1
|
Di Filippo I, Anfar Z, Magna G, Pranee P, Monti D, Stefanelli M, Oda R, Di Natale C, Paolesse R. Chiral porphyrin-SiO 2 nano helices-based sensors for vapor enantiomers recognition. NANOSCALE ADVANCES 2024; 6:4470-4478. [PMID: 39170970 PMCID: PMC11334989 DOI: 10.1039/d4na00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The ability of olfaction to distinguish odors is based on many different properties deriving from the molecular structure, including chirality. Even if the electronic nose (e-nose) concept has been widely used in strict analogy with biological systems to implement sensor arrays that recognize and distinguish complex odor matrices, the fabrication of an enantioselective e-nose remains a challenge. This paper introduces an array of quartz microbalances (QMB) functionalized with sensitive materials made of a combination of achiral receptors and silica nanohelices grafted by chiral and achiral porphyrins. In this combination, nanohelices provide a chiral template for the spatial arrangement of porphyrins, while porphyrins act as receptors that can interact differently with analytes. Remarkably, even if single sensors show scarce enantioselectivity, the signals of the overall array achieve recognition of the chiral identity of the five diverse enantiomeric pairs tested when the data are processed with proper multivariate algorithms. Such an innovative and generalizable approach is expected to enable the formation of an extensive library of readily integrable chiral receptors in enantioselective sensor arrays, potentially revolutionizing diverse fields such as agrochemicals, medicine, and environmental sciences.
Collapse
Affiliation(s)
- Ilaria Di Filippo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della Ricerca Scientifica 1 00133 Rome Italy
| | - Zakaria Anfar
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 33600 Pessac France
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della Ricerca Scientifica 1 00133 Rome Italy
| | - Piyanan Pranee
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 33600 Pessac France
| | - Donato Monti
- Department of Chemistry, Sapienza, University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della Ricerca Scientifica 1 00133 Rome Italy
| | - Reiko Oda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 33600 Pessac France
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata via del Politecnico 1 00133 Rome Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
2
|
Albano G, Portus L, Martinelli E, Pescitelli G, Di Bari L. Impact of Temperature on the Chiroptical Properties of Thin Films of Chiral Thiophene-based Oligomers. Chempluschem 2024; 89:e202300667. [PMID: 38339881 DOI: 10.1002/cplu.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
According to the theoretical model based on the Mueller matrix approach, the experimental electronic circular dichroism (ECD) for thin films of chiral organic dyes can be expressed as the sum of several contributions, two of which are the most significant: 1) an intrinsic component (CDiso) invariant upon sample orientation, reflecting the molecular and/or supramolecular chirality, due to 3D-chiral nanoscopic structures; 2) a non-reciprocal component (LDLB) which inverts its sign upon sample flipping, which arises from the interaction of linear dichroism and linear birefringence in locally anisotropic domains, expression of 2D-chiral micro/mesoscopic structures. In this work, we followed in parallel through ECD and differential scanning calorimetry (DSC) the temperature evolution of the supramolecular arrangements of thin films of five structurally related chiral thiophene-based oligomers with different LDLB/CDiso ratio. By increasing the temperature, regardless of phase transitions observed by DSC analysis, systems with strong CDiso revealed no changes in the ECD spectrum, while compounds with dominant LDLB contribution underwent a gradual (and reversible) reduction of (apparent) ECD signals. These findings demonstrated that the concomitant occurrence of intrinsic and non-reciprocal components in the ECD spectrum of thin films of chiral organic dyes is strictly correlated with solid-state organizations of different stability.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Portus
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
3
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
4
|
Luo C, Sang T, Ge Z, Lu J, Wang Y. Flexible design of chiroptical response of planar chiral metamaterials using deep learning. OPTICS EXPRESS 2024; 32:13978-13985. [PMID: 38859355 DOI: 10.1364/oe.510656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 06/12/2024]
Abstract
Optical chirality is highly demanded for biochemical sensing, spectral detection, and advanced imaging, however, conventional design schemes for chiral metamaterials require highly computational cost due to the trial-and-error strategy, and it is crucial to accelerate the design process particularly in comparably simple planar chiral metamaterials. Herein, we construct a bidirectional deep learning (BDL) network consists of spectra predicting network (SPN) and design predicting network (DPN) to accelerate the prediction of spectra and inverse design of chiroptical response of planar chiral metamaterials. It is shown that the proposed BDL network can accelerate the design process and exhibit high prediction accuracy. The average process of prediction only takes ∼15 ms, which is 1 in 40000 compared to finite-difference time-domain (FDTD). The mean-square error (MSE) loss of forward and inverse prediction reaches 0.0085 after 100 epochs. Over 95.2% of training samples have MSE ≤ 0.0042 and MSE ≤ 0.0044 for SPN and DPN, respectively; indicating that the BDL network is robust in the inverse deign without underfitting or overfitting for both SPN and DPN. Our founding shows great potentials in accelerating the on-demand design of planar chiral metamaterials.
Collapse
|
5
|
Oka M, Kozako R, Teranishi Y, Yamada Y, Miyake K, Fujimura T, Sasai R, Ikeue T, Iida H. Chiral Supramolecular Organogel Constructed Using Riboflavin and Melamine: Its Application in Photo-Catalyzed Colorimetric Chiral Sensing and Enantioselective Adsorption. Chemistry 2024; 30:e202303353. [PMID: 38012829 DOI: 10.1002/chem.202303353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of a chiral supramolecular organogel via the hierarchical helical self-assembly of optically active riboflavin and melamine derivatives is described herein. Owing to the photocatalysis of riboflavin and the supramolecular chirality induced in the helically stacked riboflavin/melamine complex, the gel is observed to act as a light-stimulated chiral sensor of optically active alcohols by detecting the change in color from yellow to green. The gel also served as an efficient chiral adsorbent, enabling optical resolution of a racemic compound with high chiral recognition ability.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Kozako
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Teranishi
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Yamada
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuhiro Miyake
- Center for Material Research Platform, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujimura
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Sasai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
6
|
Zhao HY, Liu GL, Xu Q, Pei YR, Jin LY. Chirality-induced supramolecular nanodishes: enantioselectivity and energy transfer. SOFT MATTER 2024; 20:1884-1891. [PMID: 38321960 DOI: 10.1039/d3sm01747h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.
