1
|
Kimura S, Park CS, Montefiori LE, Iacobucci I, Polonen P, Gao Q, Arnold ED, Attarbaschi A, Brown A, Buldini B, Caldwell KJ, Chang Y, Chen C, Cheng C, Cheng Z, Choi J, Conter V, Crews KR, de Groot-Kruseman HA, Deguchi T, Eguchi M, Muhle HE, Elitzur S, Escherich G, Freeman BB, Gu Z, Han K, Horibe K, Imamura T, Jeha S, Kato M, Chiew KH, Khan T, Kicinski M, Köhrer S, Kornblau SM, Kotecha RS, Li CK, Liu YC, Locatelli F, Luger SM, Paietta EM, Manabe A, Marquart HV, Masetti R, Maybury M, Mazilier P, Meijerink JP, Mitchell S, Miyamura T, Moore AS, Oshima K, Pawinska-Wasikowska K, Pieters R, Prater MS, Pruett-Miller SM, Pui CH, Qu C, Reiterova M, Reyes N, Roberts KG, Rowe JM, Sato A, Schmiegelow K, Schrappe M, Shen S, Skoczeń S, Spinelli O, Stary J, Svaton M, Takagi M, Takita J, Tang Y, Teachey DT, Thomas PG, Tomizawa D, Trka J, Varotto E, Vincent TL, Yang JJ, Yeoh AEJ, Zhou Y, Zimmermann M, Inaba H, Mullighan CG. Biologic and Clinical Analysis of Childhood Gamma Delta T-ALL Identifies LMO2/STAG2 Rearrangements as Extremely High Risk. Cancer Discov 2024; 14:1838-1859. [PMID: 38916500 PMCID: PMC11452281 DOI: 10.1158/2159-8290.cd-23-1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Acute lymphoblastic leukemia expressing the gamma delta T-cell receptor (γδ T-ALL) is a poorly understood disease. We studied 200 children with γδ T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. γδ T-ALL diagnosed in children under 3 years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High-throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by poly(ADP-ribose) polymerase inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric γδ T-ALL. Significance: Patients with acute lymphoblastic leukemia expressing the gamma delta T-cell receptor under 3 years old or measurable residual disease ≥1% at end of induction showed dismal outcomes and should be classified as having high-risk disease. The STAG2/LMO2 subtype was enriched in this very young age group. STAG2 inactivation may perturb chromatin conformation and cell differentiation and confer vulnerability to poly(ADP-ribose) polymerase inhibition.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chun Shik Park
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth D. Arnold
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Buldini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica (IRP)-Città della Speranza, Padova, Italy
| | | | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chelsey Chen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University, Ehime, Japan
| | - Hannah Elisa Muhle
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burgess B. Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Departments of Computational and Quantitative Medicine, and Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katie Han
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sima Jeha
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Motohiro Kato
- Department of Pediatrics, Tokyo University, Tokyo, Japan
| | - Kean Hui Chiew
- Department of Paediatrics, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Tanya Khan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Chi-Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Franco Locatelli
- Department of Pediatric Hematology–Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Selina M. Luger
- Abramson Cancer Center, Univeristy of Pennsylvania, Philadelphia, PA, USA
| | | | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Mellissa Maybury
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
| | - Pauline Mazilier
- Pediatric hemato-oncology and transplantation, HUB - HUDERF, Brussels, Belgium
| | | | - Sharnise Mitchell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Andrew S. Moore
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Oncology Service, Children’s Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Koichi Oshima
- Department of Hematology/Oncology, Saitama Children's Medical Center
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mollie S. Prater
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michaela Reiterova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Noemi Reyes
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob M. Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, København, Denmark
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Berlin, Germany
| | - Shuhong Shen
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, ASST-Papa Giovanni XXIII Hospital, Piazza OMS, Bergamo, Italy
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michael Svaton
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David T. Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Elena Varotto
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
| | | | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen EJ Yeoh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Umeda M, Ma J, Westover T, Ni Y, Song G, Maciaszek JL, Rusch M, Rahbarinia D, Foy S, Huang BJ, Walsh MP, Kumar P, Liu Y, Yang W, Fan Y, Wu G, Baker SD, Ma X, Wang L, Alonzo TA, Rubnitz JE, Pounds S, Klco JM. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat Genet 2024; 56:281-293. [PMID: 38212634 PMCID: PMC10864188 DOI: 10.1038/s41588-023-01640-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a new prognostic framework for pAML based on these updated molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yonghui Ni
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Priyadarshini Kumar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd A Alonzo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski CM, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. Genetic and epigenetic features of bilateral Wilms tumor predisposition in patients from the Children's Oncology Group AREN18B5-Q. Nat Commun 2023; 14:8006. [PMID: 38110397 PMCID: PMC10728430 DOI: 10.1038/s41467-023-43730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Developing synchronous bilateral Wilms tumor suggests an underlying (epi)genetic predisposition. Here, we evaluate this predisposition in 68 patients using whole exome or genome sequencing (n = 85 tumors from 61 patients with matched germline blood DNA), RNA-seq (n = 99 tumors), and DNA methylation analysis (n = 61 peripheral blood, n = 29 non-diseased kidney, n = 99 tumors). We determine the predominant events for bilateral Wilms tumor predisposition: 1)pre-zygotic germline genetic variants readily detectable in blood DNA [WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%), and BRCA-related genes (5%)] or 2)post-zygotic epigenetic hypermethylation at 11p15.5 H19/ICR1 that may require analysis of multiple tissue types for diagnosis. Of 99 total tumor specimens, 16 (16.1%) have 11p15.5 normal retention of imprinting, 25 (25.2%) have 11p15.5 copy neutral loss of heterozygosity, and 58 (58.6%) have 11p15.5 H19/ICR1 epigenetic hypermethylation (loss of imprinting). Here, we ascertain the epigenetic and genetic modes of bilateral Wilms tumor predisposition.
Collapse
Affiliation(s)
- Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Jack Brzezinski
- Department of Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lindsay A Renfro
- Children's Oncology Group and Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Brett Tornwall
- Children's Oncology Group Statistics and Data Center, Monrovia, CA, USA
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jeffrey S Dome
- Center for Cancer and Blood Disorders, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Peter F Ehrlich
- Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie Maciezsek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Carolyn M Jablonowski
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andrew M Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | | | - Christopher L Morton
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
4
|
Schratz KE, Flasch DA, Atik CC, Cosner ZL, Blackford AL, Yang W, Gable DL, Vellanki PJ, Xiang Z, Gaysinskaya V, Vonderheide RH, Rooper LM, Zhang J, Armanios M. T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to squamous cancers. Cancer Cell 2023; 41:807-817.e6. [PMID: 37037617 PMCID: PMC10188244 DOI: 10.1016/j.ccell.2023.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Patients with short telomere syndromes (STS) are predisposed to developing cancer, believed to stem from chromosome instability in neoplastic cells. We tested this hypothesis in a large cohort assembled over the last 20 years. We found that the only solid cancers to which patients with STS are predisposed are squamous cell carcinomas of the head and neck, anus, or skin, a spectrum reminiscent of cancers seen in patients with immunodeficiency. Whole-genome sequencing showed no increase in chromosome instability, such as translocations or chromothripsis. Moreover, STS-associated cancers acquired telomere maintenance mechanisms, including telomerase reverse transcriptase (TERT) promoter mutations. A detailed study of the immune status of patients with STS revealed a striking T cell immunodeficiency at the time of cancer diagnosis. A similar immunodeficiency that impaired tumor surveillance was documented in mice with short telomeres. We conclude that STS patients’ predisposition to solid cancers is due to T cell exhaustion rather than autonomous defects in the neoplastic cells themselves.
Collapse
Affiliation(s)
- Kristen E Schratz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christine C Atik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zoe L Cosner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda L Blackford
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dustin L Gable
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paz J Vellanki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhimin Xiang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Valeriya Gaysinskaya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lisa M Rooper
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Paassen I, Williams J, Ríos Arceo C, Ringnalda F, Mercer KS, Buhl JL, Moreno N, Federico A, Franke NE, Kranendonk M, Upadhyaya SA, Kerl K, van de Wetering M, Clevers H, Kool M, Hoving EW, Roussel MF, Drost J. Atypical teratoid/rhabdoid tumoroids reveal subgroup-specific drug vulnerabilities. Oncogene 2023; 42:1661-1671. [PMID: 37020038 PMCID: PMC10181938 DOI: 10.1038/s41388-023-02681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Atypical teratoid/rhabdoid tumors (ATRTs) represent a rare, but aggressive pediatric brain tumor entity. They are genetically defined by alterations in the SWI/SNF chromatin remodeling complex members SMARCB1 or SMARCA4. ATRTs can be further classified in different molecular subgroups based on their epigenetic profiles. Although recent studies suggest that the different subgroups have distinct clinical features, subgroup-specific treatment regimens have not been developed thus far. This is hampered by the lack of pre-clinical in vitro models representative of the different molecular subgroups. Here, we describe the establishment of ATRT tumoroid models from the ATRT-MYC and ATRT-SHH subgroups. We demonstrate that ATRT tumoroids retain subgroup-specific epigenetic and gene expression profiles. High throughput drug screens on our ATRT tumoroids revealed distinct drug sensitivities between and within ATRT-MYC and ATRT-SHH subgroups. Whereas ATRT-MYC universally displayed high sensitivity to multi-targeted tyrosine kinase inhibitors, ATRT-SHH showed a more heterogeneous response with a subset showing high sensitivity to NOTCH inhibitors, which corresponded to high expression of NOTCH receptors. Our ATRT tumoroids represent the first pediatric brain tumor organoid model, providing a representative pre-clinical model which enables the development of subgroup-specific therapies.
