1
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
2
|
Sánchez-Costa M, López-Gallego F. Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:21-46. [PMID: 37306703 DOI: 10.1007/10_2023_226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications. In this sense, the combination of solid materials (normally functionalized with different biomacromolecules) together with cell-free components has made this technology more versatile and robust. In this chapter, we discuss the combination of solid materials with DNA and transcription-translation machinery to synthesize proteins within compartments, to immobilize and purify in situ the nascent protein, to transcribe and transduce DNAs immobilized on solid surfaces, and the combination of all or some of these strategies.
Collapse
Affiliation(s)
- Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
3
|
CRISPR-Cas-mediated diagnostics. Trends Biotechnol 2022; 40:1326-1345. [PMID: 35595574 DOI: 10.1016/j.tibtech.2022.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023]
Abstract
An ideal molecular diagnostic method should be sensitive, specific, low cost, rapid, portable, and easy to operate. Traditional nucleic acid detection methods based mainly on PCR technology have not only high sensitivity and specificity, but also some limitations, such as the need for expensive equipment and skilled technicians, being both time and labor intensive, and difficult to implement in some regions. However, with the continuous development of CRISPR-Cas technology and its application in molecular diagnosis, new approaches have been used for the construction of molecular diagnostic systems. In this review, we discuss recent advances in CRISPR-based molecular diagnostic technologies and highlight the revolution they bring to the field of molecular diagnostics.
Collapse
|
4
|
Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale. Int J Mol Sci 2022; 23:ijms23073515. [PMID: 35408876 PMCID: PMC8999133 DOI: 10.3390/ijms23073515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
A novel resemblance-ranking peptide library with 160,000 10-meric peptides was designed to search for selective binders to antibodies. The resemblance-ranking principle enabled the selection of sequences that are most similar to the human peptidome. The library was synthesized with ultra-high-density peptide arrays. As proof of principle, screens for selective binders were performed for the therapeutic anti-CD20 antibody rituximab. Several features in the amino acid composition of antibody-binding peptides were identified. The selective affinity of rituximab increased with an increase in the number of hydrophobic amino acids in a peptide, mainly tryptophan and phenylalanine, while a total charge of the peptide remained relatively small. Peptides with a higher affinity exhibited a lower sum helix propensity. For the 30 strongest peptide binders, a substitutional analysis was performed to determine dissociation constants and the invariant amino acids for binding to rituximab. The strongest selective peptides had a dissociation constant in the hundreds of the nano-molar range. The substitutional analysis revealed a specific hydrophobic epitope for rituximab. To show that conformational binders can, in principle, be detected in array format, cyclic peptide substitutions that are similar to the target of rituximab were investigated. Since the specific binders selected via the resemblance-ranking peptide library were based on the hydrophobic interactions that are widespread in the world of biomolecules, the library can be used to screen for potential linear epitopes that may provide information about the cross-reactivity of antibodies.
Collapse
|
5
|
Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. Exploring protein-protein interactions at the proteome level. Structure 2022; 30:462-475. [DOI: 10.1016/j.str.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
6
|
Barber KW, Shrock E, Elledge SJ. CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays. Mol Cell 2021; 81:3650-3658.e5. [PMID: 34390675 DOI: 10.1016/j.molcel.2021.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023]
Abstract
CRISPR-inspired systems have been extensively developed for applications in genome editing and nucleic acid detection. Here, we introduce a CRISPR-based peptide display technology to facilitate customized, high-throughput in vitro protein interaction studies. We show that bespoke peptide libraries fused to catalytically inactive Cas9 (dCas9) and barcoded with unique single guide RNA (sgRNA) molecules self-assemble from a single mixed pool to programmable positions on a DNA microarray surface for rapid, multiplexed binding assays. We develop dCas9-displayed saturation mutagenesis libraries to characterize antibody-epitope binding for a commercial anti-FLAG monoclonal antibody and human serum antibodies. We also show that our platform can be used for viral epitope mapping and exhibits promise as a multiplexed diagnostics tool. Our CRISPR-based peptide display platform and the principles of complex library self-assembly using dCas9 could be adapted for rapid interrogation of varied customized protein libraries or biological materials assembly using DNA scaffolding.
Collapse
Affiliation(s)
- Karl W Barber
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Shrock
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
McSweeney MA, Styczynski MP. Effective Use of Linear DNA in Cell-Free Expression Systems. Front Bioeng Biotechnol 2021; 9:715328. [PMID: 34354989 PMCID: PMC8329657 DOI: 10.3389/fbioe.2021.715328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Cell-free expression systems (CFEs) are cutting-edge research tools used in the investigation of biological phenomena and the engineering of novel biotechnologies. While CFEs have many benefits over in vivo protein synthesis, one particularly significant advantage is that CFEs allow for gene expression from both plasmid DNA and linear expression templates (LETs). This is an important and impactful advantage because functional LETs can be efficiently synthesized in vitro in a few hours without transformation and cloning, thus expediting genetic circuit prototyping and allowing expression of toxic genes that would be difficult to clone through standard approaches. However, native nucleases present in the crude bacterial lysate (the basis for the most affordable form of CFEs) quickly degrade LETs and limit expression yield. Motivated by the significant benefits of using LETs in lieu of plasmid templates, numerous methods to enhance their stability in lysate-based CFEs have been developed. This review describes approaches to LET stabilization used in CFEs, summarizes the advancements that have come from using LETs with these methods, and identifies future applications and development goals that are likely to be impactful to the field. Collectively, continued improvement of LET-based expression and other linear DNA tools in CFEs will help drive scientific discovery and enable a wide range of applications, from diagnostics to synthetic biology research tools.
