1
|
Hwang YJ, Park Y, Jeong W, Kim M, Lee H, An B, Lee Y, Jeong H, Kim G, Choi J, Ha DH. Morphology Control of Au-Ni Hybrid Nanoparticles: Exploring Heterostructures and Optical Tuning. Inorg Chem 2024; 63:11660-11666. [PMID: 38861724 DOI: 10.1021/acs.inorgchem.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Hybrid nanoparticles (NPs) have attracted considerable attention because of their ability to provide diverse properties by integrating the inherent properties of multiple components; however, synthetic strategies to control their morphology remain unexplored. In this study, a new method was used to control the morphology and optical properties of Au-Ni heterostructure (ANH) NPs. Unique morphological changes were observed by varying the Au/Ni precursor ratio from 2:1 to 1:4, exhibiting a shape transformation from dumbbell-like to quasi-spherical owing to the Ni NP size expansion, whereas the Au NP maintained their size. Moreover, increasing the Ni ratio induced plasmonic band broadening and wavelength redshift, resulting in color changes from red to navy and black. In terms of the structure, the atomic orientation of the crystallite showed that even a large lattice mismatch can result in heterojunctions at the NPs. In addition, the reaction aliquots uncovered heterogeneous nucleation and growth of ANH NPs in the colloidal system, demonstrating Ni reduction on the preformed Au NP owing to the reduction in potential gap. This study provides new insights into controlling the morphology of hybrid NPs using colloidal synthesis and the design of optimized materials for various applications.
Collapse
Affiliation(s)
- Yun Jae Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoonsu Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Wooseok Jeong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Minyoung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyeonseok Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Boeun An
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeongbin Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Heesoo Jeong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Gyuhyeon Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Xu M, Jeon Y, Naden A, Kim H, Kerherve G, Payne DJ, Shul YG, Irvine JTS. Synergistic growth of nickel and platinum nanoparticles via exsolution and surface reaction. Nat Commun 2024; 15:4007. [PMID: 38740805 DOI: 10.1038/s41467-024-48455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Bimetallic catalysts combining precious and earth-abundant metals in well designed nanoparticle architectures can enable cost efficient and stable heterogeneous catalysis. Here, we present an interaction-driven in-situ approach to engineer finely dispersed Ni decorated Pt nanoparticles (1-6 nm) on perovskite nanofibres via reduction at high temperatures (600-800 oC). Deposition of Pt (0.5 wt%) enhances the reducibility of the perovskite support and promotes the nucleation of Ni cations via metal-support interaction, thereafter the Ni species react with Pt forming alloy nanoparticles, with the combined processes yielding smaller nanoparticles that either of the contributing processes. Tuneable uniform Pt-Ni nanoparticles are produced on the perovskite surface, yielding reactivity and stability surpassing 1 wt.% Pt/γ-Al2O3 catalysts for CO oxidation. This approach heralds the possibility of in-situ fabrication of supported bimetallic nanoparticles with engineered compositional distributions and performance.
Collapse
Affiliation(s)
- Min Xu
- School of Chemistry, University of St Andrews, St Andrews, UK
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| | - Aaron Naden
- School of Chemistry, University of St Andrews, St Andrews, UK
| | - Heesu Kim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| | | | - David J Payne
- Department of Materials, Imperial College London, London, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Yong-Gun Shul
- Department of Chemical and Biomolecular Engineering, Yonsei University, Wonju, Republic of Korea
| | - John T S Irvine
- School of Chemistry, University of St Andrews, St Andrews, UK.
| |
Collapse
|
3
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
4
|
Dong Y, Li Z, Zheng G, Zhang J, Zhou J, Orikasa Y, Uchimoto Y, Wang X. Observing the Structural Evolution of Quasi-Monolayer Pt Shell on Pd Core in the Electrocatalytic Oxygen-Reduction Reaction. J Phys Chem Lett 2023; 14:7027-7031. [PMID: 37523861 DOI: 10.1021/acs.jpclett.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The use of a quasi-monolayer Pt shell (Ptqms) on a Pd core (Pdc) can reach cost and activity targets for the electrocatalytic oxygen-reduction reaction (ORR). The structure of PdcPtqms in the ORR will vary; however, direct observation of this issue is scarce. Here, during cyclic staircase voltammetry (ranging from 0.5 to 1.15 VRHE) in 0.1 M O2-saturated HClO4, the structure of PdcPtqms was monitored by in situ X-ray absorption spectroscopy. The qualitative and quantitative structural information clearly exhibits a complete picture that Ptqms will directly restructure to form Pt clusters and holes, while Pdc almost remains stable. These findings identify the initial structural evolution of PdcPtqms in the ORR, highlighting the importance of protecting Pdc in the development of high-performance PdcPtqms electrocatalysts.
Collapse
Affiliation(s)
- Yan Dong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Zhenlan Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Guocheng Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiawei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiawei Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yuki Orikasa
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Xiaoming Wang
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
5
|
Lee J, Jo H, Jeong C, Lee T, Ryu S, Yang Y. Single-Atom Level Determination of 3-Dimensional Surface/Interface Atomic Structures via Deep Learning-Assisted Atomic Electron Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1384. [PMID: 37613584 DOI: 10.1093/micmic/ozad067.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Juhyeok Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hyesung Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Chaehwa Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Taegu Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
6
|
Sutar DJ, Zende SN, Kadam AN, Mali M, Mhaldar PM, Tapase A, Bathula C, Lee SW, Gokavi GS. Magnetically separable mixed metal oxide nanocomposite (Pd/MnFe2O4) for Suzuki cross-coupling in aqueous medium. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Virot M, Dumas T, Cot-Auriol M, Moisy P, Nikitenko SI. Synthesis and multi-scale properties of PuO 2 nanoparticles: recent advances and open questions. NANOSCALE ADVANCES 2022; 4:4938-4971. [PMID: 36504736 PMCID: PMC9680947 DOI: 10.1039/d2na00306f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 05/28/2023]
Abstract
Due to the increased attention given to actinide nanomaterials, the question of their structure-property relationship is on the spotlight of recent publications. Plutonium oxide (PuO2) particularly plays a central role in nuclear energetics and a comprehensive knowledge about its properties when nanosizing is of paramount interest to understand its behaviour in environmental migration schemes but also for the development of advanced nuclear energy systems underway. The element plutonium further stimulates the curiosity of scientists due to the unique physical and chemical properties it exhibits around the periodic table. PuO2 crystallizes in the fluorite structure of the face-centered cubic system for which the properties can be significantly affected when shrinking. Identifying the formation mechanism of PuO2 nanoparticles, their related atomic, electronic and crystalline structures, and their reactivity in addition to their nanoscale properties, appears to be a fascinating and challenging ongoing topic, whose recent advances are discussed in this review.