Collapse
Affiliation(s)
- Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Carla Ríos Arceo
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Kimberly Shea Mercer
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Juliane L Buhl
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Aniello Federico
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Niels E Franke
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Mariette Kranendonk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | | | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584 CT, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski C, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. The Genetic and Epigenetic Features of Bilateral Wilms Tumor Predisposition: A Report from the Children's Oncology Group AREN18B5-Q Study. RESEARCH SQUARE 2023:rs.3.rs-2675436. [PMID: 36993649 PMCID: PMC10055651 DOI: 10.21203/rs.3.rs-2675436/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study comprehensively evaluated the landscape of genetic and epigenetic events that predispose to synchronous bilateral Wilms tumor (BWT). We performed whole exome or whole genome sequencing, total-strand RNA-seq, and DNA methylation analysis using germline and/or tumor samples from 68 patients with BWT from St. Jude Children's Research Hospital and the Children's Oncology Group. We found that 25/61 (41%) of patients evaluated harbored pathogenic or likely pathogenic germline variants, with WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%) and the BRCA-related genes (5%) BRCA1, BRCA2, and PALB2 being most common. Germline WT1 variants were strongly associated with somatic paternal uniparental disomy encompassing the 11p15.5 and 11p13/WT1 loci and subsequent acquired pathogenic CTNNB1 variants. Somatic coding variants or genome-wide copy number alterations were almost never shared between paired synchronous BWT, suggesting that the acquisition of independent somatic variants leads to tumor formation in the context of germline or early embryonic, post-zygotic initiating events. In contrast, 11p15.5 status (loss of heterozygosity, loss or retention of imprinting) was shared among paired synchronous BWT in all but one case. The predominant molecular events for BWT predisposition include pathogenic germline variants or post-zygotic epigenetic hypermethylation at the 11p15.5 H19/ICR1 locus (loss of imprinting). This study demonstrates that post-zygotic somatic mosaicism for 11p15.5 hypermethylation/loss of imprinting is the single most common initiating molecular event predisposing to BWT. Evidence of somatic mosaicism for 11p15.5 loss of imprinting was detected in leukocytes of a cohort of BWT patients and long-term survivors, but not in unilateral Wilms tumor patients and long-term survivors or controls, further supporting the hypothesis that post-zygotic 11p15.5 alterations occurred in the mesoderm of patients who go on to develop BWT. Due to the preponderance of BWT patients with demonstrable germline or early embryonic tumor predisposition, BWT exhibits a unique biology when compared to unilateral Wilms tumor and therefore warrants continued refinement of its own treatment-relevant biomarkers which in turn may inform directed treatment strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Brian Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center
| | | | | | | | | | | | - Ninad Oak
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | | | | - Jun Yang
- St. Jude Children's Research Hospital
| | | | | | | | | |
Collapse
|
7
|
RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data. Leukemia 2022; 36:1492-1498. [PMID: 35351983 PMCID: PMC9177690 DOI: 10.1038/s41375-022-01547-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying copy number variations (CNVs) has not been well described. CNV information inferred from RNA-seq can be highly informative to guide disease classification and risk stratification in ALL due to the high incidence of aneuploid subtypes within this disease. Here we describe RNAseqCNV, a method to detect large scale CNVs from RNA-seq data. We used models based on normalized gene expression and minor allele frequency to classify arm level CNVs with high accuracy in ALL (99.1% overall and 98.3% for non-diploid chromosome arms, respectively), and the models were further validated with excellent performance in acute myeloid leukemia (accuracy 99.8% overall and 99.4% for non-diploid chromosome arms). RNAseqCNV outperforms alternative RNA-seq based algorithms in calling CNVs in the ALL dataset, especially in samples with a high proportion of CNVs. The CNV calls were highly concordant with DNA-based CNV results and more reliable than conventional cytogenetic-based karyotypes. RNAseqCNV provides a method to robustly identify copy number alterations in the absence of DNA-based analyses, further enhancing the utility of RNA-seq to classify ALL subtype.
Collapse
|
8
|
Umeda M, Ma J, Huang BJ, Hagiwara K, Westover T, Abdelhamed S, Barajas JM, Thomas ME, Walsh MP, Song G, Tian L, Liu Y, Chen X, Kolekar P, Tran Q, Foy SG, Maciaszek JL, Kleist AB, Leonti AR, Ju B, Easton J, Wu H, Valentine V, Valentine MB, Liu YC, Ries RE, Smith JL, Parganas E, Iacobucci I, Hiltenbrand R, Miller J, Myers JR, Rampersaud E, Rahbarinia D, Rusch M, Wu G, Inaba H, Wang YC, Alonzo TA, Downing JR, Mullighan CG, Pounds S, Babu MM, Zhang J, Rubnitz JE, Meshinchi S, Ma X, Klco JM. Integrated Genomic Analysis Identifies UBTF Tandem Duplications as a Recurrent Lesion in Pediatric Acute Myeloid Leukemia. Blood Cancer Discov 2022; 3:194-207. [PMID: 35176137 PMCID: PMC9780084 DOI: 10.1158/2643-3230.bcd-21-0160] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Benjamin J. Huang
- Department of Pediatrics, University of California, Benioff Children's Hospital, San Francisco, California
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Juan M. Barajas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael P. Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott G. Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie L. Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew B. Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bengsheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Evan Parganas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jonathan Miller
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jason R. Myers
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Todd A. Alonzo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James R. Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - M. Madan Babu
- Department of Structural Biology and the Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
9
|
Abstract
Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.
Collapse
|
10
|
Montefiori LE, Bendig S, Gu Z, Chen X, Pölönen P, Ma X, Murison A, Zeng A, Garcia-Prat L, Dickerson K, Iacobucci I, Abdelhamed S, Hiltenbrand R, Mead PE, Mehr CM, Xu B, Cheng Z, Chang TC, Westover T, Ma J, Stengel A, Kimura S, Qu C, Valentine MB, Rashkovan M, Luger S, Litzow MR, Rowe JM, den Boer ML, Wang V, Yin J, Kornblau SM, Hunger SP, Loh ML, Pui CH, Yang W, Crews KR, Roberts KG, Yang JJ, Relling MV, Evans WE, Stock W, Paietta EM, Ferrando AA, Zhang J, Kern W, Haferlach T, Wu G, Dick JE, Klco JM, Haferlach C, Mullighan CG. Enhancer Hijacking Drives Oncogenic BCL11B Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discov 2021; 11:2846-2867. [PMID: 34103329 PMCID: PMC8563395 DOI: 10.1158/2159-8290.cd-21-0145] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Lineage-ambiguous leukemias are high-risk malignancies of poorly understood genetic basis. Here, we describe a distinct subgroup of acute leukemia with expression of myeloid, T lymphoid, and stem cell markers driven by aberrant allele-specific deregulation of BCL11B, a master transcription factor responsible for thymic T-lineage commitment and specification. Mechanistically, this deregulation was driven by chromosomal rearrangements that juxtapose BCL11B to superenhancers active in hematopoietic progenitors, or focal amplifications that generate a superenhancer from a noncoding element distal to BCL11B. Chromatin conformation analyses demonstrated long-range interactions of rearranged enhancers with the expressed BCL11B allele and association of BCL11B with activated hematopoietic progenitor cell cis-regulatory elements, suggesting BCL11B is aberrantly co-opted into a gene regulatory network that drives transformation by maintaining a progenitor state. These data support a role for ectopic BCL11B expression in primitive hematopoietic cells mediated by enhancer hijacking as an oncogenic driver of human lineage-ambiguous leukemia. SIGNIFICANCE: Lineage-ambiguous leukemias pose significant diagnostic and therapeutic challenges due to a poorly understood molecular and cellular basis. We identify oncogenic deregulation of BCL11B driven by diverse structural alterations, including de novo superenhancer generation, as the driving feature of a subset of lineage-ambiguous leukemias that transcend current diagnostic boundaries.This article is highlighted in the In This Issue feature, p. 2659.
Collapse
Affiliation(s)
- Lindsey E Montefiori
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alex Murison
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Andy Zeng
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Laura Garcia-Prat
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kirsten Dickerson
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cyrus M Mehr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marcus B Valentine
- Cytogenetics Core Facility, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marissa Rashkovan
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob M Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Victoria Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kristine R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wendy Stock
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York
- Department of Pediatrics, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
- Department of Systems Biology, Columbia University, New York, New York
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
11
|
Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nat Commun 2021; 12:5531. [PMID: 34545084 PMCID: PMC8452624 DOI: 10.1038/s41467-021-25709-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Radiation-induced high-grade gliomas (RIGs) are an incurable late complication of cranial radiation therapy. We performed DNA methylation profiling, RNA-seq, and DNA sequencing on 32 RIG tumors and an in vitro drug screen in two RIG cell lines. We report that based on DNA methylation, RIGs cluster primarily with the pediatric receptor tyrosine kinase I high-grade glioma subtype. Common copy-number alterations include Chromosome (Ch.) 1p loss/1q gain, and Ch. 13q and Ch. 14q loss; focal alterations include PDGFRA and CDK4 gain and CDKN2A and BCOR loss. Transcriptomically, RIGs comprise a stem-like subgroup with lesser mutation burden and Ch. 1p loss and a pro-inflammatory subgroup with greater mutation burden and depleted DNA repair gene expression. Chromothripsis in several RIG samples is associated with extrachromosomal circular DNA-mediated amplification of PDGFRA and CDK4. Drug screening suggests microtubule inhibitors/stabilizers, DNA-damaging agents, MEK inhibition, and, in the inflammatory subgroup, proteasome inhibitors, as potentially effective therapies. Radiation-induced high-grade gliomas (RIGs) are an incurable late complication of cranial radiation therapy. In the largest study to date, we report the results of DNA methylation profiling, RNA-Seq and genomic sequencing of 32 RIG tumors, and an in vitro drug screen in two RIG cell lines.
Collapse
|
12
|
Yang F, Brady SW, Tang C, Sun H, Du L, Barz MJ, Ma X, Chen Y, Fang H, Li X, Kolekar P, Pathak O, Cai J, Ding L, Wang T, von Stackelberg A, Shen S, Eckert C, Klco JM, Chen H, Duan C, Liu Y, Li H, Li B, Kirschner-Schwabe R, Zhang J, Zhou BBS. Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse. NATURE CANCER 2021; 2:819-834. [PMID: 35122027 DOI: 10.1038/s43018-021-00230-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Chemotherapy is a standard treatment for pediatric acute lymphoblastic leukemia (ALL), which sometimes relapses with chemoresistant features. However, whether acquired drug-resistance mutations in relapsed ALL pre-exist or are induced by treatment remains unknown. Here we provide direct evidence of a specific mechanism by which chemotherapy induces drug-resistance-associated mutations leading to relapse. Using genomic and functional analysis of relapsed ALL we show that thiopurine treatment in mismatch repair (MMR)-deficient leukemias induces hotspot TP53 R248Q mutations through a specific mutational signature (thio-dMMR). Clonal evolution analysis reveals sequential MMR inactivation followed by TP53 mutation in some patients with ALL. Acquired TP53 R248Q mutations are associated with on-treatment relapse, poor treatment response and resistance to multiple chemotherapeutic agents, which could be reversed by pharmacological p53 reactivation. Our findings indicate that TP53 R248Q in relapsed ALL originates through synergistic mutagenesis from thiopurine treatment and MMR deficiency and suggest strategies to prevent or treat TP53-mutant relapse.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chao Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Sun
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Du
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Malwine J Barz
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Omkar Pathak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiaoyang Cai
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiwen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charite-Universitaetsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Retinoblastoma from human stem cell-derived retinal organoids. Nat Commun 2021; 12:4535. [PMID: 34315877 PMCID: PMC8316454 DOI: 10.1038/s41467-021-24781-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. Children with germline mutations in RB1 have a high likelihood of developing retinoblastoma and other malignancies later in life. Genetically engineered mouse models of retinoblastoma share some similarities with human retinoblastoma but there are differences in their cellular differentiation. To develop a laboratory model of human retinoblastoma formation, we make induced pluripotent stem cells (iPSCs) from 15 participants with germline RB1 mutations. Each of the stem cell lines is validated, characterized and then differentiated into retina using a 3-dimensional organoid culture system. After 45 days in culture, the retinal organoids are dissociated and injected into the vitreous of eyes of immunocompromised mice to support retinoblastoma tumor growth. Retinoblastomas formed from retinal organoids made from patient-derived iPSCs have molecular, cellular and genomic features indistinguishable from human retinoblastomas. This model of human cancer based on patient-derived iPSCs with germline cancer predisposing mutations provides valuable insights into the cellular origins of this debilitating childhood disease as well as the mechanism of tumorigenesis following RB1 gene inactivation. Retinoblastoma is a heritable pediatric cancer driven by mutations in RB1. Here, the authors demonstrate the first patient derived model of retinoblastoma using iPSCs from patients with germline mutations in RB1.