Collapse
Affiliation(s)
- Megan A McSweeney
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| | - Mark P Styczynski
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
8
|
Li BW, Zhang Y, Wang YC, Xue Y, Nie XY. Rapid Fabrication of Protein Microarrays via Autogeneration and on-Chip Purification of Biotinylated Probes. ACS Synth Biol 2020; 9:2267-2273. [PMID: 32810400 DOI: 10.1021/acssynbio.0c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A streamlined approach toward the rapid fabrication of streptavidin-biotin-based protein microarrays was investigated. First, using our engineered versatile plasmid (pBADcM-tBirA) and an optimal coexpression strategy for biotin ligase and biotin acceptor peptide (BAP) chimeric recombinant protein, an autogeneration system for biotinylated probes was developed. This system permitted an advantageous biotinylation of BAP chimeric recombinant proteins, providing a strategy for the high-throughput synthesis of biotinylated probes. Then, to bypass the conventional rate-limiting steps, we employed an on-chip purification process to immobilize the biotinylated probes with high-throughput recombinant lysates. The integration of the autogeneration of probes and on-chip purification not only contributed to the effective and reliable fabrication of the protein microarray, but also enabled simplification of the process and an automated throughput format. This labor- and cost-effective approach may facilitate the use of protein microarrays for diagnosis, pharmacology, proteomics, and other laboratory initiatives.
Collapse
Affiliation(s)
- Bo-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Yi Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Yin-Chun Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Yang Xue
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Xin-Yi Nie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| |
Collapse
|
9
|
Pavelić SK, Markova-Car E, Klobučar M, Sappe L, Spaventi R. Technological Advances in Preclinical Drug Evaluation: The Role of -Omics Methods. Curr Med Chem 2020; 27:1337-1349. [PMID: 31296156 DOI: 10.2174/0929867326666190711122819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Preclinical drug development is an essential step in the drug development process where the evaluation of new chemical entities occurs. In particular, preclinical drug development phases include deep analysis of drug candidates' interactions with biomolecules/targets, their safety, toxicity, pharmacokinetics, metabolism by use of assays in vitro and in vivo animal assays. Legal aspects of the required procedures are well-established. Herein, we present a comprehensive summary of current state-of-the art approaches and techniques used in preclinical studies. In particular, we will review the potential of new, -omics methods and platforms for mechanistic evaluation of drug candidates and speed-up of the preclinical evaluation steps.
Collapse
Affiliation(s)
- Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Elitza Markova-Car
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Marko Klobučar
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Lana Sappe
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia.,Novartis Oncology Region Europe Headquarter, Largo Umberto Boccioni 1, 21040 Origgio, Italia
| | - Radan Spaventi
- Triadelta Partners d.o.o., Međimurska 19/2, Zagreb, Croatia
| |
Collapse
|
10
|
Zhu LF, Chen X, Ahmad Z, Peng Y, Chang MW. A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication 2020; 12:025026. [DOI: 10.1088/1758-5090/ab782c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 2019; 21:151-170. [DOI: 10.1038/s41576-019-0186-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|
13
|
Krämer SD, Wöhrle J, Meyer PA, Urban GA, Roth G. How to copy and paste DNA microarrays. Sci Rep 2019; 9:13940. [PMID: 31558745 PMCID: PMC6763488 DOI: 10.1038/s41598-019-50371-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Analogous to a photocopier, we developed a DNA microarray copy technique and were able to copy patterned original DNA microarrays. With this process the appearance of the copied DNA microarray can also be altered compared to the original by producing copies of different resolutions. As a homage to the very first photocopy made by Chester Charlson and Otto Kornei, we performed a lookalike DNA microarray copy exactly 80 years later. Those copies were also used for label-free real-time kinetic binding assays of apo-dCas9 to double stranded DNA and of thrombin to single stranded DNA. Since each DNA microarray copy was made with only 5 µl of spPCR mix, the whole process is cost-efficient. Hence, our DNA microarray copier has a great potential for becoming a standard lab tool.
Collapse
Affiliation(s)
- Stefan D Krämer
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany. .,Faculty for Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, D-79104, Freiburg, Germany.
| | - Johannes Wöhrle
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany.,IMTEK - Dep. of Microsystems Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Philipp A Meyer
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany.,IMTEK - Dep. of Microsystems Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Gerald A Urban
- IMTEK - Dep. of Microsystems Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany.,BIOSS - Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 18, D-79104, Freiburg, Germany
| | - Günter Roth
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany.,Faculty for Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, D-79104, Freiburg, Germany.,BioCopy GmbH, Spechtweg 25, D-79110, Freiburg, Germany.,BIOSS - Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 18, D-79104, Freiburg, Germany.,BioCopy Holding AG, Industriestrasse 15, 8355, Aadorf, Switzerland
| |
Collapse
|
14
|
Layton CJ, McMahon PL, Greenleaf WJ. Large-Scale, Quantitative Protein Assays on a High-Throughput DNA Sequencing Chip. Mol Cell 2019; 73:1075-1082.e4. [PMID: 30849388 DOI: 10.1016/j.molcel.2019.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/18/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023]
Abstract
High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.
Collapse
Affiliation(s)
- Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter L McMahon
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan-Zuckerberg Initiative, Palo Alto, CA 94301, USA.
| |
Collapse
|
15
|
Barber KW, Elledge SJ. Sequencer Hacking Unlocks Quantitative Protein Studies. Mol Cell 2019; 73:863-865. [PMID: 30849392 DOI: 10.1016/j.molcel.2019.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this issue of Molecular Cell, Layton et al. (2019) repurpose a common next-generation DNA sequencer to enable high-throughput protein biochemical studies, identifying improved sequence variants for stronger protein-protein interactions and dissecting the contributions of specific amino acids to enzymatic activity.