Collapse
Affiliation(s)
- Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Gui-Lang Liu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Qing Xu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China.
| |
Collapse
|
7
|
Jain A, Bégin JL, Corkum P, Karimi E, Brabec T, Bhardwaj R. Intrinsic dichroism in amorphous and crystalline solids with helical light. Nat Commun 2024; 15:1350. [PMID: 38355638 PMCID: PMC10867019 DOI: 10.1038/s41467-024-45735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Amorphous solids do not exhibit long-range order due to the disordered arrangement of atoms. They lack translational and rotational symmetry on a macroscopic scale and are therefore isotropic. As a result, differential absorption of polarized light, called dichroism, is not known to exist in amorphous solids. Using helical light beams that carry orbital angular momentum as a probe, we demonstrate that dichroism is intrinsic to both amorphous and crystalline solids. We show that in the nonlinear regime, helical dichroism is responsive to the short-range order and its origin is explained in terms of interband multiphoton assisted tunneling. We also demonstrate that the helical dichroism signal is sensitive to chirality and its strength can be controlled and tuned using a superposition of OAM and Gaussian beams. Our research challenges the conventional knowledge that dichroism does not exist in amorphous solids and enables to manipulate the optical properties of solids.
Collapse
Affiliation(s)
- Ashish Jain
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Jean-Luc Bégin
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Paul Corkum
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ebrahim Karimi
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Thomas Brabec
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ravi Bhardwaj
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
8
|
Albano G, Taddeucci A, Pescitelli G, Di Bari L. Spatially Resolved Chiroptical Spectroscopies Emphasizing Recent Applications to Thin Films of Chiral Organic Dyes. Chemistry 2023; 29:e202301982. [PMID: 37515814 DOI: 10.1002/chem.202301982] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Instrumental techniques able to identify and structurally characterize the aggregation states in thin films of chiral organic π-conjugated materials, from the first-order supramolecular arrangement up to the microscopic and mesoscopic scale, are very helpful for clarifying structure-property relationships. Chiroptical imaging is currently gaining a central role, for its ability of mapping local supramolecular structures in thin films. The present review gives an overview of electronic circular dichroism imaging (ECDi), circularly polarized luminescence imaging (CPLi), and vibrational circular dichroism imaging (VCDi), with a focus on their applications on thin films of chiral organic dyes as case studies.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Diamond Light Source, Ltd., Chilton, Didcot, OX11 0DE, UK
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
9
|
Volpi M, Jouclas R, Liu J, Liu G, Catalano L, McIntosh N, Bardini M, Gatsios C, Modesti F, Turetta N, Beljonne D, Cornil J, Kennedy AR, Koch N, Erk P, Samorì P, Schweicher G, Geerts YH. Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301914. [PMID: 37424043 PMCID: PMC10502826 DOI: 10.1002/advs.202301914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Indexed: 07/11/2023]
Abstract
Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices.
Collapse
Affiliation(s)
- Martina Volpi
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Rémy Jouclas
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Jie Liu
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Guangfeng Liu
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Luca Catalano
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Nemo McIntosh
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Marco Bardini
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Christos Gatsios
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | | | - Nicholas Turetta
- CNRSUniversity of StrasbourgISIS UMR 7006, 8 Alleé Gaspard MongeStrasbourgF‐67000France
| | - David Beljonne
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of StrathclydeCathedral Street 295GlasgowG1 1XLUK
| | - Norbert Koch
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | - Peter Erk
- BASF SERGD – J542S67056Ludwigshafen am RheinGermany
| | - Paolo Samorì
- CNRSUniversity of StrasbourgISIS UMR 7006, 8 Alleé Gaspard MongeStrasbourgF‐67000France
| | - Guillaume Schweicher
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Yves H. Geerts
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
- International Solvay Institutes for Physics and ChemistryUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 231Bruxelles1050Belgium
| |
Collapse
|
10
|
Tomita A, Vallés A, Miyamoto K, Omatsu T. Creation of galaxy-shaped vortex relief structures in azo-polymers with petal-like beams. OPTICS EXPRESS 2023; 31:27868-27879. [PMID: 37710853 DOI: 10.1364/oe.489095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 09/16/2023]
Abstract
We demonstrate the formation of surface relief structures in azo-polymers which exhibit multiple spiral arms, through irradiation of a rotating petal-like beam formed by the coherent superposition of Laguerre-Gaussian modes with opposite handedness. Intriguingly, the fabricated relief structures reflect full geometric parameters of the irradiated petal beam, such as handedness, topological charge, initial azimuthal phase and even ellipticity, corresponding to azimuthal and polar angles along equator and meridian planes of an orbital Poincaré sphere. The handedness, or direction of rotation, of the fabricated structures with multiple spiral arms could be controlled via the rotation and polarization directions of the irradiating laser field. This effect highlights an exotic coupling between the optical intensity gradient induced mass transport of the irradiated material and the spin angular momentum characteristics of the irradiating optical field. The azimuthal orientation of the surface relief structures could also be tuned by altering the initial relative phase between the coherently superposed Laguerre-Gaussian modes with opposite handedness, constituting the irradiating petal laser field. This work offers new insights into fundamental interactions which occur between light and matter, and we believe, will pave the way towards advanced technologies, such as ultrahigh density optical data storage.
Collapse
|
11
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
12
|
Lee YT, Chen MH, Ho YL, Wang Z, Lee YC, Delaunay JJ. Angular Control of Circularly Polarized Emission from Achiral Molecules via Magnetic Dipoles Sustained in a Chiral Metamirror. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463328 DOI: 10.1021/acsami.3c05717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Circularly polarized emission (CPE) plays an important role in the designs of advanced displays and photonic integrated circuits. Unfortunately, the control of CPE handedness is limited by the chiral metasurfaces employed to emit chiral light. Particularly, the switching of the handedness with chiral metasurfaces relies on flipping the metasurfaces, which adds some constraints to practical applications. Herein, we propose an angle-sensitive chiral metamirror with Mie resonators to realize handedness switching. The Mie resonator supports a magnetic dipole having large field enhancement. This chiral metamirror is applied to excite CPEs with opposite handedness at emission angles within 10°. In contrast to the conventional methods, this work proposes a more efficient approach to manipulate the handedness of CPE.
