1
|
Asmare N, Arifuzzman AKM, Wang N, Boya M, Liu R, Sarioglu AF. High throughput cell stiffness measurement via multiplexed impedance sensors. Biosens Bioelectron 2025; 273:117158. [PMID: 39848001 DOI: 10.1016/j.bios.2025.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
Since physiological and pathological events change the mechanical properties of cells, tools that rapidly quantify such changes at the single-cell level can advance the utility of cell mechanics as a label-free biomarker. We demonstrate the capability to probe the population-level elastic modulus and fluidity of MDA-MB-231 cells at a throughput of up to 50 cell/second within a portable microchip. Our sensing scheme adapts a code multiplexing scheme to implement a distributed network of sensors throughout the microchip, thereby compressing all sensing events into a single electrical output. To validate our approach, we prepared cell samples whose stiffnesses were manipulated with chemical agents. We confirmed the expected effect of the chemicals agreed with the stiffness measurements reported by our microchip. Such a low-cost electronic assay that rapidly measures mechanical properties enables previously infeasible studies to advance the science of mechanobiology.
Collapse
Affiliation(s)
- Norh Asmare
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - A K M Arifuzzman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ningquan Wang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mert Boya
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - A Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
2
|
Vaiani L, Uva AE, Boccaccio A. Lattice Models: Non-Conventional simulation methods for mechanobiology. J Biomech 2025; 181:112555. [PMID: 39892284 DOI: 10.1016/j.jbiomech.2025.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Computational methods represent a powerful tool to explore biophysical phenomena occurring at small scales and hence difficult to observe through experimental setups. In detail, they can provide a support to mechanobiology, with the aim of understanding the behavior of living cells interacting with the surrounding environment. To this end, lattice models can provide a simulation framework that is highly reliable and easy to implement, even for simulations involving large deformations and topological changes during time evolution. In this review article, elastic network models for studying biological molecules are described, several lattice spring models for investigating cell behaviors are discussed, and the adoption of lattice beam models for biomimetic structures design is presented. The lattice modelling approaches could be regarded as a valuable option to conduct in-silico experiments and consolidate the emergent mechanobiology research field.
Collapse
Affiliation(s)
- Lorenzo Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italy.
| | - Antonio Emmanuele Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
3
|
Sun Y, Wu X, Li J, Verma CS, Yu J, Miserez A. Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering. J Am Chem Soc 2025; 147:4284-4295. [PMID: 39864072 DOI: 10.1021/jacs.4c14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell. In this study, we designed histidine-rich peptides consisting of modular sequences in which we systematically incorporate cationic, anionic, or aromatic residues at specific positions along the sequence in order to modulate intermolecular interactions and the resulting coacervation stability. We show that cation-π interactions between arginine and aromatic side chains are particularly efficient in stabilizing complex coacervates, and these interactions can be disrupted in the protein-rich intracellular environment, triggering the disassembly of complex coacervates followed by cargo release. With the additional grafting of a disulfide-based self-immolative side chain, these complex coacervates exhibited enhanced stability and could deliver proteins, mRNA, and CRISPR/Cas9 genome editing tools with tunable release kinetics into cells. This capability extends to challenging cell types, such as macrophages. Our study highlights the critical role of cation-π interactions in the design of peptide-based coacervates, expanding the biomedical and biotechnology potential of this emerging intracellular delivery platform.
Collapse
Affiliation(s)
- Yue Sun
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xi Wu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jianguo Li
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Chandra Shekhar Verma
- Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jing Yu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
4
|
Xia C, Hu J, Zhou K, Li Y, Yuan S, Li Q. Theoretical and Experimental Studies of the Dynamic Damage of Endothelial Cellular Networks Under Ultrasound Cavitation. Cell Mol Bioeng 2025; 18:15-28. [PMID: 39949493 PMCID: PMC11813858 DOI: 10.1007/s12195-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/17/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction The interaction between endothelial cells can regulate hemostasis, vasodilation, as well as immune and inflammatory responses. Excessive loading on the endothelial cells leads to endothelial damage and endothelial barrier dysfunction. Understanding and mastering the dynamic nature of cell-cell rupture plays a crucial role in exploring the practical applications related to tumor destruction, vascular remodeling, and drug delivery by employing cavitation-induced damage to soft tissues. Methods To investigate the damage mechanisms of endothelial cellular networks under ultrasound cavitation, we developed a model of junction rupture in cellular networks based on the assumption that the process of intercellular rupture is irreversible when ultrasound-mediated forces exceed the damage threshold, whereas intercellular junctions have reversible behavior before rupture. Simulations using the strain accumulation method show that stress and strain exhibit complex nonlinear dynamic behavior. Ultrasonic cavitation damage was tested and evaluated on human umbilical vein endothelial cells. Results The results indicated that the cellular network damage was positively correlated with force amplitude and pulse frequency and was negatively correlated with driving frequency. The time lag and the internal force of cellular junctions have an important influence on the resistance to damage of the cellular network due to external forces. The damage experiment based on ultrasonic cavitation confirmed the effectiveness of the proposed model. Conclusions The model provided a platform for understanding the damage mechanism of endothelial tissues and ultimately improving options for their prevention and treatment.
Collapse
Affiliation(s)
- Chuangjian Xia
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Kun Zhou
- Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Yingjie Li
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Sha Yuan
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
- School of Electrical Engineering, University of South China, Hengyang, 421001 China
| | - Qinlin Li
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
- School of Electrical Engineering, University of South China, Hengyang, 421001 China
| |
Collapse
|
5
|
Wang X, Cai W, Liang T, Li H, Gu Y, Wei X, Zhang H, Yang X. The matrix stiffness is increased in the eutopic endometrium of adenomyosis patients: a study based on atomic force microscopy and histochemistry. Eur J Histochem 2024; 68:4131. [PMID: 39629520 PMCID: PMC11694501 DOI: 10.4081/ejh.2024.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Previous ultrasound studies suggest that patients with adenomyosis (AM) exhibit increased uterine cavity stiffness, although direct evidence regarding extracellular matrix (ECM) content and its specific impact on endometrial stiffness remains limited. This study utilized atomic force microscopy to directly measure endometrial stiffness and collagen morphology, enabling a detailed analysis of the endometrium's mechanical properties: through this approach, we established direct evidence of increased endometrial stiffness and fibrosis in patients with AM. Endometrial specimens were also stained with Picrosirius red or Masson's trichrome to quantify fibrosis, and additional analyses assessed α-SMA and Ki-67 expression. Studies indicate that pathological conditions significantly influence the mechanical properties of endometrial tissue. Specifically, adenomyotic endometrial tissue demonstrates increased stiffness, associated with elevated ECM and fibrosis content, whereas normal endometrial samples are softer with lower ECM content. AM appears to alter both the mechanical and histological characteristics of the eutopic endometrium. Higher ECM content may significantly impact endometrial mechanical properties, potentially contributing to AM-associated decidualization defects and fertility challenges.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Wenbin Cai
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Ting Liang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Hui Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Yingjie Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Xiaojiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| |
Collapse
|
6
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
7
|
Li J, Bo L, Li T, Zhao P, Du Y, Cai B, Shen L, Sun W, Zhou W, Tian Z. Wireless Frequency-Multiplexed Acoustic Array-based Acoustofluidics. ADVANCED MATERIALS TECHNOLOGIES 2024; 9:2400572. [PMID: 39906904 PMCID: PMC11790274 DOI: 10.1002/admt.202400572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Indexed: 02/06/2025]
Abstract
Acoustofluidics has shown great potential in enabling on-chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on-demand liquid sample processing and micro/nano-object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in-droplet particles. To enable these functions, our wireless acoustofluidic chips leverage mechanisms, including inductive coupling-based wireless power transfer (WPT), frequency multiplexing-based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (e.g., bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, our wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in-droplet microparticles. We anticipate this research to facilitate the development of embeddable wireless on-chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications.
