1
|
Kumar S, Stover L, Wang L, Bahramimoghaddam H, Zhou M, Russell DH, Laganowsky A. Native Mass Spectrometry of Membrane Protein-Lipid Interactions in Different Detergent Environments. Anal Chem 2024; 96:16768-16776. [PMID: 39394983 PMCID: PMC11503522 DOI: 10.1021/acs.analchem.4c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Native mass spectrometry (MS) reveals the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer. However, detergents commonly used for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility in characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents. Here, we demonstrate how charge-reducing molecules, such as spermine and trimethylamine-N-oxide, enable the opportunity to characterize lipid binding to the bacterial water channel (AqpZ) and ammonia channel (AmtB) in complex with regulatory protein GlnK in different detergent environments. We find that protein-lipid interactions not only are protein-dependent but also can be influenced by the detergent and type of charge-reducing molecule. AqpZ-lipid interactions are enhanced in LDAO (n-dodecyl-N,N-dimethylamine-N-oxide), whereas the interaction of AmtB-GlnK with lipids is comparable among different detergents. A fluorescent lipid binding assay also shows detergent dependence for AqpZ-lipid interactions, consistent with results from native MS. Taken together, native MS will play a pivotal role in establishing optimal experimental parameters that will be invaluable for various applications, such as drug discovery as well as biochemical and structural investigations.
Collapse
Affiliation(s)
- Smriti Kumar
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lie Wang
- Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | | | - Ming Zhou
- Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Rottet S, Rourke LM, Pabuayon ICM, Phua SY, Yee S, Weerasooriya HN, Wang X, Mehra HS, Nguyen ND, Long BM, Moroney JV, Price GD. Engineering the cyanobacterial ATP-driven BCT1 bicarbonate transporter for functional targeting to C3 plant chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4926-4943. [PMID: 38776254 PMCID: PMC11349869 DOI: 10.1093/jxb/erae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
The ATP-driven bicarbonate transporter 1 (BCT1) from Synechococcus is a four-component complex in the cyanobacterial CO2-concentrating mechanism. BCT1 could enhance photosynthetic CO2 assimilation in plant chloroplasts. However, directing its subunits (CmpA, CmpB, CmpC, and CmpD) to three chloroplast sub-compartments is highly complex. Investigating BCT1 integration into Nicotiana benthamiana chloroplasts revealed promising targeting strategies using transit peptides from the intermembrane space protein Tic22 for correct CmpA targeting, while the transit peptide of the chloroplastic ABCD2 transporter effectively targeted CmpB to the inner envelope membrane. CmpC and CmpD were targeted to the stroma by RecA and recruited to the inner envelope membrane by CmpB. Despite successful targeting, expression of this complex in CO2-dependent Escherichia coli failed to demonstrate bicarbonate uptake. We then used rational design and directed evolution to generate new BCT1 forms that were constitutively active. Several mutants were recovered, including a CmpCD fusion. Selected mutants were further characterized and stably expressed in Arabidopsis thaliana, but the transformed plants did not have higher carbon assimilation rates or decreased CO2 compensation points in mature leaves. While further analysis is required, this directed evolution and heterologous testing approach presents potential for iterative modification and assessment of CO2-concentrating mechanism components to improve plant photosynthesis.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Loraine M Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Su Yin Phua
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Suyan Yee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xiaozhuo Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Himanshu S Mehra
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nghiem D Nguyen
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Benedict M Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - G Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| |
Collapse
|
3
|
Kumar S, Stover L, Wang L, Bahramimoghaddam H, Zhou M, Russell DH, Laganowsky A. Native mass spectrometry of membrane protein-lipid interactions in different detergent environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601044. [PMID: 38979331 PMCID: PMC11230385 DOI: 10.1101/2024.06.27.601044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Native mass spectrometry (MS) is revealing the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer; however, commonly used detergents for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility for characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents. Here, we demonstrate how charge-reducing molecules, such as spermine and trimethylamine-N-oxide, enable characterization of lipid binding to the bacterial water channel (AqpZ) and ammonia channel (AmtB) in complex with regulatory protein GlnK in different detergent environments. We find protein-lipid interactions are not only protein-dependent but can also be influenced by the detergent and type of charge-reducing molecule. AqpZ-lipid interactions are enhanced in LDAO (n-dodecyl-N,N-dimethylamine-N-oxide), whereas the interaction of AmtB-GlnK with lipids is comparable among different detergents. A fluorescent lipid binding assay also shows detergent dependence for AqpZ-lipid interactions, consistent with results from native MS. Taken together, native MS will play a pivotal role in establishing optimal experimental parameters that will be invaluable for various applications, such as drug discovery, as well as biochemical and structural investigations.
Collapse
Affiliation(s)
- Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lie Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | | | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Kundlacz T, Schmidt C. Deciphering Solution and Gas-Phase Interactions between Peptides and Lipids by Native Mass Spectrometry. Anal Chem 2023; 95:17292-17299. [PMID: 37956985 PMCID: PMC10688224 DOI: 10.1021/acs.analchem.3c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Many biological processes depend on the interactions between proteins and lipids. Accordingly, the analysis of protein-lipid complexes has become increasingly important. Native mass spectrometry is often used to identify and characterize specific protein-lipid interactions. However, it requires the transfer of the analytes into the gas phase, where electrostatic interactions are enhanced and hydrophobic interactions do not exist. Accordingly, the question remains whether interactions that are observed in the gas phase accurately reflect interactions that are formed in solution. Here, we systematically explore noncovalent interactions between the antimicrobial peptide LL-37 and glycerophospholipids containing different headgroups or varying in fatty acyl chain length. We observe differences in peak intensities for different peptide-lipid complexes, as well as their relative binding strength in the gas phase. Accordingly, we found that ion intensities and gas-phase stability correlate well for complexes formed by electrostatic interactions. Probing hydrophobic interactions by varying the length of fatty acyl chains, we detected differences in ion intensities based on hydrophobic interactions formed in solution. The relative binding strength of these peptide-lipid complexes revealed only minor differences originating from van der Waals interactions and different binding modes of lipid headgroups in solution. In summary, our results demonstrate that hydrophobic interactions are reflected by ion intensities, while electrostatic interactions, including van der Waals interactions, determine the gas-phase stability of complexes.
