of treatment and diagnostics. This review summarizes different MI techniques, including optical imaging, ultrasound imaging, magnetic resonance imaging, nuclear imaging, and computed tomography imaging with theranostics nanoparticles. Furthermore, it explores the potential use of constructs that enables multimodal imaging and track diseases in real time.
Collapse
Affiliation(s)
- Marcin Woźniak
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Lawrence W. Dobrucki
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, 80-210 Gdansk, Poland
- Correspondence: (L.K.); (I.T.D.); Tel.: +48-58-349-27-91 or +48-58-349-27-92 (L.K.)
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: (L.K.); (I.T.D.); Tel.: +48-58-349-27-91 or +48-58-349-27-92 (L.K.)
| |
Collapse
|
28
|
Dai G, Zhang Y, Wang X, Wang X, Jia J, Jia F, Yang L, Yang C. Small-Molecule Bi-DOTA Complex for High-Performance CT and Spectral CT Bioimaging. Front Oncol 2022; 12:813955. [PMID: 35251983 PMCID: PMC8894608 DOI: 10.3389/fonc.2022.813955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives It is necessary to develop a high-performance and biocompatible contrast agent to accurately diagnose various diseases via in vivo computed tomography (CT) imaging. Here, we synthesized a small molecular Bi-DOTA complex as a high-performance contrast agent for in vitro and in vivo CT bioimaging. Materials and Methods In our study, Bi-DOTA was fabricated through a facile and one-pot synthesis strategy. The formed Bi-DOTA complex was characterized via different techniques. Furthermore, Bi-DOTA was used for in vitro and in vivo CT bioimaging to verify its X-ray attenuation ability, especially in vivo kidney imaging, gastrointestinal tract CT imaging, and spectral CT imaging. Results A small molecular Bi-DOTA complex with a molecular mass of 0.61 kDa was synthesized successfully, which exhibited outstanding dispersion, good biocompatibility, and superior X-ray attenuation ability. Meanwhile, we showed that the obtained contrast agent was quite biocompatible and safe in the given concentration range as confirmed by in vitro and in vivo cytotoxicity assay. Also, the proposed contrast agent can be rapidly excreted from the body via the urinary system, avoiding the potential side effects caused by long-term retention in vivo. Importantly, Bi-DOTA was successfully used in high-quality in vitro CT imaging, in vivo kidney imaging, gastrointestinal tract CT imaging, and spectral CT imaging. Conclusions These superiorities allowed Bi-DOTA to be used as an efficient CT contrast agent and laid down a new way of designing high-performance CT contrast agents with great clinical transformation potential.
Collapse
Affiliation(s)
- Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Yu Zhang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Ximei Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Xingyu Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Juan Jia
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Fei Jia
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- *Correspondence: Lu Yang, ; Chunmei Yang,
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- *Correspondence: Lu Yang, ; Chunmei Yang,
| |
Collapse
|
29
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
30
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
31
|
MacRitchie N, Di Francesco V, Ferreira MFMM, Guzik TJ, Decuzzi P, Maffia P. Nanoparticle theranostics in cardiovascular inflammation. Semin Immunol 2021; 56:101536. [PMID: 34862118 PMCID: PMC8811479 DOI: 10.1016/j.smim.2021.101536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
Theranostics, literally derived from the combination of the words diagnostics and therapy, is an emerging field of clinical and preclinical research, where contrast agents, drugs and diagnostic techniques are combined to simultaneously diagnose and treat pathologies. Nanoparticles are extensively employed in theranostics due to their potential to target specific organs and their multifunctional capacity. In this review, we will discuss the current state of theranostic nanomedicine, providing key examples of its application in the imaging and treatment of cardiovascular inflammation.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
32
|