Collapse
Affiliation(s)
- Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Penghui Zhao
- Department of Biological System Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Yingshan Du
- Department of Biomedical Engineering and Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Bowen Cai
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Liang Shen
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Wujin Sun
- Department of Biological System Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Wei Zhou
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| |
Collapse
|
8
|
Li T, Cheburkanov V, Yakovlev VV, Agarwal GS, Scully MO. Harnessing quantum light for microscopic biomechanical imaging of cells and tissues. Proc Natl Acad Sci U S A 2024; 121:e2413938121. [PMID: 39480851 PMCID: PMC11551316 DOI: 10.1073/pnas.2413938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
The biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photodamage and photobleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge. This article introduces a transformative approach designed to mitigate photodamage in biological and biomedical studies, enabling nondestructive, label-free assessments of mechanical properties in live biological samples. By leveraging quantum-light-enhanced stimulated Brillouin scattering (SBS) imaging contrast, the signal-to-noise ratio is significantly elevated, thereby increasing sample viability and extending interrogation times without compromising the integrity of living samples. The tangible impact of this methodology is evidenced by a notable three-fold increase in sample viability observed after subjecting the samples to three hours of continuous squeezed-light illumination, surpassing the traditional coherent light-based approaches. The quantum-enhanced SBS imaging holds promise across diverse fields, such as cancer biology and neuroscience where preserving sample vitality is of paramount significance. By mitigating concerns regarding photodamage and photobleaching associated with high-intensity lasers, this technological breakthrough expands our horizons for exploring the mechanical properties of live biological systems, paving the way for an era of research and clinical applications.
Collapse
Affiliation(s)
- Tian Li
- Department of Chemistry and Physics, The University of Tennessee, Chattanooga, TN37403
- The University of Tennessee Research Institute, The University of Tennessee, Chattanooga, TN37403
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
| | - Girish S. Agarwal
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX77843
| | - Marlan O. Scully
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
| |
Collapse
|
9
|
Kim J, Won C, Ham S, Han H, Shin S, Jang J, Lee S, Kwon C, Cho S, Park H, Lee D, Lee WJ, Lee T, Lee JH. Increased Susceptibility to Mechanical Stretch Drives the Persistence of Keloid Fibroblasts: An Investigation Using a Stretchable PDMS Platform. Biomedicines 2024; 12:2169. [PMID: 39457482 PMCID: PMC11504861 DOI: 10.3390/biomedicines12102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Keloids are a common fibrotic disease of the skin, with the pathological hallmark of excessive extracellular matrix synthesis due to abnormal fibroblast activity. Since keloids clinically arise in areas of high mechanical tension, the mechanotransductory pathway may be attributed to its pathogenesis. We aimed to establish a preclinical platform to elucidate the underlying mechanism of keloid development and its clinical persistence. METHODS We fabricated a mechanically stretchable polydimethylsiloxane cell culture platform; with its mimicry of the in vivo cyclic stretch of skeletal muscles, cells showed higher proliferation compared with conventional modalities. RESULTS In response to mechanical strain, TGF-β and type 1 collagen showed significant increases, suggesting possible TGF-β/Smad pathway activation via mechanical stimulation. Protein candidates selected by proteomic analysis were evaluated, indicating that key molecules involved in cell signaling and oxidative stress were significantly altered. Additionally, the cytoskeletal network of keloid fibroblasts showed increased expression of its components after periodic mechanical stimulation. CONCLUSIONS Herein, we demonstrated and validated the existing body of knowledge regarding profibrotic mechanotransduction signaling pathways in keloid fibroblasts. Cyclic stretch, as a driving force, could help to decipher the tension-mediated biomechanical processes, leading to the development of optimized therapeutic targets.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Seoyoon Ham
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Heetak Han
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungsik Shin
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Jieun Jang
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Sanghyeon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Chaebeen Kwon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungjoon Cho
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Hyeonjoo Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Dongwon Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Ju Hee Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| |
Collapse
|
10
|
Diaferia C, Gallo E, Cimmino L, Laurenzi V, De Marco A, Morelli G, Stornaiuolo M, Accardo A. Fluorescence of Aggregated Aromatic Peptides for Studying the Kinetics of Aggregation and Hardening of Amyloid-like Structures. Chemistry 2024; 30:e202401998. [PMID: 38962903 DOI: 10.1002/chem.202401998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The capability of amyloid-like peptide fibers to emit intrinsic-fluorescence enables the study of their formation, stability and hardening through time-resolved fluorescence analysis, without the need for additional intercalating dyes. This approach allows the monitoring of amyloid-like peptides aggregation kinetics using minimal sample volumes, and the simultaneous testing of numerous experimental conditions and analytes, offering rapid and reproducible results. The analytical procedure applied to the aromatic hexapeptide F6, alone or derivatized with PEG (polyethylene glycol) moiety of different lengths, suggests that aggregation into large anisotropic structures negatively correlates with initial monomer concentration and relies on the presence of charged N- and C-termini. PEGylation reduces the extent of aggregates hardening, possibly by retaining water, and overall impacts the final structural properties of the aggregates.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, Naples, 80143, Italy
| | - Luca Cimmino
- IRCCS SYNLAB SDN, Via Gianturco 113, Naples, 80143, Italy
| | - Valentina Laurenzi
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Agostino De Marco
- Department of Industrial Engineering - Aerospace Division, University of Naples "Federico II", Via Claudio 21, 80125, Napoli, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, University of Naples "Federico II", CIRPeB "Carlo Pedone", Via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
11
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell RH. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. Dev Dyn 2024; 253:846-858. [PMID: 38501709 PMCID: PMC11411014 DOI: 10.1002/dvdy.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. RESULTS We demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent reduction of ventral neuroepithelial stiffness in a notochord adjacent area at the level of the rhombomere 5. The formation of cranial and paravertebral ganglia is also impaired in these embryos. CONCLUSIONS This study reveals that hypoplastic hindbrain development, identified by abnormal rhombomere morphology and persistent loss of ventral neuroepithelial stiffness, precedes exencephaly in Fuz ablated murine mutants, indicating that the gene Fuz has a critical function sustaining normal neural tube development and neuronal differentiation.
Collapse
Affiliation(s)
- Carlo Donato Caiaffa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Bogdan Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Salavat R. Aglyamov
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Hilai K, Grubich D, Akrawi M, Zhu H, Zaghloul R, Shi C, Do M, Zhu D, Zhang J. Mechanical evolution of metastatic cancer cells in three-dimensional microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601015. [PMID: 39005477 PMCID: PMC11244934 DOI: 10.1101/2024.06.27.601015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cellular biomechanics plays critical roles in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells' behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, we utilize optical Brillouin microscopy to longitudinally acquire mechanical images of growing cancerous spheroids over the period of eight days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, we demonstrate that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, we have developed a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images, suggesting the mechanical features of cancer cells could potentially serve as a new biomarker in cancer classification and detection.
Collapse
Affiliation(s)
- Karlin Hilai
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Daniil Grubich
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Marcus Akrawi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Hui Zhu
- Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA
| | - Razanne Zaghloul
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Man Do
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University, Detroit, MI, 48202, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
13
|
Chang Z, Li LY, Shi ZJ, Liu W, Xu GK. Beyond stiffness: Multiscale viscoelastic features as biomechanical markers for assessing cell types and states. Biophys J 2024; 123:1869-1881. [PMID: 38835167 PMCID: PMC11267428 DOI: 10.1016/j.bpj.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cell mechanics are pivotal in regulating cellular activities, diseases progression, and cancer development. However, the understanding of how cellular viscoelastic properties vary in physiological and pathological stimuli remains scarce. Here, we develop a hybrid self-similar hierarchical theory-microrheology approach to accurately and efficiently characterize cellular viscoelasticity. Focusing on two key cell types associated with livers fibrosis-the capillarized liver sinusoidal endothelial cells and activated hepatic stellate cells-we uncover a universal two-stage power-law rheology characterized by two distinct exponents, αshort and αlong. The mechanical profiles derived from both exponents exhibit significant potential for discriminating among diverse cells. This finding suggests a potential common dynamic creep characteristic across biological systems, extending our earlier observations in soft tissues. Using a tailored hierarchical model for cellular mechanical structures, we discern significant variations in the viscoelastic properties and their distribution profiles across different cell types and states from the cytoplasm (elastic stiffness E1 and viscosity η), to a single cytoskeleton fiber (elastic stiffness E2), and then to the cell level (transverse expansion stiffness E3). Importantly, we construct a logistic-regression-based machine-learning model using the dynamic parameters that outperforms conventional cell-stiffness-based classifiers in assessing cell states, achieving an area under the curve of 97% vs. 78%. Our findings not only advance a robust framework for monitoring intricate cell dynamics but also highlight the crucial role of cellular viscoelasticity in discerning cell states across a spectrum of liver diseases and prognosis, offering new avenues for developing diagnostic and therapeutic strategies based on cellular viscoelasticity.
