1
|
Prabhu SG, Pillai VN, Ali LM, Vivet-Boudou V, Chameettachal A, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. MMTV RNA packaging requires an extended long-range interaction for productive Gag binding to packaging signals. PLoS Biol 2024; 22:e3002827. [PMID: 39361708 PMCID: PMC11449360 DOI: 10.1371/journal.pbio.3002827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
The packaging of genomic RNA (gRNA) into retroviral particles relies on the specific recognition by the Gag precursor of packaging signals (Psi), which maintain a complex secondary structure through long-range interactions (LRIs). However, it remains unclear whether the binding of Gag to Psi alone is enough to promote RNA packaging and what role LRIs play in this process. Using mouse mammary tumor virus (MMTV), we investigated the effects of mutations in 4 proposed LRIs on gRNA structure and function. Our findings revealed the presence of an unsuspected extended LRI, and hSHAPE revealed that maintaining a wild-type-like Psi structure is crucial for efficient packaging. Surprisingly, filter-binding assays demonstrated that most mutants, regardless of their packaging capability, exhibited significant binding to Pr77Gag, suggesting that Gag binding to Psi is insufficient for efficient packaging. Footprinting experiments indicated that efficient RNA packaging is promoted when Pr77Gag binds to 2 specific sites within Psi, whereas binding elsewhere in Psi does not lead to efficient packaging. Taken together, our results suggest that the 3D structure of the Psi/Pr77Gag complex regulates the assembly of viral particles around gRNA, enabling effective discrimination against other viral and cellular RNAs that may also bind Gag efficiently.
Collapse
Affiliation(s)
- Suresha G Prabhu
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Yasin S, Lesko SL, Kharytonchyk S, Brown JD, Chaudry I, Geleta SA, Tadzong NF, Zheng MY, Patel HB, Kengni G, Neubert E, Quiambao JMC, Becker G, Ghinger FG, Thapa S, Williams A, Radov MH, Boehlert KX, Hollmann NM, Singh K, Bruce JW, Marchant J, Telesnitsky A, Sherer NM, Summers MF. Role of RNA structural plasticity in modulating HIV-1 genome packaging and translation. Proc Natl Acad Sci U S A 2024; 121:e2407400121. [PMID: 39110735 PMCID: PMC11331132 DOI: 10.1073/pnas.2407400121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
HIV-1 transcript function is controlled in part by twinned transcriptional start site usage, where 5' capped RNAs beginning with a single guanosine (1G) are preferentially packaged into progeny virions as genomic RNA (gRNA) whereas those beginning with three sequential guanosines (3G) are retained in cells as mRNAs. In 3G transcripts, one of the additional guanosines base pairs with a cytosine located within a conserved 5' polyA element, resulting in formation of an extended 5' polyA structure as opposed to the hairpin structure formed in 1G RNAs. To understand how this remodeling influences overall transcript function, we applied in vitro biophysical studies with in-cell genome packaging and competitive translation assays to native and 5' polyA mutant transcripts generated with promoters that differentially produce 1G or 3G RNAs. We identified mutations that stabilize the 5' polyA hairpin structure in 3G RNAs, which promote RNA dimerization and Gag binding without sequestering the 5' cap. None of these 3G transcripts were competitively packaged, confirming that cap exposure is a dominant negative determinant of viral genome packaging. For all RNAs examined, conformations that favored 5' cap exposure were both poorly packaged and more efficiently translated than those that favored 5' cap sequestration. We propose that structural plasticity of 5' polyA and other conserved RNA elements place the 5' leader on a thermodynamic tipping point for low-energetic (~3 kcal/mol) control of global transcript structure and function.