Collapse
Affiliation(s)
- Matthieu Virot
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM Marcoule France
| | - Thomas Dumas
- CEA, DEN, DMRC, Univ Montpellier Marcoule France
| | | | | | | |
Collapse
|
8
|
Nqayi S, Gulumian M, Cronjé S, Harris RA. Computational study of the effect of size and surface functionalization on Au nanoparticles on their stability to study biological descriptors. J Mol Model 2022; 28:376. [DOI: 10.1007/s00894-022-05367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
9
|
Yue S, Yuan W, Deng Z, Xi W, Shen Y. In Situ TEM Observation of the Atomic Transport Process during the Coalescence of Au Nanoparticles. NANO LETTERS 2022; 22:8115-8121. [PMID: 36197114 DOI: 10.1021/acs.nanolett.2c02491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In practical applications, the coalescence of metal nanoparticles (NPs) is a major factor affecting their physical chemistry properties. Currently, due to a lack of understanding of the atomic-level mechanisms during the nucleation and growth stages of coalescence, the correlation between the different dynamic factors in the different stages of NP coalescence is unclear. In this study, we used advanced in situ characterization techniques to observe the formation of atomic material transport channels (Au chains) during the initiation of coalescence nucleation. We focused on the movement and migration states of Au atoms and discovered an atomic ordered arrangement growth mechanism that occurs after the completion of nucleation. Simultaneously, we used density functional theory to reveal the formation principle of Au chains. These findings improve our understanding of the atomic-scale coalescence process, which can provide a new perspective for further research on coalescence atomic dynamics.
Collapse
Affiliation(s)
- Shengnan Yue
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenjuan Yuan
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ziliang Deng
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongli Shen
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
10
|
Liu J, Liu S, Yan F, Wen Z, Chen W, Liu X, Liu Q, Shang J, Yu R, Su D, Shui J. Ultrathin Nanotube Structure for Mass-Efficient and Durable Oxygen Reduction Reaction Catalysts in PEM Fuel Cells. J Am Chem Soc 2022; 144:19106-19114. [PMID: 36196871 DOI: 10.1021/jacs.2c08361] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It remains a challenge for platinum-based oxygen reduction reaction catalysts to simultaneously possess high mass activity and high durability in proton-exchange-membrane fuel cells. Herein, we report ultrathin holey nanotube (UHT)-structured Pt-M (M = Ni, Co) alloy catalysts that achieve unprecedented comprehensive performance. The nanotubes have ultrathin walls of 2-3 nm and construct self-supporting network-like catalyst layers with thicknesses of less than 1 μm, which have efficient mass transfer and 100% surface exposure, thus enabling high utilization of Pt atoms. Combined with the high intrinsic activity produced by the alloying effect, the catalysts achieve high mass activity. Moreover, the nanotube structure not only avoids the agglomeration problem of nanoparticles, but the low curvature of the tube wall also gives UHT a low surface energy (less than 1/3 of that of the same size nanoparticle), so UHT is more resistant to the Ostwald ripening and is stable. For the first time, the U.S. DOE mass activity target and dual durability targets for load and start-stop cycles are achieved on one catalyst. This study provides an effective structural strategy for the preparation of electrocatalysts with high atomic efficiency and excellent durability.
Collapse
Affiliation(s)
- Jieyuan Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Shiyuan Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Fangzheng Yan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Zishu Wen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Weiwei Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Qingtao Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Jiaxiang Shang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
11
|
Dupraz M, Li N, Carnis J, Wu L, Labat S, Chatelier C, van de Poll R, Hofmann JP, Almog E, Leake SJ, Watier Y, Lazarev S, Westermeier F, Sprung M, Hensen EJM, Thomas O, Rabkin E, Richard MI. Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction. Nat Commun 2022; 13:3003. [PMID: 35637233 PMCID: PMC9151645 DOI: 10.1038/s41467-022-30592-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry.
Collapse
|
12
|
Recent developments in computational and experimental studies of physicochemical properties of Au and Ag nanostructures on cellular uptake and nanostructure toxicity. Biochim Biophys Acta Gen Subj 2022; 1866:130170. [DOI: 10.1016/j.bbagen.2022.130170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
|
13
|
BALOOCHİYAN A, BATYROV M, OZTURK H. Accuracy Limits of Pair Distribution Function Analysis in Structural Characterization of Nanocrystalline Powders by X-ray Diffraction. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1008896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Tran XQ, Aso K, Yamamoto T, Yang W, Kono Y, Kusada K, Wu D, Kitagawa H, Matsumura S. Quantitative Characterization of the Thermally Driven Alloying State in Ternary Ir-Pd-Ru Nanoparticles. ACS NANO 2022; 16:1612-1624. [PMID: 34962778 DOI: 10.1021/acsnano.1c10414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compositional and structural arrangements of constituent elements, especially those at the surface and near-surface layers, are known to greatly influence the catalytic performance of alloyed nanoparticles (NPs). Although much research effort often focuses on the ability to tailor these important aspects in the design stage, their stability under realistic operating conditions remains a major technical challenge. Here, the compositional stability and associated structural evolution of a ternary iridium-palladium-ruthenium (Ir-Pd-Ru) nanoalloy at elevated temperatures have been studied using interrupted in situ scanning transmission electron microscopy and theoretical modeling. The results are based on a combinatory approach of statistical sampling at the sub-nanometer scale for large groups of NPs as well as tracking individual NPs. We find that the solid solution Ir-Pd-Ru NPs (∼5.6 nm) evolved into a Pd-enriched shell supported on an alloyed Ir-Ru-rich core, most notably when the temperature exceeds 500 °C, concurrently with the development of expansive atomic strain in the outer surface and subsurface layers with respect to the core regions. Theoretically, we identify the weak interatomic bonds, low surface energy, and large atomic sizes associated with Pd as the key factors responsible for such observed features.