Collapse
Affiliation(s)
- Karl W Barber
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Kilb N, Herz T, Burger J, Woehrle J, Meyer PA, Roth G. Protein Microarray Copying: Easy on-Demand Protein Microarray Generation Compatible with Fluorescence and Label-Free Real-Time Analysis. Chembiochem 2019; 20:1554-1562. [PMID: 30730095 DOI: 10.1002/cbic.201800699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/07/2019] [Indexed: 01/19/2023]
Abstract
Protein microarrays are essential to understand complex protein interaction networks. Their production, however, is a challenge and renders this technology unattractive for many laboratories. Recent developments in cell-free protein microarray generation offer new opportunities, but are still expensive and cumbersome in practice. Herein, we describe a cost-effective and user-friendly method for the cell-free production of protein microarrays. From a polydimethylsiloxane (PDMS) flow cell containing an expressible DNA microarray, proteins of interest are synthesised by cell-free expression and then immobilised on a capture surface. The resulting protein microarray can be regarded as a "copy" of the DNA microarray. 2 His6 - and Halo-tagged fluorescent reference proteins were used to demonstrate the functionality of nickel nitrilotriacetic acid (Ni-NTA) and Halo-bind surfaces in this copy system. The described process can be repeated several times on the same DNA microarray. The identity and functionality of the proteins were proven during the copy process by their fluorescence and on the surface through a fluorescent immune assay. Also, single-colour reflectometry (SCORE) was applied to show that, on such copied arrays, real-time binding kinetic measurements were possible.
Collapse
Affiliation(s)
- Normann Kilb
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Tobias Herz
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jürgen Burger
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Johannes Woehrle
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Philipp A Meyer
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Günter Roth
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS-Centre for Biological Signal Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|
17
|
Abstract
Cell-free protein synthesis (CFPS) has become an established tool for rapid protein synthesis in order to accelerate the discovery of new enzymes and the development of proteins with improved characteristics. Over the past years, progress in CFPS system preparation has been made towards simplification, and many applications have been developed with regard to tailor-made solutions for specific purposes. In this review, various preparation methods of CFPS systems are compared and the significance of individual supplements is assessed. The recent applications of CFPS are summarized and the potential for biocatalyst development discussed. One of the central features is the high-throughput synthesis of protein variants, which enables sophisticated approaches for rapid prototyping of enzymes. These applications demonstrate the contribution of CFPS to enhance enzyme functionalities and the complementation to in vivo protein synthesis. However, there are different issues to be addressed, such as the low predictability of CFPS performance and transferability to in vivo protein synthesis. Nevertheless, the usage of CFPS for high-throughput enzyme screening has been proven to be an efficient method to discover novel biocatalysts and improved enzyme variants.
Collapse
|
18
|
Norouzi M, Pickford AR, Butt LE, Vincent HA, Callaghan AJ. Application of mRNA Arrays for the Production of mCherry Reporter-Protein Arrays for Quantitative Gene Expression Analysis. ACS Synth Biol 2019; 8:207-215. [PMID: 30682244 DOI: 10.1021/acssynbio.8b00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of programmable regulators that precisely and predictably control gene expression is a major goal of synthetic biology. Consequently, rapid high-throughput biochemical methods capable of quantitatively analyzing all components of gene expression would be of value in the characterization and optimization of regulator performance. In this study we demonstrate a novel application of RNA arrays, involving the production of reporter-protein arrays, to gene expression analysis. This method enables simultaneous quantification of both the transcription and post-transcription/translation components of gene expression, and it also allows the assessment of the orthogonality of multiple regulators. We use our method to directly compare the performance of a series of previously characterized synthetic post-transcriptional riboregulators, thus demonstrating its utility in the development of synthetic regulatory modules and evaluation of gene expression regulation in general.
Collapse
Affiliation(s)
- Masoud Norouzi
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Andrew R. Pickford
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Louise E. Butt
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| |
Collapse
|
19
|
Hufnagel K, Reininger D, Ng SW, Gassert N, Rohland JK, Shahryarhesami S, Bauer AS, Waterboer T, Hoheisel JD. In situ, Cell-free Protein Expression on Microarrays and Their Use for the Detection of Immune Responses. Bio Protoc 2019; 9:e3152. [PMID: 33654961 DOI: 10.21769/bioprotoc.3152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 11/02/2022] Open
Abstract
Until recently, whole-proteome microarrays for comprehensive studies of protein interactions were mostly produced by individual cloning and cellular expression of very many open reading frames, followed by protein isolation and purification as well as array production. To overcome this cumbersome process, we have developed a method to generate microarrays representing entire proteomes by a combination of multiple spotting and on-chip, cell-free protein expression. Here, we describe the protocol for the production of bacterial protein microarrays. With slight adaptations, however, the procedure can be applied to the proteome of any organism. Expression constructs of each gene are generated by PCR on bacterial genomic DNA followed by a common secondary amplification that is adding relevant regulative elements to either end of the constructs. The unpurified PCR-products are spotted onto the microarray surface. Full-length proteins are directly expressed in situ in a cell-free manner and stay attached to the surface without further action. As an example of a typical application, we describe here the proteome-wide analysis of the immune response to a bacterial infectious agent by characterizing the binding profiles of the antibodies in patient sera.
Collapse
Affiliation(s)
- Katrin Hufnagel
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Dennis Reininger
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siu Wang Ng
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Gassert
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane K Rohland
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soroosh Shahryarhesami
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea S Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
21
|
A Systematic Analysis Workflow for High-Density Customized Protein Microarrays in Biomarker Screening. Methods Mol Biol 2019; 1871:107-122. [PMID: 30276735 DOI: 10.1007/978-1-4939-8814-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High-density protein microarrays constitute a promising high-throughput platform for the characterization of protein expression patterns, biomarker discovery, and validation. Different types of protein microarrays have been described according to several features (such as content, format, and detection system) presenting advantages and disadvantages which are relevant for the specific application and purposes. Therefore, an experimental design is key for any screening based on protein microarrays assays; in fact, the data analysis strategy is directly related to the experimental design, type of protein microarray and consequently the final outcome, the data and results interpretation, is also directly linked. Here, it is proposed a systematic workflow for biomarker discovery based on tailor-made protein microarrays platforms which obtain comprehensively info for the functional protein characterization in high-throughput format.