Collapse
Affiliation(s)
- Saif Yasin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Sydney L. Lesko
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI53705
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109-5620
| | - Joshua D. Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Issac Chaudry
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Samuel A. Geleta
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Ndeh F. Tadzong
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Mei Y. Zheng
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Heer B. Patel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Gabriel Kengni
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Emma Neubert
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | | | - Ghazal Becker
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Frances Grace Ghinger
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Sreeyasha Thapa
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - A’Lyssa Williams
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Michelle H. Radov
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Kellie X. Boehlert
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Nele M. Hollmann
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
- HHMI, University of Maryland, Baltimore County, MD21250
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, MD21250
| | - Karndeep Singh
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - James W. Bruce
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI53705
| | - Jan Marchant
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109-5620
| | - Nathan M. Sherer
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI53705
| | - Michael F. Summers
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD21250
- HHMI, University of Maryland, Baltimore County, MD21250
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, MD21250
| |
Collapse
|
3
|
Gribling-Burrer AS, Bohn P, Smyth RP. Isoform-specific RNA structure determination using Nano-DMS-MaP. Nat Protoc 2024; 19:1835-1865. [PMID: 38347203 DOI: 10.1038/s41596-024-00959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/12/2023] [Indexed: 06/12/2024]
Abstract
RNA structure determination is essential to understand how RNA carries out its diverse biological functions. In cells, RNA isoforms are readily expressed with partial variations within their sequences due, for example, to alternative splicing, heterogeneity in the transcription start site, RNA processing or differential termination/polyadenylation. Nanopore dimethyl sulfate mutational profiling (Nano-DMS-MaP) is a method for in situ isoform-specific RNA structure determination. Unlike similar methods that rely on short sequencing reads, Nano-DMS-MaP employs nanopore sequencing to resolve the structures of long and highly similar RNA molecules to reveal their previously hidden structural differences. This Protocol describes the development and applications of Nano-DMS-MaP and outlines the main considerations for designing and implementing a successful experiment: from bench to data analysis. In cell probing experiments can be carried out by an experienced molecular biologist in 3-4 d. Data analysis requires good knowledge of command line tools and Python scripts and requires a further 3-5 d.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
5
|
Krishnan A, Ali LM, Prabhu SG, Pillai VN, Chameettachal A, Vivet-Boudou V, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of a putative Gag binding site critical for feline immunodeficiency virus genomic RNA packaging. RNA (NEW YORK, N.Y.) 2023; 30:68-88. [PMID: 37914398 PMCID: PMC10726167 DOI: 10.1261/rna.079840.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Anjana Krishnan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Suresha G Prabhu
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Bohn P, Gribling-Burrer AS, Ambi UB, Smyth RP. Nano-DMS-MaP allows isoform-specific RNA structure determination. Nat Methods 2023; 20:849-859. [PMID: 37106231 PMCID: PMC10250195 DOI: 10.1038/s41592-023-01862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
Genome-wide measurements of RNA structure can be obtained using reagents that react with unpaired bases, leading to adducts that can be identified by mutational profiling on next-generation sequencing machines. One drawback of these experiments is that short sequencing reads can rarely be mapped to specific transcript isoforms. Consequently, information is acquired as a population average in regions that are shared between transcripts, thus blurring the underlying structural landscape. Here, we present nanopore dimethylsulfate mutational profiling (Nano-DMS-MaP)-a method that exploits long-read sequencing to provide isoform-resolved structural information of highly similar RNA molecules. We demonstrate the value of Nano-DMS-MaP by resolving the complex structural landscape of human immunodeficiency virus-1 transcripts in infected cells. We show that unspliced and spliced transcripts have distinct structures at the packaging site within the common 5' untranslated region, likely explaining why spliced viral RNAs are excluded from viral particles. Thus, Nano-DMS-MaP is a straightforward method to resolve biologically important transcript-specific RNA structures that were previously hidden in short-read ensemble analyses.
Collapse
Affiliation(s)
- Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Uddhav B Ambi
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Faculty of Medicine, Würzburg, Germany.