Collapse
Affiliation(s)
- Xuan Quy Tran
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Aso
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- The Ultramicroscopy Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wenhui Yang
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Kono
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Kusada
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dongshuang Wu
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- The Ultramicroscopy Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Cao H, Qin H, Li Y, Jandt KD. The Action-Networks of Nanosilver: Bridging the Gap between Material and Biology. Adv Healthc Mater 2021; 10:e2100619. [PMID: 34309242 PMCID: PMC11468843 DOI: 10.1002/adhm.202100619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Indexed: 01/06/2023]
Abstract
The emergence of nanosilver (silver in nanoscale shapes and their assemblies) benefits the landscape of modern healthcare; however, this brings about concerns over its safety issues associated with an ultrasmall size and high mobility. By reviewing previous reporting details about the synthesis and characterization of nanosilver and its biological responses, a gap between materials synthesis and their biomedical uses is characterized by the insufficient understanding of the interacting and interplaying nanoscale actions of silver. To improve reporting quality and advance clinical translations, it is suggested that researchers have a comprehensive recognition of the "Indications for use" before designing innovative nanosilver-based materials and an "Action-network" concept addressing the acting range and strength of those nanoscale actions is implemented. Although this discussion is specific to nanosilver, the idea of "Indications for use" centered design and synthesis is generally applicable to other biomedical nanomaterials.
Collapse
Affiliation(s)
- Huiliang Cao
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Klaus D. Jandt
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJena07743Germany
- Jena School for Microbial Communication (JSMC)Neugasse 23Jena07743Germany
| |
Collapse
|
16
|
Onur Şahin E, Dai Y, Chan CK, Tüysüz H, Schmidt W, Lim J, Zhang S, Scheu C, Weidenthaler C. Monitoring the Structure Evolution of Titanium Oxide Photocatalysts: From the Molecular Form via the Amorphous State to the Crystalline Phase. Chemistry 2021; 27:11600-11608. [PMID: 34060158 PMCID: PMC8456846 DOI: 10.1002/chem.202101117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/07/2022]
Abstract
Amorphous Tix Oy with high surface area has attracted significant interest as photocatalyst with higher activity in ultraviolet (UV) light-induced water splitting applications compared to commercial nanocrystalline TiO2 . Under photocatalytic operation conditions, the structure of the molecular titanium alkoxide precursor rearranges upon hydrolysis and leads to higher connectivity of the structure-building units. Structurally ordered domains with sizes smaller than 7 Å form larger aggregates. The experimental scattering data can be explained best with a structure model consisting of an anatase-like core and a distorted shell. Upon exposure to UV light, the white Tix Oy suspension turns dark corresponding to the reduction of Ti4+ to Ti3+ as confirmed by electron energy loss spectroscopy (EELS). Heat-induced crystallisation was followed by in situ temperature-dependent total scattering experiments. First, ordering in the Ti-O environment takes place upon to 350 °C. Above this temperature, the distorted anatase core starts to grow but the structure obtained at 400 °C is still not fully ordered.
Collapse
Affiliation(s)
- Ezgi Onur Şahin
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Yitao Dai
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Candace K. Chan
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Materials Science and EngineeringSchool for Engineering of MatterTransport and Energy (SEMTE)Arizona State UniversityAZ 85287-8706TempeUSA
| | - Harun Tüysüz
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Wolfgang Schmidt
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Joohyun Lim
- Nanoanalytics and InterfacesMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
- Department of ChemistryKangwon National University24341ChuncheonRepublic of Korea
| | - Siyuan Zhang
- Nanoanalytics and InterfacesMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Christina Scheu
- Nanoanalytics and InterfacesMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Claudia Weidenthaler
- Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
17
|
Aso K, Maebe J, Tran XQ, Yamamoto T, Oshima Y, Matsumura S. Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis. ACS NANO 2021; 15:12077-12085. [PMID: 34232021 DOI: 10.1021/acsnano.1c03413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Analysis of subpercent local strain is important for a deeper understanding of nanomaterials, whose properties often depend on the strain. Conventional strain analysis has been performed by measuring interatomic distances from scanning transmission electron microscopy (STEM) images. However, measuring subpercent strain remains a challenge because the peak positions in STEM images do not precisely correspond to the real atomic positions due to disturbing influences, such as random noise and image distortion. Here, we utilized an advanced data-driven analysis method, Gaussian process regression, to predict the true strain distribution by reconstructing the true atomic positions. As a result, a precision of 0.2% was achieved in strain measurement at the atomic scale. The method was applied to gold nanoparticles of different shapes to reveal the shape dependence of the strain distribution. A spherical gold nanoparticle showed a symmetric strain distribution with a contraction of ∼1% near the surface owing to surface relaxation. By contrast, a gold nanorod, which is a cylinder terminated by hemispherical caps on both sides, showed nonuniform strain distributions with lattice expansions of ∼0.5% along the longitudinal axis around the caps except for the contraction at the surface. Our results indicate that the strain distribution depends on the shape of the nanomaterials. The proposed data-driven analysis is a convenient and powerful tool to measure the strain distribution with high precision at the atomic scale.
Collapse
Affiliation(s)
- Kohei Aso
- School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jens Maebe
- Faculty of Sciences, Ghent University, Krijgslaan 281-S2, 9000 Ghent, Belgium
| | - Xuan Quy Tran
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshifumi Oshima
- School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- The Ultramicroscopy Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Huang H, Nassr ABAA, Celorrio V, Gianolio D, Hardacre C, Brett DJL, Russell AE. Contrasting the EXAFS obtained under air and H 2 environments to reveal details of the surface structure of Pt-Sn nanoparticles. Phys Chem Chem Phys 2021; 23:11738-11745. [PMID: 33982041 DOI: 10.1039/d1cp00979f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the surface structure of bimetallic nanoparticles is crucial for heterogeneous catalysis. Although surface contraction has been established in monometallic systems, less is known for bimetallic systems, especially of nanoparticles. In this work, the bond length contraction on the surface of bimetallic nanoparticles is revealed by XAS in H2 at room temperature on dealloyed Pt-Sn nanoparticles, where most Sn atoms were oxidized and segregated to the surface when measured in air. The average Sn-Pt bond length is found to be ∼0.09 Å shorter than observed in the bulk. To ascertain the effect of the Sn location on the decrease of the average bond length, Pt-Sn samples with lower surface-to-bulk Sn ratios than the dealloyed Pt-Sn were studied. The structural information specifically from the surface was extracted from the averaged XAS results using an improved fitting model combining the data measured in H2 and in air. Two samples prepared so as to ensure the absence of Sn in the bulk were also studied in the same fashion. The bond length of surface Sn-Pt and the corresponding coordination number obtained in this study show a nearly linear correlation, the origin of which is discussed and attributed to the poor overlap between the Sn 5p orbitals and the available orbitals of the Pt surface atoms.