Collapse
Affiliation(s)
- Til Kundlacz
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Institute
of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Department
of Chemistry—Biochemistry, Johannes
Gutenberg University Mainz, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| |
Collapse
|
5
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
6
|
Wang Q, Xu T, Fang F, Wang Q, Lundquist P, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics of Mouse Brain Integral Membrane Proteins. Anal Chem 2023; 95:12590-12594. [PMID: 37595263 PMCID: PMC10540247 DOI: 10.1021/acs.analchem.3c02346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Mass spectrometry (MS)-based top-down characterization of integral membrane proteins (IMPs) is crucial for understanding their functions in biological processes. However, it is technically challenging due to their low solubility in typical MS-compatible buffers. In this work, for the first time, we developed an efficient capillary zone electrophoresis (CZE)-tandem MS (MS/MS) method for the top-down proteomics (TDP) of IMPs enriched from mouse brains. Our technique employs a sample buffer containing 30% (v/v) formic acid and 60% (v/v) methanol for solubilizing IMPs and utilizes a separation buffer of 30% (v/v) acetic acid and 30% (v/v) methanol for maintaining the solubility of IMPs during CZE separation. Single-shot CZE-MS/MS identified 51 IMP proteoforms from the mouse brain sample. Coupling size exclusion chromatography (SEC) to CZE-MS/MS enabled the identification of 276 IMP proteoforms from the mouse brain sample containing 1-4 transmembrane domains. This proof-of-concept work demonstrates the high potential of CZE-MS/MS for the large-scale TDP of IMPs.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Peter Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Russell Lewis B, Lawrence R, Hammerschmid D, Reading E. Structural mass spectrometry approaches to understand multidrug efflux systems. Essays Biochem 2023; 67:255-267. [PMID: 36504255 PMCID: PMC10070475 DOI: 10.1042/ebc20220190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Multidrug efflux pumps are ubiquitous across both eukaryotes and prokaryotes, and have major implications in antimicrobial and multidrug resistance. They reside within cellular membranes and have proven difficult to study owing to their hydrophobic character and relationship with their compositionally complex lipid environment. Advances in structural mass spectrometry (MS) techniques have made it possible to study these systems to elucidate critical information on their structure-function relationships. For example, MS techniques can report on protein structural dynamics, stoichiometry, connectivity, solvent accessibility, and binding interactions with ligands, lipids, and other proteins. This information proving powerful when used in conjunction with complementary structural biology methods and molecular dynamics (MD) simulations. In the present review, aimed at those not experts in MS techniques, we report on the current uses of MS in studying multidrug efflux systems, practical considerations to consider, and the future direction of the field. In the first section, we highlight the importance of studying multidrug efflux proteins, and introduce a range of different MS techniques and explain what information they yield. In the second section, we review recent studies that have utilised MS techniques to study and characterise a range of different multidrug efflux systems.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Ryan Lawrence
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Eamonn Reading
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
8
|
Bilsing FL, Anlauf MT, Hachani E, Khosa S, Schmitt L. ABC Transporters in Bacterial Nanomachineries. Int J Mol Sci 2023; 24:ijms24076227. [PMID: 37047196 PMCID: PMC10094684 DOI: 10.3390/ijms24076227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Members of the superfamily of ABC transporters are found in all domains of life. Most of these primary active transporters act as isolated entities and export or import their substrates in an ATP-dependent manner across biological membranes. However, some ABC transporters are also part of larger protein complexes, so-called nanomachineries that catalyze the vectorial transport of their substrates. Here, we will focus on four bacterial examples of such nanomachineries: the Mac system providing drug resistance, the Lpt system catalyzing vectorial LPS transport, the Mla system responsible for phospholipid transport, and the Lol system, which is required for lipoprotein transport to the outer membrane of Gram-negative bacteria. For all four systems, we tried to summarize the existing data and provide a structure-function analysis highlighting the mechanistical aspect of the coupling of ATP hydrolysis to substrate translocation.
Collapse
|
9
|
Kumar S, Zhu Y, Stover L, Laganowsky A. Step toward Probing the Nonannular Belt of Membrane Proteins. Anal Chem 2022; 94:13906-13912. [PMID: 36170465 DOI: 10.1021/acs.analchem.2c02811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integral membrane proteins are embedded in the biological membrane, where they carry out numerous biological processes. Although lipids present in the membrane are crucial for membrane protein function, it remains difficult to characterize many lipid binding events to membrane proteins, such as those that form the annular belt. Here, we use native mass spectrometry along with the charge-reducing properties of trimethylamine N-oxide (TMAO) to characterize a large number of lipid binding events to the bacterial ammonia channel (AmtB). In the absence of TMAO, significant peak overlap between neighboring charge states is observed, resulting in erroneous abundances for different molecular species. With the addition of TMAO, the weighted average charge state (Zavg) was decreased. In addition, the increased spacing between nearby charge states enabled a higher number of lipid binding species to be observed while minimizing mass spectral peak overlap. These conditions helped us to determine the equilibrium binding constants (Kd) for up to 16 lipid binding events. The binding constants for the first few lipid binding events display the highest affinity, whereas the binding constants for higher lipid binding events converge to a similar value. These findings suggest a transition from nonannular to annular lipid binding to AmtB.
Collapse
Affiliation(s)
- Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Sicoli G, Konijnenberg A, Guérin J, Hessmann S, Del Nero E, Hernandez-Alba O, Lecher S, Rouaut G, Müggenburg L, Vezin H, Cianférani S, Sobott F, Schneider R, Jacob-Dubuisson F. Large-Scale Conformational Changes of FhaC Provide Insights Into the Two-Partner Secretion Mechanism. Front Mol Biosci 2022; 9:950871. [PMID: 35936790 PMCID: PMC9355242 DOI: 10.3389/fmolb.2022.950871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane β barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein’s surface loops. Specifically, our data indicate that an amphipathic POTRA2 β hairpin can insert into the β barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.