Luo X, Hu D, Gao D, Wang Y, Chen X, Liu X, Zheng H, Sun M, Sheng Z. Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS NANO 2021; 15:10010-10024. [PMID: 34060821 DOI: 10.1021/acsnano.1c01608] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tumor-associated macrophages (TAMs) play a crucial part in cancer evolution. Dynamic imaging of TAMs is of great significance for treatment outcome evaluation and precision tumor therapy. Currently, most fluorescence nanoprobes tend to accumulate in the liver and are difficult to metabolize, which leads to strong background signals and inadequate imaging quality of TAMs nearby the liver such as pancreatic cancer. Herein, we aim to develop metabolizable dextran-indocyanine green (DN-ICG) nanoprobes in the second near-infrared window (NIR-II, 1 000-1 700 nm) for dynamic imaging of TAMs in pancreatic cancer. Compared to free ICG, the NIR-II fluorescence intensity of DN-ICG nanoprobes increased by 279% with significantly improved stability. We demonstrated that DN-ICG nanoprobes could specifically target TAMs through the interaction of dextran with specific ICAM-3-grabbing nonintegrin related 1 (SIGN-R1), which were highly expressed in TAMs. Subsequently, DN-ICG nanoprobes gradually metabolized in the liver yet remained in pancreatic tumor stroma in mouse models, achieving a high signal-to-background ratio (SBR = 7) in deep tissue (∼0.5 cm) NIR-II imaging of TAMs. Moreover, DN-ICG nanoprobes could detect dynamic changes of TAMs induced by low-dose radiotherapy and zoledronic acid. Therefore, the highly biocompatible and biodegradable DN-ICG nanoprobes harbor great potential for precision therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Xinping Luo
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yuenan Wang
- Department of Radiaton Oncology, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province 518036, P. R. China
| | - Xinhua Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, P. R. China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| |
Collapse
|
33
|
Sawall S, Amato C, Klein L, Wehrse E, Maier J, Kachelrieß M. Toward molecular imaging using spectral photon-counting computed tomography? Curr Opin Chem Biol 2021; 63:163-170. [PMID: 34051510 DOI: 10.1016/j.cbpa.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Molecular imaging is a valuable tool in drug discovery and development, early screening and diagnosis of diseases, and therapy assessment among others. Although many different imaging modalities are in use today, molecular imaging with computed tomography (CT) is still challenging owing to its low sensitivity and soft tissue contrast compared with other modalities. Recent technical advances, particularly the introduction of spectral photon-counting detectors, might allow overcoming these challenges. Herein, the fundamentals and recent advances in CT relevant to molecular imaging are reviewed and potential future preclinical and clinical applications are highlighted. The review concludes with a discussion of potential future advancements of CT for molecular imaging.
Collapse
Affiliation(s)
- Stefan Sawall
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany.
| | - Carlo Amato
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Laura Klein
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Physical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 226, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Eckhard Wehrse
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Joscha Maier
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Marc Kachelrieß
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany
| |
Collapse
|
34
|
Bonnet S, Prévot G, Mornet S, Jacobin-Valat MJ, Mousli Y, Hemadou A, Duttine M, Trotier A, Sanchez S, Duonor-Cérutti M, Crauste-Manciet S, Clofent-Sanchez G. A Nano-Emulsion Platform Functionalized with a Fully Human scFv-Fc Antibody for Atheroma Targeting: Towards a Theranostic Approach to Atherosclerosis. Int J Mol Sci 2021; 22:ijms22105188. [PMID: 34068875 PMCID: PMC8153629 DOI: 10.3390/ijms22105188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a "theranostic approach" that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe-/- mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.
Collapse
Affiliation(s)
- Samuel Bonnet
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
- Institut de Chimie de la Matière Condensée, CNRS UMR 5026, Université de Bordeaux, Bordeaux INP, ICMCB, 33600 Pessac, France; (S.M.); (M.D.)