Collapse
|
14
|
Newman S, Nakitandwe J, Kesserwan CA, Azzato EM, Wheeler DA, Rusch M, Shurtleff S, Hedges DJ, Hamilton KV, Foy SG, Edmonson MN, Thrasher A, Bahrami A, Orr BA, Klco JM, Gu J, Harrison LW, Wang L, Clay MR, Ouma A, Silkov A, Liu Y, Zhang Z, Liu Y, Brady SW, Zhou X, Chang TC, Pande M, Davis E, Becksfort J, Patel A, Wilkinson MR, Rahbarinia D, Kubal M, Maciaszek JL, Pastor V, Knight J, Gout AM, Wang J, Gu Z, Mullighan CG, McGee RB, Quinn EA, Nuccio R, Mostafavi R, Gerhardt EL, Taylor LM, Valdez JM, Hines-Dowell SJ, Pappo AS, Robinson G, Johnson LM, Pui CH, Ellison DW, Downing JR, Zhang J, Nichols KE. Genomes for Kids: The scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov 2021; 11:3008-3027. [PMID: 34301788 DOI: 10.1158/2159-8290.cd-20-1631] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole genome (WGS), exome, and RNA sequencing, to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically-relevant (25%), and/or cancer predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors) and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor-normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers.
Collapse
Affiliation(s)
- Scott Newman
- Computational Biology, St. Jude Children's Research Hospital
| | - Joy Nakitandwe
- Pathology and Laboratory Medicine Institute, Cleveland Clinic
| | | | | | | | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | - Dale J Hedges
- Computational Biology, St. Jude Children's Research Hospital
| | - Kayla V Hamilton
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Scott G Foy
- Computational Biology, St. Jude Children's Research Hospital
| | | | - Andrew Thrasher
- Computational Biology, St. Jude Children's Research Hospital
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital
| | - Brent A Orr
- Pathology, St. Jude Children's Research Hospital
| | | | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital
| | - Lynn W Harrison
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Lu Wang
- Pathology, St. Jude Children's Research Hospital
| | | | - Annastasia Ouma
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Antonina Silkov
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | | | - Yu Liu
- Computational Biology, St. Jude Children's Research Hospital
| | - Samuel W Brady
- Computational Biology, St. Jude Children's Research Hospital
| | - Xin Zhou
- St. Jude Children's Research Hospital
| | - Ti-Cheng Chang
- Computational Biology, St. Jude Children's Research Hospital
| | - Manjusha Pande
- Department of Computational Biology, St. Jude Children's Research Hospital
| | - Eric Davis
- Department of Computational Biology, St. Jude Children's Research Hospital
| | - Jared Becksfort
- Computational Biology, St. Jude Children's Research Hospital
| | - Aman Patel
- Computational Biology, St. Jude Children's Research Hospital
| | | | | | - Manish Kubal
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | | | - Jay Knight
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | | | | | - Emily A Quinn
- Pharmacy and Health Sciences, Keck Graduate Institute
| | - Regina Nuccio
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | - Elsie L Gerhardt
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Leslie M Taylor
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | | | | | | | - Liza-Marie Johnson
- Division of Quality of Life and Palliative Care, St. Jude Children's Research Hospital
| | | | | | | | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | |
Collapse
|
15
|
He C, Xu K, Zhu X, Dunphy PS, Gudenas B, Lin W, Twarog N, Hover LD, Kwon CH, Kasper LH, Zhang J, Li X, Dalton J, Jonchere B, Mercer KS, Currier DG, Caufield W, Wang Y, Xie J, Broniscer A, Wetmore C, Upadhyaya SA, Qaddoumi I, Klimo P, Boop F, Gajjar A, Zhang J, Orr BA, Robinson GW, Monje M, Freeman Iii BB, Roussel MF, Northcott PA, Chen T, Rankovic Z, Wu G, Chiang J, Tinkle CL, Shelat AA, Baker SJ. Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nat Commun 2021; 12:4089. [PMID: 34215733 PMCID: PMC8253809 DOI: 10.1038/s41467-021-24168-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.
Collapse
Affiliation(s)
- Chen He
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Ke Xu
- Center for Applied Bioinformatics, Memphis, TN, USA
- Department of Computational Biology, Memphis, TN, USA
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Paige S Dunphy
- Department of Developmental Neurobiology, Memphis, TN, USA
- Department of Oncology, Memphis, TN, USA
| | - Brian Gudenas
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Nathaniel Twarog
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, Memphis, TN, USA
| | | | | | - Junyuan Zhang
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Xiaoyu Li
- Department of Pathology, Memphis, TN, USA
| | | | | | | | - Duane G Currier
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - William Caufield
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jia Xie
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Alberto Broniscer
- Division of Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick Boop
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jinghui Zhang
- Department of Computational Biology, Memphis, TN, USA
| | | | | | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Burgess B Freeman Iii
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, Memphis, TN, USA
- Department of Computational Biology, Memphis, TN, USA
| | | | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA.
| | | |
Collapse
|
16
|
Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C, Tian H, Kudman S, Rosiene J, Darmofal M, DeRose J, Mortensen R, Adney EM, Shaiber A, Gajic Z, Sigouros M, Eng K, Wala JA, Wrzeszczyński KO, Arora K, Shah M, Emde AK, Felice V, Frank MO, Darnell RB, Ghandi M, Huang F, Dewhurst S, Maciejowski J, de Lange T, Setton J, Riaz N, Reis-Filho JS, Powell S, Knowles DA, Reznik E, Mishra B, Beroukhim R, Zody MC, Robine N, Oman KM, Sanchez CA, Kuhner MK, Smith LP, Galipeau PC, Paulson TG, Reid BJ, Li X, Wilkes D, Sboner A, Mosquera JM, Elemento O, Imielinski M. Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs. Cell 2021; 183:197-210.e32. [PMID: 33007263 DOI: 10.1016/j.cell.2020.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.
Collapse
Affiliation(s)
- Kevin Hadi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Xiaotong Yao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julie M Behr
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Aditya Deshpande
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Huasong Tian
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joel Rosiene
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Madison Darmofal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Tri-institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | - Emily M Adney
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA
| | - Alon Shaiber
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zoran Gajic
- New York Genome Center, New York, NY 10013, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kenneth Eng
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeremiah A Wala
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Minita Shah
- New York Genome Center, New York, NY 10013, USA
| | | | | | - Mayu O Frank
- New York Genome Center, New York, NY 10013, USA; Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Robert B Darnell
- New York Genome Center, New York, NY 10013, USA; Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Mahmoud Ghandi
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Franklin Huang
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sally Dewhurst
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - John Maciejowski
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David A Knowles
- New York Genome Center, New York, NY 10013, USA; Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bud Mishra
- Departments of Computer Science, Mathematics and Cell Biology, Courant Institute and NYU School of Medicine, New York University, New York, NY 10012, USA
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | - Kenji M Oman
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Carissa A Sanchez
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary K Kuhner
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lucian P Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Patricia C Galipeau
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Thomas G Paulson
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brian J Reid
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaohong Li
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David Wilkes
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Olivier Elemento
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; New York Genome Center, New York, NY 10013, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
17
|
Integrative reconstruction of cancer genome karyotypes using InfoGenomeR. Nat Commun 2021; 12:2467. [PMID: 33927198 PMCID: PMC8085216 DOI: 10.1038/s41467-021-22671-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Annotation of structural variations (SVs) and base-level karyotyping in cancer cells remains challenging. Here, we present Integrative Framework for Genome Reconstruction (InfoGenomeR)-a graph-based framework that can reconstruct individual SVs into karyotypes based on whole-genome sequencing data, by integrating SVs, total copy number alterations, allele-specific copy numbers, and haplotype information. Using whole-genome sequencing data sets of patients with breast cancer, glioblastoma multiforme, and ovarian cancer, we demonstrate the analytical potential of InfoGenomeR. We identify recurrent derivative chromosomes derived from chromosomes 11 and 17 in breast cancer samples, with homogeneously staining regions for CCND1 and ERBB2, and double minutes and breakage-fusion-bridge cycles in glioblastoma multiforme and ovarian cancer samples, respectively. Moreover, we show that InfoGenomeR can discriminate private and shared SVs between primary and metastatic cancer sites that could contribute to tumour evolution. These findings indicate that InfoGenomeR can guide targeted therapies by unravelling cancer-specific SVs on a genome-wide scale.
Collapse
|
18
|
Jilani M, Haspel N. Computational Methods for Detecting Large-Scale Structural Rearrangements in Chromosomes. Bioinformatics 2021. [DOI: 10.36255/exonpublications.bioinformatics.2021.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Gocho Y, Liu J, Hu J, Yang W, Dharia NV, Zhang J, Shi H, Du G, John A, Lin TN, Hunt J, Huang X, Ju B, Rowland L, Shi L, Maxwell D, Smart B, Crews KR, Yang W, Hagiwara K, Zhang Y, Roberts K, Wang H, Jabbour E, Stock W, Eisfelder B, Paietta E, Newman S, Roti G, Litzow M, Easton J, Zhang J, Peng J, Chi H, Pounds S, Relling MV, Inaba H, Zhu X, Kornblau S, Pui CH, Konopleva M, Teachey D, Mullighan CG, Stegmaier K, Evans WE, Yu J, Yang JJ. Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. NATURE CANCER 2021; 2:284-299. [PMID: 34151288 PMCID: PMC8208590 DOI: 10.1038/s43018-020-00167-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, and novel therapeutics are much needed. Profiling patient leukemia' drug sensitivities ex vivo, we discovered that 44.4% of childhood and 16.7% of adult T-ALL cases exquisitely respond to dasatinib. Applying network-based systems pharmacology analyses to examine signal circuitry, we identified preTCR-LCK activation as the driver of dasatinib sensitivity, and T-ALL-specific LCK dependency was confirmed in genome-wide CRISPR-Cas9 screens. Dasatinib-sensitive T-ALLs exhibited high BCL-XL and low BCL2 activity and venetoclax resistance. Discordant sensitivity of T-ALL to dasatinib and venetoclax is strongly correlated with T-cell differentiation, particularly with the dynamic shift in LCK vs. BCL2 activation. Finally, single-cell analysis identified leukemia heterogeneity in LCK and BCL2 signaling and T-cell maturation stage, consistent with dasatinib response. In conclusion, our results indicate that developmental arrest in T-ALL drives differential activation of preTCR-LCK and BCL2 signaling in this leukemia, providing unique opportunities for targeted therapy.
