1
|
Raftery AL, Pattaroni C, Harris NL, Tsantikos E, Hibbs ML. Environmental and inflammatory factors influencing concurrent gut and lung inflammation. Inflamm Res 2024; 73:2123-2139. [PMID: 39432107 PMCID: PMC11632041 DOI: 10.1007/s00011-024-01953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Crohn's disease and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases that affect the gut and lung respectively and can occur comorbidly. METHODS Using the SHIP-1-/- model of Crohn's-like ileitis and chronic lung inflammation, the two diseases were co-investigated. RESULTS Contrary to prior literature, Crohn's-like ileitis was not fully penetrant in SHIP-1-/- mice, and housing in a specific pathogen-free facility was completely protective. Indeed, ileal tissue from SHIP-1-/- mice without overt ileitis was similar to control ilea. However, SHIP-1-/- mice with ileitis exhibited increased granulocytes in ileal tissue together with T cell lymphopenia and they lacked low abundance Bifidobacteria, suggesting this bacterium protects against ileitis. Lung disease, as defined by inflammation in lung washes, emphysema, and lung consolidation, was present in SHIP-1-/- mice regardless of ileitis phenotype; however, there was a shift in the nature of lung inflammation in animals with ileitis, with increased G-CSF and neutrophils, in addition to type 2 cytokines and eosinophils. Deficiency of G-CSF, which protects against lung disease, protected against the development of ileitis in SHIP-1-/- mice. CONCLUSIONS These studies have defined environmental, immune, and inflammatory factors that predispose to ileitis, and have identified that comorbid lung disease correlates with a granulocyte signature.
Collapse
Affiliation(s)
- April L Raftery
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Céline Pattaroni
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Nicola L Harris
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Margaret L Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Hasegawa J. New insights into the regulation and roles of phosphatidylinositol 3,4-bisphosphate. J Biochem 2024; 176:339-345. [PMID: 39271134 DOI: 10.1093/jb/mvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024] Open
Abstract
Phosphoinositides (PIPs) are phospholipids and components of the cellular membrane. In mammals, seven phosphorylated derivatives of PIPs have been identified. Among them, phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] is produced by lipid phosphatases (e.g., SHIP2) or by lipid kinases PI3KC2α and PI3KC2β. Although PI(3,4)P2 is undetectable in normal mouse or human tissues and common cell lines, it appears in a mouse prostate cancer model and in cells exposed to oxidative stress, indicating that PI(3,4)P2 is involved in the pathogenesis of some diseases. Here, I summarize recent findings on the cellular roles and pathophysiological significance of PI(3,4)P2.
Collapse
Affiliation(s)
- Junya Hasegawa
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Gao M, Dong C, Chen Z, Jiang R, Shaw P, Gao W, Sun Y. Different impact of short-term and long-term hindlimb disuse on bone homeostasis. Gene 2024; 918:148457. [PMID: 38641071 DOI: 10.1016/j.gene.2024.148457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Disuse osteoporosis is one of the major problems of bone health which commonly occurs in astronauts during long-term spaceflight and bedridden patients. However, the mechanisms underlying such mechanical unloading induced bone loss have not been fully understood. In this study, we employed hindlimb-unloading mice models with different length of tail suspension to investigate if the bone loss was regulated by distinct factors under different duration of disuse. Our micro-CT results showed more significant decrease of bone mass in 6W (6-week) tail-suspension mice compared to the 1W (1-week) tail-suspension ones, as indicated by greater reduction of BV/TV, Tb.N, B.Ar/T.Ar and Ct.Th. RNA-sequencing results showed significant effects of hindlimb disuse on cell locomotion and immune system process which could cause bone loss.Real-time quantitative PCR results indicated a greater number of bone formation related genes that were downregulated in short-term tail-suspension mice compared to the long-term ones. It is, thus, suggested while sustained hindlimb unloading continuously contributes to bone loss, molecular regulation of bone homeostasis tends to reach a balance during this process.
Collapse
Affiliation(s)
- Minhao Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Renhao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peter Shaw
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yuanna Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Konno T, Murachi H, Otsuka K, Kimura Y, Sampei C, Arasaki Y, Kohara Y, Hayata T. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells. Biochem Biophys Res Commun 2024; 719:150063. [PMID: 38749090 DOI: 10.1016/j.bbrc.2024.150063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Osteoclasts are multinucleated cells with bone resorption activity. Excessive osteoclast activity has been implicated in osteoporosis, rheumatoid arthritis, and bone destruction due to bone metastases from cancer, making osteoclasts essential target cells in bone and joint diseases. C-terminal domain nuclear envelope phosphatase 1 (Ctdnep1, formerly Dullard) is a negative regulator of transforming growth factor (TGF)-β superfamily signaling and regulates endochondral ossification in mesenchymal cells during skeletal development. In this study, we investigated the role of Ctdnep1 in the Receptor activator of nuclear factor-kappa B ligand (RANKL)-induced RAW264.7 osteoclast differentiation. Expression of Ctdnep1 did not change during osteoclast differentiation; Ctdnep1 protein localized to the cytoplasm before and after osteoclast differentiation. Small interfering RNA-mediated knockdown of Ctdnep1 increased tartrate-resistant acid phosphatase-positive multinucleated osteoclasts and the expression of osteoclast marker genes, including Acp5, Ctsk, and Nfatc1. Interestingly, the knockdown of Ctdnep1 increased the protein level of Nfatc1 in cells unstimulated with RANKL. Knockdown of Ctdnep1 also enhanced calcium-resorbing activity. Mechanistically, the knockdown of Ctdnep1 increased the phosphorylation of RANKL signaling components. These results suggest that Ctdnep1 negatively regulates osteoclast differentiation by suppressing the RANKL signaling pathway.
Collapse
Affiliation(s)
- Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Hitomi Murachi
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan.
| |
Collapse
|
5
|
Li T, Du Y, Yao H, Zhao B, Wang Z, Chen R, Ji Y, Du M. Isobavachin attenuates osteoclastogenesis and periodontitis-induced bone loss by inhibiting cellular iron accumulation and mitochondrial biogenesis. Biochem Pharmacol 2024; 224:116202. [PMID: 38615917 DOI: 10.1016/j.bcp.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Boxuan Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rourong Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Minquan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Safari F, Yeoh WJ, Perret-Gentil S, Klenke F, Dolder S, Hofstetter W, Krebs P. SHIP1 deficiency causes inflammation-dependent retardation in skeletal growth. Life Sci Alliance 2024; 7:e202302297. [PMID: 38388173 PMCID: PMC10883774 DOI: 10.26508/lsa.202302297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammation and skeletal homeostasis are closely intertwined. Inflammatory diseases are associated with local and systemic bone loss, and post-menopausal osteoporosis is linked to low-level chronic inflammation. Phosphoinositide-3-kinase signalling is a pivotal pathway modulating immune responses and controlling skeletal health. Mice deficient in Src homology 2-containing inositol phosphatase 1 (SHIP1), a negative regulator of the phosphoinositide-3-kinase pathway, develop systemic inflammation associated with low body weight, reduced bone mass, and changes in bone microarchitecture. To elucidate the specific role of the immune system in skeletal development, a genetic approach was used to characterise the contribution of SHIP1-controlled systemic inflammation to SHIP1-dependent osteoclastogenesis. Lymphocyte deletion entirely rescued the skeletal phenotype in Rag2 -/- /Il2rg -/- /SHIP1 -/- mice. Rag2 -/- /Il2rg -/- /SHIP1 -/- osteoclasts, however, displayed an intermediate transcriptomic signature between control and Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts while exhibiting aberrant in vitro development and functions similar to Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts. These data establish a cell-intrinsic role for SHIP1 in osteoclasts, with inflammation as the key driver of the skeletal phenotype in SHIP1-deficient mice. Our findings demonstrate the central role of the immune system in steering physiological skeletal development.