- Correspondence:
| | - Geoffrey Prévot
- ARNA, ARN, Régulations Naturelle et Artificielle, ChemBioPharm, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, 33076 Bordeaux, France; (G.P.); (Y.M.); (S.C.-M.)
| | - Stéphane Mornet
- Institut de Chimie de la Matière Condensée, CNRS UMR 5026, Université de Bordeaux, Bordeaux INP, ICMCB, 33600 Pessac, France; (S.M.); (M.D.)
| | - Marie-Josée Jacobin-Valat
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | - Yannick Mousli
- ARNA, ARN, Régulations Naturelle et Artificielle, ChemBioPharm, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, 33076 Bordeaux, France; (G.P.); (Y.M.); (S.C.-M.)
| | - Audrey Hemadou
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | - Mathieu Duttine
- Institut de Chimie de la Matière Condensée, CNRS UMR 5026, Université de Bordeaux, Bordeaux INP, ICMCB, 33600 Pessac, France; (S.M.); (M.D.)
| | - Aurélien Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | - Stéphane Sanchez
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | | | - Sylvie Crauste-Manciet
- ARNA, ARN, Régulations Naturelle et Artificielle, ChemBioPharm, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, 33076 Bordeaux, France; (G.P.); (Y.M.); (S.C.-M.)
| | - Gisèle Clofent-Sanchez
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| |
Collapse
|
35
|
Si-Mohamed SA, Sigovan M, Hsu JC, Tatard-Leitman V, Chalabreysse L, Naha PC, Garrivier T, Dessouky R, Carnaru M, Boussel L, Cormode DP, Douek PC. In Vivo Molecular K-Edge Imaging of Atherosclerotic Plaque Using Photon-counting CT. Radiology 2021; 300:98-107. [PMID: 33944628 PMCID: PMC8217298 DOI: 10.1148/radiol.2021203968] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background Macrophage burden is a major factor in the risk of atherosclerotic plaque rupture, and its evaluation remains challenging with molecular noninvasive imaging approaches. Photon-counting CT (PCCT) with k-edge imaging aims to allow for the specific detection of macrophages using gold nanoparticles. Purpose To perform k-edge imaging in combination with gold nanoparticles to detect and quantify the macrophage burden within the atherosclerotic aortas of rabbits. Materials and Methods Atherosclerotic and control New Zealand white rabbits were imaged before and at several time points up to 2 days after intravenous injection of gold nanoparticles (3.5 mL/kg, 65 mg gold per milliliter). Aortic CT angiography was performed at the end of the follow-up using an intravenous injection of an iodinated contrast material. Gold k-edge and conventional CT images were reconstructed for qualitative and quantitative assessment of the macrophage burden. PCCT imaging results were compared with findings at histologic examination, quantitative histomorphometry, transmission electron microscopy, and quantitative inductively coupled plasma optical emission spectrometry. Pearson correlations between the macrophage area measured in immunostained sections and the concentration of gold and attenuation measured in the corresponding PCCT sections were calculated. Results Seven rabbits with atherosclerosis and four control rabbits without atherosclerosis were analyzed. In atherosclerotic rabbits, calcifications were observed along the aortic wall before injection. At 2 days after injection of gold nanoparticles, only gold k-edge images allowed for the distinction of plaque enhancement within calcifications and for lumen enhancement during angiography. A good correlation was observed between the gold concentration measured within the wall and the macrophage area in 35 plaques (five per rabbit) (r = 0.82; 95% CI: 0.67, 0.91; P < .001), which was higher than that observed on conventional CT images (r = 0.41; 95% CI: 0.09, 0.65; P = .01). Transmission electron microscopy and inductively coupled plasma optical emission spectrometry analyses confirmed the gold k-edge imaging findings. Conclusion Photon-counting CT with gold nanoparticles allowed for the noninvasive evaluation of both molecular and anatomic information in vivo in rabbits with atherosclerotic plaques. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Leiner in this issue.