Collapse
Affiliation(s)
- Yoshihiro Gocho
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jianzhong Hu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jingliao Zhang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology,, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guoqing Du
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - August John
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ting-Nien Lin
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeremy Hunt
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lauren Rowland
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dylan Maxwell
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon Smart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Kathryn Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hong Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- University of Chicago Medical Center, Chicago, IL, USA
| | | | | | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giovanni Roti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology,, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Teachey
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
20
|
Schwartz JR, Ma J, Kamens J, Westover T, Walsh MP, Brady SW, Robert Michael J, Chen X, Montefiori L, Song G, Wu G, Wu H, Branstetter C, Hiltenbrand R, Walsh MF, Nichols KE, Maciaszek JL, Liu Y, Kumar P, Easton J, Newman S, Rubnitz JE, Mullighan CG, Pounds S, Zhang J, Gruber T, Ma X, Klco JM. The acquisition of molecular drivers in pediatric therapy-related myeloid neoplasms. Nat Commun 2021; 12:985. [PMID: 33579957 PMCID: PMC7880998 DOI: 10.1038/s41467-021-21255-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Pediatric therapy-related myeloid neoplasms (tMN) occur in children after exposure to cytotoxic therapy and have a dismal prognosis. The somatic and germline genomic alterations that drive these myeloid neoplasms in children and how they arise have yet to be comprehensively described. We use whole exome, whole genome, and/or RNA sequencing to characterize the genomic profile of 84 pediatric tMN cases (tMDS: n = 28, tAML: n = 56). Our data show that Ras/MAPK pathway mutations, alterations in RUNX1 or TP53, and KMT2A rearrangements are frequent somatic drivers, and we identify cases with aberrant MECOM expression secondary to enhancer hijacking. Unlike adults with tMN, we find no evidence of pre-existing minor tMN clones (including those with TP53 mutations), but rather the majority of cases are unrelated clones arising as a consequence of cytotoxic therapy. These studies also uncover rare cases of lineage switch disease rather than true secondary neoplasms.
Collapse
Affiliation(s)
- Jason R Schwartz
- Vanderbilt University Medical Center, Department of Pediatrics, Nashville, TN, US
| | - Jing Ma
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - Jennifer Kamens
- Stanford University School of Medicine, Department of Pediatrics, Stanford, CA, US
| | - Tamara Westover
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - Michael P Walsh
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - Samuel W Brady
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - J Robert Michael
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - Xiaolong Chen
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - Lindsey Montefiori
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - Guangchun Song
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - Gang Wu
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - Huiyun Wu
- St. Jude Children's Research Hospital, Department of Biostatistics, Memphis, TN, US
| | - Cristyn Branstetter
- Arkansas Children's Northwest Hospital, Department of Hematology/Oncology, Springdale, AR, US
| | - Ryan Hiltenbrand
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - Michael F Walsh
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY, US
| | - Kim E Nichols
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, US
| | - Jamie L Maciaszek
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, US
| | - Yanling Liu
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - Priyadarshini Kumar
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - John Easton
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - Scott Newman
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - Jeffrey E Rubnitz
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, US
| | - Charles G Mullighan
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US
| | - Stanley Pounds
- St. Jude Children's Research Hospital, Department of Biostatistics, Memphis, TN, US
| | - Jinghui Zhang
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US
| | - Tanja Gruber
- Stanford University School of Medicine, Department of Pediatrics, Stanford, CA, US.
- Stanford University School of Medicine, Stanford Cancer Institute, Stanford, CA, US.
| | - Xiaotu Ma
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, US.
| | - Jeffery M Klco
- St. Jude Children's Research Hospital, Department of Pathology, Memphis, TN, US.
| |
Collapse
|
21
|
Zhou X, Wang J, Patel J, Valentine M, Shao Y, Newman S, Sioson E, Tian L, Liu Y, Brady SW, Flasch D, Ma X, Liu Y, Paul R, Edmonson MN, Rusch MC, Li C, Baker SJ, Easton J, Zhang J. Exploration of Coding and Non-coding Variants in Cancer Using GenomePaint. Cancer Cell 2021; 39:83-95.e4. [PMID: 33434514 PMCID: PMC7884056 DOI: 10.1016/j.ccell.2020.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
GenomePaint (https://genomepaint.stjude.cloud/) is an interactive visualization platform for whole-genome, whole-exome, transcriptome, and epigenomic data of tumor samples. Its design captures the inter-relatedness between DNA variations and RNA expression, supporting in-depth exploration of both individual cancer genomes and full cohorts. Regulatory non-coding variants can be inspected and analyzed along with coding variants, and their functional impact further explored by examining 3D genome data from cancer cell lines. Further, GenomePaint correlates mutation and expression patterns with patient outcomes, and supports custom data upload. We used GenomePaint to unveil aberrant splicing that disrupts the RING domain of CREBBP, discover cis activation of the MYC oncogene by duplication of the NOTCH1-MYC enhancer in B-lineage acute lymphoblastic leukemia, and explore the inter- and intra-tumor heterogeneity at EGFR in adult glioblastomas. These examples demonstrate that deep multi-omics exploration of individual cancer genomes enabled by GenomePaint can lead to biological insights for follow-up validation.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jaimin Patel
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marc Valentine
- Cytogenetics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Diane Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Robin Paul
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chunliang Li
- Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
22
|
McLeod C, Gout AM, Zhou X, Thrasher A, Rahbarinia D, Brady SW, Macias M, Birch K, Finkelstein D, Sunny J, Mudunuri R, Orr BA, Treadway M, Davidson B, Ard TK, Chiao A, Swistak A, Wiggins S, Foy S, Wang J, Sioson E, Wang S, Michael JR, Liu Y, Ma X, Patel A, Edmonson MN, Wilkinson MR, Frantz AM, Chang TC, Tian L, Lei S, Islam SMA, Meyer C, Thangaraj N, Tater P, Kandali V, Ma S, Nguyen T, Serang O, McGuire I, Robison N, Gentry D, Tang X, Palmer LE, Wu G, Suh E, Tanner L, McMurry J, Lear M, Pappo AS, Wang Z, Wilson CL, Cheng Y, Meshinchi S, Alexandrov LB, Weiss MJ, Armstrong GT, Robison LL, Yasui Y, Nichols KE, Ellison DW, Bangur C, Mullighan CG, Baker SJ, Dyer MA, Miller G, Newman S, Rusch M, Daly R, Perry K, Downing JR, Zhang J. St. Jude Cloud: A Pediatric Cancer Genomic Data-Sharing Ecosystem. Cancer Discov 2021; 11:1082-1099. [PMID: 33408242 DOI: 10.1158/2159-8290.cd-20-1230] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Effective data sharing is key to accelerating research to improve diagnostic precision, treatment efficacy, and long-term survival in pediatric cancer and other childhood catastrophic diseases. We present St. Jude Cloud (https://www.stjude.cloud), a cloud-based data-sharing ecosystem for accessing, analyzing, and visualizing genomic data from >10,000 pediatric patients with cancer and long-term survivors, and >800 pediatric sickle cell patients. Harmonized genomic data totaling 1.25 petabytes are freely available, including 12,104 whole genomes, 7,697 whole exomes, and 2,202 transcriptomes. The resource is expanding rapidly, with regular data uploads from St. Jude's prospective clinical genomics programs. Three interconnected apps within the ecosystem-Genomics Platform, Pediatric Cancer Knowledgebase, and Visualization Community-enable simultaneously performing advanced data analysis in the cloud and enhancing the Pediatric Cancer knowledgebase. We demonstrate the value of the ecosystem through use cases that classify 135 pediatric cancer subtypes by gene expression profiling and map mutational signatures across 35 pediatric cancer subtypes. SIGNIFICANCE: To advance research and treatment of pediatric cancer, we developed St. Jude Cloud, a data-sharing ecosystem for accessing >1.2 petabytes of raw genomic data from >10,000 pediatric patients and survivors, innovative analysis workflows, integrative multiomics visualizations, and a knowledgebase of published data contributed by the global pediatric cancer community.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Clay McLeod
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Thrasher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Macias
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kirby Birch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jobin Sunny
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rahul Mudunuri
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Madison Treadway
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Arthur Chiao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Swistak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie Wiggins
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shuoguo Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - J Robert Michael
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aman Patel
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew M Frantz
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ti-Cheng Chang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shaohua Lei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | | | | | | | | | | | | | | | - Irina McGuire
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Nedra Robison
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Darrell Gentry
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xing Tang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lance E Palmer
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ed Suh
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Leigh Tanner
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James McMurry
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthew Lear
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alberto S Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center Professor of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Keith Perry
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
23
|
Yang C, Xu W, Gong J, Liu Z, Cui D. Novel somatic alterations underlie Chinese papillary thyroid carcinoma. Cancer Biomark 2020; 27:445-460. [PMID: 32065787 DOI: 10.3233/cbm-191200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To characterize the somatic alterations of papillary thyroid carcinomas (PTC) in Chinese patients, we performed the next-generation-sequencing (NGS) study of the tumor-normal pairs of DNA and RNA samples extracted from 16 Chinese PTC patients. The whole genome sequencing (WGS) and transcriptome sequencing (RNA-seq) were conducted for 6 patients who were either current or former smokers and the whole exome sequencing (WES) and RNA-seq were conducted for another 10 patients who were never smokers. The NGS data were analyzed to identify somatic alteration events that may underlie PTC in Chinese patients. We identified a number of PTC driver genes harboring somatic driver mutations with significant functional impact such as COL11A1, TP53, PLXNA4, UBA1, AHNAK, CSMD2 and TTLL5 etc. Significant driver pathways underlying PTC were found, namely, the metabolic pathway, the pathway in cancer, the olfactory transduction pathway and the calcium signaling pathway. In addition, this study revealed genes with significant somatic copy number aberrations and corresponding somatic gene expression changes in PTC tumors, the most promising ones being BRD9, TRIP13, FZD3, and TFDP1 etc. We also identified several structural variants of PTCs, especially the novel in-frame fusion proteins such as TRNAU1AP-RCC1, RAB3GAP1-R3HDM1, and ENAH-ZSWIM5. Our study provided a list of novel PTC candidate genes with somatic alterations that may function as biomarkers for PTC in Chinese patients. The follow-up mechanism studies may be conducted based on the findings from this study.