| |
Collapse
|
7
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
8
|
Pillai VN, Ali LM, Prabhu SG, Krishnan A, Tariq S, Mustafa F, Rizvi TA. Expression, purification, and functional characterization of soluble recombinant full-length simian immunodeficiency virus (SIV) Pr55 Gag. Heliyon 2023; 9:e12892. [PMID: 36685375 PMCID: PMC9853374 DOI: 10.1016/j.heliyon.2023.e12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The simian immunodeficiency virus (SIV) precursor polypeptide Pr55Gag drives viral assembly and facilitates specific recognition and packaging of the SIV genomic RNA (gRNA) into viral particles. While several studies have tried to elucidate the role of SIV Pr55Gag by expressing its different components independently, studies using full-length SIV Pr55Gag have not been conducted, primarily due to the unavailability of purified and biologically active full-length SIV Pr55Gag. We successfully expressed soluble, full-length SIV Pr55Gag with His6-tag in bacteria and purified it using affinity and gel filtration chromatography. In the process, we identified within Gag, a second in-frame start codon downstream of a putative Shine-Dalgarno-like sequence resulting in an additional truncated form of Gag. Synonymously mutating this sequence allowed expression of full-length Gag in its native form. The purified Gag assembled into virus-like particles (VLPs) in vitro in the presence of nucleic acids, revealing its biological functionality. In vivo experiments also confirmed formation of functional VLPs, and quantitative reverse transcriptase PCR demonstrated efficient packaging of SIV gRNA by these VLPs. The methodology we employed ensured the availability of >95% pure, biologically active, full-length SIV Pr55Gag which should facilitate future studies to understand protein structure and RNA-protein interactions involved during SIV gRNA packaging.
Collapse
Affiliation(s)
- Vineeta N. Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suresha G. Prabhu
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Corresponding author. Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
9
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Gorb LG. Genome sequence analysis suggests coevolution of the DIS, SD, and Psi hairpins in HIV-1 genomes. Virus Res 2022; 321:198910. [PMID: 36070810 DOI: 10.1016/j.virusres.2022.198910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
HIV-1 RNA dimerization is a critical step in viral life cycle. It is a prerequisite for genome packaging and plays an important role in reverse transcription and recombination. Dimerization is promoted by the DIS (dimerization initiation site) hairpin located in the 5' leader of HIV-1 genome. Despite the high genetic diversity in HIV-1 group M, only five apical loops (AAGCGCGCA, AAGUGCGCA, AAGUGCACA, AGGUGCACA and AGUGCAC) are commonly found in DIS hairpins. We refer to the parent DISes with these apical loops as DISLai, DISTrans, DISF, DISMal, and DISC, respectively. Based on identity or similarity of DIS hairpins to parent DISes, we distributed HIV-1 M genomes into five dimerization groups. Comparison of the primary and secondary structures of DIS, SD and Psi hairpins in about 3000 HIV-1 M genomes showed that the mutation frequencies at particular nucleotide positions of these hairpins differ among the dimerization groups, and DISF may be an origin of other parent DISes. We found that DIS, SD and Psi hairpins have hundreds of variants, only some of them occurring rather frequently. The lower part of DIS hairpin with G x AGG internal loop is highly conserved in both HIV-1 and SIV genomes. We supposed that the G-quadruplex, located 56 nts downstream of the Gag start codon, may participate in switching of HIV-1 leader RNA from BMH (branched multiple hairpins) to LDI (long distance interaction) conformation.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Andriy L Potyahaylo
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Iryna M Kolomiets
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Leonid G Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine.
| |
Collapse
|
10
|
Hanson HM, Willkomm NA, Yang H, Mansky LM. Human Retrovirus Genomic RNA Packaging. Viruses 2022; 14:1094. [PMID: 35632835 PMCID: PMC9142903 DOI: 10.3390/v14051094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023] Open
Abstract
Two non-covalently linked copies of the retrovirus genome are specifically recruited to the site of virus particle assembly and packaged into released particles. Retroviral RNA packaging requires RNA export of the unspliced genomic RNA from the nucleus, translocation of the genome to virus assembly sites, and specific interaction with Gag, the main viral structural protein. While some aspects of the RNA packaging process are understood, many others remain poorly understood. In this review, we provide an update on recent advancements in understanding the mechanism of RNA packaging for retroviruses that cause disease in humans, i.e., HIV-1, HIV-2, and HTLV-1, as well as advances in the understanding of the details of genomic RNA nuclear export, genome translocation to virus assembly sites, and genomic RNA dimerization.