Collapse
Affiliation(s)
- Salim A Si-Mohamed
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Monica Sigovan
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Jessica C Hsu
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Valérie Tatard-Leitman
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Lara Chalabreysse
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Pratap C Naha
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Thibaut Garrivier
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Riham Dessouky
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Miruna Carnaru
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Loic Boussel
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - David P Cormode
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Philippe C Douek
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| |
Collapse
|
36
|
Wu Y, Gu J, Zhang S, Gu Y, Ma J, Wang Y, Zhang LW, Wang Y. Iodinated BSA Nanoparticles for Macrophage-Mediated CT Imaging and Repair of Gastritis. Anal Chem 2021; 93:6414-6420. [PMID: 33843203 DOI: 10.1021/acs.analchem.0c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a specific and noninvasive technology for understanding gastritic response together with efficient therapy is an urgent clinical issue. Herein, we fabricated a novel iodinated bovine serum albumin (BSA) nanoparticle based on gastritic microenvironment for computed tomography (CT) imaging and repair of acute gastritis. Derived from the characteristic mucosa defect and inflammatory cell (e.g., macrophage and neutrophil) infiltration in acute gastritis, the pH-sensitive nanoparticles can sedimentate under acidic conditions and be uniformly distributed in the defected mucosal via the phagocytosis of inflammatory cells. Hence, enhanced CT images can clearly reveal the mucosal morphology in the nanoparticle-treated gastritic rat over a long time window comparison with nanoparticle-treated healthy rats and clinical small-molecule-treated gastritic rat. In addition, we have discovered that nanoparticles can repair the atrophic gastric mucosa to a normal state. This repair process mainly stems from inflammatory immune response caused by phagocytized nanoparticles, such as the polarization of proinflammatory macrophages (M1) to anti-inflammatory macrophages (M2). The biocompatible nanoparticles that avoid the inherent defects of the clinical small molecules have great potential for accurate diagnosis and treatment of gastritis in the early stage.
Collapse
Affiliation(s)
- Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Shaodian Zhang
- The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
37
|
Toczek J, Boodagh P, Sanzida N, Ghim M, Salarian M, Gona K, Kukreja G, Rajendran S, Wei L, Han J, Zhang J, Jung JJ, Graham M, Liu X, Sadeghi MM. Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics 2021; 11:5876-5888. [PMID: 33897887 PMCID: PMC8058712 DOI: 10.7150/thno.55106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Inflammation plays a major role in the pathogenesis of several vascular pathologies, including abdominal aortic aneurysm (AAA). Evaluating the role of inflammation in AAA pathobiology and potentially outcome in vivo requires non-invasive tools for high-resolution imaging. We investigated the feasibility of X-ray computed tomography (CT) imaging of phagocytic activity using nanoparticle contrast agents to predict AAA outcome. Methods: Uptake of several nanoparticle CT contrast agents was evaluated in a macrophage cell line. The most promising agent, Exitron nano 12000, was further characterized in vitro and used for subsequent in vivo testing. AAA was induced in Apoe-/- mice through angiotensin II (Ang II) infusion for up to 4 weeks. Nanoparticle biodistribution and uptake in AAA were evaluated by CT imaging in Ang II-infused Apoe-/- mice. After imaging, the aortic tissue was harvested and used from morphometry, transmission electron microscopy and gene expression analysis. A group of Ang II-infused Apoe-/- mice underwent nanoparticle-enhanced CT imaging within the first week of Ang II infusion, and their survival and aortic external diameter were evaluated at 4 weeks to address the value of vessel wall CT enhancement in predicting AAA outcome. Results: Exitron nano 12000 showed specific uptake in macrophages in vitro. Nanoparticle accumulation was observed by CT imaging in tissues rich in mononuclear phagocytes. Aortic wall enhancement was detectable on delayed CT images following nanoparticle administration and correlated with vessel wall CD68 expression. Transmission electron microscopy ascertained the presence of nanoparticles in AAA adventitial macrophages. Nanoparticle-induced CT enhancement on images obtained within one week of AAA induction was predictive of AAA outcome at 4 weeks. Conclusions: By establishing the feasibility of CT-based molecular imaging of phagocytic activity in AAA, this study links the inflammatory signal on early time point images to AAA evolution. This readily available technology overcomes an important barrier to cross-sectional, longitudinal and outcome studies, not only in AAA, but also in other cardiovascular pathologies and facilitates the evaluation of modulatory interventions, and ultimately upon clinical translation, patient management.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Parnaz Boodagh
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Nowshin Sanzida
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mean Ghim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mani Salarian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Gunjan Kukreja
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Saranya Rajendran
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Linyan Wei
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Morven Graham
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Xinran Liu
- CCMI Electron Microscopy Core Facility, Yale University School of Medicine, New Haven, CT (USA)
| | - Mehran M. Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| |
Collapse
|
38
|
Chen Q, Song H, Yu J, Kim K. Current Development and Applications of Super-Resolution Ultrasound Imaging. SENSORS 2021; 21:s21072417. [PMID: 33915779 PMCID: PMC8038018 DOI: 10.3390/s21072417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Abnormal changes of the microvasculature are reported to be key evidence of the development of several critical diseases, including cancer, progressive kidney disease, and atherosclerotic plaque. Super-resolution ultrasound imaging is an emerging technology that can identify the microvasculature noninvasively, with unprecedented spatial resolution beyond the acoustic diffraction limit. Therefore, it is a promising approach for diagnosing and monitoring the development of diseases. In this review, we introduce current super-resolution ultrasound imaging approaches and their preclinical applications on different animals and disease models. Future directions and challenges to overcome for clinical translations are also discussed.