Collapse
Affiliation(s)
- Giuseppe Sicoli
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | | | - Jérémy Guérin
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Elise Del Nero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Sophie Lecher
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Guillaume Rouaut
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Linn Müggenburg
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Hervé Vezin
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Frank Sobott
- BAMS Research Group, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Schneider
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| | - Françoise Jacob-Dubuisson
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| |
Collapse
|
12
|
Guffick C, Hsieh PY, Ali A, Shi W, Howard J, Chinthapalli DK, Kong AC, Salaa I, Crouch LI, Ansbro MR, Isaacson SC, Singh H, Barrera NP, Nair AV, Robinson CV, Deery MJ, van Veen HW. Drug-dependent inhibition of nucleotide hydrolysis in the heterodimeric ABC multidrug transporter PatAB from Streptococcus pneumoniae. FEBS J 2022; 289:3770-3788. [PMID: 35066976 PMCID: PMC9541285 DOI: 10.1111/febs.16366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 02/02/2023]
Abstract
The bacterial heterodimeric ATP‐binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug‐resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide‐binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug‐mimetic azido‐ethidium. Surprisingly, our analyses of azido‐ethidium‐labelled PatAB peptides point to ethidium binding in the PatA nucleotide‐binding domain, with the azido moiety crosslinked to residue Q521 in the H‐like loop of the degenerate nucleotide‐binding site. Investigation into this compound and residue’s role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium‐dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium‐like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non‐competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide‐binding domains.
Collapse
Affiliation(s)
| | - Pei-Yu Hsieh
- Department of Pharmacology, University of Cambridge, UK
| | - Anam Ali
- Department of Pharmacology, University of Cambridge, UK
| | - Wilma Shi
- Department of Pharmacology, University of Cambridge, UK
| | - Julie Howard
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK
| | | | - Alex C Kong
- Department of Pharmacology, University of Cambridge, UK
| | - Ihsene Salaa
- Department of Pharmacology, University of Cambridge, UK
| | - Lucy I Crouch
- Department of Pharmacology, University of Cambridge, UK
| | | | | | | | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asha V Nair
- Department of Pharmacology, University of Cambridge, UK
| | | | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
13
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
15
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Gavriilidou AFM, Sokratous K, Yen HY, De Colibus L. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Front Mol Biosci 2022; 9:837901. [PMID: 35495635 PMCID: PMC9047894 DOI: 10.3389/fmolb.2022.837901] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The design of new therapeutic molecules can be significantly informed by studying protein-ligand interactions using biophysical approaches directly after purification of the protein-ligand complex. Well-established techniques utilized in drug discovery include isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and structure-based drug discovery which mainly rely on protein crystallography and, more recently, cryo-electron microscopy. Protein-ligand complexes are dynamic, heterogeneous, and challenging systems that are best studied with several complementary techniques. Native mass spectrometry (MS) is a versatile method used to study proteins and their non-covalently driven assemblies in a native-like folded state, providing information on binding thermodynamics and stoichiometry as well as insights on ternary and quaternary protein structure. Here, we discuss the basic principles of native mass spectrometry, the field's recent progress, how native MS is integrated into a drug discovery pipeline, and its future developments in drug discovery.
Collapse
|
17
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
18
|
Donor MT, Wilson JW, Shepherd SO, Prell JS. Lipid Head Group Adduction to Soluble Proteins Follows Gas-Phase Basicity Predictions: Dissociation Barriers and Charge Abstraction. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116670. [PMID: 34421332 PMCID: PMC8372978 DOI: 10.1016/j.ijms.2021.116670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native mass spectrometry analysis of membrane proteins has yielded many useful insights in recent years with respect to membrane protein-lipid interactions, including identifying specific interactions and even measuring binding affinities based on observed abundances of lipid-bound ions after collision-induced dissociation (CID). However, the behavior of non-covalent complexes subjected to extensive CID can in principle be affected by numerous factors related to gas-phase chemistry, including gas-phase basicity (GB) and acidity, shared-proton bonds, and other factors. A recent report from our group showed that common lipids span a wide range of GB values. Notably, phosphatidylcholine (PC) and sphingomyelin lipids are more basic than arginine, suggesting they may strip charge upon dissociation in positive ion mode, while phosphoserine lipids are slightly less basic than arginine and may form especially strong shared-proton bonds. Here, we use CID to probe the strength of non-specific gas-phase interactions between lipid head groups and several soluble proteins, used to deliberately avoid possible physiological protein-lipid interactions. The strengths of the protein-head group interactions follow the trend predicted based solely on lipid and amino acid GBs: phosphoserine (PS) head group forms the strongest bonds with these proteins and out-competes the other head groups studied, while glycerophosphocholine (GPC) head groups form the weakest interactions and dissociate carrying away a positive charge. These results indicate that gas-phase thermochemistry can play an important role in determining which head groups remain bound to protein ions with native-like structures and charge states in positive ion mode upon extensive collisional activation.
Collapse
Affiliation(s)
- Micah T. Donor
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - Jesse W. Wilson
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - Samantha O. Shepherd
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, OR 97403-1252
| |
Collapse
|
19
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
20
|
Souabni H, Batista Dos Santos W, Cece Q, Catoire LJ, Puvanendran D, Bavro VN, Picard M. Quantitative real-time analysis of the efflux by the MacAB-TolC tripartite efflux pump clarifies the role of ATP hydrolysis within mechanotransmission mechanism. Commun Biol 2021; 4:493. [PMID: 33888866 PMCID: PMC8062640 DOI: 10.1038/s42003-021-01997-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Tripartite efflux pumps built around ATP-binding cassette (ABC) transporters are membrane protein machineries that perform vectorial export of a large variety of drugs and virulence factors from Gram negative bacteria, using ATP-hydrolysis as energy source. Determining the number of ATP molecules consumed per transport cycle is essential to understanding the efficiency of substrate transport. Using a reconstituted pump in a membrane mimic environment, we show that MacAB-TolC from Escherichia coli couples substrate transport to ATP-hydrolysis with high efficiency. Contrary to the predictions of the currently prevailing "molecular bellows" model of MacB-operation, which assigns the power stroke to the ATP-binding by the nucleotide binding domains of the transporter, by utilizing a novel assay, we report clear synchronization of the substrate transfer with ATP-hydrolysis, suggesting that at least some of the power stroke for the substrate efflux is provided by ATP-hydrolysis. Our findings narrow down the window for energy consumption step that results in substrate transition into the TolC-channel, expanding the current understanding of the efflux cycle of the MacB-based tripartite assemblies. Based on that we propose a modified model of the MacB cycle within the context of tripartite complex assembly.