Collapse
Affiliation(s)
- Heather M. Hanson
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
| | - Nora A. Willkomm
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
- Masonic Cancer Center, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
12
|
Bernacchi S. Visualization of Retroviral Gag-Genomic RNA Cellular Interactions Leading to Genome Encapsidation and Viral Assembly: An Overview. Viruses 2022; 14:324. [PMID: 35215917 PMCID: PMC8876502 DOI: 10.3390/v14020324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses must selectively recognize their unspliced RNA genome (gRNA) among abundant cellular and spliced viral RNAs to assemble into newly formed viral particles. Retroviral gRNA packaging is governed by Gag precursors that also orchestrate all the aspects of viral assembly. Retroviral life cycles, and especially the HIV-1 one, have been previously extensively analyzed by several methods, most of them based on molecular biology and biochemistry approaches. Despite these efforts, the spatio-temporal mechanisms leading to gRNA packaging and viral assembly are only partially understood. Nevertheless, in these last decades, progress in novel bioimaging microscopic approaches (as FFS, FRAP, TIRF, and wide-field microscopy) have allowed for the tracking of retroviral Gag and gRNA in living cells, thus providing important insights at high spatial and temporal resolution of the events regulating the late phases of the retroviral life cycle. Here, the implementation of these recent bioimaging tools based on highly performing strategies to label fluorescent macromolecules is described. This report also summarizes recent gains in the current understanding of the mechanisms employed by retroviral Gag polyproteins to regulate molecular mechanisms enabling gRNA packaging and the formation of retroviral particles, highlighting variations and similarities among the different retroviruses.
Collapse
Affiliation(s)
- Serena Bernacchi
- Architecture et Réactivité de l'ARN-UPR 9002, IBMC, CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
13
|
Gilmer O, Mailler E, Paillart JC, Mouhand A, Tisné C, Mak J, Smyth RP, Marquet R, Vivet-Boudou V. Structural maturation of the HIV-1 RNA 5' untranslated region by Pr55 Gag and its maturation products. RNA Biol 2022; 19:191-205. [PMID: 35067194 PMCID: PMC8786341 DOI: 10.1080/15476286.2021.2021677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5ʹ gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.
Collapse
Affiliation(s)
- Orian Gilmer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Elodie Mailler
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| |
Collapse
|
14
|
Ye L, Gribling-Burrer AS, Bohn P, Kibe A, Börtlein C, Ambi UB, Ahmad S, Olguin-Nava M, Smith M, Caliskan N, von Kleist M, Smyth RP. Short- and long-range interactions in the HIV-1 5' UTR regulate genome dimerization and packaging. Nat Struct Mol Biol 2022; 29:306-319. [PMID: 35347312 PMCID: PMC9010304 DOI: 10.1038/s41594-022-00746-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
RNA dimerization is the noncovalent association of two human immunodeficiency virus-1 (HIV-1) genomes. It is a conserved step in the HIV-1 life cycle and assumed to be a prerequisite for binding to the viral structural protein Pr55Gag during genome packaging. Here, we developed functional analysis of RNA structure-sequencing (FARS-seq) to comprehensively identify sequences and structures within the HIV-1 5' untranslated region (UTR) that regulate this critical step. Using FARS-seq, we found nucleotides important for dimerization throughout the HIV-1 5' UTR and identified distinct structural conformations in monomeric and dimeric RNA. In the dimeric RNA, key functional domains, such as stem-loop 1 (SL1), polyadenylation signal (polyA) and primer binding site (PBS), folded into independent structural motifs. In the monomeric RNA, SL1 was reconfigured into long- and short-range base pairings with polyA and PBS, respectively. We show that these interactions disrupt genome packaging, and additionally show that the PBS-SL1 interaction unexpectedly couples the PBS with dimerization and Pr55Gag binding. Altogether, our data provide insights into late stages of HIV-1 life cycle and a mechanistic explanation for the link between RNA dimerization and packaging.