Collapse
Affiliation(s)
- Qiyang Chen
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hyeju Song
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
| | - Jaesok Yu
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
- DGIST Robotics Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Correspondence: (J.Y.); (K.K.)
| | - Kang Kim
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mechanical Engineering and Materials Science, School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (J.Y.); (K.K.)
| |
Collapse
|
39
|
Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021; 10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Understanding the detailed tumor microenvironment (TME) is essential to achieve effective treatment of tumor, because TME has an extremely profound influence on the occurrence, development, invasion, and metastasis of tumor. It is of great significance to realize accurate diagnosis of the TME by using functional computed tomography (CT) contrast nanoagents (FCTNAs). Here, an overview of FCTNAs that respond to the overexpressed receptors, acidic microenvironment, overexpressed glutathione and enzymes, and hypoxia in tumor is provided, and also prospects the advance of novel spectral CT technique to detect the TME precisely. Utilizing FCTNAs is expected to achieve accurate monitoring of the TME and further provide guidance for the effective personalized tumor treatment in clinic.
Collapse
Affiliation(s)
- Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
40
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Surmounting the endothelial barrier for delivery of drugs and imaging tracers. Atherosclerosis 2020; 315:93-101. [DOI: 10.1016/j.atherosclerosis.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022]
|
42
|
VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques. BIOLOGY 2020; 9:biology9110368. [PMID: 33138124 PMCID: PMC7692297 DOI: 10.3390/biology9110368] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Cardiovascular diseases are the first cause of morbimortality worldwide. They are mainly caused by atherosclerosis, with progressive plaque formation in the arterial wall. In this context, several imaging techniques have been developed to screen, detect and quantify atherosclerosis. Early screening improves primary prevention and promotes the prescription of adequate medication before adverse clinical events. In this review, we focus on the imaging of vascular cell adhesion molecule-1, an adhesion molecule involved in the first stages of the development of atherosclerosis. This molecule could therefore be a promising target to detect early atherosclerosis non-invasively. Potential clinical applications are critically discussed. Abstract Atherosclerosis is a progressive chronic arterial disease characterised by atheromatous plaque formation in the intima of the arterial wall. Several invasive and non-invasive imaging techniques have been developed to detect and characterise atherosclerosis in the vessel wall: anatomic/structural imaging, functional imaging and molecular imaging. In molecular imaging, vascular cell adhesion molecule-1 (VCAM-1) is a promising target for the non-invasive detection of atherosclerosis and for the assessment of novel antiatherogenic treatments. VCAM-1 is an adhesion molecule expressed on the activated endothelial surface that binds leucocyte ligands and therefore promotes leucocyte adhesion and transendothelial migration. Hence, for several years, there has been an increase in molecular imaging methods for detecting VCAM-1 in MRI, PET, SPECT, optical imaging and ultrasound. The use of microparticles of iron oxide (MPIO), ultrasmall superparamagnetic iron oxide (USPIO), microbubbles, echogenic immunoliposomes, peptides, nanobodies and other nanoparticles has been described. However, these approaches have been tested in animal models, and the remaining challenge is bench-to-bedside development and clinical applicability.