Collapse
Affiliation(s)
- Fatemeh Safari
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- AO Research Institute Davos, Davos, Switzerland
| | - Wen Jie Yeoh
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Saskia Perret-Gentil
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Frank Klenke
- Department of Orthopaedic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Silvia Dolder
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Joseph J, Mathew J, Alexander J. Scaffold Proteins in Autoimmune Disorders. Curr Rheumatol Rev 2024; 20:14-26. [PMID: 37670692 DOI: 10.2174/1573397119666230904151024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Cells transmit information to the external environment and within themselves through signaling molecules that modulate cellular activities. Aberrant cell signaling disturbs cellular homeostasis causing a number of different diseases, including autoimmunity. Scaffold proteins, as the name suggests, serve as the anchor for binding and stabilizing signaling proteins at a particular locale, allowing both intra and intercellular signal amplification and effective signal transmission. Scaffold proteins play a critical role in the functioning of tight junctions present at the intersection of two cells. In addition, they also participate in cleavage formation during cytokinesis, and in the organization of neural synapses, and modulate receptor management outcomes. In autoimmune settings such as lupus, scaffold proteins can lower the cell activation threshold resulting in uncontrolled signaling and hyperactivity. Scaffold proteins, through their binding domains, mediate protein- protein interaction and play numerous roles in cellular communication and homeostasis. This review presents an overview of scaffold proteins, their influence on the different signaling pathways, and their role in the pathogenesis of autoimmune and auto inflammatory diseases. Since these proteins participate in many roles and interact with several other signaling pathways, it is necessary to gain a thorough understanding of these proteins and their nuances to facilitate effective target identification and therapeutic design for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Josna Joseph
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - John Mathew
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - Jessy Alexander
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, New York, USA
| |
Collapse
|
8
|
Chu E, Mychasiuk R, Green TRF, Zamani A, Dill LK, Sharma R, Raftery AL, Tsantikos E, Hibbs ML, Semple BD. Regulation of microglial responses after pediatric traumatic brain injury: exploring the role of SHIP-1. Front Neurosci 2023; 17:1276495. [PMID: 37901420 PMCID: PMC10603304 DOI: 10.3389/fnins.2023.1276495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Severe traumatic brain injury (TBI) is the world's leading cause of permanent neurological disability in children. TBI-induced neurological deficits may be driven by neuroinflammation post-injury. Abnormal activity of SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) has been associated with dysregulated immunological responses, but the role of SHIP-1 in the brain remains unclear. The current study investigated the immunoregulatory role of SHIP-1 in a mouse model of moderate-severe pediatric TBI. Methods SHIP-1+/- and SHIP-1-/- mice underwent experimental TBI or sham surgery at post-natal day 21. Brain gene expression was examined across a time course, and immunofluorescence staining was evaluated to determine cellular immune responses, alongside peripheral serum cytokine levels by immunoassays. Brain tissue volume loss was measured using volumetric analysis, and behavior changes both acutely and chronically post-injury. Results Acutely, inflammatory gene expression was elevated in the injured cortex alongside increased IBA-1 expression and altered microglial morphology; but to a similar extent in SHIP-1-/- mice and littermate SHIP-1+/- control mice. Similarly, the infiltration and activation of CD68-positive macrophages, and reactivity of GFAP-positive astrocytes, was increased after TBI but comparable between genotypes. TBI increased anxiety-like behavior acutely, whereas SHIP-1 deficiency alone reduced general locomotor activity. Chronically, at 12-weeks post-TBI, SHIP-1-/- mice exhibited reduced body weight and increased circulating cytokines. Pro-inflammatory gene expression in the injured hippocampus was also elevated in SHIP-1-/- mice; however, GFAP immunoreactivity at the injury site in TBI mice was lower. TBI induced a comparable loss of cortical and hippocampal tissue in both genotypes, while SHIP-1-/- mice showed reduced general activity and impaired working memory, independent of TBI. Conclusion Together, evidence does not support SHIP-1 as an essential regulator of brain microglial morphology, brain immune responses, or the extent of tissue damage after moderate-severe pediatric TBI in mice. However, our data suggest that reduced SHIP-1 activity induces a greater inflammatory response in the hippocampus chronically post-TBI, warranting further investigation.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Deparment of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Tabitha R. F. Green
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, United States
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Larissa K. Dill
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - April L. Raftery
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Deparment of Neurology, Alfred Health, Prahran, VIC, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Lee SH, Park SY, Kim JH, Kim N, Lee J. Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways. BMB Rep 2023; 56:551-556. [PMID: 37605614 PMCID: PMC10618073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKLinduced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKLinduced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 551-556].
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| | - Shin-Young Park
- Division of Software Engineering, PaiChai University, Daejeon 35345, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| |
Collapse
|
10
|
Yao H, Du Y, Jiang B, Liao Y, Zhao Y, Yin M, Li T, Sheng Y, Ji Y, Du M. Sulforaphene suppresses RANKL-induced osteoclastogenesis and LPS-induced bone erosion by activating Nrf2 signaling pathway. Free Radic Biol Med 2023; 207:48-62. [PMID: 37423561 DOI: 10.1016/j.freeradbiomed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory disorders have been found to induce bone loss through sustained and persistent activation of osteoclast differentiation, leading to heightened bone resorption. The current pharmacological interventions for combating bone loss to harbor adverse effects or contraindications. There is a pressing need to identify drugs with fewer side effects. EXPERIMENTAL APPROACH The effect and underlying mechanism of sulforaphene (LFS) on osteoclast differentiation were illustrated in vitro and in vivo with RANKL-induced Raw264.7 cell line osteoclastogenesis and lipopolysaccharide (LPS)-induced bone erosion model. KEY RESULTS In this study, LFS has been shown to effectively impede the formation of mature osteoclasts induced from both Raw264.7 cell line and bone marrow macrophages (BMMs), mainly at the early stage. Further mechanistic investigations uncovered that LFS suppressed AKT phosphorylation. SC-79, a potent AKT activator, was found to reverse the inhibitory impact of LFS on osteoclast differentiation. Moreover, transcriptome sequencing analysis revealed that treatment with LFS led to a significant upregulation in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant-related genes. Then it's validated that LFS could promote NRF2 expression and nuclear translocation, as well as effectively resist oxidative stress. NRF2 knockdown reversed the suppression effect of LFS on osteoclast differentiation. In vivo experiments provide convincing evidence that LFS is protective against LPS-induced inflammatory osteolysis. CONCLUSION AND IMPLICATIONS These well-grounded and promising findings suggest LFS as a promising agent to addressing oxidative-stress related diseases and bone loss disorders.
Collapse
Affiliation(s)
- Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yangge Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bulin Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yilin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoyu Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengjie Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yue Sheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Chu E, Mychasiuk R, Tsantikos E, Raftery AL, L’Estrange-Stranieri E, Dill LK, Semple BD, Hibbs ML. Regulation of Microglial Signaling by Lyn and SHIP-1 in the Steady-State Adult Mouse Brain. Cells 2023; 12:2378. [PMID: 37830592 PMCID: PMC10571795 DOI: 10.3390/cells12192378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - April L. Raftery
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Elan L’Estrange-Stranieri
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Larissa K. Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| |
Collapse
|
12
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
13
|
Qin Q, Liu Y, Yang Z, Aimaijiang M, Ma R, Yang Y, Zhang Y, Zhou Y. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair. Int J Mol Sci 2022; 23:ijms231911201. [PMID: 36232501 PMCID: PMC9569554 DOI: 10.3390/ijms231911201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sufficient oxygen is required to maintain normal cellular and physiological function, such as a creature’s development, breeding, and homeostasis. Lately, some researchers have reported that both pathological hypoxia and environmental hypoxia might affect bone health. Adaptation to hypoxia is a pivotal cellular event in normal cell development and differentiation and in pathological settings such as ischemia. As central mediators of homeostasis, hypoxia-inducible transcription factors (HIFs) can allow cells to survive in a low-oxygen environment and are essential for the regulation of osteogenesis and skeletal repair. From this perspective, we summarized the role of HIF-1 and HIF-2 in signaling pathways implicated in bone development and skeletal repair and outlined the molecular mechanism of regulation of downstream growth factors and protein molecules such as VEGF, EPO, and so on. All of these present an opportunity for developing therapies for bone regeneration.