Collapse
Affiliation(s)
- Liqing Ye
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Patrick Bohn
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anuja Kibe
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Charlene Börtlein
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Uddhav B. Ambi
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Shazeb Ahmad
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Marco Olguin-Nava
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Maureen Smith
- grid.13652.330000 0001 0940 3744P5 Systems Medicine of Infectious Disease, Robert Koch-Institute, Berlin, Germany
| | - Neva Caliskan
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany ,grid.8379.50000 0001 1958 8658Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Max von Kleist
- grid.13652.330000 0001 0940 3744P5 Systems Medicine of Infectious Disease, Robert Koch-Institute, Berlin, Germany
| | - Redmond P. Smyth
- grid.498164.6Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany ,grid.8379.50000 0001 1958 8658Faculty of Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
D’Souza AR, Jayaraman D, Long Z, Zeng J, Prestwood LJ, Chan C, Kappei D, Lever AML, Kenyon JC. HIV-1 Packaging Visualised by In-Gel SHAPE. Viruses 2021; 13:v13122389. [PMID: 34960658 PMCID: PMC8707378 DOI: 10.3390/v13122389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-1 packages two copies of its gRNA into virions via an interaction with the viral structural protein Gag. Both copies and their native RNA structure are essential for virion infectivity. The precise stepwise nature of the packaging process has not been resolved. This is largely due to a prior lack of structural techniques that follow RNA structural changes within an RNA-protein complex. Here, we apply the in-gel SHAPE (selective 2'OH acylation analysed by primer extension) technique to study the initiation of HIV-1 packaging, examining the interaction between the packaging signal RNA and the Gag polyprotein, and compare it with that of the NC domain of Gag alone. Our results imply interactions between Gag and monomeric packaging signal RNA in switching the RNA conformation into a dimerisation-competent structure, and show that the Gag-dimer complex then continues to stabilise. These data provide a novel insight into how HIV-1 regulates the translation and packaging of its genome.
Collapse
Affiliation(s)
- Aaron R. D’Souza
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dhivya Jayaraman
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
| | - Ziqi Long
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Jingwei Zeng
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Liam J. Prestwood
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew M. L. Lever
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| | - Julia C. Kenyon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| |
Collapse
|
16
|
Liu S, Koneru PC, Li W, Pathirage C, Engelman AN, Kvaratskhelia M, Musier-Forsyth K. HIV-1 integrase binding to genomic RNA 5'-UTR induces local structural changes in vitro and in virio. Retrovirology 2021; 18:37. [PMID: 34809662 PMCID: PMC8609798 DOI: 10.1186/s12977-021-00582-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND During HIV-1 maturation, Gag and Gag-Pol polyproteins are proteolytically cleaved and the capsid protein polymerizes to form the honeycomb capsid lattice. HIV-1 integrase (IN) binds the viral genomic RNA (gRNA) and impairment of IN-gRNA binding leads to mis-localization of the nucleocapsid protein (NC)-condensed viral ribonucleoprotein complex outside the capsid core. IN and NC were previously demonstrated to bind to the gRNA in an orthogonal manner in virio; however, the effect of IN binding alone or simultaneous binding of both proteins on gRNA structure is not yet well understood. RESULTS Using crosslinking-coupled selective 2'-hydroxyl acylation analyzed by primer extension (XL-SHAPE), we characterized the interaction of IN and NC with the HIV-1 gRNA 5'-untranslated region (5'-UTR). NC preferentially bound to the packaging signal (Psi) and a UG-rich region in U5, irrespective of the presence of IN. IN alone also bound to Psi but pre-incubation with NC largely abolished this interaction. In contrast, IN specifically bound to and affected the nucleotide (nt) dynamics of the apical loop of the transactivation response element (TAR) and the polyA hairpin even in the presence of NC. SHAPE probing of the 5'-UTR RNA in virions produced from allosteric IN inhibitor (ALLINI)-treated cells revealed that while the global secondary structure of the 5'-UTR remained unaltered, the inhibitor treatment induced local reactivity differences, including changes in the apical loop of TAR that are consistent with the in vitro results. CONCLUSIONS Overall, the binding interactions of NC and IN with the 5'-UTR are largely orthogonal in vitro. This study, together with previous probing experiments, suggests that IN and NC binding in vitro and in virio lead to only local structural changes in the regions of the 5'-UTR probed here. Accordingly, disruption of IN-gRNA binding by ALLINI treatment results in local rather than global secondary structure changes of the 5'-UTR in eccentric virus particles.