Collapse
Affiliation(s)
- Haoliang Huang
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Abu Bakr Ahmed Amine Nassr
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK. and Fraunhofer Institute for Microstructure of Materials and System, Walter-Hülse-Straße 1, 06120 Halle (Saale), Germany
| | - Verónica Celorrio
- Diamond Light Source Ltd. Diamond House, Harwell Campus, Didcot, OX11 0DE, UK
| | - Diego Gianolio
- Diamond Light Source Ltd. Diamond House, Harwell Campus, Didcot, OX11 0DE, UK
| | - Christopher Hardacre
- School of Natural Sciences, The University of Manchester, The Mill, Manchester, M13 9PL, UK
| | - Dan J L Brett
- Department of Chemical Engineering, University College London (UCL), London, WC1E 7JE, UK
| | - Andrea E Russell
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
19
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
Lee J, Jeong C, Yang Y. Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography. Nat Commun 2021; 12:1962. [PMID: 33785754 PMCID: PMC8009920 DOI: 10.1038/s41467-021-22204-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 11/11/2022] Open
Abstract
Functional properties of nanomaterials strongly depend on their surface atomic structures, but they often become largely different from their bulk structures, exhibiting surface reconstructions and relaxations. However, most of the surface characterization methods are either limited to 2D measurements or not reaching to true 3D atomic-scale resolution, and single-atom level determination of the 3D surface atomic structure for general 3D nanomaterials still remains elusive. Here we demonstrate the measurement of 3D atomic structure at 15 pm precision using a Pt nanoparticle as a model system. Aided by a deep learning-based missing data retrieval combined with atomic electron tomography, the surface atomic structure was reliably measured. We found that <\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$100$$\end{document}100> and <\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$111$$\end{document}111> facets contribute differently to the surface strain, resulting in anisotropic strain distribution as well as compressive support boundary effect. The capability of single-atom level surface characterization will not only deepen our understanding of the functional properties of nanomaterials but also open a new door for fine tailoring of their performance. Precise determination of surface atomic structure of metallic nanoparticles is key to unlock their surface/interface properties. Here the authors introduce a neural network-assisted atomic electron tomography approach that provides a three-dimensional reconstruction of metallic nanoparticles at individual atom level.
Collapse
Affiliation(s)
- Juhyeok Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chaehwa Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
21
|
Cho DH, Shen Z, Ihm Y, Wi DH, Jung C, Nam D, Kim S, Park SY, Kim KS, Sung D, Lee H, Shin JY, Hwang J, Lee SY, Lee SY, Han SW, Noh DY, Loh ND, Song C. High-Throughput 3D Ensemble Characterization of Individual Core-Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging. ACS NANO 2021; 15:4066-4076. [PMID: 33506675 DOI: 10.1021/acsnano.0c07961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and algorithms for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices, and elastic strain. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at the atomic level. This work establishes a route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.
Collapse
Affiliation(s)
- Do Hyung Cho
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Zhou Shen
- Department of Physics, National University of Singapore, Singapore 117551
| | - Yungok Ihm
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Dae Han Wi
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Chulho Jung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang-Youn Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Kyung Sook Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Daeho Sung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Heemin Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Jae-Yong Shin
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Junha Hwang
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sung Yun Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Su Yong Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - N Duane Loh
- Department of Physics, National University of Singapore, Singapore 117551
- Department of Biological Sciences, National University of Singapore, Singapore 117557
| | - Changyong Song
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), POSTECH, Pohang 37673, Korea
| |
Collapse
|
22
|
Timoshenko J, Roldan Cuenya B. In Situ/ Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem Rev 2021; 121:882-961. [PMID: 32986414 PMCID: PMC7844833 DOI: 10.1021/acs.chemrev.0c00396] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/18/2022]
Abstract
During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst's interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
23
|
Li W, Ye Y, Zhang S, Liang C, Zhang H. A fluidized electrocatalysis approach for ammonia synthesis using oxygen vacancy-rich Co3O4 nanoparticles. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00721a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a fluidized electrocatalysis system, using an aqueous ultrafine Co3O4 nanoparticle catalyst for the efficient electrocatalytic nitrogen reduction reaction.
Collapse
Affiliation(s)
- Wenyi Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yixing Ye
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Academy of Sciences, Hefei 230031, China
| |
Collapse
|
24
|
Kim BH, Heo J, Park J. Determination of the 3D Atomic Structures of Nanoparticles. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Byung Hyo Kim
- Department of Fiber Engineering and Organic Materials Soongsil University Seoul 06978 Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Process Seoul National University Seoul 08826 Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Process Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
25
|
Sun C. The BOLS-NEP theory reconciling the attributes of undercoordinated adatoms, defects, surfaces and nanostructures. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Zhao J, Chen B, Wang F. Shedding Light on the Role of Misfit Strain in Controlling Core-Shell Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004142. [PMID: 33051904 DOI: 10.1002/adma.202004142] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Indexed: 05/17/2023]
Abstract
Heteroepitaxial modification of nanomaterials has become a powerful means to create novel functionalities for various applications. One of the most elementary factors in heteroepitaxial nanostructures is the misfit strain arising from mismatched lattices of the constituent parts. Misfit strain not only dictates epitaxy kinetics for diversifying nanocrystal morphologies but also provides rational control over materials properties. In recent years, advances in chemical synthesis along with the rapid development of electron microscopy and X-ray diffraction techniques have enabled a substantial understanding of strain-related processes, which offers theoretical foundation and experimental guidance for researchers to refine heteroepitaxial nanostructures and their properties. Herein, recent investigations on heterogeneous core-shell nanocrystals containing misfit strains are summarized, with a focus on the mechanistic understanding of strain and strain-induced effects such as tuning the epitaxial habit, modulating the optical emission, and enhancing the catalytic activity and magnetic coercivity.