Collapse
|
14
|
IFT80 negatively regulates osteoclast differentiation via association with Cbl-b to disrupt TRAF6 stabilization and activation. Proc Natl Acad Sci U S A 2022; 119:e2201490119. [PMID: 35733270 PMCID: PMC9245634 DOI: 10.1073/pnas.2201490119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Osteoclasts (OCs) are the sole bone resorbing cells indispensable for bone remodeling. Hence, understanding of novel signaling modulators regulating OC formation is clinically important. Intraflagellar transport (IFT) proteins are important for cilia, cell signaling, and organ development. It remains unclear whether IFT80 plays a role in OCs. This study uncovers an intriguing role of IFT80 in OCs where the ciliary protein regulates the stability of critical OC factor TRAF6 via Cbl-b and thereby contributes to the maintenance of OC numbers. These findings provide further basis for understanding and delineating the role of IFT proteins in OCs that may provide new strategies for treatment of osteolytic diseases. Excess bone loss due to increased osteoclastogenesis is a significant clinical problem. Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation. The role of IFT80, an IFT complex B protein, in osteoclasts (OCs) is completely unknown. Here, we demonstrate that deletion of IFT80 in the myeloid lineage led to increased OC formation and activity accompanied by severe bone loss in mice. IFT80 regulated OC formation by associating with Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) to promote protein stabilization and proteasomal degradation of tumor necrosis factor (TNF) receptor–associated factor 6 (TRAF6). IFT80 knockdown resulted in increased ubiquitination of Cbl-b and higher TRAF6 levels, thereby hyperactivating the receptor activator of nuclear factor-κβ (NF-κβ) ligand (RANKL) signaling axis and increased OC formation. Ectopic overexpression of IFT80 rescued osteolysis in a calvarial model of bone loss. We have thus identified a negative function of IFT80 in OCs.
Collapse
|
15
|
Xie X, Hu L, Mi B, Panayi AC, Xue H, Hu Y, Liu G, Chen L, Yan C, Zha K, Lin Z, Zhou W, Gao F, Liu G. SHIP1 Activator AQX-1125 Regulates Osteogenesis and Osteoclastogenesis Through PI3K/Akt and NF-κb Signaling. Front Cell Dev Biol 2022; 10:826023. [PMID: 35445030 PMCID: PMC9014098 DOI: 10.3389/fcell.2022.826023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
With the worldwide aging population, the prevalence of osteoporosis is on the rise, particularly the number of postmenopausal women with the condition. However, the various adverse side effects associated with the currently available treatment options underscore the need to develop novel therapies. In this study, we investigated the use of AQX-1125, a novel clinical-stage activator of inositol phosphatase-1 (SHIP1), in ovariectomized (OVX) mice, identifying a protective role. We then found that the effect was likely due to increased osteogenesis and mineralization and decreased osteoclastogenesis caused by AQX-1125 in a time- and dose-dependent manner. The effect against OVX-induced bone loss was identified to be SHIP1-dependent as pretreatment of BMSCs and BMMs with SHIP1 RNAi could greatly diminish the osteoprotective effects. Furthermore, SHIP1 RNAi administration in vivo induced significant bone loss and decreased bone mass. Mechanistically, AQX-1125 upregulated the expression level and activity of SHIP1, followed upregulating the phosphorylation levels of PI3K and Akt to promote osteoblast-related gene expressions, including Alp, cbfa1, Col1a1, and osteocalcin (OCN). NF-κB signaling was also inhibited through suppression of the phosphorylation of IκBα and P65 induced by RANKL, resulting in diminished osteoclastogenesis. Taken together, our results demonstrate that AQX-1125 may be a promising candidate for preventing and treating bone loss.
Collapse
Affiliation(s)
- Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guodong Liu
- Medical Center of Trauma and War Injuries, Daping Hospital, Army Medical University, Chongqing, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
16
|
Kaifu T, Yabe R, Maruhashi T, Chung SH, Tateno H, Fujikado N, Hirabayashi J, Iwakura Y. DCIR and its ligand asialo-biantennary N-glycan regulate DC function and osteoclastogenesis. J Exp Med 2021; 218:e20210435. [PMID: 34817551 PMCID: PMC8624811 DOI: 10.1084/jem.20210435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022] Open
Abstract
Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor with a carbohydrate recognition domain and an immunoreceptor tyrosine-based inhibitory motif. Previously, we showed that Dcir-/- mice spontaneously develop autoimmune enthesitis and sialadenitis, and also develop metabolic bone abnormalities. However, the ligands for DCIR functionality remain to be elucidated. Here we showed that DCIR is expressed on osteoclasts and DCs and binds to an asialo-biantennary N-glycan(s) (NA2) on bone cells and myeloid cells. Osteoclastogenesis was enhanced in Dcir-/- cells, and NA2 inhibited osteoclastogenesis. Neuraminidase treatment, which exposes excess NA2 by removing the terminal sialic acid of N-glycans, suppressed osteoclastogenesis and DC function. Neuraminidase treatment of mice ameliorated collagen-induced arthritis and experimental autoimmune encephalomyelitis in a DCIR-dependent manner, due to suppression of antigen presentation by DCs. These results suggest that DCIR activity is regulated by the modification of the terminal sialylation of biantennary N-glycans, and this interaction is important for the control of both autoimmune and bone metabolic diseases.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/physiology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- HEK293 Cells
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- N-Acetylglucosaminyltransferases/genetics
- N-Acetylglucosaminyltransferases/metabolism
- Neuraminidase/metabolism
- Neuraminidase/pharmacology
- Osteoclasts/metabolism
- Osteogenesis/physiology
- Polysaccharides/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Mice
Collapse
Affiliation(s)
- Tomonori Kaifu
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Rikio Yabe
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Takumi Maruhashi
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroaki Tateno
- Glycan Lectin Engineering Team, Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Noriyuki Fujikado
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Jun Hirabayashi
- Glycan Lectin Engineering Team, Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
17
|
Molecular Mechanisms and Emerging Therapeutics for Osteoporosis. Int J Mol Sci 2020; 21:ijms21207623. [PMID: 33076329 PMCID: PMC7589419 DOI: 10.3390/ijms21207623] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is the most common chronic metabolic bone disease. It has been estimated that more than 10 million people in the United States and 200 million men and women worldwide have osteoporosis. Given that the aging population is rapidly increasing in many countries, osteoporosis could become a global challenge with an impact on the quality of life of the affected individuals. Osteoporosis can be defined as a condition characterized by low bone density and increased risk of fractures due to the deterioration of the bone architecture. Thus, the major goal of treatment is to reduce the risk for fractures. There are several treatment options, mostly medications that can control disease progression in risk groups, such as postmenopausal women and elderly men. Recent studies on the basic molecular mechanisms and clinical implications of osteoporosis have identified novel therapeutic targets. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for osteoporosis management in the future. Here, we review the etiology of osteoporosis and the molecular mechanism of bone remodeling, present current pharmacological options, and discuss emerging therapies targeting novel mechanisms, investigational treatments, and new promising therapeutic approaches.
Collapse
|
18
|
Yamakawa T, Okamatsu N, Ishikawa K, Kiyohara S, Handa K, Hayashi E, Sakai N, Karakawa A, Chatani M, Tsuji M, Inagaki K, Kiuchi Y, Negishi-Koga T, Takami M. Novel gene Merlot inhibits differentiation and promotes apoptosis of osteoclasts. Bone 2020; 138:115494. [PMID: 32569872 DOI: 10.1016/j.bone.2020.115494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Extended osteoclast longevity is deeply involved in the pathogenesis of bone diseases such as osteoporosis and rheumatoid arthritis, though the mechanisms that determine osteoclast lifespan are not fully understood. Here we present findings indicating that the newly characterized gene Merlot, which encodes a highly conserved yet uncharacterized protein in vertebrates, is an important regulator for termination of osteoclastogenesis via induction of apoptosis. Mice lacking Merlot exhibited low bone mass due to increased osteoclast and bone resorption. Furthermore, osteoclast precursors overexpressing Merlot failed to differentiate into mature osteoclasts, while Merlot deficiency led to hyper-nucleation and prolonged survival of osteoclasts, accompanied by sustained nuclear localization of nuclear factor of activated T cell c1 (NFATc1) and derepression of glycogen synthase kinase-3β (GSK3β) activity, known to regulate NFATc1 activity and induce apoptosis. Merlot-deficient osteoclasts were found to represent suppression of caspase-3-mediated apoptosis and Merlot deficiency caused transcriptional downregulation of a proapoptotic cascade, including Bax, Bak, Noxa, and Bim, as well as the executor caspase members Casp-3, -6, and -7, and upregulation of anti-apoptotic Bcl2, resulting in a low apoptotic threshold. Thus, Merlot regulates osteoclast lifespan by inhibition of differentiation and simultaneous induction of apoptosis via regulation of the NFATc1-GSK3β axis.