Collapse
Affiliation(s)
- Shuohui Liu
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Pratibha C. Koneru
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Wen Li
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Chathuri Pathirage
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| | - Alan N. Engelman
- grid.65499.370000 0001 2106 9910Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Mamuka Kvaratskhelia
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, School of Medicine, University of Colorado, Aurora, CO USA
| | - Karin Musier-Forsyth
- grid.261331.40000 0001 2285 7943Department of Chemistry and Biochemistry, Centers for RNA Biology and Retroviral Research, The Ohio State University, Columbus, OH USA
| |
Collapse
|
17
|
A Stretch of Unpaired Purines in the Leader Region of Simian Immunodeficiency Virus (SIV) Genomic RNA is Critical for its Packaging into Virions. J Mol Biol 2021; 433:167293. [PMID: 34624298 DOI: 10.1016/j.jmb.2021.167293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Simian immunodeficiency virus (SIV) is an important lentivirus used as a non-human primate model to study HIV replication, and pathogenesis of human AIDS, as well as a potential vector for human gene therapy. This study investigated the role of single-stranded purines (ssPurines) as potential genomic RNA (gRNA) packaging determinants in SIV replication. Similar ssPurines have been implicated as important motifs for gRNA packaging in many retroviruses like, HIV-1, MPMV, and MMTV by serving as Gag binding sites during virion assembly. In examining the secondary structure of the SIV 5' leader region, as recently deduced using SHAPE methodology, we identified four specific stretches of ssPurines (I-IV) in the region that harbors major packaging determinants of SIV. The significance of these ssPurine motifs were investigated by mutational analysis coupled with a biologically relevant single round of replication assay. These analyses revealed that while ssPurine II was essential, the others (ssPurines I, III, & IV) did not significantly contribute to SIV gRNA packaging. Any mutation in the ssPurine II, such as its deletion or substitution, or other mutations that caused base pairing of ssPurine II loop resulted in near abrogation of RNA packaging, further substantiating the crucial role of ssPurine II and its looped conformation in SIV gRNA packaging. Structure prediction analysis of these mutants further corroborated the biological results and further revealed that the unpaired nature of ssPurine II is critical for its function during SIV RNA packaging perhaps by enabling it to function as a specific binding site for SIV Gag.
Collapse
|
18
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
19
|
Chameettachal A, Vivet-Boudou V, Pitchai F, Pillai V, Ali L, Krishnan A, Bernacchi S, Mustafa F, Marquet R, Rizvi T. A purine loop and the primer binding site are critical for the selective encapsidation of mouse mammary tumor virus genomic RNA by Pr77Gag. Nucleic Acids Res 2021; 49:4668-4688. [PMID: 33836091 PMCID: PMC8096270 DOI: 10.1093/nar/gkab223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Retroviral RNA genome (gRNA) harbors cis-acting sequences that facilitate its specific packaging from a pool of other viral and cellular RNAs by binding with high-affinity to the viral Gag protein during virus assembly. However, the molecular intricacies involved during selective gRNA packaging are poorly understood. Binding and footprinting assays on mouse mammary tumor virus (MMTV) gRNA with purified Pr77Gag along with in cell gRNA packaging study identified two Pr77Gag binding sites constituting critical, non-redundant packaging signals. These included: a purine loop in a bifurcated stem-loop containing the gRNA dimerization initiation site, and the primer binding site (PBS). Despite these sites being present on both unspliced and spliced RNAs, Pr77Gag specifically bound to unspliced RNA, since only that could adopt the native bifurcated stem-loop structure containing looped purines. These results map minimum structural elements required to initiate MMTV gRNA packaging, distinguishing features that are conserved amongst divergent retroviruses from those perhaps unique to MMTV. Unlike purine-rich motifs frequently associated with packaging signals, direct involvement of PBS in gRNA packaging has not been documented in retroviruses. These results enhance our understanding of retroviral gRNA packaging/assembly, making it not only a target for novel therapeutic interventions, but also development of safer gene therapy vectors.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
20
|
Goettsch W, Beerenwinkel N, Deng L, Dölken L, Dutilh BE, Erhard F, Kaderali L, von Kleist M, Marquet R, Matthijnssens J, McCallin S, McMahon D, Rattei T, Van Rij RP, Robertson DL, Schwemmle M, Stern-Ginossar N, Marz M. ITN-VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics. Viruses 2021; 13:v13050766. [PMID: 33925452 PMCID: PMC8145447 DOI: 10.3390/v13050766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Many recent studies highlight the fundamental importance of viruses. Besides their important role as human and animal pathogens, their beneficial, commensal or harmful functions are poorly understood. By developing and applying tailored bioinformatical tools in important virological models, the Marie Skłodowska-Curie Initiative International Training Network VIROINF will provide a better understanding of viruses and the interaction with their hosts. This will open the door to validate methods of improving viral growth, morphogenesis and development, as well as to control strategies against unwanted microorganisms. The key feature of VIROINF is its interdisciplinary nature, which brings together virologists and bioinformaticians to achieve common goals.