Collapse
Affiliation(s)
- Chuanjia Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weixue Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Gong
- Department of Clinical Pharmacy, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongxu Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Brady SW, Liu Y, Ma X, Gout AM, Hagiwara K, Zhou X, Wang J, Macias M, Chen X, Easton J, Mulder HL, Rusch M, Wang L, Nakitandwe J, Lei S, Davis EM, Naranjo A, Cheng C, Maris JM, Downing JR, Cheung NKV, Hogarty MD, Dyer MA, Zhang J. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nat Commun 2020; 11:5183. [PMID: 33056981 PMCID: PMC7560655 DOI: 10.1038/s41467-020-18987-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is a pediatric malignancy with heterogeneous clinical outcomes. To better understand neuroblastoma pathogenesis, here we analyze whole-genome, whole-exome and/or transcriptome data from 702 neuroblastoma samples. Forty percent of samples harbor at least one recurrent driver gene alteration and most aberrations, including MYCN, ATRX, and TERT alterations, differ in frequency by age. MYCN alterations occur at median 2.3 years of age, TERT at 3.8 years, and ATRX at 5.6 years. COSMIC mutational signature 18, previously associated with reactive oxygen species, is the most common cause of driver point mutations in neuroblastoma, including most ALK and Ras-activating variants. Signature 18 appears early and is continuous throughout disease evolution. Signature 18 is enriched in neuroblastomas with MYCN amplification, 17q gain, and increased expression of mitochondrial ribosome and electron transport-associated genes. Recurrent FGFR1 variants in six patients, and ALK N-terminal structural alterations in five samples, identify additional patients potentially amenable to precision therapy.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Macias
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaohua Lei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric M Davis
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Arlene Naranjo
- Department of Biostatistics, University of Florida, Children's Oncology Group Statistics & Data Center, Gainesville, FL, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael D Hogarty
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
FPGS relapse-specific mutations in relapsed childhood acute lymphoblastic leukemia. Sci Rep 2020; 10:12074. [PMID: 32694622 PMCID: PMC7374087 DOI: 10.1038/s41598-020-69059-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022] Open
Abstract
Although the cure rate for childhood acute lymphoblastic leukemia (ALL) has exceeded 80% with contemporary therapy, relapsed ALL remains a leading cause of cancer-related death in children. Relapse-specific mutations can be identified by comprehensive genome sequencing and might have clinical significance. Applying whole-exome sequencing to eight triplicate samples, we identified in one patient relapse-specific mutations in the folylpolyglutamate synthetase (FPGS) gene, whose product catalyzes the addition of multiple glutamate residues (polyglutamation) to methotrexate upon their entry into the cells. To determine the prevalence of mutations of the FPGS mutations, and those of two important genes in the thiopurine pathway, NT5C2 and PRPS1, we studied 299 diagnostic and 73 relapsed samples in 372 patients. Three more FPGS mutants were identified in two patients, NT5C2 mutations in six patients, and PRPS1 mutants in two patients. One patient had both NT5C2 and PRPS1 mutants. None of these alterations were detected at diagnosis with a sequencing depth of 1000X, suggesting that treatment pressure led to increased prevalence of mutations during therapy. Functional characterization of the FPGS mutants showed that they directly resulted in decreased enzymatic activity, leading to significant reduction in methotrexate polyglutamation, and therefore likely contributed to drug resistance and relapse in these cases. Thus, besides genomic alterations in thiopurine metabolizing enzymes, the relapse-specific mutations of FPGS represent another critical mechanism of acquired antimetabolite drug resistance in relapsed childhood ALL.
Collapse
|
26
|
Liu Y, Li C, Shen S, Chen X, Szlachta K, Edmonson MN, Shao Y, Ma X, Hyle J, Wright S, Ju B, Rusch MC, Liu Y, Li B, Macias M, Tian L, Easton J, Qian M, Yang JJ, Hu S, Look AT, Zhang J. Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X. Nat Genet 2020; 52:811-818. [PMID: 32632335 PMCID: PMC7679232 DOI: 10.1038/s41588-020-0659-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
We developed cis-X, a computational method for discovering regulatory noncoding variants in cancer by integrating whole-genome and transcriptome sequencing data from a single cancer sample. cis-X first finds aberrantly cis-activated genes that exhibit allele-specific expression accompanied by an elevated outlier expression. It then searches for causal noncoding variants that may introduce aberrant transcription factor binding motifs or enhancer hijacking by structural variations. Analysis of 13 T-lineage acute lymphoblastic leukemias identified a recurrent intronic variant predicted to cis-activate the TAL1 oncogene, a finding validated in vivo by chromatin immunoprecipitation sequencing of a patient-derived xenograft. Candidate oncogenes include the prolactin receptor PRLR activated by a focal deletion that removes a CTCF-insulated neighborhood boundary. cis-X may be applied to pediatric and adult solid tumors that are aneuploid and heterogeneous. In contrast to existing approaches, which require large sample cohorts, cis-X enables the discovery of regulatory noncoding variants in individual cancer genomes.
Collapse
Affiliation(s)
- Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Karol Szlachta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benshang Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Macias
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Suzhou, China
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
27
|
Zeineldin M, Federico S, Chen X, Fan Y, Xu B, Stewart E, Zhou X, Jeon J, Griffiths L, Nguyen R, Norrie J, Easton J, Mulder H, Yergeau D, Liu Y, Wu J, Van Ryn C, Naranjo A, Hogarty MD, Kamiński MM, Valentine M, Pruett-Miller SM, Pappo A, Zhang J, Clay MR, Bahrami A, Vogel P, Lee S, Shelat A, Sarthy JF, Meers MP, George RE, Mardis ER, Wilson RK, Henikoff S, Downing JR, Dyer MA. MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nat Commun 2020; 11:913. [PMID: 32060267 PMCID: PMC7021759 DOI: 10.1038/s41467-020-14682-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Aggressive cancers often have activating mutations in growth-controlling oncogenes and inactivating mutations in tumor-suppressor genes. In neuroblastoma, amplification of the MYCN oncogene and inactivation of the ATRX tumor-suppressor gene correlate with high-risk disease and poor prognosis. Here we show that ATRX mutations and MYCN amplification are mutually exclusive across all ages and stages in neuroblastoma. Using human cell lines and mouse models, we found that elevated MYCN expression and ATRX mutations are incompatible. Elevated MYCN levels promote metabolic reprogramming, mitochondrial dysfunction, reactive-oxygen species generation, and DNA-replicative stress. The combination of replicative stress caused by defects in the ATRX-histone chaperone complex, and that induced by MYCN-mediated metabolic reprogramming, leads to synthetic lethality. Therefore, ATRX and MYCN represent an unusual example, where inactivation of a tumor-suppressor gene and activation of an oncogene are incompatible. This synthetic lethality may eventually be exploited to improve outcomes for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sara Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project, St. Louis, MO, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jongrye Jeon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lyra Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rosa Nguyen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Donald Yergeau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jianrong Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Collin Van Ryn
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FlL, 32607, USA
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, FlL, 32607, USA
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alberto Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael R Clay
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seungjae Lee
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jay F Sarthy
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Michael P Meers
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rani E George
- Department of Hematology/Oncology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Richard K Wilson
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project, St. Louis, MO, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, Szlachta K, Dong L, Liu Y, Yang F, Wang N, Flasch DA, Myers MA, Mulder HL, Ding L, Liu Y, Tian L, Hagiwara K, Xu K, Zhou X, Sioson E, Wang T, Yang L, Zhao J, Zhang H, Shao Y, Sun H, Sun L, Cai J, Sun HY, Lin TN, Du L, Li H, Rusch M, Edmonson MN, Easton J, Zhu X, Zhang J, Cheng C, Raphael BJ, Tang J, Downing JR, Alexandrov LB, Zhou BBS, Pui CH, Yang JJ, Zhang J. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood 2020; 135:41-55. [PMID: 31697823 PMCID: PMC6940198 DOI: 10.1182/blood.2019002220] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022] Open
Abstract
To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, in which multiple subclones harbor mutations in the same drug resistance gene, was observed in 6 relapses and confirmed by single-cell sequencing in 1 case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently a 2-step process in which a persistent clone survived initial therapy and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from preexisting resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.
Collapse
Affiliation(s)
- Benshang Li
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital-Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Karol Szlachta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Fan Yang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningling Wang
- Department of Pediatrics, the Second Hospital of Anhui Medical University, Hefei, China
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Matthew A Myers
- Department of Computer Science, Princeton University, Princeton, NJ
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ke Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Tianyi Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Liu Yang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Jie Zhao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Hui Zhang
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Lele Sun
- WuXi NextCODE Co., Ltd, Shanghai, China
| | - Jiaoyang Cai
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Hui-Ying Sun
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | | | - Lijuan Du
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital-Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital-Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | | | - Jingyan Tang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, TN
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA; and
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
29
|
Patient-derived orthotopic xenografts of pediatric brain tumors: a St. Jude resource. Acta Neuropathol 2020; 140:209-225. [PMID: 32519082 PMCID: PMC7360541 DOI: 10.1007/s00401-020-02171-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022]
Abstract
Pediatric brain tumors are the leading cause of cancer-related death in children. Patient-derived orthotopic xenografts (PDOX) of childhood brain tumors have recently emerged as a biologically faithful vehicle for testing novel and more effective therapies. Herein, we provide the histopathological and molecular analysis of 37 novel PDOX models generated from pediatric brain tumor patients treated at St. Jude Children's Research Hospital. Using a combination of histopathology, whole-genome and whole-exome sequencing, RNA-sequencing, and DNA methylation arrays, we demonstrate the overall fidelity and inter-tumoral molecular heterogeneity of pediatric brain tumor PDOX models. These models represent frequent as well as rare childhood brain tumor entities, including medulloblastoma, ependymoma, atypical teratoid rhabdoid tumor, and embryonal tumor with multi-layer rosettes. PDOX models will be valuable platforms for evaluating novel therapies and conducting pre-clinical trials to accelerate progress in the treatment of brain tumors in children. All described PDOX models and associated datasets can be explored using an interactive web-based portal and will be made freely available to the research community upon request.