Collapse
Affiliation(s)
- Ying-Tsung Lee
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mu-Hsin Chen
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ya-Lun Ho
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhiyu Wang
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yang-Chun Lee
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jean-Jacques Delaunay
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Maity A, Hershkovitz-Pollak Y, Gupta R, Wu W, Haick H. Spin-Controlled Helical Quantum Sieve Chiral Spectrometer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209125. [PMID: 36807927 DOI: 10.1002/adma.202209125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/22/2022] [Indexed: 06/16/2023]
Abstract
This article reports on a molecular-spin-sensitive-antenna (MSSA) that is based on stacked layers of organically functionalized graphene on a fibrous helical cellulose network for carrying out spatiotemporal identification of chiral enantiomers. The MSSA structures combine three complementary features: (i) chiral separation via a helical quantum sieve for chiral trapping, (ii) chiral recognition by a synthetically implanted spin-sensitive center in a graphitic lattice; and (iii) chiral selectivity by a chirality-induced-spin mechanism that polarizes the local electronic band-structure in graphene through chiral-activated Rashba spin-orbit interaction field. Combining the MSSA structures with decision-making principles based on neuromorphic artificial intelligence shows fast, portable, and wearable spectrometry for the detection and classification of pure and a mixture of chiral molecules, such as butanol (S and R), limonene (S and R), and xylene isomers, with 95-98% accuracy. These results can have a broad impact where the MSSA approach is central as a precautionary risk assessment against potential hazards impacting human health and the environment due to chiral molecules; furthermore, it acts as a dynamic monitoring tool of all parts of the chiral molecule life cycles.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Hershkovitz-Pollak
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
14
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Nawaz A, Merces L, Ferro LMM, Sonar P, Bufon CCB. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204804. [PMID: 36124375 DOI: 10.1002/adma.202204804] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The development of flexible and conformable devices, whose performance can be maintained while being continuously deformed, provides a significant step toward the realization of next-generation wearable and e-textile applications. Organic field-effect transistors (OFETs) are particularly interesting for flexible and lightweight products, because of their low-temperature solution processability, and the mechanical flexibility of organic materials that endows OFETs the natural compatibility with plastic and biodegradable substrates. Here, an in-depth review of two competing flexible OFET technologies, planar and vertical OFETs (POFETs and VOFETs, respectively) is provided. The electrical, mechanical, and physical properties of POFETs and VOFETs are critically discussed, with a focus on four pivotal applications (integrated logic circuits, light-emitting devices, memories, and sensors). It is pointed out that the flexible function of the relatively newer VOFET technology, along with its perspective on advancing the applicability of flexible POFETs, has not been reviewed so far, and the direct comparison regarding the performance of POFET- and VOFET-based flexible applications is most likely absent. With discussions spanning printed and wearable electronics, materials science, biotechnology, and environmental monitoring, this contribution is a clear stimulus to researchers working in these fields to engage toward the plentiful possibilities that POFETs and VOFETs offer to flexible electronics.
Collapse
Affiliation(s)
- Ali Nawaz
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
| | - Letícia M M Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Carlos C B Bufon
- MackGraphe - Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, São Paulo, 01302-907, Brazil
| |
Collapse
|
16
|
Parmeggiani M, Ballesio A, Battistoni S, Carcione R, Cocuzza M, D’Angelo P, Erokhin VV, Marasso SL, Rinaldi G, Tarabella G, Vurro D, Pirri CF. Organic Bioelectronics Development in Italy: A Review. MICROMACHINES 2023; 14:460. [PMID: 36838160 PMCID: PMC9966652 DOI: 10.3390/mi14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions.
Collapse
Affiliation(s)
- Matteo Parmeggiani
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Alberto Ballesio
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Silvia Battistoni
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Rocco Carcione
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Matteo Cocuzza
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Pasquale D’Angelo
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Victor V. Erokhin
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Simone Luigi Marasso
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Giorgia Rinaldi
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Davide Vurro
- Camlin Italy Srl, Via Budellungo 2, 43124 Parma, Italy
| | - Candido Fabrizio Pirri
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| |
Collapse
|
17
|
Hashikawa Y, Sadai S, Okamoto S, Murata Y. Near-Infrared-Absorbing Chiral Open [60]Fullerenes. Angew Chem Int Ed Engl 2023; 62:e202215380. [PMID: 36357327 DOI: 10.1002/anie.202215380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/12/2022]
Abstract
Though [60]fullerene is an achiral molecular nanocarbon with Ih symmetry, it could attain an inherent chirality depending upon a functionalization pattern. The conventional chiral induction of C60 relies mainly upon a multiple addition affording a mixture of achiral and chiral isomers while their chiral function would be largely offset by the existence of pseudo-mirror plane(s). These are major obstacles to proceed further study on fullerene chirality and yet leave its understanding elusive. Herein, we showcase a carbene-mediated synthesis of C1 -symmetric chiral open [60]fullerenes showing an intense far-red to near-infrared absorption. The large dissymmetry factor of |gabs |=0.12 was achieved at λ=820 nm for circular dichroism in benzonitrile. This is, in general, unachievable by other small chiral organic molecules, demonstrating the potential usage of open [60]fullerenes as novel types of chiral chromophores.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shumpei Sadai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shu Okamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
18
|
Wang XT, Cheng LT, Chen C, Cao L, Zheng J, Zheng XY. Atom-Precise Chiral Lanthanide-Silver(I) Heterometallic Clusters Ln 3Ag 5. Inorg Chem 2022; 61:17387-17391. [DOI: 10.1021/acs.inorgchem.2c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xue-Tao Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Lan-Tao Cheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Lingyun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| |
Collapse
|
19
|
Abstract
The detection and discrimination of chiral analytes has always been a topical theme in food and pharmaceutical industries and environmental monitoring, especially when dealing with chiral drugs and pesticides, whose enantiomeric nature assessment is of crucial importance. The typical approach matches novel chiral receptors designed ad hoc for the discrimination of a target enantiomer with emerging nanotechnologies. The massive synthetic efforts requested and the difficulty of analyzing complex matrices warrant the ever-growing exploitation of sensor array as an alternative route, using a limited number of chiral or both chiral and achiral sensors for the stereoselective identification and dosing of chiral compounds. This review aims to illustrate a little-explored winning strategy in chiral sensing based on sensor arrays. This strategy mimics the functioning of natural olfactory systems that perceive some couples of enantiomeric compounds as distinctive odors (i.e., using an array of a considerable number of broad selective receptors). Thus, fundamental concepts related to the working principle of sensor arrays and the role of data analysis techniques and models have been briefly presented. After the discussion of existing examples in the literature using arrays for discriminating enantiomers and, in some cases, determining the enantiomeric excess, the remaining challenges and future directions are outlined for researchers interested in chiral sensing applications.
Collapse
|
20
|
Park W, Yun C, Yun S, Lee JJ, Bae S, Ho D, Earmme T, Kim C, Seo S. [1]Benzothieno[3,2-b][1]benzothiophene-based liquid crystalline organic semiconductor for solution-processed organic thin film transistors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Gong Q, Miao Q. Sensitivity of gas sensors enhanced by functionalization of hexabenzoperylene in solution-processed monolayer organic field effect transistors. Chem Commun (Camb) 2022; 58:7046-7049. [PMID: 35647768 DOI: 10.1039/d2cc01899c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-processed monolayer films consisting of unfunctionalized and functionalized hexabenzoperylenes in a single homogeneous phase have enabled highly sensitive detection of NH3 and NO2 on the basis of organic field effect transistors.