Collapse
Affiliation(s)
- Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li-Ya Li
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Jun Shi
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
14
|
Tang K, Cui X. A Review on Investigating the Interactions between Nanoparticles and the Pulmonary Surfactant Monolayer with Coarse-Grained Molecular Dynamics Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11829-11842. [PMID: 38809819 DOI: 10.1021/acs.langmuir.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pulmonary drug delivery has garnered significant attention due to its targeted local lung action, minimal toxic side effects, and high drug utilization. However, the physicochemical properties of inhaled nanoparticles (NPs) used as drug carriers can influence their interactions with the pulmonary surfactant (PS) monolayer, potentially altering the fate of the NPs and impairing the biophysical function of the PS monolayer. Thus, the objective of this review is to summarize how the physicochemical properties of NPs affect their interactions with the PS monolayer. Initially, the definition and properties of NPs, as well as the composition and characteristics of the PS monolayer, are introduced. Subsequently, the coarse-grained molecular dynamics (CGMD) simulation method for studying the interactions between NPs and the PS monolayer is presented. Finally, the implications of the hydrophobicity, size, shape, surface charge, surface modification, and aggregation of NPs on their interactions with the PS monolayer and on the composition of biomolecular corona are discussed. In conclusion, gaining a deeper understanding of the effects of the physicochemical properties of NPs on their interactions with the PS monolayer will contribute to the development of safer and more effective nanomedicines for pulmonary drug delivery.
Collapse
Affiliation(s)
- Kailiang Tang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
16
|
Li T, Li J, Bo L, Bachman H, Fan B, Cheng J, Tian Z. Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation. SCIENCE ADVANCES 2024; 10:eadm7698. [PMID: 38787945 PMCID: PMC11122681 DOI: 10.1126/sciadv.adm7698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Robotic manipulation of small objects has shown great potential for engineering, biology, and chemistry research. However, existing robotic platforms have difficulty in achieving contactless, high-resolution, 4-degrees-of-freedom (4-DOF) manipulation of small objects, and noninvasive maneuvering of objects in regions shielded by tissue and bone barriers. Here, we present chirality-tunable acoustic vortex tweezers that can tune acoustic vortex chirality, transmit through biological barriers, trap single micro- to millimeter-sized objects, and control object rotation. Assisted by programmable robots, our acoustic systems further enable contactless, high-resolution translation of single objects. Our systems were demonstrated by tuning acoustic vortex chirality, controlling object rotation, and translating objects along arbitrary-shaped paths. Moreover, we used our systems to trap single objects in regions with tissue and skull barriers and translate an object inside a Y-shaped channel of a thick biomimetic phantom. In addition, we showed the function of ultrasound imaging-assisted acoustic manipulation by monitoring acoustic object manipulation via live ultrasound imaging.
Collapse
Affiliation(s)
- Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
17
|
Hang JT, Wang H, Wang BC, Xu GK. Anisotropic power-law viscoelasticity of living cells is dominated by cytoskeletal network structure. Acta Biomater 2024; 180:197-205. [PMID: 38599439 DOI: 10.1016/j.actbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
During physiological and pathological processes, cells experience significant morphological alterations with the re-arrangement of cytoskeletal filaments, resulting in anisotropic viscoelasticity. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. We investigate how cell shape affects its creep responses in longitudinal and perpendicular directions. It is shown that cells exhibit power-law rheological behavior in both longitudinal and perpendicular directions under step stress, with a more solid-like behavior along the longitudinal direction. We reveal that the cell volume and cytoskeletal filament orientation, which have been neglected in most existing models, play a critical role in regulating cellular anisotropic viscoelasticity. The stiffness of the cell in both directions increases linearly with increasing its aspect ratio, due to the decrease of cell volume. Moreover, the increase in the cell's aspect ratio produces the aggregation of cytoskeletal filaments along the longitudinal direction, resulting in higher stiffness in this direction. It is also shown that the increase in cell's aspect ratio corresponds to a process of cellular ordering, which can be quantitatively characterized by the orientational entropy of cytoskeletal filaments. In addition, we present a simple yet robust method to establish the relationship between cell's aspect ratio and cell volume, thus providing a theoretical framework to capture the anisotropic viscoelastic behavior of cells. This study suggests that the structure-based cell models may be further developed to investigate cellular rheological responses to external mechanical stimuli and may be extended to the tissue scale. STATEMENT OF SIGNIFICANCE: The viscoelastic behaviors of cells hold significant importance in comprehending the roles of mechanical forces in embryo development, invasion, and metastasis of cancer cells. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. Our study highlights the crucial role of previously neglected factors, such as cell volume and cytoskeletal filament orientation, in regulating cellular anisotropic viscoelasticity. We further propose an orientational entropy of cytoskeletal filaments to quantitatively characterize the ordering process of cells with increasing aspect ratios. Moreover, we derived the analytical interrelationships between cell aspect ratio, cell stiffness, cell volume, and cytoskeletal fiber orientation. This study provides a theoretical framework to describe the anisotropic viscoelastic mechanical behavior of cells.
Collapse
Affiliation(s)
- Jiu-Tao Hang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huan Wang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bi-Cong Wang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
18
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
19
|
Prieto ML, Maduke M. Towards an ion-channel-centric approach to ultrasound neuromodulation. Curr Opin Behav Sci 2024; 56:101355. [PMID: 38505510 PMCID: PMC10947167 DOI: 10.1016/j.cobeha.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Ultrasound neuromodulation is a promising technology that could revolutionize study and treatment of brain conditions ranging from mood disorders to Alzheimer's disease and stroke. An understanding of how ultrasound directly modulates specific ion channels could provide a roadmap for targeting specific neurological circuits and achieving desired neurophysiological outcomes. Although experimental challenges make it difficult to unambiguously identify which ion channels are sensitive to ultrasound in vivo, recent progress indicates that there are likely several different ion channels involved, including members of the K2P, Piezo, and TRP channel families. A recent result linking TRPM2 channels in the hypothalamus to induction of torpor by ultrasound in rodents demonstrates the feasibility of targeting a specific ion channel in a specific population of neurons.
Collapse
Affiliation(s)
- Martin Loynaz Prieto
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B151 Beckman Center, Stanford, CA 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B155 Beckman Center, Stanford, CA 94305
| |
Collapse
|
20
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
21
|
Kabakova I, Zhang J, Xiang Y, Caponi S, Bilenca A, Guck J, Scarcelli G. Brillouin microscopy. NATURE REVIEWS. METHODS PRIMERS 2024; 4:8. [PMID: 39391288 PMCID: PMC11465583 DOI: 10.1038/s43586-023-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 10/12/2024]
Abstract
The field of Brillouin microscopy and imaging was established approximately 20 years ago, thanks to the development of non-scanning high-resolution optical spectrometers. Since then, the field has experienced rapid expansion, incorporating technologies from telecommunications, astrophotonics, multiplexed microscopy, quantum optics and machine learning. Consequently, these advancements have led to much-needed improvements in imaging speed, spectral resolution and sensitivity. The progress in Brillouin microscopy is driven by a strong demand for label-free and contact-free methods to characterize the mechanical properties of biomaterials at the cellular and subcellular scales. Understanding the local biomechanics of cells and tissues has become crucial in predicting cellular fate and tissue pathogenesis. This Primer aims to provide a comprehensive overview of the methods and applications of Brillouin microscopy. It includes key demonstrations of Brillouin microscopy and imaging that can serve as a reference for the existing research community and new adopters of this technology. The article concludes with an outlook, presenting the authors' vision for future developments in this vibrant field. The Primer also highlights specific examples where Brillouin microscopy can have a transformative impact on biology and biomedicine.