Collapse
|
22
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Schneider A, Niemeyer CM. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ann‐Kathrin Schneider
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
24
|
Schneider A, Niemeyer CM. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angew Chem Int Ed Engl 2018; 57:16959-16967. [DOI: 10.1002/anie.201811713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ann‐Kathrin Schneider
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
25
|
Yazaki J, Galli M, Kim AY, Ecker JR. Profiling Interactome Networks with the HaloTag-NAPPA In Situ Protein Array. ACTA ACUST UNITED AC 2018; 3:e20071. [PMID: 30106517 DOI: 10.1002/cppb.20071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physical interactions between proteins and other molecules can be evaluated at a proteome scale using protein arrays, a type of high-throughput pulldown assay. We developed a modified in situ protein array known as the nucleic acid programmable protein assay (NAPPA) that allows the screening of thousands of open reading frames (ORFs) at a lower cost, with less labor, and in less time than conventional protein arrays. The HaloTag-NAPPA protein array can efficiently capture proteins expressed in situ on a glass slide using the Halo high-affinity capture tag. Here, we describe the fabrication of the array using publicly available resources and detection of protein-protein interactions (PPIs) that can be used to generate a protein interactome map. The Basic Protocol includes procedures for preparing the plasmid DNA spotted on glass slides, in situ protein expression, and PPI detection. The supporting protocols outline the construction of vectors and preparation of ORF clones. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Junshi Yazaki
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California.,Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California.,RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - Mary Galli
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California.,Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Alice Y Kim
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California.,Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California.,Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California.,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
26
|
Wu S, Li JS, Mai J, Chang MW. Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24876-24885. [PMID: 29953813 DOI: 10.1021/acsami.8b08880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple method to rapidly customize and to also mass produce oral dosage forms is arguably a current bottleneck in the development of modern personalized medicine. Specifically, delayed-release mechanisms with well-controlled dosage profiles for combinations of traditional Chinese herbal extracts and Western medications are not well established. Herein, we demonstrate a novel multidrug-loaded membrane sandwich with structures infused with ibuprofen (IBU) and Ganoderma lucidum polysaccharide (GLP) using three-dimensional electrohydrodynamic printing and electrospinning techniques. The resulting flexible membrane consists of microscaled, multilayered cellulose acetate (CA) membranes loaded with IBU in the shape of either concentric squares or circles, as the top and bottom layers of a sandwich structure. In between the CA-IBU layers are randomly electrospun polyvinyl pyrrolidone (PVP) layers loaded with GLP. The complete fibrous membrane sandwich can be folded and embedded into a 0-size capsule to achieve oral compliance. Simulated in vitro testing of gastric and intestinal fluids demonstrated a triphasic release profile. There was an immediate release of GLP after gastric juices dissolved the capsule shell and the PVP, followed by the short-term release of 60% of the IBU within an hour afterward, and the remaining IBU was released in a sustained manner following a Fickian diffusion profile. In summary, this multidrug (both hydrophilic and/or hydrophobic) oral system with precision-designed structures should enable personalized therapeutic dosing.
Collapse
Affiliation(s)
| | | | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California , Los Angeles 90007 , California , United States
| | | |
Collapse
|
27
|
Contreras-Llano LE, Tan C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth Biol (Oxf) 2018; 3:ysy012. [PMID: 32995520 PMCID: PMC7445777 DOI: 10.1093/synbio/ysy012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technologies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operating principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies.
Collapse
Affiliation(s)
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
28
|
Co-printing of vertical axis aligned micron-scaled filaments via simultaneous dual needle electrohydrodynamic printing. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Hufnagel K, Lueong S, Willhauck-Fleckenstein M, Hotz-Wagenblatt A, Miao B, Bauer A, Michel A, Butt J, Pawlita M, Hoheisel JD, Waterboer T. Immunoprofiling of Chlamydia trachomatis using whole-proteome microarrays generated by on-chip in situ expression. Sci Rep 2018; 8:7503. [PMID: 29760479 PMCID: PMC5951824 DOI: 10.1038/s41598-018-25918-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/25/2018] [Indexed: 11/09/2022] Open
Abstract
Using Chlamydia trachomatis (Ct) as a complex model organism, we describe a method to generate bacterial whole-proteome microarrays using cell-free, on-chip protein expression. Expression constructs were generated by two successive PCRs directly from bacterial genomic DNA. Bacterial proteins expressed on microarrays display antigenic epitopes, thereby providing an efficient method for immunoprofiling of patients and allowing de novo identification of disease-related serum antibodies. Through comparison of antibody reactivity patterns, we newly identified antigens recognized by known Ct-seropositive samples, and antigens reacting only with samples from cervical cancer (CxCa) patients. Large-scale validation experiments using high-throughput suspension bead array serology confirmed their significance as markers for either general Ct infection or CxCa, supporting an association of Ct infection with CxCa. In conclusion, we introduce a method for generation of fast and efficient proteome immunoassays which can be easily adapted for other microorganisms in all areas of infection research.