Collapse
|
43
|
Wang F, Zhou P, Li K, Mamtilahun M, Tang Y, Du G, Deng B, Xie H, Yang G, Xiao T. Sensitive imaging of intact microvessels in vivo with synchrotron radiation. IUCRJ 2020; 7:793-802. [PMID: 32939271 PMCID: PMC7467167 DOI: 10.1107/s2052252520008234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/22/2020] [Indexed: 05/13/2023]
Abstract
Early stages of diseases, including stroke, hypertension, angiogenesis of tumours, spinal cord injuries, etc., are closely associated with the lesions of microvasculature. Rodent models of human vascular diseases are extensively used for the preclinical investigation of the disease evolution and therapy with synchrotron radiation. Therefore, non-invasive and in vivo X-ray imaging with high sensitivity and clarity is desperately needed to visualize the microvessels in live-animal models. Contrast agent is essential for the in vivo X-ray imaging of vessels and angiomatous tissue. Because of the non-rigid motion of adjacent tissues, the short circulation time and the intermittent flow of contrast agents in vessels, it is a great challenge for the traditional X-ray imaging methods to achieve well defined images of microvessels in vivo. In this article, move contrast X-ray imaging (MCXI) based on high-brightness synchrotron radiation is developed to overcome the intrinsic defects in conventional methods. Experiments with live rodents demonstrate the practicability of the MCXI method for sensitive and intact imaging of microvessels in vivo.
Collapse
Affiliation(s)
- Feixiang Wang
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Panting Zhou
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Ke Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Guohao Du
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Biao Deng
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Honglan Xie
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
44
|
Chen Q, Yu J, Lukashova L, Latoche JD, Zhu J, Lavery L, Verdelis K, Anderson CJ, Kim K. Validation of Ultrasound Super-Resolution Imaging of Vasa Vasorum in Rabbit Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1725-1729. [PMID: 32086204 PMCID: PMC7424774 DOI: 10.1109/tuffc.2020.2974747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acute coronary syndromes and strokes are mainly caused by atherosclerotic plaque (AP) rupture. Abnormal increase of vasa vasorum (VV) is reported as a key evidence of plaque progression and vulnerability. However, due to their tiny size, it is still challenging to noninvasively identify VV near the major vessels. Ultrasound super resolution (USR), a technique that provides high spatial resolution beyond the acoustic diffraction limit, demonstrated an adequate spatial resolution for VV detection in early studies. However, a thorough validation of this technology in the plaque model is particularly needed in order to continue further extended preclinical studies. In this letter, we present an experiment protocol that verifies the USR technology for VV identification with subsequent histology and ex vivo micro-computed tomography ( μ CT). Deconvolution-based USR imaging was applied on two rabbits to identify the VV near the AP in the femoral artery. Histology and ex vivo μ CT imaging were performed on excised femoral tissue to validate the USR technique both pathologically and morphologically. This established validation protocol could facilitate future extended preclinical studies toward the clinical translation of USR imaging for VV identification.
Collapse
|
45
|
Shi C, Xie H, Ma Y, Yang Z, Zhang J. Nanoscale Technologies in Highly Sensitive Diagnosis of Cardiovascular Diseases. Front Bioeng Biotechnol 2020; 8:531. [PMID: 32582663 PMCID: PMC7289988 DOI: 10.3389/fbioe.2020.00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death and morbidity in the world and are a major contributor to healthcare costs. Although enormous progress has been made in diagnosing CVD, there is an urgent need for more efficient early detection and the development of novel diagnostic tools. Currently, CVD diagnosis relies primarily on clinical symptoms based on molecular imaging (MOI) or biomarkers associated with CVDs. However, sensitivity, specificity, and accuracy of the assay are still challenging for early-stage CVDs. Nanomaterial platform has been identified as a promising candidate for improving the practical usage of diagnostic tools because of their unique physicochemical properties. In this review article, we introduced cardiac biomarkers and imaging techniques that are currently used for CVD diagnosis. We presented the applications of various nanotechnologies on diagnosis within cardiac immunoassays (CIAs) and molecular imaging. We also summarized and compared different cardiac immunoassays based on their sensitivities and working ranges of biomarkers.