Collapse
Affiliation(s)
- Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yuchen Xiang
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Silvia Caponi
- Istituto Officina dei Materiali–National Research Council (IOM-CNR)–Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
22
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Anvari K, Avan A. Nanotechnological Advances in the Diagnosis of Gynecological Cancers and Nanotheranostics. Curr Pharm Des 2024; 30:2619-2630. [PMID: 39021196 DOI: 10.2174/0113816128317605240628063731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
23
|
Lin Y, Cheng Q, Wei T. Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond. BIOPHYSICS REPORTS 2023; 9:255-278. [PMID: 38516300 PMCID: PMC10951480 DOI: 10.52601/bpr.2023.230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 03/23/2024] Open
Abstract
Harnessing surface engineering strategies to functionalize nucleic acid-lipid nanoparticles (LNPs) for improved performance has been a hot research topic since the approval of the first siRNA drug, patisiran, and two mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273. Currently, efforts have been mainly made to construct targeted LNPs for organ- or cell-type-specific delivery of nucleic acid drugs by conjugation with various types of ligands. In this review, we describe the surface engineering strategies for nucleic acid-LNPs, considering ligand types, conjugation chemistries, and incorporation methods. We then outline the general purification and characterization techniques that are frequently used following the engineering step and emphasize the specific techniques for certain types of ligands. Next, we comprehensively summarize the currently accessible organs and cell types, as well as the other applications of the engineered LNPs. Finally, we provide considerations for formulating targeted LNPs and discuss the challenges of successfully translating the "proof of concept" from the laboratory into the clinic. We believe that addressing these challenges could accelerate the development of surface-engineered LNPs for targeted nucleic acid delivery and beyond.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell R. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552068. [PMID: 37577618 PMCID: PMC10418252 DOI: 10.1101/2023.08.04.552068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The formation of the brain and spinal cord is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Convergent and extension movements transforms a flat sheet of ectodermal cells into a narrow and elongated line of neuroepithelia, while a major source of Sonic Hedgehog signaling from the notochord induces the overlying neuroepithelial cells to form two apposed neural folds. Afterward, neural tube closure occurs by synchronized coordination of the surface ectoderm and adjacent neuroepithelial walls at specific axial regions known as neuropores. Environmental or genetic interferences can impair neurulation resulting in neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, which is a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. In this work, we demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent loss of ventral neuroepithelial stiffness, in a notochord adjacent area at the level of the rhombomere 5, preceding the development of exencephaly in Fuz ablated mutants. The formation of cranial and paravertebral ganglia is also impaired in these embryos, indicating that Fuz has a critical function sustaining normal neural tube development and neuronal differentiation. SIGNIFICANCE STATEMENT Neural tube defects (NTDs) are a common cause of disability in children, representing the second most common congenital structural malformation in humans following only congenital cardiovascular malformations. NTDs affect approximately 1 to 2 pregnancies per 1000 births every year worldwide, when the mechanical forces folding the neural plate fails to close at specific neuropores located anteriorly (cranial) or posteriorly (caudal) along the neural tube, in a process known as neurulation, which happens throughout the third and fourth weeks of human pregnancy.
Collapse
|
25
|
Baumli P, Liu C, Bekčić A, Fuller GG. The Role of Membrane-Tethered Mucins in Axial Epithelial Adhesion in Controlled Normal Stress Environments. Adv Biol (Weinh) 2023; 7:e2300043. [PMID: 37271859 DOI: 10.1002/adbi.202300043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/08/2023] [Indexed: 06/06/2023]
Abstract
The collective adhesive behavior of epithelial cell layers mediated by complex macromolecular fluid environments plays a vital role in many biological processes. Mucins, a family of highly glycosylated proteins, are known to lubricate cell-on-cell contacts in the shear direction. However, the role of mucins mediating axial epithelial adhesion in the direction perpendicular to the plane of the cell sheet has received less attention. This article subjects cell-on-cell layers of live ocular epithelia that express mucins on their apical surfaces to compression/decompression cycles and tensile loading using a customized instrument. In addition to providing compressive moduli of native cell-on-cell layers, it is found that the mucin layer between the epithelia acts as a soft cushion between the epithelial cell layers. Decompression experiments reveal mucin layers act as soft, nonlinear springs in the axial direction. The cell-on-cell layers withstand decompression before fracturing by a cohesive failure within the mucin layer. When mucin deficiency is induced via a protease treatment, it is found that the axial adhesion between the cell layers is increased. The findings which correlate changes in biological factors with changes in mechanical properties might be of interest to challenges in ophthalmology, vision care, and mucus research.
Collapse
Affiliation(s)
- Philipp Baumli
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Chunzi Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aleksandar Bekčić
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
26
|
Gu Y, Zhang C, Zhang Y, Tan W, Yu X, Zhang T, Liu L, Zhao Y, Hao L. A Review of the Development and Challenges of Cell Mechanical Models. IEEE Trans Nanobioscience 2023; 22:673-684. [PMID: 37018687 DOI: 10.1109/tnb.2023.3235868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell models can express a variety of cell information, including mechanical properties, electrical properties, and chemical properties. Through the analysis of these properties, we can fully understand the physiological state of cells. As such, cell modeling has gradually become a topic of great interest, and a number of cell models have been established over the last few decades. In this paper, the development of various cell mechanical models has been systematically reviewed. First, continuum theoretical models, which were established by ignoring cell structures, are summarized, including the cortical membrane droplet model, solid model, power series structure damping model, multiphase model, and finite element model. Next, microstructural models based on the structure and function of cells are summarized, including the tension integration model, porous solid model, hinged cable net model, porous elastic model, energy dissipation model, and muscle model. What's more, from multiple viewpoints, the strengths and weaknesses of each cell mechanical model have been analyzed in detail. Finally, the potential challenges and applications in the development of cell mechanical models are discussed. This paper contributes to the development of different fields, such as biological cytology, drug therapy, and bio-syncretic robots.
Collapse
|
27
|
Domínguez-García P, Pinto JR, Akrap A, Jeney S. Micro-mechanical response and power-law exponents from the longitudinal fluctuations of F-actin solutions. SOFT MATTER 2023; 19:3652-3660. [PMID: 37165665 PMCID: PMC10208217 DOI: 10.1039/d2sm01445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
We investigate the local fluctuations of filamentous actin (F-actin), with a focus on the skeletal thin filament, using single-particle optical trapping interferometry. This experimental technique allows us to detect the Brownian motion of a tracer bead immersed in a complex fluid with nanometric resolution at the microsecond time-scale. The mean square displacement, loss modulus, and velocity autocorrelation function (VAF) of the trapped microprobes in the fluid follow power-law behaviors, whose exponents can be determined in the short-time/high-frequency regime over several decades. We obtain 7/8 subdiffusive power-law exponents for polystyrene depleted microtracers at low optical trapping forces. Microrheologically, the elastic modulus of these suspensions is observed to be constant up to the limit of high frequencies, confirming that the origin of this subdiffusive exponent is the local longitudinal fluctuations of the polymers. Deviations from this value are measured and discussed in relation to the characteristic length scales of these F-actin networks and probes' properties, and also in connection with the different power-law exponents detected in the VAFs. Finally, we observed that the thin filament, composed of tropomyosin (Tm) and troponin (Tn) coupled to F-actin in the presence of Ca2+, shows exponent values less dispersed than that of F-actin alone, which we interpret as a micro-measurement of the filament stabilization.
Collapse
Affiliation(s)
- Pablo Domínguez-García
- Dep. Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain.
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Florida, USA
| | - Ana Akrap
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Sylvia Jeney
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
28
|
Akcay G, Luttge R. Microenvironments Matter: Advances in Brain-on-Chip. BIOSENSORS 2023; 13:551. [PMID: 37232912 PMCID: PMC10216565 DOI: 10.3390/bios13050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
To highlight the particular needs with respect to modeling the unique and complex organization of the human brain structure, we reviewed the state-of-the-art in devising brain models with engineered instructive microenvironments. To acquire a better perspective on the brain's working mechanisms, we first summarize the importance of regional stiffness gradients in brain tissue, varying per layer and the cellular diversities of the layers. Through this, one can acquire an understanding of the essential parameters in emulating the brain in vitro. In addition to the brain's organizational architecture, we addressed also how the mechanical properties have an impact on neuronal cell responses. In this respect, advanced in vitro platforms emerged and profoundly changed the methods of brain modeling efforts from the past, mainly focusing on animal or cell line research. The main challenges in imitating features of the brain in a dish are with regard to composition and functionality. In neurobiological research, there are now methods that aim to cope with such challenges by the self-assembly of human-derived pluripotent stem cells (hPSCs), i.e., brainoids. Alternatively, these brainoids can be used stand-alone or in conjunction with Brain-on-Chip (BoC) platform technology, 3D-printed gels, and other types of engineered guidance features. Currently, advanced in vitro methods have made a giant leap forward regarding cost-effectiveness, ease-of-use, and availability. We bring these recent developments together into one review. We believe our conclusions will give a novel perspective towards advancing instructive microenvironments for BoCs and the understanding of the brain's cellular functions either in modeling healthy or diseased states of the brain.