Collapse
Affiliation(s)
- Katrin Hufnagel
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| | - Smiths Lueong
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Willhauck-Fleckenstein
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Bauer
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Michel
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Bender J, Bognar S, Camagna M, Donauer JAM, Eble JW, Emig R, Fischer S, Jesser R, Keilholz L, Kokotek DMU, Neumann J, Nicklaus S, Oude Weernink RRQPT, Stühn LG, Wössner N, Krämer SD, Schwenk P, Gensch N, Roth G, Ulbrich MH. Multiplexed antibody detection from blood sera by immobilization of in vitro expressed antigens and label-free readout via imaging reflectometric interferometry (iRIf). Biosens Bioelectron 2018; 115:97-103. [PMID: 29803867 DOI: 10.1016/j.bios.2018.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022]
Abstract
The detection of antibodies from blood sera is crucial for diagnostic purposes. Miniaturized protein assays in combination with microfluidic setups hold great potential by enabling automated handling and multiplexed analyses. Yet, the separate expression, purification, and storage of many individual proteins are time consuming and limit applicability. In vitro cell-free expression has been proposed as an alternative procedure for the generation of protein assays. We report the successful in vitro expression of different model proteins from DNA templates with an optimized expression mix. His10-tagged proteins were specifically captured and immobilized on a Ni-NTA coated sensor surface directly from the in vitro expression mix. Finally, the specific binding of antibodies from rabbit-derived blood sera to the immobilized proteins was monitored by imaging reflectometric interferometry (iRIf). Antibodies in the blood sera could be identified by binding to the respective epitopes with minimal cross reactivity. The results show the potential of in vitro expression and label-free detection for binding assays in general and diagnostic purposes in specific.
Collapse
Affiliation(s)
- Julian Bender
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sabine Bognar
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Maurizio Camagna
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Julia A M Donauer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Julian W Eble
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ramona Emig
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sabrina Fischer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Rabea Jesser
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Luisa Keilholz
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel M U Kokotek
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Julika Neumann
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Simon Nicklaus
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ricardo R Q P T Oude Weernink
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Lara G Stühn
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nathalie Wössner
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan D Krämer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; ZBSA - Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Schwenk
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Gensch
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Günter Roth
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; ZBSA - Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany.
| | - Maximilian H Ulbrich
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Renal Division, Freiburg University Medical Center, 79106 Freiburg, Germany.
| |
Collapse
|
31
|
Schoborg JA, Jewett MC. Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University, 676 N. St Clair St; Suite 1200 Chicago IL 60611-3068 USA
- Simpson Querrey Institute; Northwestern University; 303 E. Superior St; Suite 11-131, Chicago IL 60611-2875 USA
- Center for Synthetic Biology; Northwestern University, 2145 Sheridan Road; Evanston IL 60208-3120 USA
| |
Collapse
|
32
|
Abstract
INTRODUCTION Cell-free protein microarrays represent a special form of protein microarray which display proteins made fresh at the time of the experiment, avoiding storage and denaturation. They have been used increasingly in basic and translational research over the past decade to study protein-protein interactions, the pathogen-host relationship, post-translational modifications, and antibody biomarkers of different human diseases. Their role in the first blood-based diagnostic test for early stage breast cancer highlights their value in managing human health. Cell-free protein microarrays will continue to evolve to become widespread tools for research and clinical management. Areas covered: We review the advantages and disadvantages of different cell-free protein arrays, with an emphasis on the methods that have been studied in the last five years. We also discuss the applications of each microarray method. Expert commentary: Given the growing roles and impact of cell-free protein microarrays in research and medicine, we discuss: 1) the current technical and practical limitations of cell-free protein microarrays; 2) the biomarker discovery and verification pipeline using protein microarrays; and 3) how cell-free protein microarrays will advance over the next five years, both in their technology and applications.
Collapse
Affiliation(s)
- Xiaobo Yu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Brianne Petritis
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Hu Duan
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Danke Xu
- c State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , China
| | - Joshua LaBaer
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
33
|
Cassano CL, Georgiev TZ, Fan ZH. Using airbrushes to pattern reagents for microarrays and paper-fluidic devices. MICROSYSTEMS & NANOENGINEERING 2017; 3:17055. [PMID: 31057881 PMCID: PMC6445023 DOI: 10.1038/micronano.2017.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/28/2017] [Accepted: 07/15/2017] [Indexed: 06/09/2023]
Abstract
We report using an airbrush to pattern a number of reagents, including small molecules, proteins, DNA, and conductive microparticles, onto a variety of mechanical substrates such as paper and glass. Airbrushing is more economical and easier to perform than many other patterning methods available (for example, inkjet printing). In this work, we investigated the controllable parameters that affect patterned line width and studied their mechanisms of action, and we provide examples of possible patterns. This airbrushing approach allowed us to pattern lines and dot arrays from hundreds of μm to tens of mm with length scales comparable to those of other patterning methods. Two applications, enzymatic assays and DNA hybridization, were chosen to demonstrate the compatibility of the method with biomolecules. This airbrushing method holds promise in making paper-based platforms less expensive and more accessible.