Collapse
Affiliation(s)
- Tomoyuki Yamakawa
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuaki Okamatsu
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shuichi Kiyohara
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Implant Dentistry, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Kazuaki Handa
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Erika Hayashi
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takako Negishi-Koga
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8629, Japan.
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacology Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
19
|
Xiao D, Zhou Q, Gao Y, Cao B, Zhang Q, Zeng G, Zong S. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade. J Cell Biochem 2020; 121:4542-4557. [PMID: 32048762 DOI: 10.1002/jcb.29677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
Perturbations in the balanced process of osteoblast-mediated bone formation and osteoclast-mediated bone resorption leading to excessive osteoclast formation and/or activity is the cause of many pathological bone conditions such as osteoporosis. The osteoclast is the only cell in the body capable of resorbing and degrading the mineralized bone matrix. Osteoclast formation from monocytic precursors is governed by the actions of two key cytokines macrophage-colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). Binding of RANKL binding to receptor RANK initiates a series of downstream signaling responses leading to monocytic cell differentiation and fusion, and subsequent mature osteoclast bone resorption and survival. The phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) signaling cascade is one such pathway activated in response to RANKL. The 3-phosphoinositide-dependent protein kinase 1 (PDK1), is considered the master upstream lipid kinase of the PI3K-Akt cascade. PDK1 functions to phosphorylate and partially activate Akt, triggering the activation of downstream effectors. However, the role of PDK1 in osteoclasts has yet to be clearly defined. In this study, we specifically deleted the PDK1 gene in osteoclasts using the cathepsin-K promoter driven Cre-LoxP system. We found that the specific genetic ablation of PDK1 in osteoclasts leads to an osteoclast-poor osteopetrotic phenotype in mice. In vitro cellular assays further confirmed the impairment of osteoclast formation in response to RANKL by PDK1-deficient bone marrow macrophage (BMM) precursor cells. PDK1-deficient BMMs exhibited reduced ability to reorganize actin cytoskeleton to form a podosomal actin belt as a result of diminished capacity to fuse into giant multinucleated osteoclasts. Notably, biochemical analyses showed that PDK1 deficiency attenuated the phosphorylation of Akt and downstream effector GSK3β, and reduced induction of NFATc1. GSK3β is a reported negative regulator of NFATc1. GSK3β activity is inhibited by Akt-dependent phosphorylation. Thus, our data provide clear genetic and mechanistic insights into the important role for PDK1 in osteoclasts.
Collapse
Affiliation(s)
- Dongliang Xiao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Quan Zhou
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunbing Gao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Baichuan Cao
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiong Zhang
- College of Public Hygiene of Guangxi Medical University, Guangxi, China
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Guangxi, China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
20
|
Pedicone C, Fernandes S, Dungan OM, Dormann SM, Viernes DR, Adhikari AA, Choi LB, De Jong EP, Chisholm JD, Kerr WG. Pan-SHIP1/2 inhibitors promote microglia effector functions essential for CNS homeostasis. J Cell Sci 2020; 133:jcs238030. [PMID: 31780579 PMCID: PMC10682645 DOI: 10.1242/jcs.238030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
We show here that both SHIP1 (Inpp5d) and its paralog SHIP2 (Inppl1) are expressed at protein level in microglia. To examine whether targeting of SHIP paralogs might influence microglial physiology and function, we tested the capacity of SHIP1-selective, SHIP2-selective and pan-SHIP1/2 inhibitors for their ability to impact on microglia proliferation, lysosomal compartment size and phagocytic function. We find that highly potent pan-SHIP1/2 inhibitors can significantly increase lysosomal compartment size, and phagocytosis of dead neurons and amyloid beta (Aβ)1-42 by microglia in vitro We show that one of the more-potent and water-soluble pan-SHIP1/2 inhibitors, K161, can penetrate the blood-brain barrier. Consistent with this, K161 increases the capacity of CNS-resident microglia to phagocytose Aβ and apoptotic neurons following systemic administration. These findings provide the first demonstration that small molecule modulation of microglia function in vivo is feasible, and suggest that dual inhibition of the SHIP1 and 2 paralogs can provide a novel means to enhance basal microglial homeostatic functions for therapeutic purposes in Alzheimer's disease and, possibly, other types of dementia where increased microglial function could be beneficial.
Collapse
Affiliation(s)
- Chiara Pedicone
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sandra Fernandes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Otto M Dungan
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Shawn M Dormann
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Arijit A Adhikari
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Ebbing P De Jong
- Proteomics and Mass Spectrometry Core Facility, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - William G Kerr
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Saferding V, Blüml S. Innate immunity as the trigger of systemic autoimmune diseases. J Autoimmun 2019; 110:102382. [PMID: 31883831 DOI: 10.1016/j.jaut.2019.102382] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
The innate immune system consists of a variety of elements controlling and participating in virtually all aspects of inflammation and immunity. It is crucial for host defense, but on the other hand its improper activation is also thought to be responsible for the generation of autoimmunity and therefore diseases such as autoimmune arthritides like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS) or inflammatory bowel disease. The innate immune system stands both at the beginning as well as the end of autoimmunity. On one hand, it regulates the activation of the adaptive immune system and the breach of self-tolerance, as antigen presenting cells (APCs), especially dendritic cells, are essential for the activation of naïve antigen specific T cells, a crucial step in the development of autoimmunity. Various factors controlling the function of dendritic cells have been identified that directly regulate lymphocyte homeostasis and in some instances the generation of organ specific autoimmunity. Moreover, microbial cues have been identified that are prerequisites for the generation of several specific autoimmune diseases. On the other hand, the innate immune system is also responsible for mediating the resulting organ damage underlying the clinical symptoms of a given autoimmune disease via production of proinflammatory cytokines that amplify local inflammation and further activate other immune or parenchymal cells in the vicinity, the generation of matrix degrading and proteolytic enzymes or reactive oxygen species directly causing tissue damage. In the last decades, molecular characterization of cell types and their subsets as well as both positive and negative regulators of immunity has led to the generation of various scenarios of how autoimmunity develops, which eventually might lead to the development of targeted interventions for autoimmune diseases. In this review, we try to summarize the elements that are contributing to the initiation and perpetuation of autoimmune responses.
Collapse
Affiliation(s)
| | - Stephan Blüml
- Department of Rheumatology, Medical University Vienna, Austria.
| |
Collapse
|
22
|
So EY, Sun C, Wu KQ, Driesman A, Leggett S, Isaac M, Spangler T, Dubielecka-Szczerba PM, Reginato AM, Liang OD. Lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development. J Cell Physiol 2019; 235:1425-1437. [PMID: 31287165 PMCID: PMC6879780 DOI: 10.1002/jcp.29063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
SH2‐containing inositol‐5′‐phosphatase‐1 (SHIP‐1) controls the phosphatidylinositol‐3′‐kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP‐1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP‐1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c‐kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP‐1 knockout mice than in wild‐type mice. In corroboration with the in vivo phenotype, SHIP‐1 deficient PDGFRα + Sca‐1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP‐1 deficiency inhibited hypoxia‐induced cellular activation of Akt and extracellular‐signal‐regulated kinase (Erk) and suppressed hypoxia‐induced cell proliferation. These results suggest that SHIP‐1 is required for hypoxia‐induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP‐1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.