Collapse
Affiliation(s)
- Gulden Akcay
- Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Regina Luttge
- Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
- Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Zhang J, Nikolic M, Tanner K, Scarcelli G. Rapid biomechanical imaging at low irradiation level via dual line-scanning Brillouin microscopy. Nat Methods 2023; 20:677-681. [PMID: 36894684 PMCID: PMC10363327 DOI: 10.1038/s41592-023-01816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Brillouin microscopy is a technique for mechanical characterization of biological material without contact at high three-dimensional resolution. Here, we introduce dual line-scanning Brillouin microscopy (dLSBM), which improves acquisition speed and reduces irradiation dose by more than one order of magnitude with selective illumination and single-shot analysis of hundreds of points along the incident beam axis. Using tumor spheroids, we demonstrate the ability to capture the sample response to rapid mechanical perturbations as well as the spatially resolved evolution of the mechanical properties in growing spheroids.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| | - Milos Nikolic
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA.
| |
Collapse
|
30
|
Shi C, Zhang H, Zhang J. Non-contact and label-free biomechanical imaging: Stimulated Brillouin microscopy and beyond. FRONTIERS IN PHYSICS 2023; 11:1175653. [PMID: 37377499 PMCID: PMC10299794 DOI: 10.3389/fphy.2023.1175653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Brillouin microscopy based on spontaneous Brillouin scattering has emerged as a unique elastography technique because of its merit of non-contact, label-free, and high-resolution mechanical imaging of biological cell and tissue. Recently, several new optical modalities based on stimulated Brillouin scattering have been developed for biomechanical research. As the scattering efficiency of the stimulated process is much higher than its counterpart in the spontaneous process, stimulated Brillouin-based methods have the potential to significantly improve the speed and spectral resolution of existing Brillouin microscopy. Here, we review the ongoing technological advancements of three methods, including continuous wave stimulated Brillouin microscopy, impulsive stimulated Brillouin microscopy, and laser-induced picosecond ultrasonics. We describe the physical principle, the representative instrumentation, and biological application of each method. We further discuss the current limitations as well as the challenges for translating these methods into a visible biomedical instrument for biophysics and mechanobiology.
Collapse
Affiliation(s)
- Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Hongyuan Zhang
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| |
Collapse
|
31
|
Wedrich K, Cherkasova V, Platl V, Fröhlich T, Strehle S. Stiffness Considerations for a MEMS-Based Weighing Cell. SENSORS (BASEL, SWITZERLAND) 2023; 23:3342. [PMID: 36992053 PMCID: PMC10054818 DOI: 10.3390/s23063342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this paper, a miniaturized weighing cell that is based on a micro-electro-mechanical-system (MEMS) is discussed. The MEMS-based weighing cell is inspired by macroscopic electromagnetic force compensation (EMFC) weighing cells and one of the crucial system parameters, the stiffness, is analyzed. The system stiffness in the direction of motion is first analytically evaluated using a rigid body approach and then also numerically modeled using the finite element method for comparison purposes. First prototypes of MEMS-based weighing cells were successfully microfabricated and the occurring fabrication-based system characteristics were considered in the overall system evaluation. The stiffness of the MEMS-based weighing cells was experimentally determined by using a static approach based on force-displacement measurements. Considering the geometry parameters of the microfabricated weighing cells, the measured stiffness values fit to the calculated stiffness values with a deviation from -6.7 to 3.8% depending on the microsystem under test. Based on our results, we demonstrate that MEMS-based weighing cells can be successfully fabricated with the proposed process and in principle be used for high-precision force measurements in the future. Nevertheless, improved system designs and read-out strategies are still required.
Collapse
Affiliation(s)
- Karin Wedrich
- Microsystems Technology Group, Institute of Micro- and Nanotechnologies MacroNano, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany;
| | - Valeriya Cherkasova
- Force Measurement and Weighing Technology Group, Institute of Process Measurement and Sensor Technology, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 1, 98693 Ilmenau, Germany
| | - Vivien Platl
- Mechanics of Compliant Systems Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany
| | - Thomas Fröhlich
- Force Measurement and Weighing Technology Group, Institute of Process Measurement and Sensor Technology, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 1, 98693 Ilmenau, Germany
| | - Steffen Strehle
- Microsystems Technology Group, Institute of Micro- and Nanotechnologies MacroNano, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany;
| |
Collapse
|
32
|
Zhu X, Qin R, Qu K, Wang Z, Zhao X, Xu W. Atomic force microscopy-based assessment of multimechanical cellular properties for classification of graded bladder cancer cells and cancer early diagnosis using machine learning analysis. Acta Biomater 2023; 158:358-373. [PMID: 36581006 DOI: 10.1016/j.actbio.2022.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Cellular mechanical properties (CMPs) have been frequently reported as biomarkers for cell cancerization to assist objective cytology, compared to the current subjective method dependent on cytomorphology. However, single or dual CMPs cannot always successfully distinguish every kind of malignant cell from its benign counterpart. In this work, we extract 4 CMPs of four different graded bladder cancer (BC) cell lines by AFM (atomic force microscopy)-based nanoindentation to generate a CMP database, which is used to train a cancerization-grade classifier by machine learning. The classifier is tested on 4 categories of BC cells at different cancer grades. The classification shows split-independent robustness and an accuracy of 91.25% with an AUC-ROC (ROC stands for receiver operating characteristic, and ROC curve is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied) value of 97.98%. Finally, we also compare our proposed method with traditional invasive diagnosis and noninvasive cancer diagnosis relying on cytomorphology, in terms of accuracy, sensitivity and specificity. Unlike former studies focusing on the discrimination between normal and cancerous cells, our study fulfills the classification of 4 graded cell lines at different cancerization stages, and thus provides a potential method for early detection of cancerization. STATEMENT OF SIGNIFICANCE: We measured four cellular mechanical properties (CMPs) of 4 graded bladder cancer (BC) cell lines using AFM (atomic force microscopy). We found that single or dual CMPs cannot fulfill the task of BC cell classification. Instead, we employ MLA (Machine Learning Algorithm)-based analysis whose inputs are BC CMPs. Compared with traditional cytomorphology-based prognoses, the non-invasive method proposed in this study has higher accuracy but with many fewer cellular properties as inputs. The proposed non-invasive prognosis is characterized with high sensitivity and specificity, and thus provides a potential tumor-grading means to identify cancer cells with different metastatic potential. Moreover, our study proposes an objective grading method based on quantitative characteristics desirable for avoiding misdiagnosis induced by ambiguous subjectivity.
Collapse
Affiliation(s)
- Xinyao Zhu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China.
| | - Rui Qin
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| | - Xuexia Zhao
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Wei Xu
- Faculty of Engineering and Physical Sciences, University of Surrey, Guilford GU2 7XH, UK
| |
Collapse
|
33
|
Park H, Wang W, Min SH, Ren Y, Shin K, Han X. Artificial organelles for sustainable chemical energy conversion and production in artificial cells: Artificial mitochondrion and chloroplasts. BIOPHYSICS REVIEWS 2023; 4:011311. [PMID: 38510162 PMCID: PMC10903398 DOI: 10.1063/5.0131071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Sustainable energy conversion modules are the main challenges for building complex reaction cascades in artificial cells. Recent advances in biotechnology have enabled this sustainable energy supply, especially the adenosine triphosphate (ATP), by mimicking the organelles, which are the core structures for energy conversion in living cells. Three components are mainly shared by the artificial organelles: the membrane compartment separating the inner and outer parts, membrane proteins for proton translocation, and the molecular rotary machine for ATP synthesis. Depending on the initiation factors, they are further categorized into artificial mitochondrion and artificial chloroplasts, which use chemical nutrients for oxidative phosphorylation and light for photosynthesis, respectively. In this review, we summarize the essential components needed for artificial organelles and then review the recent progress on two different artificial organelles. Recent strategies, purified and identified proteins, and working principles are discussed. With more study on the artificial mitochondrion and artificial chloroplasts, they are expected to be very powerful tools, allowing us to achieve complex cascading reactions in artificial cells, like the ones that happen in real cells.