Collapse
Affiliation(s)
- Jianxiong Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
27
|
Lin Z, Hirao H, Sun C, Zhang X. C-H oxidation enhancement on a gold nanoisland by atomic-undercoordination induced polarization. Phys Chem Chem Phys 2020; 22:14458-14464. [PMID: 32452482 DOI: 10.1039/d0cp01117g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
C-H activation is of great significance in the chemical industry while an effective solvent-free catalyst is highly desired. This work shows that a gold nanoisland which was inert in the bulk is effective for C-H activation reactions. We investigated the C-H activation of toluene on an Au nanoisland (58 atoms) using relativistic density functional theory (DFT). We found that (i) the bonds between under-coordinated gold atoms (corner site) shrink spontaneously and become stronger; (ii) the valence charges of corner atoms are polarized to the upper edge of the valence band (near the Fermi level), indicating the electron donation ability in the catalytic process; (iii) during C-H oxidation, the indirect path (O2 dissociation and O-H bonding) and direct path (O2-H bonding) were considered. The Au-O2 complex is active enough to abstract a hydrogen atom directly from toluene, with a barrier that is 6.8 kcal mol-1 lower than that of the indirect path; and (iv) a transfer of up to ∼0.8 electrons from gold to O2 occurs. Moreover, hybridization between delocalized gold orbitals and oxygen p-orbitals leads to the stabilization of the singlet spin state of Au58O. Our results suggest that undercoordination-charge-polarization are key factors for the C-H oxidation catalyzed by an Au nanoisland.
Collapse
Affiliation(s)
- Zezhou Lin
- Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hajime Hirao
- Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Changqing Sun
- NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
28
|
Li Z, Feng Y, Liang YL, Cheng CQ, Dong CK, Liu H, Du XW. Stable Rhodium (IV) Oxide for Alkaline Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908521. [PMID: 32419191 DOI: 10.1002/adma.201908521] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 05/11/2023]
Abstract
Water electrolysis in alkaline electrolyte is an attractive way toward clean hydrogen energy via the hydrogen evolution reaction (HER), whereas the sluggish water dissociation impedes the following hydrogen evolution. Noble metal oxides possess promising capability for catalyzing water dissociation and hydrogen evolution; however, they are never utilized for the HER due to the instability under the reductive potential. Here it is shown that compressive strain can stabilize RhO2 clusters and promote their catalytic activity. To this end, a strawberry-like structure with RhO2 clusters embedded in the surface layer of Rh nanoparticles is engineered, in which the incompatibility between the oxide cluster and the metal substrate causes intensive compressive strain. As such, RhO2 clusters remain stable at a reduction potential up to -0.3 V versus reversible hydrogen electrode and present an alkaline HER activity superior to commercial Pt/C.
Collapse
Affiliation(s)
- Zhe Li
- Institute of New-Energy Materials, School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Yi Feng
- Institute of New-Energy Materials, School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Yu-Lin Liang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chuan-Qi Cheng
- Institute of New-Energy Materials, School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Cun-Ku Dong
- Institute of New-Energy Materials, School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Hui Liu
- Institute of New-Energy Materials, School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Xi-Wen Du
- Institute of New-Energy Materials, School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
29
|
Luneau M, Guan E, Chen W, Foucher AC, Marcella N, Shirman T, Verbart DMA, Aizenberg J, Aizenberg M, Stach EA, Madix RJ, Frenkel AI, Friend CM. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun Chem 2020; 3:46. [PMID: 36703362 PMCID: PMC9814734 DOI: 10.1038/s42004-020-0293-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 01/29/2023] Open
Abstract
Dilute alloys are promising materials for sustainable chemical production; however, their composition and structure affect their performance. Herein, a comprehensive study of the effects of pretreatment conditions on the materials properties of Pd0.04Au0.96 nanoparticles partially embedded in porous silica is related to the activity for catalytic hydrogenation of 1-hexyne to 1-hexene. A combination of in situ characterization and theoretical calculations provide evidence that changes in palladium surface content are induced by treatment in oxygen, hydrogen and carbon monoxide at various temperatures. In turn, there are changes in hydrogenation activity because surface palladium is necessary for H2 dissociation. These Pd0.04Au0.96 nanoparticles in the porous silica remain structurally intact under many cycles of activation and deactivation and are remarkably resistant to sintering, demonstrating that dilute alloy catalysts are highly dynamic systems that can be tuned and maintained in a active state.
Collapse
Affiliation(s)
- Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Erjia Guan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Wei Chen
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David M A Verbart
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
30
|
Favre-Nicolin V, Leake S, Chushkin Y. Free log-likelihood as an unbiased metric for coherent diffraction imaging. Sci Rep 2020; 10:2664. [PMID: 32060293 PMCID: PMC7021796 DOI: 10.1038/s41598-020-57561-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Coherent Diffraction Imaging (CDI), a technique where an object is reconstructed from a single (2D or 3D) diffraction pattern, recovers the lost diffraction phases without a priori knowledge of the extent (support) of the object. The uncertainty of the object support can lead to over-fitting and prevents an unambiguous metric evaluation of solutions. We propose to use a ‘free’ log-likelihood indicator, where a small percentage of points are masked from the reconstruction algorithms, as an unbiased metric to evaluate the validity of computed solutions, independent of the sample studied. We also show how a set of solutions can be analysed through an eigen-decomposition to yield a better estimate of the real object. Example analysis on experimental data is presented both for a test pattern dataset, and the diffraction pattern from a live cyanobacteria cell. The method allows the validation of reconstructions on a wide range of materials (hard condensed or biological), and should be particularly relevant for 4th generation synchrotrons and X-ray free electron lasers, where large, high-throughput datasets require a method for unsupervised data evaluation.
Collapse
Affiliation(s)
- Vincent Favre-Nicolin
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France. .,Univ. Grenoble Alpes, Grenoble, France.
| | - Steven Leake
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Yuriy Chushkin
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
31
|
Kaufmann K, Zhu C, Rosengarten AS, Maryanovsky D, Harrington TJ, Marin E, Vecchio KS. Crystal symmetry determination in electron diffraction using machine learning. Science 2020; 367:564-568. [PMID: 32001653 DOI: 10.1126/science.aay3062] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/23/2019] [Indexed: 11/02/2022]
Abstract
Electron backscatter diffraction (EBSD) is one of the primary tools for crystal structure determination. However, this method requires human input to select potential phases for Hough-based or dictionary pattern matching and is not well suited for phase identification. Automated phase identification is the first step in making EBSD into a high-throughput technique. We used a machine learning-based approach and developed a general methodology for rapid and autonomous identification of the crystal symmetry from EBSD patterns. We evaluated our algorithm with diffraction patterns from materials outside the training set. The neural network assigned importance to the same symmetry features that a crystallographer would use for structure identification.