Collapse
Affiliation(s)
- Christopher L. Cassano
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
| | - Teodor Z. Georgiev
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, Florida 32611, USA
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Yu X, Song L, Petritis B, Bian X, Wang H, Viloria J, Park J, Bui H, Li H, Wang J, Liu L, Yang L, Duan H, McMurray DN, Achkar JM, Magee M, Qiu J, LaBaer J. Multiplexed Nucleic Acid Programmable Protein Arrays. Theranostics 2017; 7:4057-4070. [PMID: 29109798 PMCID: PMC5667425 DOI: 10.7150/thno.20151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Rationale: Cell-free protein microarrays display naturally-folded proteins based on just-in-time in situ synthesis, and have made important contributions to basic and translational research. However, the risk of spot-to-spot cross-talk from protein diffusion during expression has limited the feature density of these arrays. Methods: In this work, we developed the Multiplexed Nucleic Acid Programmable Protein Array (M-NAPPA), which significantly increases the number of displayed proteins by multiplexing as many as five different gene plasmids within a printed spot. Results: Even when proteins of different sizes were displayed within the same feature, they were readily detected using protein-specific antibodies. Protein-protein interactions and serological antibody assays using human viral proteome microarrays demonstrated that comparable hits were detected by M-NAPPA and non-multiplexed NAPPA arrays. An ultra-high density proteome microarray displaying > 16k proteins on a single microscope slide was produced by combining M-NAPPA with a photolithography-based silicon nano-well platform. Finally, four new tuberculosis-related antigens in guinea pigs vaccinated with Bacillus Calmette-Guerin (BCG) were identified with M-NAPPA and validated with ELISA. Conclusion: All data demonstrate that multiplexing features on a protein microarray offer a cost-effective fabrication approach and have the potential to facilitate high throughput translational research.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Lusheng Song
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Brianne Petritis
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaofang Bian
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Haoyu Wang
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jennifer Viloria
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jin Park
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hoang Bui
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Han Li
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jie Wang
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Lei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Liuhui Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Hu Duan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - David N. McMurray
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Jacqueline M. Achkar
- Department of Medicine, Albert Einstein College of Medicine, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mitch Magee
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ji Qiu
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
35
|
Kipper S, Frolov L, Guy O, Pellach M, Glick Y, Malichi A, Knisbacher BA, Barbiro-Michaely E, Avrahami D, Yavets-Chen Y, Levanon EY, Gerber D. Control and automation of multilayered integrated microfluidic device fabrication. LAB ON A CHIP 2017; 17:557-566. [PMID: 28102868 DOI: 10.1039/c6lc01534d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Integrated microfluidics is a sophisticated three-dimensional (multi layer) solution for high complexity serial or parallel processes. Fabrication of integrated microfluidic devices requires soft lithography and the stacking of thin-patterned PDMS layers. Precise layer alignment and bonding is crucial. There are no previously reported standards for alignment of the layers, which is mostly performed using uncontrolled processes with very low alignment success. As a result, integrated microfluidics is mostly used in academia rather than in the many potential industrial applications. We have designed and manufactured a semiautomatic Microfluidic Device Assembly System (μDAS) for full device production. μDAS comprises an electrooptic mechanical system consisting of four main parts: optical system, smart media holder (for PDMS), a micropositioning xyzθ system and a macropositioning XY mechanism. The use of the μDAS yielded valuable information regarding PDMS as the material for device fabrication, revealed previously unidentified errors, and enabled optimization of a robust fabrication process. In addition, we have demonstrated the utilization of the μDAS technology for fabrication of a complex 3 layered device with over 12 000 micromechanical valves and an array of 64 × 64 DNA spots on a glass substrate with high yield and high accuracy. We increased fabrication yield from 25% to about 85% with an average layer alignment error of just ∼4 μm. It also increased our protein expression yields from 80% to over 90%, allowing us to investigate more proteins per experiment. The μDAS has great potential to become a valuable tool for both advancing integrated microfluidics in academia and producing and applying microfluidic devices in the industry.
Collapse
Affiliation(s)
- Sarit Kipper
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Ludmila Frolov
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Ortal Guy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Michal Pellach
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Yair Glick
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Asaf Malichi
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Binyamin A Knisbacher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Efrat Barbiro-Michaely
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Dorit Avrahami
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Yehuda Yavets-Chen
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Doron Gerber
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
36
|
Personalised proteome analysis by means of protein microarrays made from individual patient samples. Sci Rep 2017; 7:39756. [PMID: 28045055 PMCID: PMC5206632 DOI: 10.1038/srep39756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
DNA sequencing has advanced to a state that permits studying the genomes of individual patients as nearly a matter of routine. Towards analysing a tissue’s protein content in a similar manner, we established a method for the production of microarrays that represent full-length proteins as they are encoded in individual specimens, exhibiting the particular variations, such as mutations or splice variations, present in these samples. From total RNA isolates, each transcript is copied to a specific location on the array by an on-chip polymerase elongation reaction, followed by in situ cell-free transcription and translation. These microarrays permit parallel analyses of variations in protein structure and interaction that are specific to particular samples.
Collapse
|
37
|
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1941-55. [PMID: 26990124 PMCID: PMC5043468 DOI: 10.1111/pbi.12559] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 05/18/2023]
Abstract
Biological assay has been based on analysis of all individuals collected from sample populations. Bulked sample analysis (BSA), which works with selected and pooled individuals, has been extensively used in gene mapping through bulked segregant analysis with biparental populations, mapping by sequencing with major gene mutants and pooled genomewide association study using extreme variants. Compared to conventional entire population analysis, BSA significantly reduces the scale and cost by simplifying the procedure. The bulks can be built by selection of extremes or representative samples from any populations and all types of segregants and variants that represent wide ranges of phenotypic variation for the target trait. Methods and procedures for sampling, bulking and multiplexing are described. The samples can be analysed using individual markers, microarrays and high-throughput sequencing at all levels of DNA, RNA and protein. The power of BSA is affected by population size, selection of extreme individuals, sequencing strategies, genetic architecture of the trait and marker density. BSA will facilitate plant breeding through development of diagnostic and constitutive markers, agronomic genomics, marker-assisted selection and selective phenotyping. Applications of BSA in genetics, genomics and crop improvement are discussed with their future perspectives.