Collapse
Affiliation(s)
- Chaohong Shi
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, China
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
46
|
Prati F, Marco V, Paoletti G, Albertucci M. Coronary inflammation: why searching, how to identify and treat it. Eur Heart J Suppl 2020; 22:E121-E124. [PMID: 32523455 PMCID: PMC7270901 DOI: 10.1093/eurheartj/suaa076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inflammation plays an important role in the development of atherosclerotic lesions. A variety of stimuli promote atherosclerosis, including increased LDL cholesterol in blood, exposure to tobacco, diabetes mellitus, hypertension, or rheological stress. Inflammatory cells have an established role in the growth of atherosclerotic lesions. Macrophages recognize and internalise ox-LDL to eventually become lipid-laden foam cells, the hallmark cellular component of atheroma. Infiltrating CD4-T cells have a role too, by interacting with ox-LDL and other antigens. Cytokines secreted by inflammatory cells stimulate smooth muscle cells migration whilst macrophages produce metalloprotease that lead to fibrous cap rupture. The necrotic debris of died macrophages and smooth muscle cells help to continue the inflammatory process. The inflammatory response can also directly activate platelets and promote thrombus formation at the surface of complicated coronary plaques. The CANTOS trial can be waived as an innovative study promoting a novel approach of personalized medicine. In patients with previous myocardial infarction, high-sensitivity C-reactive protein level of 2 mg and normal LDL level (<70 mg/dL), canakinumab a therapeutic monoclonal antibody targeting interleukin-1β, at a dose of 150 mg every 3 months, led to a significant reduction of the primary efficacy end point: nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death at 48 months. Based on the CANTOS results, patients on statins and residual inflammatory risk as assessed by means of a high-sensitivity CRP >2 mg/l at baseline have a high risk of future cardiac events, comparable to that of statin-treated patients with suboptimal cholesterol LDL level. The inhibition of interleukin-1β by means of canakinumab, which is only one of many potential anti-inflammatory pathways, open new perspectives, showing that a selective inhibition of the inflammatory pathway may be beneficial in reducing cardiovascular risk. In a process of personalized medicine, there is need to accurately identify patients at high risk of events, to be treated with potent statins or anti-inflammatory drugs. Perhaps in the near future a more specific assessment of coronary inflammations, possibly obtained with imaging modalities (either invasive or non-invasive), will better select patients at risk of events. In this scenario, in the setting of secondary prevention, OCT may serve the scope of identifying vulnerable plaques with local aggregates of inflammatory cells. Future studies are needed to understand the clinical effectiveness of strategies based on invasive coronary assessment.
Collapse
Affiliation(s)
- Francesco Prati
- Ospedale San Giovanni-Addolorata, Rome
- Centro per la Lotta contro l’Infarto-CLI Foundation, Rome
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Valeria Marco
- Centro per la Lotta contro l’Infarto-CLI Foundation, Rome
| | | | - Mario Albertucci
- Ospedale San Giovanni-Addolorata, Rome
- Centro per la Lotta contro l’Infarto-CLI Foundation, Rome
| |
Collapse
|
47
|
Hsu JC, Nieves LM, Betzer O, Sadan T, Noël PB, Popovtzer R, Cormode DP. Nanoparticle contrast agents for X-ray imaging applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1642. [PMID: 32441050 DOI: 10.1002/wnan.1642] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
X-ray imaging is the most widely used diagnostic imaging method in modern medicine and several advanced forms of this technology have recently emerged. Iodinated molecules and barium sulfate suspensions are clinically approved X-ray contrast agents and are widely used. However, these existing contrast agents provide limited information, are suboptimal for new X-ray imaging techniques and are developing safety concerns. Thus, over the past 15 years, there has been a rapid growth in the development of nanoparticles as X-ray contrast agents. Nanoparticles have several desirable features such as high contrast payloads, the potential for long circulation times, and tunable physicochemical properties. Nanoparticles have also been used in a range of biomedical applications such as disease treatment, targeted imaging, and cell tracking. In this review, we discuss the principles behind X-ray contrast generation and introduce new types of X-ray imaging modalities, as well as potential elements and chemical compositions that are suitable for novel contrast agent development. We focus on the progress in nanoparticle X-ray contrast agents developed to be renally clearable, long circulating, theranostic, targeted, or for cell tracking. We feature agents that are used in conjunction with the newly developed multi-energy computed tomography and mammographic imaging technologies. Finally, we offer perspectives on current limitations and emerging research topics as well as expectations for the future development of the field. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Jessica C Hsu