Collapse
Affiliation(s)
- Hager Souabni
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - William Batista Dos Santos
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Quentin Cece
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Dhenesh Puvanendran
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Martin Picard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France.
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
21
|
Hammerschmid D, van Dyck JF, Sobott F, Calabrese AN. Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. Methods Mol Biol 2021; 2168:233-261. [PMID: 33582995 DOI: 10.1007/978-1-0716-0724-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.
Collapse
Affiliation(s)
- Dietmar Hammerschmid
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.,Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group, Chemistry Department, University of Antwerp, Antwerp, Belgium.,Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
22
|
Naulin PA, Lozano B, Fuentes C, Liu Y, Schmidt C, Contreras JE, Barrera NP. Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging. J Biol Chem 2020; 295:16499-16509. [PMID: 32887797 PMCID: PMC7864052 DOI: 10.1074/jbc.ra119.012128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology.
Collapse
Affiliation(s)
- Pamela A Naulin
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Lozano
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Fuentes
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yu Liu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Carla Schmidt
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Barth M, Schmidt C. Native mass spectrometry-A valuable tool in structural biology. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4578. [PMID: 32662584 DOI: 10.1002/jms.4578] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Proteins and the complexes they form with their ligands are the players of cellular action. Their function is directly linked with their structure making the structural analysis of protein-ligand complexes essential. Classical techniques of structural biology include X-ray crystallography, nuclear magnetic resonance spectroscopy and recently distinguished cryo-electron microscopy. However, protein-ligand complexes are often dynamic and heterogeneous and consequently challenging for these techniques. Alternative approaches are therefore needed and gained importance during the last decades. One alternative is native mass spectrometry, which is the analysis of intact protein complexes in the gas phase. To achieve this, sample preparation and instrument conditions have to be optimised. Native mass spectrometry then reveals stoichiometry, protein interactions and topology of protein assemblies. Advanced techniques such as ion mobility and high-resolution mass spectrometry further add to the range of applications and deliver information on shape and microheterogeneity of the complexes. In this tutorial, we explain the basics of native mass spectrometry including sample requirements, instrument modifications and interpretation of native mass spectra. We further discuss the developments of native mass spectrometry and provide example spectra and applications.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
24
|
Lyu J, Liu Y, McCabe JW, Schrecke S, Fang L, Russell DH, Laganowsky A. Discovery of Potent Charge-Reducing Molecules for Native Ion Mobility Mass Spectrometry Studies. Anal Chem 2020; 92:11242-11249. [PMID: 32672445 DOI: 10.1021/acs.analchem.0c01826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing interest in the characterization of protein complexes and their interactions with ligands using native ion mobility mass spectrometry. A particular challenge, especially for membrane proteins, is preserving noncovalent interactions and maintaining native-like structures. Different approaches have been developed to minimize activation of protein complexes by manipulating charge on protein complexes in solution and the gas-phase. Here, we report the utility of polyamines that have exceptionally high charge-reducing potencies with some molecules requiring 5-fold less than trimethylamine oxide to elicit the same effect. The charge-reducing molecules do not adduct to membrane protein complexes and are also compatible with ion-mobility mass spectrometry, paving the way for improved methods of charge reduction.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yang Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Cleary SP, Prell JS. Distinct classes of multi-subunit heterogeneity: analysis using Fourier Transform methods and native mass spectrometry. Analyst 2020; 145:4688-4697. [PMID: 32459233 PMCID: PMC8483610 DOI: 10.1039/d0an00726a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Native electrospray mass spectrometry is a powerful method for determining the native stoichiometry of many polydisperse multi-subunit biological complexes, including multi-subunit protein complexes and lipid-bound transmembrane proteins. However, when polydispersity results from incorporation of multiple copies of two or more different subunits, it can be difficult to analyze subunit stoichiometry using conventional mass spectrometry analysis methods, especially when m/z distributions for different charge states overlap in the mass spectrum. It was recently demonstrated by Marty and co-workers (K. K. Hoi, et al., Anal. Chem., 2016, 88, 6199-6204) that Fourier Transform (FT)-based methods can determine the bulk average lipid composition of protein-lipid Nanodiscs assembled with two different lipids, but a detailed statistical description of the composition of more general polydisperse two-subunit populations is still difficult to achieve. This results from the vast number of ways in which the two types of subunit can be distributed within the analyte ensemble. Here, we present a theoretical description of three common classes of heterogeneity for mixed-subunit analytes and demonstrate how to differentiate and analyze them using mass spectrometry and FT methods. First, we first describe FT-based analysis of mass spectra corresponding to simple superpositions, convolutions, and multinomial distributions for two or more different subunit types using model data sets. We then apply these principles with real samples, including mixtures of single-lipid Nanodiscs in the same solution (superposition), mixed-lipid Nanodiscs and copolymers (convolutions), and isotope distribution for ubiquitin (multinomial distribution). This classification scheme and the FT method used to study these analyte classes should be broadly useful in mass spectrometry as well as other techniques where overlapping, periodic signals arising from analyte mixtures are common.
Collapse
Affiliation(s)
- Sean P Cleary
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA.
| | | |
Collapse
|
26
|
Structural predictions of the functions of membrane proteins from HDX-MS. Biochem Soc Trans 2020; 48:971-979. [PMID: 32597490 PMCID: PMC7329338 DOI: 10.1042/bst20190880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
HDX-MS has emerged as a powerful tool to interrogate the structure and dynamics of proteins and their complexes. Recent advances in the methodology and instrumentation have enabled the application of HDX-MS to membrane proteins. Such targets are challenging to investigate with conventional strategies. Developing new tools are therefore pertinent for improving our fundamental knowledge of how membrane proteins function in the cell. Importantly, investigating this central class of biomolecules within their native lipid environment remains a challenge but also a key goal ahead. In this short review, we outline recent progresses in dissecting the conformational mechanisms of membrane proteins using HDX-MS. We further describe how the use of computational strategies can aid the interpretation of experimental data and enable visualisation of otherwise intractable membrane protein states. This unique integration of experiments with computations holds significant potential for future applications.