Collapse
Affiliation(s)
- Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Changqi Sun
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Adam Driesman
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Susan Leggett
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mauricio Isaac
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Travis Spangler
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Patrycja M Dubielecka-Szczerba
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Abstract
Bone is a crucial element of the skeletal-locomotor system, but also functions as an immunological organ that harbors hematopoietic stem cells (HSCs) and immune progenitor cells. Additionally, the skeletal and immune systems share a number of regulatory molecules, including cytokines and signaling molecules. Osteoimmunology was created as an interdisciplinary field to explore the shared molecules and interactions between the skeletal and immune systems. In particular, the importance of an inseparable link between the two systems has been highlighted by studies on the pathogenesis of rheumatoid arthritis (RA), in which pathogenic helper T cells induce the progressive destruction of multiple joints through aberrant expression of receptor activator of nuclear factor (NF)-κB ligand (RANKL). The conceptual bridge of osteoimmunology provides not only a novel framework for understanding these biological systems but also a molecular basis for the development of therapeutic approaches for diseases of bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
25
|
Cabrera D, Kruger M, Wolber FM, Roy NC, Totman JJ, Henry CJ, Cameron-Smith D, Fraser K. Association of Plasma Lipids and Polar Metabolites with Low Bone Mineral Density in Singaporean-Chinese Menopausal Women: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1045. [PMID: 29789485 PMCID: PMC5982084 DOI: 10.3390/ijerph15051045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 01/23/2023]
Abstract
The diagnosis of osteoporosis is mainly based on clinical examination and bone mineral density assessments. The present pilot study compares the plasma lipid and polar metabolite profiles in blood plasma of 95 Singaporean-Chinese (SC) menopausal women with normal and low bone mineral density (BMD) using an untargeted metabolomic approach. The primary finding of this study was the association between lipids and femoral neck BMD in SC menopausal women. Twelve lipids were identified to be associated with low BMD by the orthogonal partial least squares (OPLS) model. Plasma concentrations of eight glycerophospholipid, glycerolipid, and sphingolipid species were significantly lower in menopausal women with low BMD but higher in two glycerophospholipid species (phosphatidylinositol and phosphatidic acid). Further, this study found no significant differences in plasma amino acid metabolites. However, trends for lower 4-aminobutyric acid, turanose, proline, aminopropionitrile, threonine, and methionine were found in women with low BMD. This pilot study identified associations between lipid metabolism and femoral neck BMD in SC women. Further studies are required on larger populations for evaluating the bone health effect of these compounds and their usefulness as clinical biomarkers for osteoporosis prediction in women.
Collapse
Affiliation(s)
- Diana Cabrera
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Marlena Kruger
- School of Food and Nutrition, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| | - Frances M Wolber
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| | - John J Totman
- A*Star-NUS Clinical Imaging Research Centre, Singapore 117599, Singapore.
| | | | - David Cameron-Smith
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- The Liggins Institute, The University of Auckland, Auckland 1142, New Zealand.
| | - Karl Fraser
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| |
Collapse
|
26
|
Lei Y, Su J, Xu H, Yu Q, Zhao M, Tian J. Pulsed electromagnetic fields inhibit osteoclast differentiation in RAW264.7 macrophages via suppression of the protein kinase B/mammalian target of rapamycin signaling pathway. Mol Med Rep 2018; 18:447-454. [PMID: 29749519 DOI: 10.3892/mmr.2018.8999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
When bone resorption, aided by the activity of osteoclasts, exceeds bone formation induced by osteoblasts, bone metabolism loses equilibration, which results in the development of bone diseases, including osteoporosis. Pulsed electromagnetic fields (PEMFs) are known to be involved in various biological processes, including cell proliferation, differentiation and apoptosis. However, the exact mechanism of action of osteoclasts remains poorly understood. In the present study, the effects of PEMFs on osteoclast differentiation and associated signaling pathways were systematically investigated in RAW264.7 macrophages. RAW264.7 cells were induced by receptor activator of nuclear factor‑κB ligand (RANKL) to obtain osteoclasts in vitro. The results of the present study demonstrated that PEMF exposure decreased osteoclast formation, limited tartrate‑resistant acid phosphatase activity, contracted bone resorption area and inhibited osteoclastic specific gene and protein expression. Furthermore, western blot analysis indicated that PEMFs distinctly abolished the upregulation of phosphorylated‑protein kinase B (Akt), ‑mammalian target of rapamycin (mTOR) and ‑ribosome S6 protein kinase (p70S6K) induced by RANKL, which was consistent with the effects of pharmacological inhibitor perifosine and rapamycin. Therefore, the present study suggested that PEMFs reduced osteoclast formation from RAW264.7 macrophages via inhibition of the Akt/mTOR signaling pathway. These findings provided novel insight into the mechanisms through which PEMFs suppress osteoclast differentiation.
Collapse
Affiliation(s)
- Yutian Lei
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jinyu Su
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Xu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qiang Yu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ming Zhao
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Tian
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
27
|
Tsantikos E, Lau M, Castelino CM, Maxwell MJ, Passey SL, Hansen MJ, McGregor NE, Sims NA, Steinfort DP, Irving LB, Anderson GP, Hibbs ML. Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease. J Clin Invest 2018; 128:2406-2418. [PMID: 29708507 DOI: 10.1172/jci98224] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1-deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.
Collapse
Affiliation(s)
- Evelyn Tsantikos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Maverick Lau
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia.,Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Cassandra Mn Castelino
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Mhairi J Maxwell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Samantha L Passey
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle J Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Daniel P Steinfort
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Louis B Irving
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Huynh H, Wan Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun Biol 2018; 1:29. [PMID: 30271915 PMCID: PMC6123628 DOI: 10.1038/s42003-018-0028-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
Rapamycins are immunosuppressant and anti-cancer drugs that inhibit the kinase mTOR. Clinically, they often cause bone pain, bone necrosis, and high bone turnover, yet the mechanisms are unclear. Here we show that mTORC1 activity is high in osteoclast precursors but downregulated upon RANKL treatment. Loss-of-function genetic models reveal that while early Raptor deletion in hematopoietic stem cells blunts osteoclastogenesis due to compromised proliferation/survival, late Raptor deletion in osteoclast precursors instead augments osteoclastogenesis. Gain-of-function genetic models by TSC1 deletion in HSCs or osteoclast precursors cause constitutive mTORC1 activation, impairing osteoclastogenesis. Pharmacologically, rapamycin treatment at low but clinically relevant doses exacerbates osteoclast differentiation and bone resorption, leading to bone loss. Mechanistically, RANKL inactivates mTORC1 via calcineurin-mediated mTORC1 dephosphorylation, consequently activating NFATc1 by reducing mTORC1-mediated NFATc1 phosphorylation. These findings uncover biphasic roles of mTORC1 in osteoclastogenesis, dosage-dependent effects of rapamycin on bone, and a previously unrecognized calcineurin-mTORC1-NFATc1 phosphorylation-regulatory signaling cascade.
Collapse
Affiliation(s)
- HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
29
|
Kim JH, Kim K, Kim I, Seong S, Lee KB, Kim N. BCAP promotes osteoclast differentiation through regulation of the p38-dependent CREB signaling pathway. Bone 2018; 107:188-195. [PMID: 29223746 DOI: 10.1016/j.bone.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022]
Abstract
Many studies have determined that PI3K-Akt signaling pathways play important roles in osteoclast differentiation and function. In the present study, we investigated the roles of B-cell adaptor for PI3K (BCAP), which is a PI3K binding molecule, in osteoclasts. Overexpression of BCAP in osteoclast precursor cells enhanced osteoclast differentiation induced by tumor necrosis factor alpha (TNF-α) as well as receptor activator of nuclear factor-κB ligand (RANKL). Conversely, osteoclast differentiation mediated by both cytokines was attenuated when BCAP expression was downregulated using small interfering RNA. Notably, BCAP induced Akt activation only upon stimulation by RANKL, but not by TNF-α. However, BCAP activated p38-dependent cAMP response element-binding protein (CREB) phosphorylation induced by both RANKL and TNF-α. Collectively, we showed that BCAP plays an important role in osteoclast differentiation by regulating the p38-dependent CREB signaling pathway, and that BCAP might be a new therapeutic target for bone diseases.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Keun-Bae Lee
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
30
|
STAC2 negatively regulates osteoclast formation by targeting the RANK signaling complex. Cell Death Differ 2018; 25:1364-1374. [PMID: 29348675 DOI: 10.1038/s41418-017-0048-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022] Open
Abstract
The receptor activator of nuclear factor-κB (RANK) protein activates various protein kinase signaling cascades, including those involving NF-κB, mitogen-activated protein kinase (MAPK), and Bruton tyrosine kinase (Btk)/tyrosine-protein kinase Tec. However, the mechanism underlying the negative regulation of RANK by downstream signaling molecules remains unclear. Here, we report that Src homology 3 domain and cysteine-rich domain-containing protein 2 (STAC2) is a novel RANK ligand-inducible protein that negatively regulates RANK-mediated osteoclast formation. STAC2 physically interacts with RANK and inhibits the formation of the RANK signaling complex, which contains Grb-2-associated binder 2 (Gab2) and phospholipase Cγ2 (PLCγ2), thus leading to the suppression of RANK-mediated NF-κB and MAPK activation. Furthermore, STAC2 overexpression limits Btk/Tec-mediated PLCγ2 phosphorylation via the interaction between STAC2 and Btk/Tec. Taken together, our results reveal a novel mechanism whereby RANK signaling is restricted by its physical interaction with STAC2.