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science of the University of Pennsylvania, Pennsylvania, USA
| | - Lenitza M Nieves
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oshra Betzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Sadan
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science of the University of Pennsylvania, Pennsylvania, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Bouvain P, Temme S, Flögel U. Hot spot 19 F magnetic resonance imaging of inflammation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1639. [PMID: 32380579 DOI: 10.1002/wnan.1639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Among the preclinical molecular imaging approaches, lately fluorine (19 F) magnetic resonance imaging (MRI) has garnered significant scientific interest in the biomedical research community, due to the unique properties of fluorinated materials and the 19 F nucleus. Fluorine is an intrinsically sensitive nucleus for MRI-there is negligible endogenous 19 F in the body and, thus, no background signal which allows the detection of fluorinated materials as "hot spots" by combined 1 H/19 F MRI and renders fluorine-containing molecules as ideal tracers with high specificity. In addition, perfluorocarbons are a family of compounds that exhibit a very high fluorine payload and are biochemically as well as physiologically inert. Perfluorocarbon nanoemulsions (PFCs) are well known to be readily taken up by immunocompetent cells, which can be exploited for the unequivocal identification of inflammatory foci by tracking the recruitment of PFC-loaded immune cells to affected tissues using 1 H/19 F MRI. The required 19 F labeling of immune cells can be accomplished either ex vivo by PFC incubation of isolated endogenous immune cells followed by their re-injection or by intravenous application of PFCs for in situ uptake by circulating immune cells. With both approaches, inflamed tissues can unambiguously be detected via background-free 19 F signals due to trafficking of PFC-loaded immune cells to affected organs. To extend 19 F MRI tracking beyond cells with phagocytic properties, the PFC surface can further be equipped with distinct ligands to generate specificity against epitopes and/or types of immune cells independent of phagocytosis. Recent developments also allow for concurrent detection of different PFCs with distinct spectral signatures allowing the simultaneous visualization of several targets, such as various immune cell subtypes labeled with these PFCs. Since ligands and targets can easily be adapted to a variety of problems, this approach provides a general and versatile platform for inflammation imaging which will strongly extend the frontiers of molecular MRI. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
49
|
Kang Y, Yu X, Fan X, Zhao S, Tu C, Yan Z, Wang R, Li W, Qiu H. Tetramodal Imaging and Synergistic Cancer Radio-Chemotherapy Enabled by Multiple Component-Encapsulated Zeolitic Imidazolate Frameworks. ACS NANO 2020; 14:4336-4351. [PMID: 32275394 DOI: 10.1021/acsnano.9b09858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abundant species of functional nanomaterials have attracted tremendous interests as components to construct multifunctional composites for cancer theranostics. However, their distinct chemical properties substantially require a specific strategy to integrate them in harmony. Here, we report the preparation of a distinctive multifunctional composite by encapsulating small-sized semiconducting copper bismuth sulfide (CBS) nanoparticles and rare-earth down-conversion (DC) nanoparticles in larger-sized zeolitic imidazolate framework-8 (ZIF8) nanoparticles, followed by loading an anticancer drug, doxorubicin (DOX). Such composites can be used for tetramodal imaging, including traditional computed tomography and magnetic resonance imaging and, recently, for photoacoustic imaging and fluorescence imaging. With a pH-responsive release of the encapsulated components, synergistic radio-chemotherapy with a high (87.6%) tumor inhibition efficiency is achieved at moderate doses of the CBS&DC-ZIF8@DOX composite with X-ray irradiation. This promising strategy highlights the extending capacity of zeolitic imidazolate frameworks to encapsulate multiple distinct components for enhanced cancer imaging and therapy.
Collapse
Affiliation(s)
- Yiwei Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Xinyang Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengzhe Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunlai Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqiang Yan
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
50
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|