Collapse
Affiliation(s)
- Kevin Kaufmann
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chaoyi Zhu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Daniel Maryanovsky
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tyler J Harrington
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eduardo Marin
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kenneth S Vecchio
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA. .,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Cui Y, Ma K, Chen Z, Yang J, Geng Z, Zeng J. Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Thickness-dependent photoelectric properties of MoS 2/Si heterostructure solar cells. Sci Rep 2019; 9:17381. [PMID: 31758067 PMCID: PMC6874606 DOI: 10.1038/s41598-019-53936-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
In order to obtain the optimal photoelectric properties of vertical stacked MoS2/Si heterostructure solar cells, we propose a theoretical model to address the relationship among film thickness, atomic bond identities and related physical quantities in terms of bond relaxation mechanism and detailed balance principle. We find that the vertical stacked MoS2/Si can form type II band alignment, and its photoelectric conversion efficiency (PCE) enhances with increasing MoS2 thickness. Moreover, the optimal PCE in MoS2/Si can reach 24.76%, inferring that a possible design way can be achieved based on the layered transition metal dichalcogenides and silicon.
Collapse
|
34
|
Essajai R, Mzerd A, Hassanain N, Qjani M. Thermal conductivity enhancement of nanofluids composed of rod-shaped gold nanoparticles: Insights from molecular dynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Essajai R, Rachadi A, Qjani M, Mzerd A, Hassanain N. Structural properties in single-component metallic nanoparticle: Insights from the simulation study. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Timoshenko J, Frenkel AI. “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03599] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
37
|
Wang X, Wang C, Chen C, Duan H, Du K. Free-standing Monatomic Thick Two-dimensional Gold. NANO LETTERS 2019; 19:4560-4566. [PMID: 31241953 DOI: 10.1021/acs.nanolett.9b01494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monolayer metal membranes have attracted research attention owing to their fascinating physical properties. Unlike layered materials with weak interlayer van der Waals bonding, metallic monolayer membranes are difficult to exfoliate due to strong metallic bonding between layers. Here, we fabricate free-standing monatomic-thick Au membranes and nanoribbons framed in bulk crystals using in situ dealloying inside transmission electron microscope. The Au membranes are robust under high energy electron beam. Monatomic-thick nanoribbons with a minimal width of 0.6 nm are observed. First-principles calculations reveal that zigzag-edged nanoribbons are ferromagnetic with magnetic moments ranging 0.38-0.51 μB per unit-cell for a width less than 0.9 nm. In addition, a linear relationship between the bond length and the coordination number of atoms is directly investigated using atomic resolution images of monolayer and bilayer Au membranes. This work provides a pathway for direct fabrication of metal membranes and nanoribbons and to achieve novel physical properties.
Collapse
Affiliation(s)
- Xuelu Wang
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
- School of Materials Science and Engineering , University of Science and Technology of China , Shenyang 110016 , China
| | - Chunyang Wang
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunjin Chen
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
- School of Materials Science and Engineering , University of Science and Technology of China , Shenyang 110016 , China
| | - Huichao Duan
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
- School of Materials Science and Engineering , University of Science and Technology of China , Shenyang 110016 , China
| | - Kui Du
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
| |
Collapse
|
38
|
Timoshenko J, Duan Z, Henkelman G, Crooks RM, Frenkel AI. Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:501-522. [PMID: 30699037 DOI: 10.1146/annurev-anchem-061318-114929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extended X-ray absorption fine structure (EXAFS) spectroscopy is a premiere method for analysis of the structure and structural transformation of nanoparticles. Extraction of analytical information about the three-dimensional structure and dynamics of metal-metal bonds from EXAFS spectra requires special care due to their markedly non-bulk-like character. In recent decades, significant progress has been made in the first-principles modeling of structure and properties of nanoparticles. In this review, we summarize new approaches for EXAFS data analysis that incorporate particle structure modeling into the process of structural refinement.
Collapse
Affiliation(s)
- J Timoshenko
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Z Duan
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - G Henkelman
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - R M Crooks
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
| | - A I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA;
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
39
|
Zhao X, Gunji T, Kaneko T, Yoshida Y, Takao S, Higashi K, Uruga T, He W, Liu J, Zou Z. An Integrated Single-Electrode Method Reveals the Template Roles of Atomic Steps: Disturb Interfacial Water Networks and Thus Affect the Reactivity of Electrocatalysts. J Am Chem Soc 2019; 141:8516-8526. [PMID: 31050410 DOI: 10.1021/jacs.9b02049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A method enabling the accurate and precise correlation between structures and properties is critical to the development of efficient electrocatalysts. To this end, we developed an integrated single-electrode method (ISM) that intimately couples electrochemical rotating disk electrodes, in situ/operando X-ray absorption fine structures, and aberration-corrected transmission electron microscopy on identical electrodes. This all-in-one method allows for the one-to-one, in situ/operando, and atomic-scale correlation between structures of electrocatalysts with their electrochemical reactivities, distinct from common methods that adopt multisamples separately for electrochemical and physical characterizations. Because the atomic step is one of the most fundamentally structural elements in electrocatalysts, we demonstrated the feasibility of ISM by exploring the roles of atomic steps in the reactivity of electrocatalysts. In situ and atomic-scale evidence shows that low-coordinated atomic steps not only generate reactive species at low potentials and strengthen surface contraction but also act as templates to disturb interfacial water networks and thus affect the reactivity of electrocatalysts. This template role interprets the long-standing puzzle regarding why high-index facets are active for the oxygen reduction reaction in acidic media. The ISM as a fundamentally new method for workflows should aid the study of many other electrocatalysts regarding their nature of active sites and operative mechanisms.
Collapse
Affiliation(s)
- Xiao Zhao
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Takao Gunji
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Shinobu Takao
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Kotaro Higashi
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Institute , SPring-8 , Sayo , Hyogo 679-5198 , Japan
| | - Wenxiang He
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| | - Jianguo Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| |
Collapse
|
40
|
|
41
|
Abstract
This article presents a rigorous and self-consistent comparison of lattice distortion and deformation fields existing in energy-optimized pseudo-spherical gold nanoparticles obtained from real-space and powder diffraction strain analysis techniques. The changes in atomic positions resulting from energy optimization (relaxation) of ideally perfect gold nanoparticles were obtained using molecular dynamics modeling. The relaxed atomic coordinates were then used to compute the displacement, rotation and strain components in all unit cells within the energy-optimized (relaxed) particles. It was seen that all of these terms were distributed heterogeneously along the radial and tangential directions within the nanospheroids. The heterogeneity was largest in the first few atomic shells adjacent to the nanoparticle surface, where the continuity of crystal lattice vectors originating from the interior layers was broken because of local lattice rotations. These layers also exhibited maximum shear and normal strains. These (real-space) strain values were then compared with the average lattice strains obtained by refining the computed diffraction patterns of such particles. The results show that (i) relying solely on full-pattern refinement techniques for lattice strain analysis might lead to erroneous conclusions about the dimensionality and symmetry of deformation within relaxed nanoparticles; (ii) the lattice strains within such relaxed particles should be considered `eigenstrains' (`inherent strains') as defined by Mura [Micromechanics of Defects in Solids, (1991), 2nd ed., Springer]; and (iii) the stress/strain state within relaxed nanoparticles cannot be analyzed rigorously using the constitutive equations of linear elasticity.