Collapse
Affiliation(s)
- Qi Gong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
22
|
Katz HE. Stabilization and Specification in Polymer Field-Effect Transistor Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15861-15870. [PMID: 35352553 DOI: 10.1021/acsami.2c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The strong and varied chemical interactions between polymer semiconductors and small molecules, and the electronic consequences of these interactions, make polymer organic field-effect transistors (OFETs) attractive as vapor sensing elements. Two hindrances to their wider acceptance and use are their environmental drift and the poor specificity of individual OFETs. Approaches to addressing these two present drawbacks are presented in this Spotlight on Applications. They include the use of semiconducting polymers with greater inherent stability, circuits that add further stability, and arrays that generate patterns that are much more specific to analyte vapors of interest than the individual responses.
Collapse
Affiliation(s)
- Howard E Katz
- Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Tang J, Zhao L. Structural Control and Chiroptical Response in Intrinsically Tetra- and Pentanuclear Chiral Gold Clusters. Inorg Chem 2022; 61:4541-4549. [PMID: 35262331 DOI: 10.1021/acs.inorgchem.2c00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling the synthesis of chiral metal clusters in the aspects of nuclearity number, metal-metal interaction, and spatial arrangement of metal atoms is crucial for establishing the correlation of detailed structural factors with chiroptical activity. Herein, a series of enantiopure gold complexes with nuclearity numbers ranging from 2 to 5 were constructed and structurally characterized. On the basis of the annulation reaction between two aurated μ2-imido nucleophilic units with various aldehydes, we finely adjusted the metal-metal interaction and torsion angles of a characteristic tetranuclear metal cluster by introducing different substituents into the resulting imidazolidine dianionic chiral skeleton. Further structural investigations, contrast experiments, and time-dependent density functional theory calculations confirmed that the chiroptical response of the acquired asymmetric metal clusters was mainly affected by the geometrically twisted arrangement of metal atoms. Finally, the tetranuclear gold cluster compound with the shortest intermetallic interaction and the largest torsion angle of a Au4 core showed the highest absorption anisotropy factor up to 2.2 × 10-3. In addition, the correlation of structural factors with the stability of chiral gold clusters was thoroughly evaluated by monitoring the CD, UV-vis, and NMR spectra at elevated temperatures. Insight into the relationship between the structural factors with the chiroptical property and stability of chiral gold clusters in this work will help us to design and achieve more stable chiral metal clusters and stimulate their practical applications in chiroptical functional materials.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
24
|
Bettini S, Grover N, Ottolini M, Mattern C, Valli L, Senge MO, Giancane G. Enantioselective Discrimination of Histidine by Means of an Achiral Cubane-Bridged Bis-Porphyrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13882-13889. [PMID: 34784714 PMCID: PMC8638291 DOI: 10.1021/acs.langmuir.1c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A Langmuir film of cubane-bridged bisporphyrin (H2por-cubane-H2por) at the air/water interface was developed and characterized. The floating film was successfully employed for the chiral discrimination between l- and d-histidine. The enantioselective behavior persisted after the deposition of the film on a solid support using the Langmuir-Schaefer method. Distinct absorption and reflection spectra were observed in the presence of l- or d-histidine, revealing that conformational switching was governed by the interaction between H2por-cubane-H2por and the histidine enantiomer. The mechanism of chiral selection was investigated using an ad hoc modified nulling ellipsometer, indicating the anti-conformation was dominant in the presence of l-histidine, whereas the presence of d-histidine promoted the formation of tweezer conformation.
Collapse
Affiliation(s)
- Simona Bettini
- Department
of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, Lecce 73100, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e, Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze 50121, Italy
| | - Nitika Grover
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University
of Dublin, 152−160
Pearse Street, Dublin 2, Ireland
| | - Michela Ottolini
- Department
of Engineering of Innovation, Campus University Ecotekne, University of Salento, Via per Monteroni, Lecce 73100, Italy
| | - Cornelia Mattern
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University
of Dublin, 152−160
Pearse Street, Dublin 2, Ireland
| | - Ludovico Valli
- Department
of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, Lecce 73100, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e, Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze 50121, Italy
| | - Mathias O. Senge
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University
of Dublin, 152−160
Pearse Street, Dublin 2, Ireland
| | - Gabriele Giancane
- Consorzio
Interuniversitario Nazionale per la Scienza e, Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze 50121, Italy
- Department
of Cultural Heritage, University of Salento, Via D. Birago, Lecce 73100, Italy
| |
Collapse
|
25
|
Ivaskovic P, Ainseba B, Nicolas Y, Toupance T, Tardy P, Thiéry D. Sensing of Airborne Infochemicals for Green Pest Management: What Is the Challenge? ACS Sens 2021; 6:3824-3840. [PMID: 34704740 DOI: 10.1021/acssensors.1c00917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the biggest global challenges for our societies is to provide natural resources to the rapidly expanding population while maintaining sustainable and ecologically friendly products. The increasing public concern about toxic insecticides has resulted in the rapid development of alternative techniques based on natural infochemicals (ICs). ICs (e.g., pheromones, allelochemicals, volatile organic compounds) are secondary metabolites produced by plants and animals and used as information vectors governing their interactions. Such chemical language is the primary focus of chemical ecology, where behavior-modifying chemicals are used as tools for green pest management. The success of ecological programs highly depends on several factors, including the amount of ICs that enclose the crop, the range of their diffusion, and the uniformity of their application, which makes precise detection and quantification of ICs essential for efficient and profitable pest control. However, the sensing of such molecules remains challenging, and the number of devices able to detect ICs in air is so far limited. In this review, we will present the advances in sensing of ICs including biochemical sensors mimicking the olfactory system, chemical sensors, and sensor arrays (e-noses). We will also present several mathematical models used in integrated pest management to describe how ICs diffuse in the ambient air and how the structure of the odor plume affects the pest dynamics.
Collapse
Affiliation(s)
- Petra Ivaskovic
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Bedr’Eddine Ainseba
- UMR 5251, Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33405 Talence, France
| | - Yohann Nicolas
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Thierry Toupance
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Pascal Tardy
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Denis Thiéry
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
| |
Collapse
|
26
|
Wang C, Guo AM, Sun QF, Yan Y. Efficient Spin-Dependent Charge Transmission and Improved Enantioselective Discrimination Capability in Self-Assembled Chiral Coordinated Monolayers. J Phys Chem Lett 2021; 12:10262-10269. [PMID: 34652163 DOI: 10.1021/acs.jpclett.1c03106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spin-dependent charge transmission or the so-called chirality-induced spin selectivity (CISS) effect was demonstrated in self-assembled chiral coordinated monolayers. Distinct from the previous CISS phenomenon observed mainly on pure biomolecules, here we expanded this effect to the coordinated complex of chiral biomolecules and metal cations, specifically, cysteine-Cu2+-alanine (Cys/Cu/Ala), in which the complex itself was redox-active. However, the coordinated self-assembled monolayers of cysteine-Cu2+-cysteine did not show any spin-dependent effect. In addition, this phenomenon was explained by developing a theoretical model with spin-orbit coupling. The alanine molecules contributed to multiple transport pathways, leading to experimentally observable spin polarization. Finally, this CISS effect in Cys/Cu/Ala complex was demonstrated to amplify the sensing signal. The enantioselective discrimination efficiency could be improved by controlling the orientation of the external magnetic field.