Collapse
|
31
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Lee NK. RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation. ACTA ACUST UNITED AC 2017. [DOI: 10.15616/bsl.2017.23.4.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Na Kyung Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam 31538, Korea
| |
Collapse
|
33
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
34
|
Kim H, Walsh MC, Takegahara N, Middleton SA, Shin HI, Kim J, Choi Y. The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 2017; 7:196. [PMID: 28298636 PMCID: PMC5427844 DOI: 10.1038/s41598-017-00139-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) can result in serious clinical outcomes, including bone loss that may weaken skeletal or periodontal strength. Proper bone homeostasis and skeletal strength are maintained by balancing OC function with the bone-forming function of osteoblasts. Unfortunately, current treatments that broadly inhibit OC differentiation or function may also interfere with coupled bone formation. We therefore identified a factor, the purinergic receptor P2X5 that is highly expressed during the OC maturation phase, and which we show here plays no apparent role in early bone development and homeostasis, but which is required for osteoclast-mediated inflammatory bone loss and hyper-multinucleation of OCs. We further demonstrate that P2X5 is required for ATP-mediated inflammasome activation and IL-1β production by OCs, and that P2X5-deficient OC maturation is rescued in vitro by addition of exogenous IL-1β. These findings identify a mechanism by which OCs react to inflammatory stimuli, and may identify purinergic signaling as a therapeutic target for bone loss-related inflammatory conditions.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Next generation Optical Immune-imaging, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sarah A Middleton
- Department of Biology, Department of Computer and Information Science, School of Arts and Sciences, Program in Single Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong-In Shin
- IHBR, Department of Oral Pathology, School of Dentistry, Kyungpook National University, Daegu, 700412, South Korea
| | - Junhyong Kim
- Department of Biology, Department of Computer and Information Science, School of Arts and Sciences, Program in Single Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Humphrey MB, Nakamura MC. A Comprehensive Review of Immunoreceptor Regulation of Osteoclasts. Clin Rev Allergy Immunol 2017; 51:48-58. [PMID: 26573914 DOI: 10.1007/s12016-015-8521-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Osteoclasts require coordinated co-stimulation by several signaling pathways to initiate and regulate their cellular differentiation. Receptor activator for NF-κB ligand (RANKL or TNFSF11), a tumor necrosis factor (TNF) superfamily member, is the master cytokine required for osteoclastogenesis with essential co-stimulatory signals mediated by immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptors, DNAX-associated protein 12 kDa size (DAP12) and FcεRI gamma chain (FcRγ). The ITAM-signaling adaptors do not have an extracellular ligand-binding domain and, therefore, must pair with ligand-binding immunoreceptors to interact with their extracellular environment. DAP12 pairs with a number of different immunoreceptors including triggering receptor expressed on myeloid cells 2 (TREM2), myeloid DAP12-associated lectin (MDL-1), and sialic acid-binding immunoglobulin-type lectin 15 (Siglec-15); while FcRγ pairs with a different set of receptors including osteoclast-specific activating receptor (OSCAR), paired immunoglobulin receptor A (PIR-A), and Fc receptors. The ligands for many of these receptors in the bone microenvironment remain unknown. Here, we will review immunoreceptors known to pair with either DAP12 or FcRγ that have been shown to regulate osteoclastogenesis. Co-stimulation and the effects of ITAM-signaling have turned out to be complex, and now include paradoxical findings that ITAM-signaling adaptor-associated receptors can inhibit osteoclastogenesis and immunoreceptor tyrosine-based inhibitory motif (ITIM) receptors can promote osteoclastogenesis. Thus, co-stimulation of osteoclastogenesis continues to reveal additional complexities that are important in the regulatory mechanisms that seek to maintain bone homeostasis.
Collapse
Affiliation(s)
- Mary Beth Humphrey
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC209, Oklahoma City, OK, 73104, USA
| | - Mary C Nakamura
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA. .,Arthritis/Immunology Section, San Francisco Veterans Administration Medical Center, 4150 Clement St 111R, San Francisco, CA, 94121, USA.
| |
Collapse
|
36
|
Sabokbar A, Mahoney DJ, Hemingway F, Athanasou NA. Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases. Clin Rev Allergy Immunol 2017; 51:16-26. [PMID: 26578261 DOI: 10.1007/s12016-015-8523-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteoclasts are multinucleated cells derived from mononuclear phagocyte precursors (monocytes, macrophages); in the canonical pathway of osteoclastogenesis, these cells fuse and differentiate to form specialised bone-resorbing osteoclasts in the presence of receptor activator for nuclear factor kappa B ligand (RANKL). Non-canonical pathways of osteoclastogenesis have been described in which several cytokines and growth factors are able to substitute for RANKL. These humoral factors can generally be divided into those which, like RANKL, are tumour necrosis family (TNF) superfamily members and those which are not; the former include TNFα lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes (LIGHT), a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF); the latter include transforming growth factor beta (TGF-β), interleukin-6 (IL-6), IL-8, IL-11, nerve growth factor (NGF), insulin-like growth factor-I (IGF-I) and IGF-II. This review summarises the evidence for these RANKL substitutes in inducing osteoclast differentiation from tissue-derived and circulating mononuclear phagocytes. It also assesses the role these factors are likely to play in promoting the pathological bone resorption seen in many inflammatory and neoplastic lesions of bone and joint including rheumatoid arthritis, aseptic implant loosening and primary and secondary tumours of bone.
Collapse
Affiliation(s)
- A Sabokbar
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - D J Mahoney
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - F Hemingway
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N A Athanasou
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
37
|
Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun 2017; 8:13700. [PMID: 28102206 PMCID: PMC5253683 DOI: 10.1038/ncomms13700] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Many positive signalling pathways of osteoclastogenesis have been characterized, but negative signalling pathways are less well studied. Here we show by microarray and RNAi that guanine nucleotide-binding protein subunit α13 (Gα13) is a negative regulator of osteoclastogenesis. Osteoclast-lineage-specific Gna13 conditional knockout mice have a severe osteoporosis phenotype. Gna13-deficiency triggers a drastic increase in both osteoclast number and activity (hyper-activation), mechanistically through decreased RhoA activity and enhanced Akt/GSK3β/NFATc1 signalling. Consistently, Akt inhibition or RhoA activation rescues hyper-activation of Gna13-deficient osteoclasts, and RhoA inhibition mimics the osteoclast hyperactivation resulting from Gna13-deficiency. Notably, Gα13 gain-of-function inhibits Akt activation and osteoclastogenesis, and protects mice from pathological bone loss in disease models. Collectively, we reveal that Gα13 is a master endogenous negative switch for osteoclastogenesis through regulation of the RhoA/Akt/GSK3β/NFATc1 signalling pathway, and that manipulating Gα13 activity might be a therapeutic strategy for bone diseases.
Collapse
|
38
|
Abstract
Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain.