Collapse
|
42
|
Gao W, Tieu P, Addiego C, Ma Y, Wu J, Pan X. Probing the dynamics of nanoparticle formation from a precursor at atomic resolution. SCIENCE ADVANCES 2019; 5:eaau9590. [PMID: 30746469 PMCID: PMC6357698 DOI: 10.1126/sciadv.aau9590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/11/2018] [Indexed: 05/24/2023]
Abstract
Control of reduction kinetics and nucleation processes is key in materials synthesis. However, understanding of the reduction dynamics in the initial stages is limited by the difficulty of imaging chemical reactions at the atomic scale; the chemical precursors are prone to reduction by the electron beams needed to achieve atomic resolution. Here, we study the reduction of a solid-state Pt precursor compound in an aberration-corrected transmission electron microscope by combining low-dose and in situ imaging. The beam-sensitive Pt precursor, K2PtCl4, is imaged at atomic resolution, enabling determination of individual (K, Pt, Cl) atoms. The transformation to Pt nanoclusters is captured in real time, showing a three-stage reaction including the breaking of the ionic bond, formation of PtCl2, and the reduction of the dual-valent Pt to Pt metal. Deciphering the atomic-scale transformation of chemicals in real time using combined low-dose and in situ imaging brings new possibility to study reaction kinetics in general.
Collapse
Affiliation(s)
- Wenpei Gao
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Christopher Addiego
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| | - Yanling Ma
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Bi S, Li Q, Yan Y, Asare-Yeboah K, Ma T, Tang C, Ouyang Z, He Z, Liu Y, Jiang C. Layer-dependent anisotropic frictional behavior in two-dimensional monolayer hybrid perovskite/ITO layered heterojunctions. Phys Chem Chem Phys 2019; 21:2540-2546. [DOI: 10.1039/c8cp06645k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anisotropy of friction between 2D perovskites and the ITO is a four-fold symmetry in misaligned and aligned contacts.
Collapse
Affiliation(s)
- Sheng Bi
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education
- Dalian University of Technology
- Dalian 116024
- China
- Institute of Photoelectric Nanoscience and Nanotechnology
| | - Qikun Li
- Institute of Photoelectric Nanoscience and Nanotechnology
- School of Mechanical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Ying Yan
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education
- Dalian University of Technology
- Dalian 116024
- China
| | | | - Tianbao Ma
- State Key Laboratory of Tribology
- Tsinghua University
- Beijing 100084
- China
| | - Chaolong Tang
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore
| | - Zhongliang Ouyang
- Department of Electrical and Computer Engineering
- Center for Materials for Information Technology
- The University of Alabama
- Tuscaloosa
- USA
| | - Zhengran He
- Department of Electrical and Computer Engineering
- Center for Materials for Information Technology
- The University of Alabama
- Tuscaloosa
- USA
| | - Yun Liu
- School of Physics
- Dalian University of Technology
- Dalian 116024
- China
| | - Chengming Jiang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education
- Dalian University of Technology
- Dalian 116024
- China
- Institute of Photoelectric Nanoscience and Nanotechnology
| |
Collapse
|
44
|
Essajai R, Benhouria Y, Rachadi A, Qjani M, Mzerd A, Hassanain N. Shape-dependent structural and magnetic properties of Fe nanoparticles studied through simulation methods. RSC Adv 2019; 9:22057-22063. [PMID: 35518893 PMCID: PMC9066694 DOI: 10.1039/c9ra03047f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
Studying the shape-dependent structural and magnetic properties of nanoparticles is one of the most necessary scientific challenges in order to match these nano-objects for adequate applications. In this research paper, the shape effect of iron nanoparticles (FeNPs) on structural and magnetic properties was investigated on the basis of a combination of Molecular Statics (MS) and Monte Carlo (MC) simulations. To this end, three kinds of FeNP shapes (such as spherical, planar and rod) in an equal volume have been considered. The coordination number distribution of FeNPs obtained from the data extracted by MS simulations was exploited for performing MC simulations on the familiar Ising model. The numerical findings obtained showed that the structural stability, the Curie temperature as well as the shape of the hysteresis loop are correlated with the FeNP shape. The shape effect of iron nanoparticles (FeNPs) on structural and magnetic properties was investigated on the basis of a combination of Molecular Statics (MS) and Monte Carlo (MC) simulations.![]()
Collapse
Affiliation(s)
- Rida Essajai
- Group of STCE-Energy Research Center (ERC)
- Faculty of Science
- Mohammed V University
- Rabat
- Morocco
| | - Younes Benhouria
- Laboratory of Physics of Materials and Modeling of Systems, (LP2MS)
- Unit Associated with CNRST-URAC 08
- Faculty of Science
- University Moulay Ismail
- Physics Department
| | - Abdeljalil Rachadi
- Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMScI)
- Faculty of Science
- Mohammed V University
- B. P. 1014 Rabat
- Morocco
| | - Mbarek Qjani
- LCMP
- Faculty of Sciences
- Chouaïb Doukkali University
- El Jadida
- Morocco
| | - Ahmed Mzerd
- Group of STCE-Energy Research Center (ERC)
- Faculty of Science
- Mohammed V University
- Rabat
- Morocco
| | - Najem Hassanain
- Group of STCE-Energy Research Center (ERC)
- Faculty of Science
- Mohammed V University
- Rabat
- Morocco
| |
Collapse
|
45
|
Liao C, Zhao Y, Ouyang G. Strain-Modulated Band Engineering in Two-Dimensional Black Phosphorus/MoS 2 van der Waals Heterojunction. ACS OMEGA 2018; 3:14641-14649. [PMID: 31458144 PMCID: PMC6644261 DOI: 10.1021/acsomega.8b01767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
We investigate the band shift and band alignment of two-dimensional (2D) black phosphorus (BP)/MoS2 van der Waals heterojunction (vdW HJ) via uniaxial strain in terms of first-principles calculations and atomic-bond-relaxation method. We find that the band gap of 2D BP/MoS2 HJ decreases linearly with applied tensile strain and Mo-S bond breaks down at 10% tensile strain. Meanwhile, the band gap slightly increases and then monotonically decreases under compressive strain and there appears a semiconductor-to-metal transition at -11 and -12% strain in the y and x directions, respectively. Moreover, 2D BP/MoS2 HJ maintains type-II band alignment for strain applied in the y direction whereas type-II/I band transition appears at -5% strain in the x direction. Moreover, we propose an analytical model to address the strain-modulated band engineering of 2D BP/MoS2 vdW HJ at the atomic level. Our results suggest a promising way to explain the intrinsic mechanism of strain engineering and manipulate the electronic properties of 2D vdW HJs.