Collapse
Affiliation(s)
- Chenchen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ai-Min Guo
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
28
|
Park KH, Kwon J, Jeong U, Kim JY, Kotov NA, Yeom J. Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale. ACS NANO 2021; 15:15229-15237. [PMID: 34519483 DOI: 10.1021/acsnano.1c05888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral nanomaterials provide a rich platform for versatile applications. Tuning the wavelength of polarization rotation maxima in the broad range including short-wave infrared (SWIR) is a promising candidate for infrared neural stimulation, imaging, and nanothermometry. However, the majority of previously developed chiral nanomaterials reveal the optical activity in a relatively shorter wavelength range (ultraviolet-visible, UV-vis), not in SWIR. Here, we demonstrate a versatile method to synthesize chiral copper sulfides using cysteine, as the stabilizer, and transferring the chirality from molecular- to the microscale through self-assembly. The assembled structures show broad chiroptical activity in the UV-vis-NIR-SWIR region (200-2500 nm). Importantly, we can tune the chiroptical activity by simply changing the reaction conditions. This approach can be extended to materials platforms for developing next-generation optical devices, metamaterials, telecommunications, and asymmetric catalysts.
Collapse
Affiliation(s)
- Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Uichang Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Young Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB. Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors. Chem Rev 2021; 122:4397-4419. [PMID: 34491034 DOI: 10.1021/acs.chemrev.1c00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
Collapse
Affiliation(s)
- Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
30
|
Ziv A, Shoseyov O, Karadan P, Bloom BP, Goldring S, Metzger T, Yochelis S, Waldeck DH, Yerushalmi R, Paltiel Y. Chirality Nanosensor with Direct Electric Readout by Coupling of Nanofloret Localized Plasmons with Electronic Transport. NANO LETTERS 2021; 21:6496-6503. [PMID: 34297582 DOI: 10.1021/acs.nanolett.1c01539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The detection of enantiopurity for small sample quantities is crucial, particularly in the pharmaceutical industry; however, existing methodologies rely on specific chiral recognition elements, or complex optical systems, limiting its utility. A nanoscale chirality sensor, for continuously monitoring molecular chirality using an electric circuit readout, is presented. This device design represents an alternative real-time scalable approach for chiral recognition of small quantity samples (less than 103 adsorbed molecules). The active device component relies on a gold nanofloret hybrid structure, i.e., a high aspect ratio semiconductor-metal hybrid nanosystem in which a SiGe nanowire tip is selectively decorated with a gold metallic cap. The tip mechanically touches a counter electrode to generate a nanojunction, and upon exposure to molecules, a metal-molecule-metal junction is formed. Adsorption of chiral molecules at the gold tip induces chirality in the localized plasmonic resonance at the electrode-tip junction and manifests in an enantiospecific current response.
Collapse
Affiliation(s)
- Amir Ziv
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Omer Shoseyov
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Prajith Karadan
- Institute of Chemistry, The Hebrew University, Jerusalem 9290401, Israel
| | - Brian P Bloom
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sharone Goldring
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Tzuriel Metzger
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Shira Yochelis
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - David H Waldeck
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Roie Yerushalmi
- Institute of Chemistry, The Hebrew University, Jerusalem 9290401, Israel
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem, 9190401 Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem, 9190401 Israel
| |
Collapse
|
31
|
Zhang J, Luo Y, Tao Z, You J. Graphic-processable deep neural network for the efficient prediction of 2D diffractive chiral metamaterials. APPLIED OPTICS 2021; 60:5691-5698. [PMID: 34263863 DOI: 10.1364/ao.428581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
We propose a novel, to the best of our knowledge, graphic-processable deep neural network (DNN) to automatically predict and elucidate the optical chirality of two-dimensional (2D) diffractive chiral metamaterials. Four classes of 2D chiral metamaterials are studied here, with material components changing among Au, Ag, Al, and Cu. The graphic-processable DNN algorithm can not only handle arbitrary 2D images representing any metamaterials that may even go beyond human intuition, but also capture the influence of other parameters such as thickness and material composition, which are rarely explored in the field of metamaterials, laying the groundwork for future research into more complicated nanostructures and nonlinear optical devices. Notably, the rigorous coupled wave analysis (RCWA) algorithm is first deployed to calculate circular dichroism (CD) in the higher-order diffraction beams and simultaneously promote the training of DNN. For the first time we creatively encode the material component and thickness of the metamaterials into the color images serving as input of the graphic-processable DNN, in addition to arbitrary graphical parameters. Especially, the smallest intensity is found in the third-order diffraction beams of E-like metamaterials, whose CD response turns out to be the largest. A comprehensive study is conducted to capture the influence of shape, unit period, thickness, and material component of arrays on chiroptical response. As expected, a satisfied precision and an accelerated computing speed that is 4 orders of magnitude quicker than RCWA are both achieved using DNN. This work belongs to one of the first attempts to thoroughly examine the generalization ability of the graphic-processable DNN for the study of arbitrary-shaped nanostructures and hypersensitive nanodevices.
Collapse
|
32
|
Chen X. Unusual reversible fast-response dielectric and nonlinear optical switches in homochiral compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Straus DB, Cava RJ. Generalizing the Chiral Self-Assembly of Spheres and Tetrahedra to Non-Spherical and Polydisperse Molecules in (C 70) x(C 60) 1-x(SnI 4) 2. NANO LETTERS 2021; 21:4753-4756. [PMID: 34014669 DOI: 10.1021/acs.nanolett.1c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe the spontaneous chiral self-assembly of C70 with SnI4 as well as a mixture of C60 and C70 with SnI4. Macroscopic single crystals with the formula (C70)x(C60)1-x(SnI4)2 (x = 0-1) are reported. C60, which is spherical, and C70, which is ellipsoidal, form a solid solution in these crystals, and the cubic lattice parameter of the chiral phase linearly increases as x grows from 0 to 1 in accordance with Vegard's law. Our results demonstrate that nonspherical particles and polydispersity are not an impediment to the growth of chiral crystals from high-symmetry achiral precursors, providing a route to assemble achiral particles including colloidal nanocrystals and engineered nanostructures into chiral materials without the need to use external templates or forces.