Collapse
Affiliation(s)
- Hyun Park
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Weichen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Seo Hyeon Min
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, South Korea
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
34
|
Hareendranath S, Sathian SP. Dynamic response of red blood cells in health and disease. SOFT MATTER 2023; 19:1219-1230. [PMID: 36688330 DOI: 10.1039/d2sm01090a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The viscoelastic response of the red blood cells (RBCs) affected by hematological disorders become severely impaired by the altered biophysical and morphological properties. These include traits like reduced deformability, increased membrane viscosity, and change in cell shape, causing substantial changes in the overall hemodynamics. RBCs, by virtue of their highly elastic membrane and low bending rigidity, exhibit complex dynamics when exposed to cyclic, transient forces in the microcirculation. Here, we employ mesoscopic numerical simulations based on the dissipative particle dynamics (DPD) framework to explore the dynamics of healthy, schizont stage malaria-infected and type 2 diabetes mellitus affected RBCs subjected to external time-dependent loads. The paper focuses on the imposition and cessation of external forcing on the cells of two different typologies, saw-tooth cyclic wave loading and sudden loads in the form of creep and relaxation phenomena. The effects of varying the rate of stress and the applied stress magnitude were investigated. Our simulations disclosed unique shape transitions of the hysteresis curves at varied loading rates. A careful analysis reveals a critical threshold of half cycle time of the from wherein the deformation of all cells observed, healthy or otherwise, falls under the nearly reversible deformation regime displaying minimal energy dissipation. Finally, we also examined the individual effects of the different constitutive and geometric characteristics attributed to the pathological cells and observed interesting recovery dynamics of spherocytes and cells having high shear moduli. The distinguished deformation behaviour of healthy and diseased cells could establish external force as a valuable initial biomarker.
Collapse
Affiliation(s)
- Sainath Hareendranath
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Sarith P Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
35
|
Uthe B, Sader JE, Pelton M. Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:103001. [PMID: 36049471 DOI: 10.1088/1361-6633/ac8e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Standard continuum assumptions commonly used to describe the fluid mechanics of simple liquids have the potential to break down when considering flows at the nanometer scale. Two common assumptions for simple molecular liquids are that (1) they exhibit a Newtonian response, where the viscosity uniquely specifies the linear relationship between the stress and strain rate, and (2) the liquid moves in tandem with the solid at any solid-liquid interface, known as the no-slip condition. However, even simple molecular liquids can exhibit a non-Newtonian, viscoelastic response at the picosecond time scales that are characteristic of the motion of many nanoscale objects; this viscoelasticity arises because these time scales can be comparable to those of molecular relaxation in the liquid. In addition, even liquids that wet solid surfaces can exhibit nanometer-scale slip at those surfaces. It has recently become possible to interrogate the viscoelastic response of simple liquids and associated nanoscale slip using optical measurements of the mechanical vibrations of metal nanoparticles. Plasmon resonances in metal nanoparticles provide strong optical signals that can be accessed by several spectroscopies, most notably ultrafast transient-absorption spectroscopy. These spectroscopies have been used to measure the frequency and damping rate of acoustic oscillations in the nanoparticles, providing quantitative information about mechanical coupling and exchange of mechanical energy between the solid particle and its surrounding liquid. This information, in turn, has been used to elucidate the rheology of viscoelastic simple liquids at the nanoscale in terms of their constitutive relations, taking into account separate viscoelastic responses for both shear and compressible flows. The nanoparticle vibrations have also been used to provide quantitative measurements of slip lengths on the single-nanometer scale. Viscoelasticity has been shown to amplify nanoscale slip, illustrating the interplay between different aspects of the unconventional fluid dynamics of simple liquids at nanometer length scales and picosecond time scales.
Collapse
Affiliation(s)
- Brian Uthe
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, MD 21250, United States of America
| | - John E Sader
- School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
| | - Matthew Pelton
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, MD 21250, United States of America
| |
Collapse
|
36
|
Nikolić M, Scarcelli G, Tanner K. Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophys J 2022; 121:3586-3599. [PMID: 36059196 PMCID: PMC9617162 DOI: 10.1016/j.bpj.2022.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanical phenotype of the cell is critical for survival following deformations due to confinement and fluid flow. One idea is that cancer cells are plastic and adopt different mechanical phenotypes under different geometries that aid in their survival. Thus, an attractive goal is to disrupt cancer cells' ability to adopt multiple mechanical states. To begin to address this question, we aimed to quantify the diversity of these mechanical states using in vitro biomimetics to mimic in vivo two-dimensional (2D) and 3D extracellular matrix environments. Here, we used two modalities Brillouin microscopy (∼GHz) and broadband frequency (7-15 kHz) optical tweezer microrheology to measure microscale cell mechanics. We measured the response of intracellular mechanics of cancer cells cultured in 2D and 3D environments where we modified substrate stiffness, dimensionality (2D versus 3D), and presence of fibrillar topography. We determined that there was good agreement between two modalities despite the difference in timescale of the two measurements. These findings on cell mechanical phenotype in different environments confirm a correlation between modalities that employ different mechanisms at different temporal scales (Hz-kHz versus GHz). We also determined that observed heterogeneity in cell shape is more closely linked to the cells' mechanical state. Moreover, individual cells in multicellular spheroids exhibit a lower degree of mechanical heterogeneity when compared with single cells cultured in monodisperse 3D cultures. The observed decreased heterogeneity among cells in spheroids suggested that there is mechanical cooperativity between cells that make up a single spheroid.
Collapse
Affiliation(s)
- Miloš Nikolić
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland
| | - Giuliano Scarcelli
- Maryland Biophysics Program, IPST, University of Maryland, College Park, Maryland; Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
37
|
Xu D, Zhang N, Wang S, Zhang P, Li Y, Yang H. A method for generating dynamic compression shear coupled stress loading on living cells. Front Bioeng Biotechnol 2022; 10:1002661. [PMID: 36213067 PMCID: PMC9532543 DOI: 10.3389/fbioe.2022.1002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
Changes in the mechanical properties of single cells are related to the physiological state and fate of cells. The construction of cell constitutive equations is essential for understanding the material characteristics of single cells. With the help of atomic force microscopy, bio-image processing algorithms, and other technologies, research investigating the mechanical properties of cells during static/quasi-static processes has developed rapidly. A series of equivalent models, such as viscoelastic models, have been proposed to describe the constitutive behaviors of cells. The stress-strain relations under dynamic processes are essential to completing the constitutive equations of living cells. To explore the dynamic mechanical properties of cells, we propose a novel method to generate a controllable dynamical compression shear coupling stress on living cells. A CFD model was established to visualize this method and display the theories, as well as assess the scope of the application. As the requirements or limitations are met, researchers can adjust the details of this model according to their lab environment or experimental demands. This micro-flow channel-based method is a new tool for approaching the dynamic mechanical properties of cells.
Collapse
Affiliation(s)
- Dasen Xu
- School of Aeronautics, Northwestern Polytechnical University, Xi’an, China
- Center of Special Environmental Biomechanics; Biomedical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Nu Zhang
- Center of Special Environmental Biomechanics; Biomedical Engineering, Northwestern Polytechnical University, Xi’an, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Sijie Wang
- Center of Special Environmental Biomechanics; Biomedical Engineering, Northwestern Polytechnical University, Xi’an, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Pan Zhang
- Center of Special Environmental Biomechanics; Biomedical Engineering, Northwestern Polytechnical University, Xi’an, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Yulong Li
- Center of Special Environmental Biomechanics; Biomedical Engineering, Northwestern Polytechnical University, Xi’an, China
- School of Civil Aviation, Northwestern Polytechnical University, Xi’an, China
- Joint International Research Laboratory of Impact Dynamic and Its Engineering Application, Xi’an, China
- *Correspondence: Yulong Li, ; Hui Yang,
| | - Hui Yang
- Center of Special Environmental Biomechanics; Biomedical Engineering, Northwestern Polytechnical University, Xi’an, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Yulong Li, ; Hui Yang,
| |
Collapse
|
38
|
Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022; 26:43. [PMID: 36076274 PMCID: PMC9461125 DOI: 10.1186/s40824-022-00289-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.