Collapse
Affiliation(s)
- Cheng Zou
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingxi Wang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
38
|
Sjöberg R, Mattsson C, Andersson E, Hellström C, Uhlen M, Schwenk JM, Ayoglu B, Nilsson P. Exploration of high-density protein microarrays for antibody validation and autoimmunity profiling. N Biotechnol 2016; 33:582-92. [DOI: 10.1016/j.nbt.2015.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/01/2022]
|
39
|
Karthikeyan K, Barker K, Tang Y, Kahn P, Wiktor P, Brunner A, Knabben V, Takulapalli B, Buckner J, Nepom G, LaBaer J, Qiu J. A Contra Capture Protein Array Platform for Studying Post-translationally Modified (PTM) Auto-antigenomes. Mol Cell Proteomics 2016; 15:2324-37. [PMID: 27141097 PMCID: PMC4937507 DOI: 10.1074/mcp.m115.057661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/19/2016] [Indexed: 11/06/2022] Open
Abstract
Aberrant modifications of proteins occur during disease development and elicit disease-specific antibody responses. We have developed a protein array platform that enables the modification of many proteins in parallel and assesses their immunogenicity without the need to express, purify, and modify proteins individually. We used anticitrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) as a model modification and profiled antibody responses to ∼190 citrullinated proteins in 20 RA patients. We observed unique antibody reactivity patterns in both clinical anticyclic citrullinated peptide assay positive (CCP+) and CCP- RA patients. At individual antigen levels, we detected antibodies against known citrullinated autoantigens and discovered and validated five novel antibodies against specific citrullinated antigens (osteopontin (SPP1), flap endonuclease (FEN1), insulin like growth factor binding protein 6 (IGFBP6), insulin like growth factor I (IGF1) and stanniocalcin-2 (STC2)) in RA patients. We also demonstrated the utility of our innovative array platform in the identification of immune-dominant epitope(s) for citrullinated antigens. We believe our platform will promote the study of post-translationally modified antigens at a breadth that has not been achieved before, by both identifying novel autoantigens and investigating their roles in disease development. The developed platforms can potentially be used to study many autoimmune disease-relevant modifications and their immunogenicity.
Collapse
Affiliation(s)
- Kailash Karthikeyan
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Kristi Barker
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Yanyang Tang
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Peter Kahn
- §Engineering Arts LLC, Phoenix, Arizona 85076
| | - Peter Wiktor
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287; §Engineering Arts LLC, Phoenix, Arizona 85076
| | - Al Brunner
- §Engineering Arts LLC, Phoenix, Arizona 85076
| | - Vinicius Knabben
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Bharath Takulapalli
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Jane Buckner
- ¶Benaroya Research Institute, Seattle, Washington 98101
| | - Gerald Nepom
- ¶Benaroya Research Institute, Seattle, Washington 98101
| | - Joshua LaBaer
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287
| | - Ji Qiu
- From the ‡Biodesign Institute, Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287;
| |
Collapse
|
40
|
Mapping transcription factor interactome networks using HaloTag protein arrays. Proc Natl Acad Sci U S A 2016; 113:E4238-47. [PMID: 27357687 DOI: 10.1073/pnas.1603229113] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.
Collapse
|
41
|
Abstract
Autoantibodies are a key component for the diagnosis, prognosis and monitoring of various diseases. In order to discover novel autoantibody targets, highly multiplexed assays based on antigen arrays hold a great potential and provide possibilities to analyze hundreds of body fluid samples for their reactivity pattern against thousands of antigens in parallel. Here, we provide an overview of the available technologies for producing antigen arrays, highlight some of the technical and methodological considerations and discuss their applications as discovery tools. Together with recent studies utilizing antigen arrays, we give an overview on how the different types of antigen arrays have and will continue to deliver novel insights into autoimmune diseases among several others.
Collapse
|
42
|
Schinn SM, Broadbent A, Bradley WT, Bundy BC. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA. N Biotechnol 2016; 33:480-7. [PMID: 27085957 DOI: 10.1016/j.nbt.2016.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
Abstract
A rapid, versatile method of protein expression and screening can greatly facilitate the future development of therapeutic biologics, proteomic drug targets and biocatalysts. An attractive candidate is cell-free protein synthesis (CFPS), a cell-lysate-based in vitro expression system, which can utilize linear DNA as expression templates, bypassing time-consuming cloning steps of plasmid-based methods. Traditionally, such linear DNA expression templates (LET) have been vulnerable to degradation by nucleases present in the cell lysate, leading to lower yields. This challenge has been significantly addressed in the recent past, propelling LET-based CFPS as a useful tool for studying, screening and engineering proteins in a high-throughput manner. Currently, LET-based CFPS has promise in fields such as functional proteomics, protein microarrays, and the optimization of complex biological systems.
Collapse
Affiliation(s)
- Song-Min Schinn
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Andrew Broadbent
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - William T Bradley
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
43
|
Pathogen receptor discovery with a microfluidic human membrane protein array. Proc Natl Acad Sci U S A 2016; 113:4344-9. [PMID: 27044079 DOI: 10.1073/pnas.1518698113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.
Collapse
|
44
|
Yu X, Petritis B, LaBaer J. Advancing translational research with next-generation protein microarrays. Proteomics 2016; 16:1238-50. [PMID: 26749402 PMCID: PMC7167888 DOI: 10.1002/pmic.201500374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/23/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
Protein microarrays are a high-throughput technology used increasingly in translational research, seeking to apply basic science findings to enhance human health. In addition to assessing protein levels, posttranslational modifications, and signaling pathways in patient samples, protein microarrays have aided in the identification of potential protein biomarkers of disease and infection. In this perspective, the different types of full-length protein microarrays that are used in translational research are reviewed. Specific studies employing these microarrays are presented to highlight their potential in finding solutions to real clinical problems. Finally, the criteria that should be considered when developing next-generation protein microarrays are provided.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)BeijingP. R. China
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Brianne Petritis
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| |
Collapse
|
45
|
|
46
|
Ashaari NS, Ramarad S, Khairuddin D, Akhir NAM, Hara Y, Mahadi NM, Mohamed R, Nathan S. Development of repeatable arrays of proteins using immobilized DNA microplate (RAPID-M) technology. BMC Res Notes 2015; 8:669. [PMID: 26563904 PMCID: PMC4642736 DOI: 10.1186/s13104-015-1637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022] Open
Abstract
Background Protein microarrays have enormous
potential as in vitro diagnostic tools stemming from the ability to miniaturize whilst generating maximum evaluation of diagnostically relevant information from minute amounts of sample. In this report, we present a method known as repeatable arrays of proteins using immobilized DNA microplates (RAPID-M) for high-throughput in situ protein microarray fabrication. The RAPID-M technology comprises of cell-free expression using immobilized DNA templates and in situ protein purification onto standard microarray slides. Results To demonstrate proof-of-concept, the repeatable protein arrays developed using our RAPID-M technology utilized green fluorescent protein (GFP) and a bacterial outer membrane protein (OmpA) as the proteins of interest for microarray fabrication. Cell-free expression of OmpA and GFP proteins using beads-immobilized DNA yielded protein bands with the expected molecular sizes of 27 and 30 kDa, respectively. We demonstrate that the beads-immobilized DNA remained stable for at least four cycles of cell-free expression. The OmpA and GFP proteins were still functional after in situ purification on the Ni–NTA microarray slide. Conclusion The RAPID-M platform for protein microarray fabrication of two different representative proteins was successfully developed.