Collapse
|
27
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
28
|
Campuzano IDG, Nshanian M, Spahr C, Lantz C, Netirojjanakul C, Li H, Wongkongkathep P, Wolff JJ, Loo JA. High Mass Analysis with a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: From Inorganic Salt Clusters to Antibody Conjugates and Beyond. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1155-1162. [PMID: 32196330 PMCID: PMC7261417 DOI: 10.1021/jasms.0c00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Analysis of proteins and complexes under native mass spectrometric (MS) and solution conditions was typically performed using time-of-flight (ToF) analyzers, due to their routine high m/z transmission and detection capabilities. However, over recent years, the ability of Orbitrap-based mass spectrometers to transmit and detect a range of high molecular weight species is well documented. Herein, we describe how a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (15 T FT-ICR MS) is more than capable of analyzing a wide range of ions in the high m/z scale (>5000), in both positive and negative instrument polarities, ranging from the inorganic cesium iodide salt clusters; a humanized IgG1k monoclonal antibody (mAb; 148.2 kDa); an IgG1-mertansine drug conjugate (148.5 kDa, drug-to-antibody ratio; DAR 2.26); an IgG1-siRNA conjugate (159.1 kDa; ribonucleic acid to antibody ratio; RAR 1); the membrane protein aquaporin-Z (97.2 kDa) liberated from a C8E4 detergent micelle; the empty MSP1D1-nanodisc (142.5 kDa) and the tetradecameric chaperone protein complex GroEL (806.2 kDa; GroEL dimer at 1.6 MDa). We also investigate different regions of the FT-ICR MS that impact ion transmission and desolvation. Finally, we demonstrate how the transmission of these species and resultant spectra are highly consistent with those previously generated on both quadrupole-ToF (Q-ToF) and Orbitrap instrumentation. This report serves as an impactful example of how FT-ICR mass analyzers are competitive to Q-ToFs and Orbitraps for high mass detection at high m/z.
Collapse
Affiliation(s)
| | - Michael Nshanian
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Christopher Spahr
- Amgen Research, Amgen Inc, Thousand Oaks, California 91320, United States
| | - Carter Lantz
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Huilin Li
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jeremy J. Wolff
- Bruker Daltonics Inc, Billerica, Massachusetts 01821, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Bender J, Schmidt C. Mass spectrometry of membrane protein complexes. Biol Chem 2020; 400:813-829. [PMID: 30956223 DOI: 10.1515/hsz-2018-0443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
Membrane proteins are key players in the cell. Due to their hydrophobic nature they require solubilising agents such as detergents or membrane mimetics during purification and, consequently, are challenging targets in structural biology. In addition, their natural lipid environment is crucial for their structure and function further hampering their analysis. Alternative approaches are therefore required when the analysis by conventional techniques proves difficult. In this review, we highlight the broad application of mass spectrometry (MS) for the characterisation of membrane proteins and their interactions with lipids. We show that MS unambiguously identifies the protein and lipid components of membrane protein complexes, unravels their three-dimensional arrangements and further provides clues of protein-lipid interactions.
Collapse
Affiliation(s)
- Julian Bender
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| |
Collapse
|
30
|
Diallinas G, Martzoukou O. Transporter membrane traffic and function: lessons from a mould. FEBS J 2019; 286:4861-4875. [DOI: 10.1111/febs.15078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- George Diallinas
- Department of Biology National and Kapodistrian University of Athens Greece
| | - Olga Martzoukou
- Department of Biology National and Kapodistrian University of Athens Greece
| |
Collapse
|
31
|
Wilson JW, Rolland AD, Klausen GM, Prell JS. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from Staphylococcus aureus Simultaneously Forms Hexameric and Heptameric Complexes in Detergent Micelle Solutions. Anal Chem 2019; 91:10204-10211. [PMID: 31282652 DOI: 10.1021/acs.analchem.9b02243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many soluble and membrane proteins form symmetrical homooligomeric complexes. However, determining the oligomeric state of protein complexes can be difficult. Alpha-hemolysin (αHL) from Staphylococcus aureus is a symmetrical homooligomeric protein toxin that forms transmembrane β-barrel pores in host cell membranes. The stable pore structure of αHL has also been exploited in vitro as a nanopore tool. Early structural experiments suggested αHL forms a hexameric pore, while more recent X-ray crystal structure and solution studies have identified a heptameric pore structure. Here, using native ion mobility-mass spectrometry (IM-MS) we find that αHL simultaneously forms hexameric and heptameric oligomers in both tetraethylene glycol monooctyl ether (C8E4) and tetradecylphosphocholine (FOS-14) detergent solutions. We also analyze intact detergent micelle-embedded αHL porelike complexes by native IM-MS without the need to fully strip the detergent micelle, which can cause significant gas-phase unfolding. The highly congested native mass spectra are deconvolved using Fourier- and Gábor-transform (FT and GT) methods to determine charge states and detergent stoichiometry distributions. The intact αHL micelle complexes are found to contain oligomeric state-proportional numbers of detergent molecules. This evidence, combined with IM data and results from vacuum molecular dynamics simulations, is consistent with both the hexamer and the heptamer forming porelike complexes. The ability of αHL to form both oligomeric states simultaneously has implications for its use as a nanopore tool and its pore formation mechanism in vivo. This study also demonstrates more generally the power of FT and GT to deconvolve the charge state and stoichiometry distributions of polydisperse ions.