Collapse
|
30
|
Png G, Suveges D, Park YC, Walter K, Kundu K, Ntalla I, Tsafantakis E, Karaleftheri M, Dedoussis G, Zeggini E, Gilly A. Population-wide copy number variation calling using variant call format files from 6,898 individuals. Genet Epidemiol 2019; 44:79-89. [PMID: 31520489 PMCID: PMC8653900 DOI: 10.1002/gepi.22260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 11/10/2022]
Abstract
Copy number variants (CNVs) play an important role in a number of human diseases, but the accurate calling of CNVs remains challenging. Most current approaches to CNV detection use raw read alignments, which are computationally intensive to process. We use a regression tree-based approach to call germline CNVs from whole-genome sequencing (WGS, >18x) variant call sets in 6,898 samples across four European cohorts, and describe a rich large variation landscape comprising 1,320 CNVs. Eighty-one percent of detected events have been previously reported in the Database of Genomic Variants. Twenty-three percent of high-quality deletions affect entire genes, and we recapitulate known events such as the GSTM1 and RHD gene deletions. We test for association between the detected deletions and 275 protein levels in 1,457 individuals to assess the potential clinical impact of the detected CNVs. We describe complex CNV patterns underlying an association with levels of the CCL3 protein (MAF = 0.15, p = 3.6x10-12 ) at the CCL3L3 locus, and a novel cis-association between a low-frequency NOMO1 deletion and NOMO1 protein levels (MAF = 0.02, p = 2.2x10-7 ). This study demonstrates that existing population-wide WGS call sets can be mined for germline CNVs with minimal computational overhead, delivering insight into a less well-studied, yet potentially impactful class of genetic variant.
Collapse
Affiliation(s)
- Grace Png
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom.,Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Suveges
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Young-Chan Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Kousik Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Arthur Gilly
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.,Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Putnam DK, Ma X, Rice SV, Liu Y, Newman S, Zhang J, Chen X. VCF2CNA: A tool for efficiently detecting copy-number alterations in VCF genotype data and tumor purity. Sci Rep 2019; 9:10357. [PMID: 31316100 PMCID: PMC6637131 DOI: 10.1038/s41598-019-45938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/19/2019] [Indexed: 01/24/2023] Open
Abstract
VCF2CNA is a tool (Linux commandline or web-interface) for copy-number alteration (CNA) analysis and tumor purity estimation of paired tumor-normal VCF variant file formats. It operates on whole genome and whole exome datasets. To benchmark its performance, we applied it to 46 adult glioblastoma and 146 pediatric neuroblastoma samples sequenced by Illumina and Complete Genomics (CGI) platforms respectively. VCF2CNA was highly consistent with a state-of-the-art algorithm using raw sequencing data (mean F1-score = 0.994) in high-quality whole genome glioblastoma samples and was robust to uneven coverage introduced by library artifacts. In the whole genome neuroblastoma set, VCF2CNA identified MYCN high-level amplifications in 31 of 32 clinically validated samples compared to 15 found by CGI’s HMM-based CNA model. Moreover, VCF2CNA achieved highly consistent CNA profiles between WGS and WXS platforms (mean F1 score 0.97 on a set of 15 rhabdomyosarcoma samples). In addition, VCF2CNA provides accurate tumor purity estimates for samples with sufficient CNAs. These results suggest that VCF2CNA is an accurate, efficient and platform-independent tool for CNA and tumor purity analyses without accessing raw sequence data.
Collapse
Affiliation(s)
- Daniel K Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
32
|
Rampersaud E, Ziegler DS, Iacobucci I, Payne-Turner D, Churchman ML, Schrader KA, Joseph V, Offit K, Tucker K, Sutton R, Warby M, Chenevix-Trench G, Huntsman DG, Tsoli M, Mead RS, Qu C, Leventaki V, Wu G, Mullighan CG. Germline deletion of ETV6 in familial acute lymphoblastic leukemia. Blood Adv 2019; 3:1039-1046. [PMID: 30940639 PMCID: PMC6457220 DOI: 10.1182/bloodadvances.2018030635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/23/2019] [Indexed: 01/24/2023] Open
Abstract
Recent studies have identified germline mutations in TP53, PAX5, ETV6, and IKZF1 in kindreds with familial acute lymphoblastic leukemia (ALL), but the genetic basis of ALL in many kindreds is unknown despite mutational analysis of the exome. Here, we report a germline deletion of ETV6 identified by linkage and structural variant analysis of whole-genome sequencing data segregating in a kindred with thrombocytopenia, B-progenitor acute lymphoblastic leukemia, and diffuse large B-cell lymphoma. The 75-nt deletion removed the ETV6 exon 7 splice acceptor, resulting in exon skipping and protein truncation. The ETV6 deletion was also identified by optimal structural variant analysis of exome sequencing data. These findings identify a new mechanism of germline predisposition in ALL and implicate ETV6 germline variation in predisposition to lymphoma. Importantly, these data highlight the importance of germline structural variant analysis in the search for germline variants predisposing to familial leukemia.
Collapse
Affiliation(s)
- Evadnie Rampersaud
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- Childrens Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN
| | | | | | - Kasmintan A Schrader
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Vijai Joseph
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, New York, NY
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katherine Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rosemary Sutton
- Childrens Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Meera Warby
- Hereditary Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
- Prince of Wales Clinical School University of NSW Australia, Sydney, NSW, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; and
| | - Maria Tsoli
- Childrens Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - R Scott Mead
- South Eastern Area Laboratory Service, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN
| | - Vasiliki Leventaki
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
33
|
Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, Liu Y, Chen X, Newman S, Nakitandwe J, Li Y, Li B, Shen S, Wang Z, Shurtleff S, Robison LL, Levy S, Easton J, Zhang J. Analysis of error profiles in deep next-generation sequencing data. Genome Biol 2019; 20:50. [PMID: 30867008 PMCID: PMC6417284 DOI: 10.1186/s13059-019-1659-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sequencing errors are key confounding factors for detecting low-frequency genetic variants that are important for cancer molecular diagnosis, treatment, and surveillance using deep next-generation sequencing (NGS). However, there is a lack of comprehensive understanding of errors introduced at various steps of a conventional NGS workflow, such as sample handling, library preparation, PCR enrichment, and sequencing. In this study, we use current NGS technology to systematically investigate these questions. RESULTS By evaluating read-specific error distributions, we discover that the substitution error rate can be computationally suppressed to 10-5 to 10-4, which is 10- to 100-fold lower than generally considered achievable (10-3) in the current literature. We then quantify substitution errors attributable to sample handling, library preparation, enrichment PCR, and sequencing by using multiple deep sequencing datasets. We find that error rates differ by nucleotide substitution types, ranging from 10-5 for A>C/T>G, C>A/G>T, and C>G/G>C changes to 10-4 for A>G/T>C changes. Furthermore, C>T/G>A errors exhibit strong sequence context dependency, sample-specific effects dominate elevated C>A/G>T errors, and target-enrichment PCR led to ~ 6-fold increase of overall error rate. We also find that more than 70% of hotspot variants can be detected at 0.1 ~ 0.01% frequency with the current NGS technology by applying in silico error suppression. CONCLUSIONS We present the first comprehensive analysis of sequencing error sources in conventional NGS workflows. The error profiles revealed by our study highlight new directions for further improving NGS analysis accuracy both experimentally and computationally, ultimately enhancing the precision of deep sequencing.
Collapse
Affiliation(s)
- Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Diane A. Flasch
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Heather L. Mulder
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Michael N. Edmonson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| |
Collapse
|
34
|
Clinical genome sequencing uncovers potentially targetable truncations and fusions of MAP3K8 in spitzoid and other melanomas. Nat Med 2019; 25:597-602. [PMID: 30833747 DOI: 10.1038/s41591-019-0373-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Spitzoid melanoma is a specific morphologic variant of melanoma that most commonly affects children and adolescents, and ranges on the spectrum of malignancy from low grade to overtly malignant. These tumors are generally driven by fusions of ALK, RET, NTRK1/3, MET, ROS1 and BRAF1,2. However, in approximately 50% of cases no genetic driver has been established2. Clinical whole-genome and transcriptome sequencing (RNA-Seq) of a spitzoid tumor from an adolescent revealed a novel gene fusion of MAP3K8, encoding a serine-threonine kinase that activates MEK3,4. The patient, who had exhausted all other therapeutic options, was treated with a MEK inhibitor and underwent a transient clinical response. We subsequently analyzed spitzoid tumors from 49 patients by RNA-Seq and found in-frame fusions or C-terminal truncations of MAP3K8 in 33% of cases. The fusion transcripts and truncated genes all contained MAP3K8 exons 1-8 but lacked the autoinhibitory final exon. Data mining of RNA-Seq from the Cancer Genome Atlas (TCGA) uncovered analogous MAP3K8 rearrangements in 1.5% of adult melanomas. Thus, MAP3K8 rearrangements-uncovered by comprehensive clinical sequencing of a single case-are the most common genetic event in spitzoid melanoma, are present in adult melanomas and could be amenable to MEK inhibition.
Collapse
|
35
|
Abstract
Treatment outcomes for acute lymphoblastic leukemia (ALL), especially pediatric ALL, have greatly improved due to the risk-adapted therapy. Combination of drug development, clinical practice, as well as basic genetic researches has brought the survival rate of ALL from less than 10% to more than 90% today, not only increasing the treatment efficacy but also limiting adverse drug reactions (ADRs). In this review, we summarized the landscape identification of ALL genetic alterations, which provided the opportunity to increase the survival rate and especially minimize the relapse risk of ALL, and highlighted the importance of the development of new technologies of genomic investigation for translational medicine.