Collapse
Affiliation(s)
- Rakesh Joshi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
39
|
Li T, Li F, Liu X, Yakovlev VV, Agarwal GS. Quantum-enhanced stimulated Brillouin scattering spectroscopy and imaging. OPTICA 2022; 9:959-964. [PMID: 37398895 PMCID: PMC10312138 DOI: 10.1364/optica.467635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 07/04/2023]
Abstract
Brillouin microscopy is an emerging label-free imaging technique used to assess local viscoelastic properties. Quantum-enhanced stimulated Brillouin scattering is demonstrated using low power continuous-wave lasers at 795 nm. A signal-to-noise ratio enhancement of 3.4 dB is reported by using two-mode intensity-difference squeezed light generated with the four-wave mixing process in atomic rubidium vapor. The low optical power and the excitation wavelengths in the water transparency window have the potential to provide a powerful bio-imaging technique for probing mechanical properties of biological samples prone to phototoxicity and thermal effects. The performance enhancement affordable through the use of quantum light may pave the way for significantly improved sensitivity that cannot be achieved classically. The proposed method for utilizing squeezed light for enhanced stimulated Brillouin scattering can be easily adapted for both spectroscopic and imaging applications in biology.
Collapse
Affiliation(s)
- Tian Li
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, USA
| | - Fu Li
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Xinghua Liu
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Vladislav V. Yakovlev
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Girish S. Agarwal
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
40
|
Ling SD, Liu Z, Ma W, Chen Z, Du Y, Xu J. A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. BIOSENSORS 2022; 12:bios12080659. [PMID: 36005055 PMCID: PMC9406195 DOI: 10.3390/bios12080659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Cell encapsulation has been widely employed in cell therapy, characterization, and analysis, as well as many other biomedical applications. While droplet-based microfluidic technology is advantageous in cell microencapsulation because of its modularity, controllability, mild conditions, and easy operation when compared to other state-of-art methods, it faces the dilemma between high throughput and monodispersity of generated cell-laden microdroplets. In addition, the lack of a biocompatible method of de-emulsification transferring cell-laden hydrogel from cytotoxic oil phase into cell culture medium also hurtles the practical application of microfluidic technology. Here, a novel step-T-junction microchannel was employed to encapsulate cells into monodisperse microspheres at the high-throughput jetting regime. An alginate–gelatin co-polymer system was employed to enable the microfluidic-based fabrication of cell-laden microgels with mild cross-linking conditions and great biocompatibility, notably for the process of de-emulsification. The mechanical properties of alginate-gelatin hydrogel, e.g., stiffness, stress–relaxation, and viscoelasticity, are fully adjustable in offering a 3D biomechanical microenvironment that is optimal for the specific encapsulated cell type. Finally, the encapsulation of HepG2 cells into monodisperse alginate–gelatin microgels with the novel microfluidic system and the subsequent cultivation proved the maintenance of the long-term viability, proliferation, and functionalities of encapsulated cells, indicating the promising potential of the as-designed system in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences Tsinghua University, Beijing 100084, China
| | - Wenjun Ma
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (Y.D.); (J.X.)
| |
Collapse
|
41
|
Maksymov IS, Huy Nguyen BQ, Suslov SA. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. BIOSENSORS 2022; 12:624. [PMID: 36005019 PMCID: PMC9406219 DOI: 10.3390/bios12080624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
Gas bubbles present in liquids underpin many natural phenomena and human-developed technologies that improve the quality of life. Since all living organisms are predominantly made of water, they may also contain bubbles-introduced both naturally and artificially-that can serve as biomechanical sensors operating in hard-to-reach places inside a living body and emitting signals that can be detected by common equipment used in ultrasound and photoacoustic imaging procedures. This kind of biosensor is the focus of the present article, where we critically review the emergent sensing technologies based on acoustically driven oscillations of bubbles in liquids and bodily fluids. This review is intended for a broad biosensing community and transdisciplinary researchers translating novel ideas from theory to experiment and then to practice. To this end, all discussions in this review are written in a language that is accessible to non-experts in specific fields of acoustics, fluid dynamics and acousto-optics.
Collapse
Affiliation(s)
- Ivan S. Maksymov
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bui Quoc Huy Nguyen
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sergey A. Suslov
- Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
42
|
Vasudevan J, Zheng C, Wan JG, Cham TJ, Teck LC, Fernandez JG. From qualitative data to correlation using deep generative networks: Demonstrating the relation of nuclear position with the arrangement of actin filaments. PLoS One 2022; 17:e0271056. [PMID: 35905093 PMCID: PMC9337686 DOI: 10.1371/journal.pone.0271056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
The cell nucleus is a dynamic structure that changes locales during cellular processes such as proliferation, differentiation, or migration, and its mispositioning is a hallmark of several disorders. As with most mechanobiological activities of adherent cells, the repositioning and anchoring of the nucleus are presumed to be associated with the organization of the cytoskeleton, the network of protein filaments providing structural integrity to the cells. However, demonstrating this correlation between cytoskeleton organization and nuclear position requires the parameterization of the extraordinarily intricate cytoskeletal fiber arrangements. Here, we show that this parameterization and demonstration can be achieved outside the limits of human conceptualization, using generative network and raw microscope images, relying on machine-driven interpretation and selection of parameterizable features. The developed transformer-based architecture was able to generate high-quality, completed images of more than 8,000 cells, using only information on actin filaments, predicting the presence of a nucleus and its exact localization in more than 70 per cent of instances. Our results demonstrate one of the most basic principles of mechanobiology with a remarkable level of significance. They also highlight the role of deep learning as a powerful tool in biology beyond data augmentation and analysis, capable of interpreting—unconstrained by the principles of human reasoning—complex biological systems from qualitative data.
Collapse
Affiliation(s)
- Jyothsna Vasudevan
- Engineering and Product Development, Singapore University of Technology and Design, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Chuanxia Zheng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - James G. Wan
- Engineering Systems and Design, Singapore University of Technology and Design, Singapore, Singapore
| | - Tat-Jen Cham
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Lim Chwee Teck
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Javier G. Fernandez
- Engineering and Product Development, Singapore University of Technology and Design, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Iaquinta S, Khazaie S, Ishow É, Blanquart C, Fréour S, Jacquemin F. Influence of the mechanical and geometrical parameters on the cellular uptake of nanoparticles: A stochastic approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3598. [PMID: 35343089 DOI: 10.1002/cnm.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are used for drug delivery with enhanced selectivity and reduced side-effect toxicity in cancer treatments. Based on the literature, the influence of the NPs mechanical and geometrical properties on their cellular uptake has been studied through experimental investigations. However, due to the difficulty to vary the parameters independently in such a complex system, it remains hard to efficiently conclude on the influence of each one of them on the cellular internalization of a NP. In this context, different mechanical / mathematical models for the cellular uptake of NPs have been developed. In this paper, we numerically investigate the influence of the NP's aspect ratio, the membrane tension and the cell-NP adhesion on the uptake of the NP using the model introduced in1 coupled with a numerical stochastic scheme to measure the weight of each one of the aforementioned parameters. The results reveal that the aspect ratio of the particle is the most influential parameter on the wrapping of the particle by the cell membrane. Then the adhesion contributes twice as much as the membrane tension. Our numerical results match the previous experimental observations.
Collapse
Affiliation(s)
- Sarah Iaquinta
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Shahram Khazaie
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Éléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, France
| | - Christophe Blanquart
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Sylvain Fréour
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| | - Frédéric Jacquemin
- Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, Saint-Nazaire, France
| |
Collapse
|
44
|
Göhring J, Schrangl L, Schütz GJ, Huppa JB. Mechanosurveillance: Tiptoeing T Cells. Front Immunol 2022; 13:886328. [PMID: 35693808 PMCID: PMC9178122 DOI: 10.3389/fimmu.2022.886328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Efficient scanning of tissue that T cells encounter during their migratory life is pivotal to protective adaptive immunity. In fact, T cells can detect even a single antigenic peptide/MHC complex (pMHC) among thousands of structurally similar yet non-stimulatory endogenous pMHCs on the surface of antigen-presenting cells (APCs) or target cells. Of note, the glycocalyx of target cells, being composed of proteoglycans and bulky proteins, is bound to affect and even modulate antigen recognition by posing as a physical barrier. T cell-resident microvilli are actin-rich membrane protrusions that puncture through such barriers and thereby actively place the considerably smaller T-cell antigen receptors (TCRs) in close enough proximity to APC-presented pMHCs so that productive interactions may occur efficiently yet under force. We here review our current understanding of how the plasticity of T-cell microvilli and physicochemical properties of the glycocalyx may affect early events in T-cell activation. We assess insights gained from studies on T-cell plasma membrane ultrastructure and provide an update on current efforts to integrate biophysical aspects such as the amplitude and directionality of TCR-imposed mechanical forces and the distribution and lateral mobility of plasma membrane-resident signaling molecules into a more comprehensive view on sensitized T-cell antigen recognition.