Collapse
Affiliation(s)
- Jesse W Wilson
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Grant M Klausen
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - James S Prell
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States.,Materials Science Institute , University of Oregon , 1252 University of Oregon , Eugene , Oregon 97403-1252 , United States
| |
Collapse
|
32
|
Frick M, Schmidt C. Mass spectrometry—A versatile tool for characterising the lipid environment of membrane protein assemblies. Chem Phys Lipids 2019; 221:145-157. [DOI: 10.1016/j.chemphyslip.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
|
33
|
Abstract
Cell nutrition, detoxification, signalling, homeostasis and response to drugs, processes related to cell growth, differentiation and survival are all mediated by plasma membrane (PM) proteins called transporters. Despite their distinct fine structures, mechanism of function, energetic requirements, kinetics and substrate specificities, all transporters are characterized by a main hydrophobic body embedded in the PM as a series of tightly packed, often intertwined, α-helices that traverse the lipid bilayer in a zigzag mode, connected with intracellular or extracellular loops and hydrophilic N- and C-termini. Whereas longstanding genetic, biochemical and biophysical evidence suggests that specific transmembrane segments, and also their connecting loops, are responsible for substrate recognition and transport dynamics, emerging evidence also reveals the functional importance of transporter N- and C-termini, in respect to transport catalysis, substrate specificity, subcellular expression, stability and signalling. This review highlights selected prototypic examples of transporters in which their termini play important roles in their functioning.
Collapse
Affiliation(s)
- Emmanuel Mikros
- Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| |
Collapse
|
34
|
|
35
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
36
|
Patrick JW, Laganowsky A. Generation of Charge-Reduced Ions of Membrane Protein Complexes for Native Ion Mobility Mass Spectrometry Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:886-892. [PMID: 30887461 PMCID: PMC6504596 DOI: 10.1007/s13361-019-02187-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 05/15/2023]
Abstract
Recent advances in native mass spectrometry (MS) have enabled the elucidation of how small molecule binding to membrane proteins modulates their structure and function. The protein-stabilizing osmolyte, trimethylamine oxide (TMAO), exhibits attractive properties for native MS studies. Here, we report significant charge reduction, nearly threefold, for three membrane protein complexes in the presence of this osmolyte without compromising mass spectral resolution. TMAO improves the ability to resolve individual lipid-binding events to the ammonia channel (AmtB) by over 200% compared to typical native conditions. The generation of ions with compact structure and access to a larger number of lipid-binding events through the incorporation of TMAO increases the utility of IM-MS for structural biology studies. Graphical Abstract.
Collapse
Affiliation(s)
- John W Patrick
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
- Janssen Research & Development, 1400 Mckean Road, Spring House, PA, 19477, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA.
| |
Collapse
|
37
|
De Paepe E, Wauters J, Van Der Borght M, Claes J, Huysman S, Croubels S, Vanhaecke L. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects. Food Chem 2019; 293:187-196. [PMID: 31151600 DOI: 10.1016/j.foodchem.2019.04.082] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
A generic extraction and UHPLC-Q-Orbitrap™-HRMS method was developed for four insect species (mealworm, grasshopper, house cricket and black soldier fly) analyzing a large spectrum of organic chemical contaminants, including pesticides (n = 25), (veterinary) drugs (n = 29), and mycotoxins (n = 23). To prove the method as 'fit-for-purpose', a successful validation was performed, both qualitatively, by determining the screening detection limit (SDL), selectivity and specificity, as well as semi-quantitatively, by assessing the within-day precision (relative standard deviation (RSD)) and recovery. For both the mealworm, grasshopper, house cricket and black soldier fly, 64, 61, 59 and 62 compounds were detected at the respective SDL levels (1-100 μg kg-1), predominantly below existing maximum residue limits for other edible matrices. Mean recoveries ranged between 70% and 120% and RSD-values were in line with European regulations (CD 2002/657/EC; SANCO). Finally, the potential of the screening methodology was demonstrated on real insect samples, revealing minor to no contamination.
Collapse
Affiliation(s)
- Ellen De Paepe
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Jella Wauters
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Mik Van Der Borght
- Department of Microbial and Molecular Systems (M(2)S), Lab4food, Faculty of Engineering Technology, KU Leuven, Kleinhoefstraat 4, 2240 Geel, Belgium.
| | - Johan Claes
- Department of Microbial and Molecular Systems (M(2)S), Lab4food, Faculty of Engineering Technology, KU Leuven, Kleinhoefstraat 4, 2240 Geel, Belgium.
| | - Steve Huysman
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
38
|
Fiorentino F, Bolla JR, Mehmood S, Robinson CV. The Different Effects of Substrates and Nucleotides on the Complex Formation of ABC Transporters. Structure 2019; 27:651-659.e3. [PMID: 30799075 PMCID: PMC6453779 DOI: 10.1016/j.str.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/17/2018] [Accepted: 01/18/2019] [Indexed: 11/27/2022]
Abstract
The molybdate importer (ModBC-A of Archaeoglobus fulgidus) and the vitamin B12 importer (BtuCD-F of Escherichia coli) are members of the type I and type II ABC importer families. Here we study the influence of substrate and nucleotide binding on complex formation and stability. Using native mass spectrometry we show that the interaction between the periplasmic substrate-binding protein (SBP) ModA and the transporter ModBC is dependent upon binding of molybdate. By contrast, vitamin B12 disrupts interactions between the transporter BtuCD and the SBP BtuF. Moreover, while ATP binds cooperatively to BtuCD-F, and acts synergistically with vitamin B12 to destabilize the BtuCD-F complex, no effect is observed for ATP binding on the stability of ModBC-A. These observations not only highlight the ability of mass spectrometry to capture these importer-SBP complexes but allow us to add molecular detail to proposed transport mechanisms.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jani Reddy Bolla
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
39
|
Gavriilidou AFM, Hunziker H, Mayer D, Vuckovic Z, Veprintsev DB, Zenobi R. Insights into the Basal Activity and Activation Mechanism of the β1 Adrenergic Receptor Using Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:529-537. [PMID: 30511235 DOI: 10.1007/s13361-018-2110-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