Collapse
Affiliation(s)
- Winfried Goettsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, 07743 Jena, Germany;
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland;
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich and Technical University Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Lars Dölken
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany; (L.D.); (F.E.)
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Hugo R. Kruytgebouw, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Florian Erhard
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany; (L.D.); (F.E.)
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Max von Kleist
- MF1 Bioinformatics, Robert Koch-Institute, 13353 Berlin, Germany;
| | - Roland Marquet
- CNRS, Architecture et Réactivité de l’ARN, Université de Strasbourg, UPR 9002 Strasbourg, France;
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven, Herestraat 49 Box 1040, 3000 Leuven, Belgium;
| | - Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Forchstrasse 340, 8008 Zürich, Switzerland;
| | - Dino McMahon
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195 Berlin, Germany;
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Ronald P. Van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - David L. Robertson
- MRC, University of Glasgow Centre for Virus Research (CVR), 464 Bearsden Road, Glasgow G61 1QH, UK;
| | - Martin Schwemmle
- Institute of Virology, Medical Center—University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany;
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, 07743 Jena, Germany;
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-9-46480
| |
Collapse
|
21
|
Pitchai FNN, Chameettachal A, Vivet-Boudou V, Ali LM, Pillai VN, Krishnan A, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of Pr78 Gag Binding Sites on the Mason-Pfizer Monkey Virus Genomic RNA Packaging Determinants. J Mol Biol 2021; 433:166923. [PMID: 33713677 DOI: 10.1016/j.jmb.2021.166923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 02/04/2023]
Abstract
How retroviral Gag proteins recognize the packaging signals (Psi) on their genomic RNA (gRNA) is a key question that we addressed here using Mason-Pfizer monkey virus (MPMV) as a model system by combining band-shift assays and footprinting experiments. Our data show that Pr78Gag selects gRNA against spliced viral RNA by simultaneously binding to two single stranded loops on the MPMV Psi RNA: (1) a large purine loop (ssPurines), and (2) a loop which partially overlaps with a mostly base-paired purine repeat (bpPurines) and extends into a GU-rich binding motif. Importantly, this second Gag binding site is located immediately downstream of the major splice donor (mSD) and is thus absent from the spliced viral RNAs. Identifying elements crucial for MPMV gRNA packaging should help in understanding not only the mechanism of virion assembly by retroviruses, but also facilitate construction of safer retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
- Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, United Arab Emirates.