Collapse
Affiliation(s)
- Janett Göhring
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Institute of Applied Physics, TU Wien, Vienna, Austria
- *Correspondence: Janett Göhring,
| | | | | | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Mei J, Vasan A, Magaram U, Takemura K, Chalasani SH, Friend J. Well-free agglomeration and on-demand three-dimensional cell cluster formation using guided surface acoustic waves through a couplant layer. Biomed Microdevices 2022; 24:18. [PMID: 35596837 PMCID: PMC9124176 DOI: 10.1007/s10544-022-00617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Three-dimensional cell agglomerates are broadly useful in tissue engineering and drug testing. We report a well-free method to form large (1.4-mm) multicellular clusters using 100-MHz surface acoustic waves (SAW) without direct contact with the media or cells. A fluid couplant is used to transform the SAW into acoustic streaming in the cell-laden media held in a petri dish. The couplant transmits longitudinal sound waves, forming a Lamb wave in the petri dish that, in turn, produces longitudinal sound in the media. Due to recirculation, human embryonic kidney (HEK293) cells in the dish are carried to the center of the coupling location, forming a cluster in less than 10 min. A few minutes later, these clusters may then be translated and merged to form large agglomerations, and even repeatedly folded to produce a roughly spherical shape of over 1.4 mm in diameter for incubation-without damaging the existing intercellular bonds. Calcium ion signaling through these clusters and confocal images of multiprotein junctional complexes suggest a continuous tissue construct: intercellular communication. They may be formed at will, and the method is feasibly useful for formation of numerous agglomerates in a single petri dish.
Collapse
Affiliation(s)
- Jiyang Mei
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, 9500 Gilman Dr MC0411, La Jolla, San Diego, CA, 92093, USA
| | - Aditya Vasan
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, 9500 Gilman Dr MC0411, La Jolla, San Diego, CA, 92093, USA
| | - Uri Magaram
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, San Diego, CA, 92037, USA
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, San Diego, CA, 92037, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, 9500 Gilman Dr MC0411, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
46
|
Abstract
Much of the current research into immune escape from cancer is focused on molecular and cellular biology, an area of biophysics that is easily overlooked. A large number of immune drugs entering the clinic are not effective for all patients. Apart from the molecular heterogeneity of tumors, the biggest reason for this may be that knowledge of biophysics has not been considered, and therefore an exploration of biophysics may help to address this challenge. To help researchers better investigate the relationship between tumor immune escape and biophysics, this paper provides a brief overview on recent advances and challenges of the biophysical factors and strategies by which tumors acquire immune escape and a comprehensive analysis of the relevant forces acting on tumor cells during immune escape. These include tumor and stromal stiffness, fluid interstitial pressure, shear stress, and viscoelasticity. In addition, advances in biophysics cannot be made without the development of detection tools, and this paper also provides a comprehensive summary of the important detection tools available at this stage in the field of biophysics.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
47
|
Narkar AR, Tong Z, Soman P, Henderson JH. Smart biomaterial platforms: Controlling and being controlled by cells. Biomaterials 2022; 283:121450. [PMID: 35247636 PMCID: PMC8977253 DOI: 10.1016/j.biomaterials.2022.121450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023]
Abstract
Across diverse research and application areas, dynamic functionality-such as programmable changes in biochemical property, in mechanical property, or in microscopic or macroscopic architecture-is an increasingly common biomaterials design criterion, joining long-studied criteria such as cytocompatibility and biocompatibility, drug release kinetics, and controlled degradability or long-term stability in vivo. Despite tremendous effort, achieving dynamic functionality while simultaneously maintaining other desired design criteria remains a significant challenge. Reversible dynamic functionality, rather than one-time or one-way dynamic functionality, is of particular interest but has proven especially challenging. Such reversible functionality could enable studies that address the current gap between the dynamic nature of in vivo biological and biomechanical processes, such as cell traction, cell-extracellular matrix (ECM) interactions, and cell-mediated ECM remodeling, and the static nature of the substrates and ECM constructs used to study the processes. This review assesses dynamic materials that have traditionally been used to control cell activity and static biomaterial constructs, experimental and computational techniques, with features that may inform continued advances in reversible dynamic materials. Taken together, this review presents a perspective on combining the reversibility of smart materials and the in-depth dynamic cell behavior probed by static polymers to design smart bi-directional ECM platforms that can reversibly and repeatedly communicate with cells.
Collapse
Affiliation(s)
- Ameya R Narkar
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Zhuoqi Tong
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Pranav Soman
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - James H Henderson
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
48
|
Watanabe S, Sugiura H, Arai F. Stiffness Measurement of Organoids Using a Wide-Range Force Sensor Probe Fabricated Using a Quartz Crystal Resonator. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3144766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Yang S, Zhao C, Ren J, Zheng K, Shao Z, Ling S. Acquiring structural and mechanical information of a fibrous network through deep learning. NANOSCALE 2022; 14:5044-5053. [PMID: 35293414 DOI: 10.1039/d2nr00372d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fibrous networks play an essential role in the structure and properties of a variety of biological and engineered materials, such as cytoskeletons, protein filament-based hydrogels, and entangled or crosslinked polymer chains. Therefore, insight into the structural features of these fibrous networks and their constituent filaments is critical for discovering the structure-property-function relationships of these material systems. In this paper, a fibrous network-deep learning system (FN-DLS) is established to extract fibrous network structure information from atomic force microscopy images. FN-DLS accurately assesses the structural and mechanical characteristics of fibrous networks, such as contour length, number of nodes, persistence length, mesh size and fractal dimension. As an open-source system, FN-DLS is expected to serve a vast community of scientists working on very diverse disciplines and pave the way for new approaches on the study of biological and synthetic polymer and filament networks found in current applied and fundamental sciences.
Collapse
Affiliation(s)
- Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Ke Zheng
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
50
|
Greene ES, Adeogun E, Orlowski SK, Nayani K, Dridi S. Effects of heat stress on cyto(chemo)kine and inflammasome gene expression and mechanical properties in isolated red and white blood cells from 4 commercial broiler lines and their ancestor jungle fowl. Poult Sci 2022; 101:101827. [PMID: 35390570 PMCID: PMC8987627 DOI: 10.1016/j.psj.2022.101827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Commercial broilers have been selected for high growth rate and productivity; however, this has negatively impacted their susceptibility to heat stress (HS). Insight into the molecular mechanisms underlying this vulnerability can help design targeted strategies for improvement of HS tolerance. Red blood cells (RBC) and white blood cells (WBC) were isolated from red jungle fowl and 4 lines of commercial modern broilers. Lines A and B are considered standard-yielding lines, whereas Lines C and D are high-yielding. Cells were cultured at either 37°C or 45°C for 2 h to induce heat stress (HS). Gene expression of cytokines, chemokines, and inflammasome components were measured. Heat shock proteins 27 and 70 (HSPs) in RBC were significantly affected by line (P < 0.05), whereas HSP27 and 60 were affected by temperature (P < 0.05). In WBC, there was a significant line effect on HSP gene expression (P < 0.05), and a significant increase (P < 0.05) in HSP90 in Line D in HS compared to TN conditions. In RBC, there was a main effect of HS on TNFα, CCL4, and CCLL4 (P < 0.05). HS significantly increased IL-8L1 (>30-fold, P < 0.0001) in Line C. Inflammasome genes (NLRP3, NLRC5 and NLRC3) were significantly affected by the line studied (P < 0.05). In WBC, the effect of line was significant for all cytokines, chemokines, and inflammasome components studied (P < 0.05). To examine the mechanical properties of isolated RBC from the 4 commercial lines and jungle fowl, RBC were placed into nematic liquid crystals, where Lines B and D were the most strained, and Line A and the jungle fowl were the least strained. Together, these findings indicate not only the dynamic nature of circulating cells, but the differences in the stress and inflammatory response among commercially available lines and their common ancestor. These profiles have the potential to serve as a future marker for stress responses in broilers, though further study is warranted.
Collapse
|