Collapse
Affiliation(s)
- Violeta Chitu
- Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
39
|
Hamilton MJ, Halvorsen EC, LePard NE, Bosiljcic M, Ho VW, Lam V, Banáth J, Bennewith KL, Krystal G. SHIP represses lung inflammation and inhibits mammary tumor metastasis in BALB/c mice. Oncotarget 2016; 7:3677-91. [PMID: 26683227 PMCID: PMC4826161 DOI: 10.18632/oncotarget.6611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022] Open
Abstract
SH2-containing-inositol-5'-phosphatase (SHIP) is a negative regulator of the phosphatidylinositol-3-kinase pathway in hematopoietic cells and limits the development of leukemias and lymphomas. The potential role of SHIP in solid tumor development and metastasis remains unknown. While SHIP restricts the aberrant development of myeloid cells in C57BL/6 mice, there are conflicting reports regarding the effect of SHIP deletion in BALB/c mice with important consequences for determining the influence of SHIP in different model tumor systems. We generated SHIP-/- BALB/c mice and challenged them with syngeneic non-metastatic 67NR or metastatic 4T1 mammary tumors. We demonstrate that SHIP restricts the development, alternative-activation, and immunosuppressive function of myeloid cells in tumor-free and tumor-bearing BALB/c mice. Tumor-free SHIP-/- BALB/c mice exhibited pulmonary inflammation, myeloid hyperplasia, and M2-polarized macrophages and this phenotype was greatly exacerbated by 4T1, but not 67NR, tumors. 4T1-bearing SHIP-/- mice rapidly lost weight and died from necrohemorrhagic inflammatory pulmonary disease, characterized by massive infiltration of pulmonary macrophages and myeloid-derived suppressor cells that were more M2-polarized and immunosuppressive than wild-type cells. Importantly, while SHIP loss did not affect primary tumor growth, 4T1-bearing SHIP-/- mice had 7.5-fold more metastatic tumor cells in their lungs than wild-type mice, consistent with the influence of immunosuppressive myeloid cells on metastatic growth. Our findings identify the hematopoietic cell-restricted protein SHIP as an intriguing target to influence the development of solid tumor metastases, and support development of SHIP agonists to prevent the accumulation of immunosuppressive myeloid cells and tumor metastases in the lungs to improve treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Melisa J Hamilton
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Elizabeth C Halvorsen
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Nancy E LePard
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Momir Bosiljcic
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Victor W Ho
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Vivian Lam
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Judit Banáth
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| |
Collapse
|
40
|
Sztacho M, Segeletz S, Sanchez-Fernandez MA, Czupalla C, Niehage C, Hoflack B. BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts. PLoS One 2016; 11:e0164829. [PMID: 27760174 PMCID: PMC5070766 DOI: 10.1371/journal.pone.0164829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/30/2016] [Indexed: 01/07/2023] Open
Abstract
Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role of the membrane scaffolding F-BAR-Proline-Serine-Threonine Phosphatase Interacting Proteins (PSTPIP) 1 and 2 in this process. Whereas PSTPIP2 regulates podosome assembly, PSTPIP1 regulates their disassembly. PSTPIP1 recruits, through its F-BAR domain, the protein tyrosine phosphatase non-receptor type 6 (PTPN6) that de-phosphophorylates the phosphatidylinositol 5-phosphatases SHIP1/2 bound to the SH3 domain of PSTPIP1. Depletion of any component of this complex prevents sealing zone disassembly and increases osteoclast activity. Thus, our results illustrate the importance of BAR domain proteins in podosome structure and dynamics, and identify a new PSTPIP1/PTPN6/SHIP1/2-dependent negative feedback mechanism that counterbalances Src and PI(3,4,5)P3 signalling to control osteoclast cell polarity and activity during bone resorption.
Collapse
Affiliation(s)
- Martin Sztacho
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | - Sandra Segeletz
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | | | - Cornelia Czupalla
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | - Christian Niehage
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
- * E-mail:
| |
Collapse
|
41
|
Segeletz S, Hoflack B. Proteomic approaches to study osteoclast biology. Proteomics 2016; 16:2545-2556. [PMID: 27350065 DOI: 10.1002/pmic.201500519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/13/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022]
Abstract
Bone is a dynamic tissue whose remodeling throughout life is orchestrated by repeated cycles of destruction mediated by osteoclasts and rebuilding by osteoblasts. Current understanding of osteoclast biology has largely relied on the generation of knockout mice exhibiting an abnormal bone phenotype. This has provided a better understanding of osteoclast biology and the key proteins that support osteoclast function. However, mouse models alone do not provide an integrated view on protein networks and post-translational modifications that might be important for osteoclast function. During the past years, a number of MS-based quantitative methods have been developed to investigate the complexity of biological systems. This review will summarize how such approaches have contributed to the understanding of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Sandra Segeletz
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
42
|
Srivastava N, Iyer S, Sudan R, Youngs C, Engelman RW, Howard KT, Russo CM, Chisholm JD, Kerr WG. A small-molecule inhibitor of SHIP1 reverses age- and diet-associated obesity and metabolic syndrome. JCI Insight 2016; 1. [PMID: 27536730 DOI: 10.1172/jci.insight.88544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Low-grade chronic inflammation is a key etiological phenomenon responsible for the initiation and perpetuation of obesity and diabetes. Novel therapeutic approaches that can specifically target inflammatory pathways are needed to avert this looming epidemic of metabolic disorders. Genetic and chemical inhibition of SH2-containing inositol 5' phosphatase 1 (SHIP1) has been associated with systemic expansion of immunoregulatory cells that promote a lean-body state; however, SHIP1 function in immunometabolism has never been assessed. This led us to investigate the role of SHIP1 in metabolic disorders during excess caloric intake in mice. Using a small-molecule inhibitor of SHIP1 (SHIPi), here we show that SHIPi treatment in mice significantly reduces body weight and fat content, improves control of blood glucose and insulin sensitivity, and increases energy expenditure, despite continued consumption of a high-fat diet. Additionally, SHIPi reduces age-associated fat in mice. We found that SHIPi treatment reverses diet-associated obesity by attenuating inflammation in the visceral adipose tissue (VAT). SHIPi treatment increases IL-4-producing eosinophils in VAT and consequently increases both alternatively activated macrophages and myeloid-derived suppressor cells. In addition, SHIPi decreases the number of IFN-γ-producing T cells and NK cells in VAT. Thus, SHIPi represents an approach that permits control of obesity and diet-induced metabolic syndrome without apparent toxicity.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sonia Iyer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Raki Sudan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Christie Youngs
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robert W Engelman
- Departments of Pathology and Cell Biology and Pediatrics, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, University of South Florida, Florida, USA
| | - Kyle T Howard
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | | | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA; Department of Chemistry, Syracuse University, Syracuse, New York, USA; Department of Pediatrics, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
43
|
Soysa NS, Alles N. Osteoclast function and bone-resorbing activity: An overview. Biochem Biophys Res Commun 2016; 476:115-20. [DOI: 10.1016/j.bbrc.2016.05.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022]
|
44
|
Kim JH, Kim N. Signaling Pathways in Osteoclast Differentiation. Chonnam Med J 2016; 52:12-7. [PMID: 26865996 PMCID: PMC4742606 DOI: 10.4068/cmj.2016.52.1.12] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for the degradation of old bone matrix. Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). M-CSF and RANKL bind to their respective receptors c-Fms and RANK to stimulate osteoclast differentiation through regulation of delicate signaling systems. Here, we summarize the critical or essential signaling pathways for osteoclast differentiation including M-CSF-c-Fms signaling, RANKL-RANK signaling, and costimulatory signaling for RANK.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
45
|
Duan M, Steinfort DP, Smallwood D, Hew M, Chen W, Ernst M, Irving LB, Anderson GP, Hibbs ML. CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs. Mucosal Immunol 2016; 9:550-63. [PMID: 26422753 PMCID: PMC7101582 DOI: 10.1038/mi.2015.84] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/12/2015] [Indexed: 02/04/2023]
Abstract
The development of easily accessible tools for human immunophenotyping to classify patients into discrete disease endotypes is advancing personalized therapy. However, no systematic approach has been developed for the study of inflammatory lung diseases with often complex and highly heterogeneous disease etiologies. We have devised an internally standardized flow cytometry approach that can identify parallel inflammatory alveolar macrophage phenotypes in both the mouse and human lungs. In mice, lung innate immune cell alterations during endotoxin challenge, influenza virus infection, and in two genetic models of chronic obstructive lung disease could be segregated based on the presence or absence of CD11b alveolar macrophage upregulation and lung eosinophilia. Additionally, heightened alveolar macrophage CD11b expression was a novel feature of acute lung exacerbations in the SHIP-1(-/-) model of chronic obstructive lung disease, and anti-CD11b antibody administration selectively blocked inflammatory CD11b(pos) but not homeostatic CD11b(neg) alveolar macrophages in vivo. The identification of analogous profiles in respiratory disease patients highlights this approach as a translational avenue for lung disease endotyping and suggests that heterogeneous innate immune cell phenotypes are an underappreciated component of the human lung disease microenvironment.