Collapse
Affiliation(s)
- Nur Suhanawati Ashaari
- Malaysia Genome Institute, 43000, Bangi, Selangor DE, Malaysia. .,Xynergen Sdn. Bhd., UKM Technology Centre, 43600, Bangi, Selangor DE, Malaysia.
| | - Suganti Ramarad
- Xynergen Sdn. Bhd., UKM Technology Centre, 43600, Bangi, Selangor DE, Malaysia.
| | - Dzulaikha Khairuddin
- Malaysia Genome Institute, 43000, Bangi, Selangor DE, Malaysia. .,Xynergen Sdn. Bhd., UKM Technology Centre, 43600, Bangi, Selangor DE, Malaysia.
| | - Nor Azurah Mat Akhir
- Malaysia Genome Institute, 43000, Bangi, Selangor DE, Malaysia. .,Xynergen Sdn. Bhd., UKM Technology Centre, 43600, Bangi, Selangor DE, Malaysia.
| | - Yuka Hara
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia. .,INTI International University, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | | | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia. .,INTI International University, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Sheila Nathan
- Malaysia Genome Institute, 43000, Bangi, Selangor DE, Malaysia. .,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia.
| |
Collapse
|
47
|
Fasoli J, Corn RM. Surface Enzyme Chemistries for Ultrasensitive Microarray Biosensing with SPR Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9527-9536. [PMID: 25641598 PMCID: PMC4564839 DOI: 10.1021/la504797z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/30/2015] [Indexed: 06/01/2023]
Abstract
The sensitivity and selectivity of surface plasmon resonance imaging (SPRI) biosensing with nucleic acid microarrays can be greatly enhanced by exploiting various nucleic acid ligases, nucleases, and polymerases that manipulate the surface-bound DNA and RNA. We describe here various examples from each of these different classes of surface enzyme chemistries that have been incorporated into novel detection strategies that either drastically enhance the sensitivity of or create uniquely selective methods for the SPRI biosensing of proteins and nucleic acids. A dual-element generator-detector microarray approach that couples a bioaffinity adsorption event on one microarray element to nanoparticle-enhanced SPRI measurements of nucleic acid hybridization adsorption on a different microarray element is used to quantitatively detect DNA, RNA, and proteins at femtomolar concentrations. Additionally, this dual-element format can be combined with the transcription and translation of RNA from surface-bound double-stranded DNA (dsDNA) templates for the on-chip multiplexed biosynthesis of aptamer and protein microarrays in a microfluidic format; these microarrays can be immediately used for real-time SPRI bioaffinity sensing measurements.
Collapse
|
48
|
Díez P, González-González M, Lourido L, Dégano RM, Ibarrola N, Casado-Vela J, LaBaer J, Fuentes M. NAPPA as a Real New Method for Protein Microarray Generation. MICROARRAYS 2015; 4:214-27. [PMID: 27600221 PMCID: PMC4996395 DOI: 10.3390/microarrays4020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - María González-González
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Lucía Lourido
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC, Hospital Universitario de A Coruña, A Coruña 15006, Spain.
| | - Rosa M Dégano
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Nieves Ibarrola
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Juan Casado-Vela
- Biotechnology National Centre, Spanish National Research Council (CSIC), Madrid 28049, Spain.
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287, USA.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| |
Collapse
|
49
|
Jackson K, Kanamori T, Ueda T, Fan ZH. Protein synthesis yield increased 72 times in the cell-free PURE system. Integr Biol (Camb) 2015; 6:781-8. [PMID: 25008400 DOI: 10.1039/c4ib00088a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to cell-based protein expression, cell-free protein synthesis (CFPS) offers several advantages including a greater control over system additives. This control is further enhanced with a CFPS system called the Protein synthesis Using Recombinant Elements (PURE) system, which consists of 108 purified transcriptional and translational elements. With the PURE system, all elements are known, nuclease and protease activities are reduced, and the concentration of each element can be optimized for maximal protein expression. However, protein expression yield with this system is relatively low due to the consumption of nutrients and energy molecules as well as the accumulation of inhibitory byproducts in the batch format. To enhance protein expression with the PURE system, we developed a feeding solution that was optimized using a miniaturized fluid array device (μFAD) in a continuous-exchange cell-free (CECF) format. The device enabled (1) continuous supply of energy/nutrient molecules from the feeding solution to the reaction solution where protein synthesis occurred, and (2) simultaneous removal of inhibitory expression byproducts from the reaction solution to the feeding solution. Consequently, the synthesis yield of green fluorescent protein (GFP) increased 72.5-fold in comparison with the same reaction in the conventional batch format.
Collapse
Affiliation(s)
- Kirsten Jackson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
50
|
Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD. A critical comparison of protein microarray fabrication technologies. Analyst 2015; 139:1303-26. [PMID: 24479125 DOI: 10.1039/c3an01577g] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein-based microarray preparation techniques commonly used for analytical and function-based proteomics and their effects on array-based assay performance.
Collapse
Affiliation(s)
- Valentin Romanov
- Wasatch Microfluidics, LLC, 825 N. 300 W., Suite C325, Salt Lake City, UT, USA.
| | | | | | | | | | | |
Collapse
|