In the absence of orthosteric ligands, most G protein-coupled receptors (GPCRs) exist in an equilibrium of different conformational states. This equilibrium is shifted by an agonist towards the active state or by an inverse agonist towards the inactive state. The basal activity of the receptor, and its ability to activate intracellular signaling pathways, is defined by the probability that a fraction of the receptor adopts the active state in the absence of ligand. Despite breakthroughs in native MS of membrane proteins, GPCR-transducing complexes have not been studied by this approach until very recently. Here, we investigated different conformational states of the turkey β1 adrenergic receptor (tβ1AR) in complex with two transducing partners: a G protein mimicking nanobody, Nb80, and an engineered truncated Gs protein (miniGs), in the presence of the full agonist isoprenaline by native MS. Interestingly, complex formation with both transducing partners was also observed in the absence of agonist, and allowed us to quantify basal activity of tβ1AR. We followed the stepwise disassembly of the transducing complexes by increasing the concentration of the inverse agonist S32212 in the presence of a constant concentration of isoprenaline. This allowed us to determine the relative binding affinity of S32212 in comparison to isoprenaline by native MS. Our approach provides a fast and sensitive way to detect complexes, study their stability in the presence of different ligands, and determine relative ligand affinities. Native mass spectrometry thus has the potential to become a useful tool to screen for orthosteric and allosteric GPCR drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Agni F M Gavriilidou
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- OMass Technologies Ltd The Schrodinger Building, Heatly Road, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Hanna Hunziker
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Mayer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ziva Vuckovic
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Abstract
Following initial discoveries of noncovalent associations surviving in the gas phase, only a few practitioners pursued this research area. Today scientists around the world are using these approaches to ascertain the heterogeneity and stoichiometry of proteins within complexes. Recent developments further highlight opportunities for studying the effects of protein glycosylation on antibody–antigen interactions and drug binding, as well as site-directed mutagenesis and posttranslational modification on membrane protein interfaces. As a result of many developments over the last two decades, mass spectrometry of protein complexes has exploded and is now undertaken not just in dedicated research laboratories in academia, but also in pharmaceutical and biotechnology companies. It is therefore timely to trace the history of these developments in this personal perspective. In this Inaugural Article, I trace some key steps that have enabled the development of mass spectrometry for the study of intact protein complexes from a variety of cellular environments. Beginning with the preservation of the first soluble complexes from plasma, I describe our early experiments that capitalize on the heterogeneity of subunit composition during assembly and exchange reactions. During these investigations, we observed many assemblies and intermediates with different subunit stoichiometries, and were keen to ascertain whether or not their overall topology was preserved in the mass spectrometer. Adapting ion mobility and soft-landing methodologies, we showed how ring-shaped complexes could survive the phase transition. The next logical progression from soluble complexes was to membrane protein assemblies but this was not straightforward. We encountered many pitfalls along the way, largely due to the use of detergent micelles to protect and stabilize complexes. Further obstacles presented when we attempted to distinguish lipids that copurify from those that are important for function. Developing new experimental protocols, we have subsequently defined lipids that change protein conformation, mediate oligomeric states, and facilitate downstream coupling of G protein-coupled receptors. Very recently, using a radical method—ejecting protein complexes directly from native membranes into mass spectrometers—we provided insights into associations within membranes and mitochondria. Together, these developments suggest the beginnings of mass spectrometry meeting with cell biology.
Collapse
|
41
|
Cleary SP, Prell JS. Liberating Native Mass Spectrometry from Dependence on Volatile Salt Buffers by Use of Gábor Transform. Chemphyschem 2019; 20:519-523. [DOI: 10.1002/cphc.201900022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Sean P. Cleary
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
| | - James S. Prell
- Department of Chemistry and Biochemistry 1253 University of Oregon Eugene OR 97403-1253 USA
- Materials Science Institute 1252 University of Oregon Eugene OR 97403-1252 USA
| |
Collapse
|
42
|
Ngounou Wetie AG, Sokolowska I, Channaveerappa D, Dupree EJ, Jayathirtha M, Woods AG, Darie CC. Proteomics and Non-proteomics Approaches to Study Stable and Transient Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:121-142. [DOI: 10.1007/978-3-030-15950-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Mass Spectrometry- and Computational Structural Biology-Based Investigation of Proteins and Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:265-287. [PMID: 31347053 DOI: 10.1007/978-3-030-15950-4_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments of mass spectrometry (MS) allow us to identify, estimate, and characterize proteins and protein complexes. At the same time, structural biology helps to determine the protein structure and its structure-function relationship. Together, they aid to understand the protein structure, property, function, protein-complex assembly, protein-protein interaction, and dynamics. The present chapter is organized with illustrative results to demonstrate how experimental mass spectrometry can be combined with computational structural biology for detailed studies of protein's structures. We have used tumor differentiation factor protein/peptide as ligand and Hsp70/Hsp90 as receptor protein as examples to study ligand-protein interaction. To investigate possible protein conformation, we will describe two proteins-lysozyme and myoglobin. As an application of MS-based assignment of disulfide bridges, the case of the spider venom polypeptide Phα1β will also be discussed.
Collapse
|
44
|
Transporter oligomerisation: roles in structure and function. Biochem Soc Trans 2018; 47:433-440. [PMID: 30578344 PMCID: PMC6393857 DOI: 10.1042/bst20180316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023]
Abstract
Oligomerisation is a key feature of integral membrane transporters with roles in structure, function and stability. In this review, we cover some very recent advances in our understanding of how oligomerisation affects these key transporter features, with emphasis on a few groups of transporters, including the nucleobase ascorbate transporters, neurotransmitter sodium symporters and major facilitator superfamily members.