Collapse
Affiliation(s)
- M Duan
- grid.1002.30000 0004 1936 7857Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery, University of Melbourne, Melbourne, Australia ,grid.482095.2Ludwig Institute for Cancer Research, Melbourne, Australia ,grid.1018.80000 0001 2342 0938Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - D P Steinfort
- grid.416153.40000 0004 0624 1200Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - D Smallwood
- grid.416153.40000 0004 0624 1200Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - M Hew
- grid.1623.60000 0004 0432 511XDepartment of Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Parkville, Australia
| | - W Chen
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - M Ernst
- grid.1042.7The Walter and Eliza Hall Institute for Medical Research, Parkville, Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, Australia ,grid.410678.cPresent Address: 10Present address: Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Victoria 3084, Australia., ,
| | - L B Irving
- grid.416153.40000 0004 0624 1200Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - G P Anderson
- grid.1008.90000 0001 2179 088XDepartment of Pharmacology, University of Melbourne, Melbourne, Australia
| | - M L Hibbs
- grid.1002.30000 0004 1936 7857Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia
| |
Collapse
|
46
|
Motiur Rahman M, Takeshita S, Matsuoka K, Kaneko K, Naoe Y, Sakaue-Sawano A, Miyawaki A, Ikeda K. Proliferation-coupled osteoclast differentiation by RANKL: Cell density as a determinant of osteoclast formation. Bone 2015; 81:392-399. [PMID: 26265539 DOI: 10.1016/j.bone.2015.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 11/21/2022]
Abstract
Although it is widely recognized that the osteoclast differentiation induced by RANKL is linked to the anti-proliferative activity of the cytokine, we report here that RANKL in the presence of M-CSF actually stimulates DNA synthesis and cell proliferation during the early proliferative phase (0-48 h) of osteoclastogenesis ex vivo, while the same cytokine exerts an anti-proliferative activity in the latter half (48-96 h). A tracing of the individual cells using Fucci cell cycle indicators showed that waves of active DNA synthesis in the S phase during the period 0-48 h are followed by cell-cycle arrest and cell fusion after 48 h. Inhibition of DNA synthesis with hydroxyurea (HU) during the first half almost completely inhibited osteoclastogenesis; however, the same HU-treated cells, when re-plated at 48 h at increasing cell densities, exhibited restored osteoclast formation, suggesting that a sufficient number of cells, rather than prior DNA synthesis, is the most critical requirement for osteoclast formation. In addition, varying either the number of bone marrow macrophages at the start of osteoclastogenic cultures or pre-osteoclasts halfway through the process had a substantial impact on the number of osteoclasts that finally formed, as well as the timing of the peak of osteoclast formation. Thus, caution should be exerted in the performance of any manipulative procedure, whether pharmacological or genetic, that affects the cell number prior to cell fusion. Such procedures can have a profound effect on the number of osteoclasts that form, the final outcome of "differentiation", leading to misinterpretation of the results.
Collapse
Affiliation(s)
- M Motiur Rahman
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Sunao Takeshita
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan.
| | - Kazuhiko Matsuoka
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiko Kaneko
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yoshinori Naoe
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function Dynamics, BSI, RIKEN, Wako, Japan; Life Function and Dynamics, ERATO, JST, Wako, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function Dynamics, BSI, RIKEN, Wako, Japan; Life Function and Dynamics, ERATO, JST, Wako, Japan
| | - Kyoji Ikeda
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
47
|
Mhatre SD, Tsai CA, Rubin AJ, James ML, Andreasson KI. Microglial malfunction: the third rail in the development of Alzheimer's disease. Trends Neurosci 2015; 38:621-636. [PMID: 26442696 PMCID: PMC4670239 DOI: 10.1016/j.tins.2015.08.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
Abstract
Studies of Alzheimer's disease (AD) have predominantly focused on two major pathologies: amyloid-β (Aβ) and hyperphosphorylated tau. These misfolded proteins can accumulate asymptomatically in distinct regions over decades. However, significant Aβ accumulation can be seen in individuals who do not develop dementia, and tau pathology limited to the transentorhinal cortex, which can appear early in adulthood, is usually clinically silent. Thus, an interaction between these pathologies appears to be necessary to initiate and propel disease forward to widespread circuits. Recent multidisciplinary findings strongly suggest that the third factor required for disease progression is an aberrant microglial immune response. This response may initially be beneficial; however, a maladaptive microglial response eventually develops, fueling a feed-forward spread of tau and Aβ pathology.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Neurosciences Institute, Stanford, CA, USA
| | - Connie A Tsai
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Neurosciences Institute, Stanford, CA, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Amanda J Rubin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Neurosciences Institute, Stanford, CA, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Neurosciences Institute, Stanford, CA, USA.
| |
Collapse
|
48
|
Rhodes SD, Yang H, Dong R, Menon K, He Y, Li Z, Chen S, Staser KW, Jiang L, Wu X, Yang X, Peng X, Mohammad KS, Guise TA, Xu M, Yang FC. Nf1 Haploinsufficiency Alters Myeloid Lineage Commitment and Function, Leading to Deranged Skeletal Homeostasis. J Bone Miner Res 2015; 30:1840-51. [PMID: 25917016 PMCID: PMC5441523 DOI: 10.1002/jbmr.2538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.
Collapse
Affiliation(s)
- Steven D. Rhodes
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hao Yang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ruizhi Dong
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keshav Menon
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yongzheng He
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhaomin Li
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Shi Chen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Karl W. Staser
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Li Jiang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaohua Wu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xianlin Yang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xianghong Peng
- Endocrinology and Metabolism, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Khalid S. Mohammad
- Endocrinology and Metabolism, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theresa A. Guise
- Endocrinology and Metabolism, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mingjiang Xu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Feng-Chun Yang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
49
|
Georgess D, Machuca-Gayet I, Blangy A, Jurdic P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adh Migr 2015; 8:191-204. [PMID: 24714644 DOI: 10.4161/cam.27840] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Irma Machuca-Gayet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Anne Blangy
- Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier University; Montpellier, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| |
Collapse
|
50
|
Secretion of PDGF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs. Biochem Biophys Res Commun 2015; 462:159-64. [PMID: 25951977 DOI: 10.1016/j.bbrc.2015.04.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
In an attempt to identify secretory products of osteoclasts that mediate the coupling of bone formation to resorption, we found that along with osteoclast differentiation, PDGF-A gene expression increase occurred first, by 12 h after stimulation of bone marrow macrophages with M-CSF and RANKL, and peaked at 36 h. This was next followed by a progressive increase in PDGF-B gene expression until a peak at 60 h, when mature osteoclasts formed. Isoform-specific ELISA of the conditioned medium collected every 24 h revealed that all three of the isoforms of PDGF-AA, AB and BB were secreted, in this temporal order as differentiation proceeded. Their secretion was enhanced when osteoclasts were activated by placing them on dentin slices. The secretion of all three isoforms was decreased in cathepsin K-deficient osteoclasts compared with wild-type osteoclasts. Pharmacological inhibition of cathepsin K with odanacatib also inhibited the secretion of all three isoforms, as was also the case with alendronate treatment. The secretion of sphingosine-1-phosphate, which increased during osteoclastogenesis, was reduced from cathepsin K-deficient osteoclasts, and was inhibited by treatment with odanacatib more profoundly than with alendronate. Thus, all three isoforms of PDGF, which are secreted at distinct differentiation stages of osteoclasts, appear to have distinct roles in the cell-cell communication that takes place in the microenvironment of bone remodeling, especially from the osteoclast lineage to mesenchymal cells and vascular cells, thereby stimulating osteogenesis and angiogenesis.
Collapse
|