Collapse
|
36
|
Brady SW, Ma X, Bahrami A, Satas G, Wu G, Newman S, Rusch M, Putnam DK, Mulder HL, Yergeau DA, Edmonson MN, Easton J, Alexandrov LB, Chen X, Mardis ER, Wilson RK, Downing JR, Pappo AS, Raphael BJ, Dyer MA, Zhang J. The Clonal Evolution of Metastatic Osteosarcoma as Shaped by Cisplatin Treatment. Mol Cancer Res 2019; 17:895-906. [PMID: 30651371 DOI: 10.1158/1541-7786.mcr-18-0620] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/17/2018] [Accepted: 01/07/2019] [Indexed: 11/16/2022]
Abstract
To investigate the genomic evolution of metastatic pediatric osteosarcoma, we performed whole-genome and targeted deep sequencing on 14 osteosarcoma metastases and two primary tumors from four patients (two to eight samples per patient). All four patients harbored ancestral (truncal) somatic variants resulting in TP53 inactivation and cell-cycle aberrations, followed by divergence into relapse-specific lineages exhibiting a cisplatin-induced mutation signature. In three of the four patients, the cisplatin signature accounted for >40% of mutations detected in the metastatic samples. Mutations potentially acquired during cisplatin treatment included NF1 missense mutations of uncertain significance in two patients and a KIT G565R activating mutation in one patient. Three of four patients demonstrated widespread ploidy differences between samples from the sample patient. Single-cell seeding of metastasis was detected in most metastatic samples. Cross-seeding between metastatic sites was observed in one patient, whereas in another patient a minor clone from the primary tumor seeded both metastases analyzed. These results reveal extensive clonal heterogeneity in metastatic osteosarcoma, much of which is likely cisplatin-induced. IMPLICATIONS: The extent and consequences of chemotherapy-induced damage in pediatric cancers is unknown. We found that cisplatin treatment can potentially double the mutational burden in osteosarcoma, which has implications for optimizing therapy for recurrent, chemotherapy-resistant disease.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gryte Satas
- Department of Computer Science, Princeton University, Princeton, New Jersey
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Daniel K Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donald A Yergeau
- UB Genomics and Bioinformatics Core, University at Buffalo, Buffalo, New York
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alberto S Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, New Jersey
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
37
|
Xu K, Ding L, Chang TC, Shao Y, Chiang J, Mulder H, Wang S, Shaw TI, Wen J, Hover L, McLeod C, Wang YD, Easton J, Rusch M, Dalton J, Downing JR, Ellison DW, Zhang J, Baker SJ, Wu G. Structure and evolution of double minutes in diagnosis and relapse brain tumors. Acta Neuropathol 2019; 137:123-137. [PMID: 30267146 PMCID: PMC6338707 DOI: 10.1007/s00401-018-1912-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 11/28/2022]
Abstract
Double minute chromosomes are extrachromosomal circular DNA fragments frequently found in brain tumors. To understand their evolution, we characterized the double minutes in paired diagnosis and relapse tumors from a pediatric high-grade glioma and four adult glioblastoma patients. We determined the full structures of the major double minutes using a novel approach combining multiple types of supporting genomic evidence. Among the double minutes identified in the pediatric patient, only one carrying EGFR was maintained at high abundance in both samples, whereas two others were present in only trace amounts at diagnosis but abundant at relapse, and the rest were found either in the relapse sample only or in the diagnosis sample only. For the EGFR-carrying double minutes, we found a secondary somatic deletion in all copies at relapse, after erlotinib treatment. However, the somatic mutation was present at very low frequency at diagnosis, suggesting potential resistance to the EGFR inhibitor. This mutation caused an in-frame RNA transcript to skip exon 16, a novel transcript isoform absent in EST database, as well as about 700 RNA-seq of normal brains that we reviewed. We observed similar patterns involving longitudinal copy number shift of double minutes in another four pairs (diagnosis/relapse) of adult glioblastoma. Overall, in three of five paired tumor samples, we found that although the same oncogenes were amplified at diagnosis and relapse, they were amplified on different double minutes. Our results suggest that double minutes readily evolve, increasing tumor heterogeneity rapidly. Understanding patterns of double minute evolution can shed light on future therapeutic solutions to brain tumors carrying such variants.
Collapse
Affiliation(s)
- Ke Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ti-Cheng Chang
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Shuoguo Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Tim I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ji Wen
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Laura Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Clay McLeod
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - James Dalton
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, MS1135, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
38
|
Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun 2018; 9:3962. [PMID: 30262806 PMCID: PMC6160438 DOI: 10.1038/s41467-018-06485-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
To evaluate the potential of an integrated clinical test to detect diverse classes of somatic and germline mutations relevant to pediatric oncology, we performed three-platform whole-genome (WGS), whole exome (WES) and transcriptome (RNA-Seq) sequencing of tumors and normal tissue from 78 pediatric cancer patients in a CLIA-certified, CAP-accredited laboratory. Our analysis pipeline achieves high accuracy by cross-validating variants between sequencing types, thereby removing the need for confirmatory testing, and facilitates comprehensive reporting in a clinically-relevant timeframe. Three-platform sequencing has a positive predictive value of 97–99, 99, and 91% for somatic SNVs, indels and structural variations, respectively, based on independent experimental verification of 15,225 variants. We report 240 pathogenic variants across all cases, including 84 of 86 known from previous diagnostic testing (98% sensitivity). Combined WES and RNA-Seq, the current standard for precision oncology, achieved only 78% sensitivity. These results emphasize the critical need for incorporating WGS in pediatric oncology testing. Clinical oncology is rapidly adopting next-generation sequencing technology for nucleotide variant and indel detection. Here the authors present a three-platform approach (whole-genome, whole-exome, and whole-transcriptome) in pediatric patients for the detection of diverse types of germline and somatic variants.
Collapse
|
39
|
Zhang M, Liu D, Tang J, Feng Y, Wang T, Dobbin KK, Schliekelman P, Zhao S. SEG - A Software Program for Finding Somatic Copy Number Alterations in Whole Genome Sequencing Data of Cancer. Comput Struct Biotechnol J 2018; 16:335-341. [PMID: 30258547 PMCID: PMC6154469 DOI: 10.1016/j.csbj.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 01/15/2023] Open
Abstract
As next-generation sequencing technology advances and the cost decreases, whole genome sequencing (WGS) has become the preferred platform for the identification of somatic copy number alteration (CNA) events in cancer genomes. To more effectively decipher these massive sequencing data, we developed a software program named SEG, shortened from the word “segment”. SEG utilizes mapped read or fragment density for CNA discovery. To reduce CNA artifacts arisen from sequencing and mapping biases, SEG first normalizes the data by taking the log2-ratio of each tumor density against its matching normal density. SEG then uses dynamic programming to find change-points among a contiguous log2-ratio data series along a chromosome, dividing the chromosome into different segments. SEG finally identifies those segments having CNA. Our analyses with both simulated and real sequencing data indicate that SEG finds more small CNAs than other published software tools.
Collapse
Affiliation(s)
- Mucheng Zhang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA30602-7229, USA
| | - Deli Liu
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA30602-7229, USA
| | - Jie Tang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA30602-7229, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA30602-7229, USA
| | - Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA30602-7229, USA
| | - Kevin K Dobbin
- Department of Biostatistics, University of Georgia, Athens, GA30602-7229, USA
| | - Paul Schliekelman
- Department of Statistics, University of Georgia, Athens, GA30602-7229, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA30602-7229, USA
| |
Collapse
|
40
|
Shu Y, Zhang W, Hou Q, Zhao L, Zhang S, Zhou J, Song X, Zhang Y, Jiang D, Chen X, Wang P, Xia X, Liao F, Yin D, Chen X, Zhou X, Zhang D, Yin S, Yang K, Liu J, Fu L, Zhang L, Wang Y, Zhang J, An Y, Cheng H, Zheng B, Sun H, Zhao Y, Wang Y, Xie D, Ouyang L, Wang P, Zhang W, Qiu M, Fu X, Dai L, He G, Yang H, Cheng W, Yang L, Liu B, Li W, Dong B, Zhou Z, Wei Y, Peng Y, Xu H, Hu J. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat Commun 2018; 9:2447. [PMID: 29961079 PMCID: PMC6026495 DOI: 10.1038/s41467-018-04907-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/31/2018] [Indexed: 02/05/2023] Open
Abstract
Signet-ring cell carcinoma (SRCC) has specific epidemiology and oncogenesis in gastric cancer, however, with no systematical investigation for prognostic genomic features. Here we report a systematic investigation conducted in 1868 Chinese gastric cancer patients indicating that signet-ring cells content was related to multiple clinical characteristics and treatment outcomes. We thus perform whole-genome sequencing on 32 pairs of SRC samples, and identify frequent CLDN18-ARHGAP26/6 fusion (25%). With 797 additional patients for validation, prevalence of CLDN18-ARHGAP26/6 fusion is noticed to be associated with signet-ring cell content, age at diagnosis, female/male ratio, and TNM stage. Importantly, patients with CLDN18-ARHGAP26/6 fusion have worse survival outcomes, and get no benefit from oxaliplatin/fluoropyrimidines-based chemotherapy, which is consistent with the fact of chemo-drug resistance acquired in CLDN18-ARHGAP26 introduced cell lines. Overall, this study provides insights into the clinical and genomic features of SRCC, and highlights the importance of frequent CLDN18-ARHGAP26/6 fusions in chemotherapy response for SRCC.
Collapse
Affiliation(s)
- Yang Shu
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Weihan Zhang
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Qianqian Hou
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Linyong Zhao
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Shouyue Zhang
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Jiankang Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Xiaohai Song
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xinzu Chen
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Xuyang Xia
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Fei Liao
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Dandan Yin
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Xiaolong Chen
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Xueyan Zhou
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Duyu Zhang
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Senlin Yin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Kun Yang
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Jianping Liu
- Department of Pathology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Leilei Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Lan Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Yuelan Wang
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Junlong Zhang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yunfei An
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hua Cheng
- WuxiNextCODE, 200131, Shanghai, China
| | - Bin Zheng
- WuxiNextCODE, 200131, Shanghai, China
| | | | - Yinglan Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Dan Xie
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Meng Qiu
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Gu He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Wei Cheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Li Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Bo Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Biao Dong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China
| | - Yong Peng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China.
| | - Heng Xu
- Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China.
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Jiankun Hu
- Department of Gastrointestinal Surgery, Institute of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Churchman ML, Qian M, Te Kronnie G, Zhang R, Yang W, Zhang H, Lana T, Tedrick P, Baskin R, Verbist K, Peters JL, Devidas M, Larsen E, Moore IM, Gu Z, Qu C, Yoshihara H, Porter SN, Pruett-Miller SM, Wu G, Raetz E, Martin PL, Bowman WP, Winick N, Mardis E, Fulton R, Stanulla M, Evans WE, Relling MV, Pui CH, Hunger SP, Loh ML, Handgretinger R, Nichols KE, Yang JJ, Mullighan CG. Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell 2018; 33:937-948.e8. [PMID: 29681510 PMCID: PMC5953820 DOI: 10.1016/j.ccell.2018.03.021] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/08/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022]
Abstract
Somatic genetic alterations of IKZF1, which encodes the lymphoid transcription factor IKAROS, are common in high-risk B-progenitor acute lymphoblastic leukemia (ALL) and are associated with poor prognosis. Such alterations result in the acquisition of stem cell-like features, overexpression of adhesion molecules causing aberrant cell-cell and cell-stroma interaction, and decreased sensitivity to tyrosine kinase inhibitors. Here we report coding germline IKZF1 variation in familial childhood ALL and 0.9% of presumed sporadic B-ALL, identifying 28 unique variants in 45 children. The majority of variants adversely affected IKZF1 function and drug responsiveness of leukemic cells. These results identify IKZF1 as a leukemia predisposition gene, and emphasize the importance of germline genetic variation in the development of both familial and sporadic ALL.