Collapse
Affiliation(s)
- Daniel B Straus
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert J Cava
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Liu W, Wang J, Yuan S, Chen X, Wang Q. Chiral Superatomic Nanoclusters Ag
47
Induced by the Ligation of Amino Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen‐Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Department of Applied Physics Aalto University Otakaari 1 02150 Espoo Finland
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
35
|
Liu W, Wang J, Yuan S, Chen X, Wang Q. Chiral Superatomic Nanoclusters Ag
47
Induced by the Ligation of Amino Acids. Angew Chem Int Ed Engl 2021; 60:11430-11435. [DOI: 10.1002/anie.202100972] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Department of Applied Physics Aalto University Otakaari 1 02150 Espoo Finland
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
36
|
Huang S, Yu H, Li Q. Supramolecular Chirality Transfer toward Chiral Aggregation: Asymmetric Hierarchical Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002132. [PMID: 33898167 PMCID: PMC8061372 DOI: 10.1002/advs.202002132] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Self-assembly, as a typical bottom-up strategy for the fabrication of functional materials, has been applied to fabricate chiral materials with subtle chiral nanostructures. The chiral nanostructures exhibit great potential in asymmetric catalysis, chiral sensing, chiral electronics, photonics, and even the realization of several biological functions. According to existing studies, the supramolecular chirality transfer process combined with hierarchical self-assembly plays a vital role in the fabrication of multiscale chiral structures. This progress report focuses on the hierarchical self-assembly of chiral or achiral molecules that aggregate with asymmetric spatial structures such as twisted bands, helices, and superhelices in different environments. Herein, recent studies on the chirality transfer induced self-assembly based on a variety of supramolecular interactions are summarized. In addition, the influence of different environments and the states of systems including solutions, condensed states, gel systems, interfaces on the asymmetric hierarchical self-assembly, and the expression of chirality are explored. Moreover, both the driving forces that facilitate chiral bias and the supramolecular interactions that play an important role in the expression, transfer, and amplification of the chiral sense are correspondingly discussed.
Collapse
Affiliation(s)
- Shuai Huang
- School of Materials Science and EngineeringKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking UniversityBeijing100871China
- Institute of Advanced MaterialsSchool of Chemistry and Chemical EngineeringSoutheast UniversityNanjingJiangsu Province211189China
| | - Haifeng Yu
- School of Materials Science and EngineeringKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking UniversityBeijing100871China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
37
|
Wu S, Wang H, Wu D, Fan GC, Tao Y, Kong Y. Silver nanoparticle driven signal amplification for electrochemical chiral discrimination of amino acids. Analyst 2021; 146:1612-1619. [PMID: 33605973 DOI: 10.1039/d1an00119a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
β-Cyclodextrin (β-CD) modified silver nanoparticles (AgNPs), denoted as β-CD/AgNPs, were prepared by a simple one-pot method. Due to the inherent chirality of β-CD, the developed β-CD/AgNPs exhibited higher affinity toward l-tyrosine (l-Tyr) than d-tyrosine (d-Tyr), leading to serious aggregation of AgNPs in the presence of l-Tyr. Consequently, the l-Tyr induced aggregation of AgNPs can result in signal amplification in the differential pulse voltammograms (DPVs) of l-Tyr, which can be applied for the electrochemical chiral discrimination of the Tyr enantiomers. Other chiral amino acids including tryptophan and phenylalanine can also be successfully discriminated with the β-CD/AgNPs, suggesting high universality of the developed chiral sensor.
Collapse
Affiliation(s)
- Shanshan Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Hui Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
38
|
Liu Y, Liu L, Chen X, Liu Y, Han Y, Cui Y. Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal-Organic Frameworks. J Am Chem Soc 2021; 143:3509-3518. [PMID: 33621078 DOI: 10.1021/jacs.0c13005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two-dimensional (2D) materials with highly ordered in-plane nanopores are crucial for numerous applications, but their rational synthesis and local structural characterization remain two grand challenges. We illustrate here that single-crystalline ultrathin 2D MOF nanosheets (MONs) with intrinsic porosity can be prepared by exfoliating layered metal-organic frameworks (MOFs), whose layers are stabilized by sterically bulky groups. As a result, three three-dimensional (3D) isostructural lanthanide MOFs possessing porous layer structures are constructed by coordinating metal ions with an angular dicarboxylate linker derived from chiral 1,1'-biphenyl phosphoric acid with pendant mesityl groups. The Eu-MOF is readily ultrasonic exfoliated into single-crystalline nanosheets with a thickness of ca. 6.0 nm (2 layers) and a lateral size of 1.5 × 3.0 μm2. The detailed structural information, i.e., the pore channels and individual organic and inorganic building units in the framework, is clearly visualized by a low-dose high-resolution transmission electron microscopy (HRTEM) technique. Benefiting from their ultrathin feature, the nanosheets are well embedded into the polymer matrix to form free-standing mixed-matrix membranes. In both the solution and membrane phase, the fluorescence of the MONs can be effectively quenched by a total of 17 chiral terpenes and terpenoids through supramolecular interactions with uncoordinated chiral phosphoric acids, leading to a chiral optical sensor for detecting vapor enantiomers, which is among the most challenging molecular recognition tasks.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lingmei Liu
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yu Han
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
39
|
Okur S, Qin P, Chandresh A, Li C, Zhang Z, Lemmer U, Heinke L. An Enantioselective e-Nose: An Array of Nanoporous Homochiral MOF Films for Stereospecific Sensing of Chiral Odors. Angew Chem Int Ed Engl 2021; 60:3566-3571. [PMID: 33156561 PMCID: PMC7898876 DOI: 10.1002/anie.202013227] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Indexed: 11/24/2022]
Abstract
Chirality is essential in nature and often pivotal for biological information transfer, for example, via odor messenger molecules. While the human nose can distinguish the enantiomers of many chiral odors, the technical realization by an artificial sensor or an electronic nose, e-nose, remains a challenge. Herein, we present an array of six sensors coated with nanoporous metal-organic framework (MOF) films of different homochiral and achiral structures, working as an enantioselective e-nose. While the achiral-MOF-film sensors show identical responses for both isomers of one chiral odor molecule, the responses of the homochiral MOF films differ for different enantiomers. By machine learning algorithms, the combined array data allow the stereoselective identification of all compounds, here tested for five pairs of chiral odor molecules. We foresee the chiral-MOF-e-nose, able to enantioselectively detect and discriminate chiral odors, to be a powerful approach towards advanced odor sensing.
Collapse
Affiliation(s)
- Salih Okur
- Karlsruhe Institute of Technology (KIT)Light Technology Institute (LTI)Engesserstrasse 1376131KarlsruheGermany
| | - Peng Qin
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Abhinav Chandresh
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Chun Li
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Zejun Zhang
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Ulrich Lemmer
- Karlsruhe Institute of Technology (KIT)Light Technology Institute (LTI)Engesserstrasse 1376131KarlsruheGermany
- Karlsruhe Institute of Technology (KIT)Institute of Microstructure Technology (IMT)76128KarlsruheGermany
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
40
|
Yu S, Zhang D, Pan W, Zeng J. Adsorption of atmospheric gas molecules (NH3, H2S, CO, H2, CH4, NO, NO2, C6H6 and C3H6O) on two-dimensional polyimide with hydrogen bonding: a first-principles study. NEW J CHEM 2021. [DOI: 10.1039/d0nj06013e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we investigated the effects of hydrogen bond acceptors on the surface of two-dimensional polyimide towards NH3, H2S, CO, H2, CH4, NO, NO2, C6H6 and C3H6O gas molecules through first-principles study based on density functional theory.