Collapse
|
46
|
Han Y, Jing X, Zhou X, Zhang KH, Li S, Wang W, He W. Coordination-dependent surface strain and rational construction of robust structures. NANOTECHNOLOGY 2018; 29:465708. [PMID: 30063216 DOI: 10.1088/1361-6528/aad717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A surface relaxation model is established to study the elastic properties of nanoscale structures. This model predicts coordination-dependent strain at the surface and thickness-dependent stiffness of a material. Several atomic layers at the surface endure a significant strain gradient, which is dominated by the intrinsic properties of the material. The stiffness of low-dimensional materials is enhanced by surface relaxation effect. Surface effects on strong structures, including honeycomb structure and octet-truss structure with a high stiffness-to-weight ratio, are discussed. For these structures assembled with nanobeams, the Young's modulus decreases with decreasing size of the struts. The coupling between Young's modulus and relative density can be scaled down by engineering tensile strain on the struts.
Collapse
Affiliation(s)
- Yupei Han
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Petkov V, Shastri S, Kim JW, Shan S, Luo J, Wu J, Zhong CJ. Application of differential resonant high-energy X-ray diffraction to three-dimensional structure studies of nanosized materials: A case study of Pt-Pd nanoalloy catalysts. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2018; 74:553-566. [PMID: 30182942 DOI: 10.1107/s2053273318009282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022]
Abstract
Atoms in many of the increasingly complex nanosized materials of interest to science and technology do not necessarily occupy the vertices of Bravais lattices. The atomic scale structure of such materials is difficult to determine by traditional X-ray diffraction and so their functional properties remain difficult to optimize by rational design. Here, the three-dimensional structure of PtxPd100-x nanoalloy particles is determined, where x = 0, 14, 36, 47, 64 and 100, by a non-traditional technique involving differential resonant high-energy X-ray diffraction experiments conducted at the K edge of Pt and Pd. The technique is coupled with three-dimensional modeling guided by the experimental total and element-specific atomic pair distribution functions. Furthermore, using DFT (density functional theory) calculation based on the positions of atoms in the obtained three-dimensional structure models, the catalytic performance of Pt-Pd particles is explained. Thus, differential resonant high-energy X-ray diffraction is shown to be an excellent tool for three-dimensional structure studies of nanosized materials. The experimental and modeling procedures are described in good detail, to facilitate their wider usage.
Collapse
Affiliation(s)
- Valeri Petkov
- Department of Physics, Central Michigan University, Mt Pleasant, Michigan 48859, USA
| | - Sarvjit Shastri
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Jong Woo Kim
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Shiyao Shan
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| | - Jin Luo
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| | - Jinfang Wu
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| | - Chuan Jian Zhong
- Department of Chemistry, State University of New York, Binghamton, New York 13902, USA
| |
Collapse
|
48
|
Tayal A, Chen Y, Song C, Hiroi S, Kumara LSR, Palina N, Seo O, Mukoyoshi M, Kobayashi H, Kitagawa H, Sakata O. Local Geometry and Electronic Properties of Nickel Nanoparticles Prepared via Thermal Decomposition of Ni-MOF-74. Inorg Chem 2018; 57:10072-10080. [DOI: 10.1021/acs.inorgchem.8b01230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akhil Tayal
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-gun Hyogo 679-5148, Japan
| | - Yanna Chen
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-gun Hyogo 679-5148, Japan
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, NIMS, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148, Japan
| | - Chulho Song
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-gun Hyogo 679-5148, Japan
| | - Satoshi Hiroi
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, NIMS, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148, Japan
| | - L. S. R. Kumara
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-gun Hyogo 679-5148, Japan
| | - Natalia Palina
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-gun Hyogo 679-5148, Japan
| | - Okkyun Seo
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-gun Hyogo 679-5148, Japan
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, NIMS, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148, Japan
| | - Megumi Mukoyoshi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502, Japan
| | - Hirokazu Kobayashi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi Saitama 332-0012, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502, Japan
| | - Osami Sakata
- Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-gun Hyogo 679-5148, Japan
- Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, NIMS, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148, Japan
| |
Collapse
|
49
|
Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat Commun 2018; 9:2722. [PMID: 30006550 PMCID: PMC6045581 DOI: 10.1038/s41467-018-05055-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 11/23/2022] Open
Abstract
Heterogeneous catalysis is an enabling technology that utilises transition metal nanoparticles (NPs) supported on oxides to promote chemical reactions. Structural mismatch at the NP–support interface generates lattice strain that could affect catalytic properties. However, detailed knowledge about strain in supported NPs remains elusive. We experimentally measure the strain at interfaces, surfaces and defects in Pt NPs supported on alumina and ceria with atomic resolution using high-precision scanning transmission electron microscopy. The largest strains are observed at the interfaces and are predominantly compressive. Atomic models of Pt NPs with experimentally measured strain distributions are used for first-principles kinetic Monte Carlo simulations of the CO oxidation reaction. The presence of only a fraction of strained surface atoms is found to affect the turnover frequency. These results provide a quantitative understanding of the relationship between strain and catalytic function and demonstrate that strain engineering can potentially be used for catalyst design. Detailed knowledge of how strain influences catalytic reactions remains elusive. Here, the authors experimentally measure the strain in supported Pt nanoparticles on alumina and ceria with atomic resolution and computationally explore how the strain affects the CO oxidation reaction.
Collapse
|
50
|
|