Collapse
Affiliation(s)
- Michelle L Churchman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geertruy Te Kronnie
- Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Ranran Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong, China
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong, China
| | - Tobia Lana
- Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Paige Tedrick
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebekah Baskin
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katherine Verbist
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer L Peters
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meenakshi Devidas
- Department of Biostatistics, Epidemiology and Health Policy Research, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Larsen
- Maine Children's Cancer Program, Scarborough, ME 04074, USA
| | - Ian M Moore
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hiroki Yoshihara
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaina N Porter
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Raetz
- Division of Pediatric Hematology-Oncology, New York University, New York, NY 10016, USA
| | - Paul L Martin
- Department of Pediatrics, Duke University, Durham, NC 27708, USA
| | - W Paul Bowman
- Cook Children's Medical Center, Fort Worth, TX 76104, USA
| | - Naomi Winick
- Pediatric Hematology Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elaine Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen P Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Rupert Handgretinger
- Department of Hematology/Oncology, Children's University Hospital, 72076 Tuebingen, Germany
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
42
|
Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, Zhou X, Li Y, Rusch MC, Easton J, Huether R, Gonzalez-Pena V, Wilkinson MR, Hermida LC, Davis S, Sioson E, Pounds S, Cao X, Ries RE, Wang Z, Chen X, Dong L, Diskin SJ, Smith MA, Guidry Auvil JM, Meltzer PS, Lau CC, Perlman EJ, Maris JM, Meshinchi S, Hunger SP, Gerhard DS, Zhang J. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 2018; 555:371-376. [PMID: 29489755 PMCID: PMC5854542 DOI: 10.1038/nature25795] [Citation(s) in RCA: 587] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/17/2018] [Indexed: 12/28/2022]
Abstract
Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues. Here we present a pan-cancer study of somatic alterations, including single nucleotide variants, small insertions or deletions, structural variations, copy number alterations, gene fusions and internal tandem duplications in 1,699 paediatric leukaemias and solid tumours across six histotypes, with whole-genome, whole-exome and transcriptome sequencing data processed under a uniform analytical framework. We report 142 driver genes in paediatric cancers, of which only 45% match those found in adult pan-cancer studies; copy number alterations and structural variants constituted the majority (62%) of events. Eleven genome-wide mutational signatures were identified, including one attributed to ultraviolet-light exposure in eight aneuploid leukaemias. Transcription of the mutant allele was detectable for 34% of protein-coding mutations, and 20% exhibited allele-specific expression. These data provide a comprehensive genomic architecture for paediatric cancers and emphasize the need for paediatric cancer-specific development of precision therapies.
Collapse
Affiliation(s)
- Xiaotu Ma
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yu Liu
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yanling Liu
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Charles Gawad
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xin Zhou
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yongjin Li
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael C. Rusch
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - John Easton
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Mark R. Wilkinson
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Sean Davis
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Edgar Sioson
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Zhaoming Wang
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xiang Chen
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Li Dong
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | | | - Paul S. Meltzer
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Ching C. Lau
- Division of Hematology-Oncology, Connecticut Children’s Medical Center, Hartford, CT
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Elizabeth J. Perlman
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stephen P. Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Jinghui Zhang
- Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
43
|
The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun 2017; 8:1557. [PMID: 29146900 PMCID: PMC5691144 DOI: 10.1038/s41467-017-01590-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are uncommon in children and have a poor prognosis. In contrast to adult MDS, little is known about the genomic landscape of pediatric MDS. Here, we describe the somatic and germline changes of pediatric MDS using whole exome sequencing, targeted amplicon sequencing, and/or RNA-sequencing of 46 pediatric primary MDS patients. Our data show that, in contrast to adult MDS, Ras/MAPK pathway mutations are common in pediatric MDS (45% of primary cohort), while mutations in RNA splicing genes are rare (2% of primary cohort). Surprisingly, germline variants in SAMD9 or SAMD9L were present in 17% of primary MDS patients, and these variants were routinely lost in the tumor cells by chromosomal deletions (e.g., monosomy 7) or copy number neutral loss of heterozygosity (CN-LOH). Our data confirm that adult and pediatric MDS are separate diseases with disparate mechanisms, and that SAMD9/SAMD9L mutations represent a new class of MDS predisposition. Myelodysplastic syndromes (MDS) are uncommon in children and have poor prognosis. Here, the authors interrogate the genomic landscape of MDS, confirming adult and paediatric MDS are separate diseases with disparate mechanisms, and highlighting that SAMD9/SAMD9L mutations represent a new class of MDS predisposition.
Collapse
|
44
|
GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res 2017; 27:2050-2060. [PMID: 29097403 PMCID: PMC5741059 DOI: 10.1101/gr.222109.117] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.
Collapse
|
45
|
Santiago T, Clay MR, Azzato E, Newman S, Fernandez-Pineda I, Nichols KE, Zhang J, Downing JR, Davidoff A, Brennan RC, Ellison DW. Clear cell sarcoma of kidney involving a horseshoe kidney and harboring EGFR internal tandem duplication. Pediatr Blood Cancer 2017; 64. [PMID: 28440018 DOI: 10.1002/pbc.26602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/27/2022]
Abstract
Clear cell sarcoma of kidney (CCSK) is a rare renal malignancy, previously unreported in horseshoe kidney (HSK). B-cell lymphoma 6 corepressor (BCOR) gene internal tandem duplication (ITD) was identified as a recurrent somatic alteration in approximately 85% of CCSKs. This and the YWHAE-NUTM2B/E fusion, the second most common recurrent molecular alteration in CCSK (10%), are considered to be mutually exclusive. However, there is a subset of CCSKs that do not harbor either the BCOR-ITD or YWHAE-NUTM2 translocation and lack known molecular alterations. Herein, we report the first case of CCSK arising in HSK and harboring epidermal growth factor receptor ITD.
Collapse
Affiliation(s)
- Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael R Clay
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Elizabeth Azzato
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rachel C Brennan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
46
|
The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 2016; 48:1551-1556. [PMID: 27798625 DOI: 10.1038/ng.3709] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n = 87) and adult (n = 78) samples, including cases with RUNX1-RUNX1T1 (n = 85) or CBFB-MYH11 (n = 80) rearrangements, by whole-genome or whole-exome sequencing. In addition to known mutations in the Ras pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a previously unappreciated cooperating pathway in CBF-AML. Outside of signaling alterations, RUNX1-RUNX1T1 and CBFB-MYH11 AMLs demonstrated remarkably different spectra of cooperating mutations, as RUNX1-RUNX1T1 cases harbored recurrent mutations in DHX15 and ZBTB7A, as well as an enrichment of mutations in epigenetic regulators, including ASXL2 and the cohesin complex. This detailed analysis provides insights into the pathogenesis and development of CBF-AML, while highlighting dramatic differences in the landscapes of cooperating mutations for these related AML subtypes.
Collapse
|
47
|
Yang W, Wu G, Broeckel U, Smith CA, Turner V, Haidar CE, Wang S, Carter R, Karol SE, Neale G, Crews KR, Yang JJ, Mullighan CG, Downing JR, Evans WE, Relling MV. Comparison of genome sequencing and clinical genotyping for pharmacogenes. Clin Pharmacol Ther 2016; 100:380-8. [PMID: 27311679 DOI: 10.1002/cpt.411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
We compared whole exome sequencing (WES, n = 176 patients) and whole genome sequencing (WGS, n = 68) and clinical genotyping (DMET array-based approach) for interrogating 13 genes with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. We focused on 127 CPIC important variants: 103 single nucleotide variations (SNV), 21 insertion/deletions (Indel), HLA-B alleles, and two CYP2D6 structural variations. WES and WGS provided interrogation of nonoverlapping sets of 115 SNV/Indels with call rate >98%. Among 68 loci interrogated by both WES and DMET, 64 loci (94.1%, confidence interval [CI]: 85.6-98.4%) showed no discrepant genotyping calls. Among 66 loci interrogated by both WGS and DMET, 63 loci (95.5%, CI: 87.2-99.0%) showed no discrepant genotyping calls. In conclusion, even without optimization to interrogate pharmacogenetic variants, WES and WGS displayed potential to provide reliable interrogation of most pharmacogenes and further validation of genome sequencing in a clinical lab setting is warranted.
Collapse
Affiliation(s)
- W Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - G Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - U Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - C A Smith
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - V Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C E Haidar
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - S Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R Carter
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - S E Karol
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - G Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - K R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - W E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - M V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
48
|
Li Y, Zhou S, Schwartz DC, Ma J. Allele-Specific Quantification of Structural Variations in Cancer Genomes. Cell Syst 2016; 3:21-34. [PMID: 27453446 PMCID: PMC4965314 DOI: 10.1016/j.cels.2016.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Aneuploidy and structural variations (SVs) generate cancer genomes containing a mixture of rearranged genomic segments with extensive somatic copy number alterations. However, existing methods can identify either SVs or allele-specific copy number alterations, but not both simultaneously, which provides a limited view of cancer genome structure. Here we introduce Weaver, an algorithm for the quantification and analysis of allele-specific copy numbers of SVs. Weaver uses a Markov Random Field to estimate joint probabilities of allele-specific copy number of SVs and their inter-connectivity based on paired-end whole-genome sequencing data. Weaver also predicts the timing of SVs relative to chromosome amplifications. We demonstrate the accuracy of Weaver using simulations and findings from whole-genome Optical Mapping. We apply Weaver to generate allele-specific copy numbers of SVs for MCF-7 and HeLa cell lines, and identify recurrent SV patterns in 44 TCGA ovarian cancer whole-genome sequencing datasets. Our approach provides a more complete assessment of the complex genomic architectures inherent to many cancer genomes.
Collapse
Affiliation(s)
- Yang Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jian Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
49
|
Abstract
INTRODUCTION Next-Generation-Sequencing (NGS) has enabled gene mutation profiling - cataloguing sequence variants and modifications in clinical assays encompassing tens to thousands of genes in tumors and in germlines. The clinical benefit of applying multi-gene NGS to diverse applications in various malignancies remains to be demonstrated. AREAS COVERED Applications of gene mutation profiling in oncology include screening cancer-prone families, classification of malignancies, treatment selection, and monitoring the response to treatment of solid tumors (the 'liquid biopsy'). Google Scholar was used to search PubMed for the period 2011-2016 using combinations of the following search terms: 'clinical utility', NGS, 'molecular diagnostics'. Expert commentary: Clinical studies are in progress pairing mutation profiling with streamlined new trial designs to speed identification of promising drug-target combinations and to see if genotype-informed treatment selection will improve outcome across a spectrum of histologies. The analytical advantages and falling cost of NGS make focused gene panels likely to become the dominant modality in molecular diagnostic testing even if trials eventually discourage use of large panels to test all malignancies.
Collapse
Affiliation(s)
- Loren Joseph
- a Department of Pathology, Beth Israel Deaconess Medical Center, Molecular Diagnostics Laboratory , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
50
|
Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, Li Y, Zhang Z, Rusch MC, Parker M, Becksfort J, Downing JR, Zhang J. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet 2016; 48:4-6. [PMID: 26711108 DOI: 10.1038/ng.3466] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aman Patel
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhaojie Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jared Becksfort
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James R Downing
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|