Collapse
Affiliation(s)
- Sujing Yu
- College of Control Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Dongzhi Zhang
- College of Control Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Wenjing Pan
- College of Control Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Jingbin Zeng
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| |
Collapse
|
41
|
Hassan Omar O, Falcone M, Operamolla A, Albano G. Impact of chirality on the aggregation modes of l-phenylalanine- and d-glucose-decorated phenylene–thiophene oligomers. NEW J CHEM 2021. [DOI: 10.1039/d1nj02125g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three l-phenylalanine- or d-glucose-decorated phenylene–thiophene oligomers have been studied using UV-Vis and ECD spectroscopies in different conditions of solution aggregation and thin films, investigating the impact of chirality on their aggregation modes.
Collapse
Affiliation(s)
- Omar Hassan Omar
- CNR-ICCOM-BARI Istituto di Chimica dei Composti Organometallici
- Via Edoardo Orabona 4
- Bari 70126
- Italy
| | - Marta Falcone
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- Via Giuseppe Moruzzi 13
- Pisa 56124
- Italy
| | - Alessandra Operamolla
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- Via Giuseppe Moruzzi 13
- Pisa 56124
- Italy
| | - Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- Via Giuseppe Moruzzi 13
- Pisa 56124
- Italy
| |
Collapse
|
42
|
Takahashi Y, Ishida K, Matsuno S, Kurokawa M, Shimada T, Harada J, Inabe T. Charge injection phenomena at the contact interface between (5,10,15,20-tetramethylporphyrinato)cobalt( ii) and 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane single crystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transfer phenomena occurring at the contact interface of heterogeneous organic crystals are investigated. About 10% more charge was injected into the crystal interface by the contact, which largely increased the surface conductivity.
Collapse
Affiliation(s)
- Yukihiro Takahashi
- Department of Chemistry
- Faculty of Science
- Hokkaido University and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
| | - Kenshiro Ishida
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Sarasa Matsuno
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Masashi Kurokawa
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Takuro Shimada
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Jun Harada
- Department of Chemistry
- Faculty of Science
- Hokkaido University and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
| | - Tamotsu Inabe
- Department of Chemistry
- Faculty of Science
- Hokkaido University and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
| |
Collapse
|
43
|
Lu TQ, Yin JJ, Chen C, Shi HY, Zheng J, Liu Z, Fang X, Zheng XY. Two pairs of chiral lanthanide–oxo clusters Ln 14 induced by amino acid derivatives. CrystEngComm 2021. [DOI: 10.1039/d1ce00948f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two pairs of chiral lanthanide–oxo clusters l-/d-Ln14 (Ln = Y/Dy) have been obtained under the action of anion template. The solid-state circular dichroism (CD) spectra of l-Y14/d-Y14 and l-Dy14/d-Dy14 displayed mirror symmetry effects.
Collapse
Affiliation(s)
- Tian-Qi Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jia-Jia Yin
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hai-Yan Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Zhengjie Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Xiaolong Fang
- College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
44
|
Okur S, Qin P, Chandresh A, Li C, Zhang Z, Lemmer U, Heinke L. Eine enantioselektive elektronische Nase: Ein Array nanoporöser homochiraler MOF‐Filme zur stereospezifischen Erkennung chiraler Geruchsmoleküle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Salih Okur
- Karlsruhe Institute of Technology (KIT) Light Technology Institute (LTI) Engesserstraße 13 76131 Karlsruhe Deutschland
| | - Peng Qin
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Abhinav Chandresh
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Chun Li
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Zejun Zhang
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Ulrich Lemmer
- Karlsruhe Institute of Technology (KIT) Light Technology Institute (LTI) Engesserstraße 13 76131 Karlsruhe Deutschland
- Karlsruhe Institute of Technology (KIT) Institute of Microstructure Technology (IMT) 76128 Karlsruhe Deutschland
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
45
|
Bettini S, Valli L, Giancane G. Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules 2020; 25:molecules25163742. [PMID: 32824375 PMCID: PMC7463501 DOI: 10.3390/molecules25163742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the description of several examples of supramolecular assemblies of phthalocyanine derivatives differently functionalized and interfaced with diverse kinds of chemical species for photo-induced phenomena applications. In fact, the role of different substituents was investigated in order to tune peculiar aggregates formation as well as, with the same aim, the possibility to interface these derivatives with other molecular species, as electron donor and acceptor, carbon allotropes, cyclodextrins, protein cages, drugs. Phthalocyanine photo-physical features are indeed really interesting and appealing but need to be preserved and optimized. Here, we highlight that the supramolecular approach is a versatile method to build up very complex and functional architectures. Further, the possibility to minimize the organization energy and to facilitate the spontaneous assembly of the molecules, in numerous examples, has been demonstrated to be more useful and performing than the covalent approach.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Engineering of Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
- Correspondence:
| | - Gabriele Giancane
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Cultural Heritage, University of Salento, Via D. Birago, 64, 73100 Lecce, Italy
| |
Collapse
|
46
|
Ricci S, Casalini S, Parkula V, Selvaraj M, Saygin GD, Greco P, Biscarini F, Mas-Torrent M. Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosens Bioelectron 2020; 167:112433. [PMID: 32771862 DOI: 10.1016/j.bios.2020.112433] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
The aggregation of α-synuclein is a critical event in the pathogenesis of neurological diseases, such as Parkinson or Alzheimer. Here, we present a label-free sensor based on an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) integrated with microfluidics that allows for the detection of amounts of α-synuclein in the range from 0.25 pM to 25 nM. The lower limit of detection (LOD) measures the potential of our integrated device as a tool for prognostics and diagnostics. In our device, the gate electrode is the effective sensing element as it is functionalised with anti-(α-synuclein) antibodies using a dual strategy: i) an amino-terminated self-assembled monolayer activated by glutaraldehyde, and ii) the His-tagged recombinant protein G. In both approaches, comparable sensitivity values were achieved, featuring very low LOD values at the sub-pM level. The microfluidics engineering is central to achieve a controlled functionalisation of the gate electrode and avoid contamination or physisorption on the organic semiconductor. The demonstrated sensing architecture, being a disposable stand-alone chip, can be operated as a point-of-care test, but also it might represent a promising label-free tool to explore in-vitro protein aggregation that takes place during the progression of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Simona Ricci
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain
| | - Stefano Casalini
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain; Department of Chemical Sciences, University of Padua, via Francesco Marzolo 1, 35131, Padova, Italy.