Collapse
|
45
|
Cleary SP, Li H, Bagal D, Loo JA, Campuzano IDG, Prell JS. Extracting Charge and Mass Information from Highly Congested Mass Spectra Using Fourier-Domain Harmonics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2067-2080. [PMID: 30003534 PMCID: PMC6330157 DOI: 10.1007/s13361-018-2018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 05/20/2023]
Abstract
Native mass spectra of large, polydisperse biomolecules with repeated subunits, such as lipoprotein Nanodiscs, can often be challenging to analyze by conventional methods. The presence of tens of closely spaced, overlapping peaks in these mass spectra can make charge state, total mass, or subunit mass determinations difficult to measure by traditional methods. Recently, we introduced a Fourier Transform-based algorithm that can be used to deconvolve highly congested mass spectra for polydisperse ion populations with repeated subunits and facilitate identification of the charge states, subunit mass, charge-state-specific, and total mass distributions present in the ion population. Here, we extend this method by investigating the advantages of using overtone peaks in the Fourier spectrum, particularly for mass spectra with low signal-to-noise and poor resolution. This method is illustrated for lipoprotein Nanodisc mass spectra acquired on three common platforms, including the first reported native mass spectrum of empty "large" Nanodiscs assembled with MSP1E3D1 and over 300 noncovalently associated lipids. It is shown that overtone peaks contain nearly identical stoichiometry and charge state information to fundamental peaks but can be significantly better resolved, resulting in more reliable reconstruction of charge-state-specific mass spectra and peak width characterization. We further demonstrate how these parameters can be used to improve results from Bayesian spectral fitting algorithms, such as UniDec. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sean P Cleary
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, 97403-1253, USA
| | - Huilin Li
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California, UCLA/DOE Institute for Genomics and Proteomics, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dhanashri Bagal
- Amgen Discovery Research, Amgen, Inc., 1120 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California, UCLA/DOE Institute for Genomics and Proteomics, Los Angeles, Los Angeles, CA, 90095, USA
| | - Iain D G Campuzano
- Molecular Structure and Characterization, Amgen, Inc., Thousand Oaks, CA, 91320, USA
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, 97403-1253, USA.
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, 97403-1252, USA.
| |
Collapse
|
46
|
Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective. Front Microbiol 2018; 9:950. [PMID: 29892271 PMCID: PMC5985334 DOI: 10.3389/fmicb.2018.00950] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.
Collapse
Affiliation(s)
- Nicholas P Greene
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elise Kaplan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Allister Crow
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Huang KH, Tu TH, Wang SC, Chan YT, Hsu CC. Micelles Protect Intact Metallo-supramolecular Block Copolymer Complexes from Solution to Gas Phase during Electrospray Ionization. Anal Chem 2018; 90:7691-7699. [DOI: 10.1021/acs.analchem.8b01576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kai-Hung Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
48
|
Oh MI, Consta S. What factors determine the stability of a weak protein-protein interaction in a charged aqueous droplet? Phys Chem Chem Phys 2018; 19:31965-31981. [PMID: 29177351 DOI: 10.1039/c7cp05043g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining the interface of a weak transient protein complex transferred from bulk solution to the gaseous state via evaporating droplets is a critical question in the detection of the complex association (dissociation) constant by using electrospray ionization mass spectrometry (ESI-MS). Here we explore the factors that may affect the stability of a protein-protein interaction (PPI) using atomistic molecular dynamics (MD) modelling of a complex of ubiquitin (Ub) and the ubiquitin-associated domain (UbA) (RCSB PDB code ) and a non-covalent complex of diubiquitin (RCSB PDB code ) in aqueous droplets. A general method is presented to determine the protonation states of the complexes we investigate in particular, and that of a protein in general, under various pH conditions that an evaporating droplet acquires due to its change in size. We find that the combination of high temperature and high charge states of the protein complexes may destabilize the interface by creating new interfaces instead of a direct rupture of the initial stable interface. We provide evidence that highly charged protein complexes are found in droplets that form conical extrusions of the solvent on the surface due to charge-induced instability. This distinct droplet morphology leads to a higher solvent evaporation rate that assists in transferring the complex in the gaseous state without dissociation. The conical solvent protrusions expose on the droplet surface certain amino acids that otherwise would be solvated in a droplet with the protein complex of low charge states. The new vapor-protein interface does not have a direct effect on the stability of the PPI. A common way in experiments to stabilize the protein complexes in droplets is to reduce the protonation state of the proteins. Here we find that weakly bound protein complexes even at high protonation states can be stabilized by the presence of a small number of counterions, without affecting the protonation state of the protein. Our findings may provide guiding principles in ESI-MS experiments to stabilize weak transient PPIs.
Collapse
Affiliation(s)
- Myong In Oh
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | |
Collapse
|
49
|
Boeri Erba E, Signor L, Oliva MF, Hans F, Petosa C. Characterizing Intact Macromolecular Complexes Using Native Mass Spectrometry. Methods Mol Biol 2018; 1764:133-151. [PMID: 29605913 DOI: 10.1007/978-1-4939-7759-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Native mass spectrometry (MS) enables the characterization of macromolecular assemblies with high sensitivity. It can reveal the stoichiometry of subunits as well as their two-dimensional interaction network and provide information regarding the dynamic behavior of macromolecular complexes. Here, we describe the workflow to perform native MS experiments. In addition, we illustrate the quality control analysis of proteins using MS in denaturing conditions.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Institut de Biologie Structurale (IBS), Université de Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Luca Signor
- Institut de Biologie Structurale (IBS), Université de Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Mizar F Oliva
- Institut de Biologie Structurale (IBS), Université de Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Fabienne Hans
- Institut de Biologie Structurale (IBS), Université de Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Université de Grenoble Alpes, CEA, CNRS, Grenoble, France
| |
Collapse
|
50
|
Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat Commun 2017; 8:2203. [PMID: 29259178 PMCID: PMC5736629 DOI: 10.1038/s41467-017-02397-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 11/29/2022] Open
Abstract
The diverse lipid environment of the biological membrane can modulate the structure and function of membrane proteins. However, little is known about the role that lipids play in modulating protein–protein interactions. Here we employed native mass spectrometry (MS) to determine how individual lipid-binding events to the ammonia channel (AmtB) modulate its interaction with the regulatory protein, GlnK. The thermodynamic signature of AmtB–GlnK in the absence of lipids indicates conformational dynamics. A small number of lipids bound to AmtB is sufficient to modulate the interaction with GlnK, and lipids with different headgroups display a range of allosteric modulation. We also find that lipid chain length and stereochemistry can affect the degree of allosteric modulation, indicating an unforeseen selectivity of membrane proteins toward the chemistry of lipid tails. These results demonstrate that individual lipid-binding events can allosterically modulate the interactions of integral membrane and soluble proteins. Native mass spectrometry (MS) is a technique that preserves non-covalent interactions in the mass spectrometer. Here the authors use native MS to study integral membrane proteins, and find that lipids with different headgroups and tails can allosterically modulate protein-protein interactions in different fashions.
Collapse
|