| | - Vitaliy Parkula
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy; University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Meenu Selvaraj
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy
| | | | - Pierpaolo Greco
- Scriba Nanotecnologie srl, via di Corticella 183/8, 40128, Bologna, Italy
| | - Fabio Biscarini
- University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy; Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44100, Ferrara, Italy
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de La Universitat Autònoma de Barcelona, Cerdanyola, 08193, Barcelona, Spain.
| |
Collapse
|
47
|
Sarcina L, Torsi L, Picca RA, Manoli K, Macchia E. Assessment of Gold Bio-Functionalization for Wide-Interface Biosensing Platforms. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3678. [PMID: 32630091 PMCID: PMC7374319 DOI: 10.3390/s20133678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022]
Abstract
The continuous improvement of the technical potential of bioelectronic devices for biosensing applications will provide clinicians with a reliable tool for biomarker quantification down to the single molecule. Eventually, physicians will be able to identify the very moment at which the illness state begins, with a terrific impact on the quality of life along with a reduction of health care expenses. However, in clinical practice, to gather enough information to formulate a diagnosis, multiple biomarkers are normally quantified from the same biological sample simultaneously. Therefore, it is critically important to translate lab-based bioelectronic devices based on electrolyte gated thin-film transistor technology into a cost-effective portable multiplexing array prototype. In this perspective, the assessment of cost-effective manufacturability represents a crucial step, with specific regard to the optimization of the bio-functionalization protocol of the transistor gate module. Hence, we have assessed, using surface plasmon resonance technique, a sustainable and reliable cost-effective process to successfully bio-functionalize a gold surface, suitable as gate electrode for wide-field bioelectronic sensors. The bio-functionalization process herein investigated allows to reduce the biorecognition element concentration to one-tenth, drastically impacting the manufacturing costs while retaining high analytical performance.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Kyriaki Manoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| |
Collapse
|
48
|
Abstract
Chirality is a fundamental property of a molecule, and the significant progress in chirality detection and quantification of a molecule has inspired major advances in various fields ranging from chemistry, biology, to biotechnology and pharmacology. Chiral molecules have identical molecular formulas, atom-to-atom linkages, and bonding distances, and as such they are difficult to distinguish both sensitively and selectively. Today, most new drugs and those under development are chiral, which requires technological developments in the separation and detection of chiral molecules. Therefore, rapid and facile methods to detect and discriminate chiral compounds are necessary to accelerate advances in many research fields. The challenges in analysis stem from the obvious fact that chiral molecules have the same physical properties. Although significant progress on the detection of enantiomeric composition has been achieved in the past decade, in order to fully realize the capacity of chiral molecular interrogation, highly sensitive and selective, portable, and easy-to-use detection remains challenging because of the limitation of conventional techniques.Soft nanoarchitectonics is a new concept for the fabrication of functional soft material systems through harmonization of various actions including atomic/molecular-level manipulation, chemical reactions, self-assembly and self-organization, and their modulation by external fields/stimuli. Soft nanoarchitectonics has been widely used as a key enabling technology for integrating predefined molecular functionalities including electrochemical, optical, catalytic, or biological properties into biosensing devices, which provides exciting opportunities to design, assemble, and fabricate tailored nanosystems to enable new sensing strategies for chiral molecules.In this Account, we aim to concisely discuss how these molecule-inspired soft nanoarchitectonics work for enantioselective sensing. We will first outline the basic principle and mechanistic insights of the soft nanoarchitectonics approach for enantioselective sensing, and then we will describe the new breakthroughs and trends in the area that have been most recently reported by our groups and others. There will also be a discussion on the merits of soft nanoarchitectonics based sensing in comparison to conventional analytical methods. Finally, with this Account, we hope to spark new chiral molecule sensing strategies by fundamentally understanding chiral recognition and engineering soft nanoarchitectonics with programmable structures and predictable sensing properties.
Collapse
Affiliation(s)
- Jing Liu
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Hong Zhou
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
49
|
Tao Z, You J, Zhang J, Zheng X, Liu H, Jiang T. Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network. OPTICS LETTERS 2020; 45:1403-1406. [PMID: 32163977 DOI: 10.1364/ol.386980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here, a deep learning (DL) algorithm based on deep neural networks is proposed and employed to predict the chiroptical response of two-dimensional (2D) chiral metamaterials. Specifically, these 2D metamaterials contain nine types of left-handed nanostructure arrays, including U-like, T-like, and I-like shapes. Both the traditional rigorous coupled wave analysis (RCWA) method and DL approach are utilized to study the circular dichroism (CD) in higher-order diffraction beams. One common feature of these chiral metamaterials is that they all exhibit the weakest intensity but the strongest CD response in the third-order diffracted beams. Our work suggests that the DL model can predict CD performance of a 2D chiral nanostructure with a computational speed that is four orders of magnitude faster than RCWA but preserves high accuracy. The DL model introduced in this work shows great potentials in exploring various chiroptical interactions in metamaterials and accelerating the design of hypersensitive photonic devices.
Collapse
|
50
|
Bettini S, Syrgiannis Z, Ottolini M, Bonfrate V, Giancane G, Valli L, Prato M. Supramolecular Chiral Discrimination of D-Phenylalanine Amino Acid Based on a Perylene Bisimide Derivative. Front Bioeng Biotechnol 2020; 8:160. [PMID: 32195240 PMCID: PMC7064719 DOI: 10.3389/fbioe.2020.00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
The interaction between homochiral substituted perylene bisimide (PBI) molecule and the D enantiomer of phenylalanine amino acid was monitored. Spectroscopic transitions of PBI derivative in aqueous solution in the visible range were used to evaluate the presence of D-phenylalanine. UV-visible, fluorescence, FT-IR, and AFM characterizations showed that D-phenylalanine induces significant variations in the chiral perylene derivative aggregation state and the mechanism is enantioselective as a consequence of the 3D analyte structure. The interaction mechanism was further investigated in presence of interfering amino acid (D-serine and D-histidine) confirming that both chemical structure and its 3D structure play a crucial role for the amino acid discrimination. A D-phenylalanine fluorescence sensor based on perylene was proposed. A limit of detection (LOD) of 64.2 ± 0.38 nM was calculated in the range 10-7-10-5 M and of 1.53 ± 0.89 μM was obtained in the range 10-5 and 10-3 M.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, Campus University Ecotekne, University of Salento, Lecce, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
| | - Zois Syrgiannis
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Michela Ottolini
- Department of Innovation Engineering, Campus University Ecotekne, University of Salento, Lecce, Italy
| | - Valentina Bonfrate
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Gabriele Giancane
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
- Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Ludovico Valli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, Donostia-San Sebastian, Spain
| |
Collapse
|