| |
Collapse
|
22
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
23
|
Abstract
Recent studies have renewed interest in developing novel antiviral therapeutics and vaccines based on defective interfering particles (DIPs)—a subset of viral deletion mutants that conditionally replicate. Identifying and engineering DIPs require that viral cis- and trans-acting elements be accurately mapped. It has long been known that noncoding genomic regions can be obligate cis elements acted upon in trans by gene products. In viruses, cis elements regulate gene expression, encapsidation, and other maturation processes, but mapping these elements relies on targeted iterative deletion or laborious prospecting for rare spontaneously occurring mutants. Here, we introduce a method to comprehensively map viral cis and trans elements at single-nucleotide resolution by high-throughput random deletion. Variable-size deletions are randomly generated by transposon integration, excision, and exonuclease chewback and then barcoded for tracking via sequencing (i.e., random deletion library sequencing [RanDeL-seq]). Using RanDeL-seq, we generated and screened >23,000 HIV-1 variants to generate a single-base resolution map of HIV-1’s cis and trans elements. The resulting landscape recapitulated HIV-1’s known cis-acting elements (i.e., long terminal repeat [LTR], Ψ, and Rev response element [RRE]) and, surprisingly, indicated that HIV-1’s central DNA flap (i.e., central polypurine tract [cPPT] to central termination sequence [CTS]) is as critical as the LTR, Ψ, and RRE for long-term passage. Strikingly, RanDeL-seq identified a previously unreported ∼300-bp region downstream of RRE extending to splice acceptor 7 that is equally critical for sustained viral passage. RanDeL-seq was also used to construct and screen a library of >90,000 variants of Zika virus (ZIKV). Unexpectedly, RanDeL-seq indicated that ZIKV’s cis-acting regions are larger than the untranscribed (UTR) termini, encompassing a large fraction of the nonstructural genes. Collectively, RanDeL-seq provides a versatile framework for generating viral deletion mutants, enabling discovery of replication mechanisms and development of novel antiviral therapeutics, particularly for emerging viral infections.
Collapse
|
24
|
RNA structure-wide discovery of functional interactions with multiplexed RNA motif library. Nat Commun 2020; 11:6275. [PMID: 33293523 PMCID: PMC7723054 DOI: 10.1038/s41467-020-19699-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
Biochemical assays and computational analyses have discovered RNA structures throughout various transcripts. However, the roles of these structures are mostly unknown. Here we develop folded RNA element profiling with structure library (FOREST), a multiplexed affinity assay system to identify functional interactions from transcriptome-wide RNA structure datasets. We generate an RNA structure library by extracting validated or predicted RNA motifs from gene-annotated RNA regions. The RNA structure library with an affinity enrichment assay allows for the comprehensive identification of target-binding RNA sequences and structures in a high-throughput manner. As a proof-of-concept, FOREST discovers multiple RNA-protein interaction networks with quantitative scores, including translational regulatory elements that function in living cells. Moreover, FOREST reveals different binding landscapes of RNA G-quadruplex (rG4) structures-binding proteins and discovers rG4 structures in the terminal loops of precursor microRNAs. Overall, FOREST serves as a versatile platform to investigate RNA structure-function relationships on a large scale. Structured RNA motifs can be obtained by structure probing, duplex capture, and motif prediction. Here the authors develop a multiplexed affinity assay system to identify functional protein interactors from an RNA structure library with validated or predicted RNA motifs.
Collapse
|
25
|
Ali LM, Pitchai FNN, Vivet-Boudou V, Chameettachal A, Jabeen A, Pillai VN, Mustafa F, Marquet R, Rizvi TA. Role of Purine-Rich Regions in Mason-Pfizer Monkey Virus (MPMV) Genomic RNA Packaging and Propagation. Front Microbiol 2020; 11:595410. [PMID: 33250884 PMCID: PMC7674771 DOI: 10.3389/fmicb.2020.595410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
A distinguishing feature of the Mason-Pfizer monkey virus (MPMV) packaging signal RNA secondary structure is a single-stranded purine-rich sequence (ssPurines) in close vicinity to a palindromic stem loop (Pal SL) that functions as MPMV dimerization initiation site (DIS). However, unlike other retroviruses, MPMV contains a partially base-paired repeat sequence of ssPurines (bpPurines) in the adjacent region. Both purine-rich sequences have earlier been proposed to act as potentially redundant Gag binding sites to initiate the process of MPMV genomic RNA (gRNA) packaging. The objective of this study was to investigate the biological significance of ssPurines and bpPurines in MPMV gRNA packaging by systematic mutational and biochemical probing analyses. Deletion of either ssPurines or bpPurines individually had no significant effect on MPMV gRNA packaging, but it was severely compromised when both sequences were deleted simultaneously. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE) analysis of the mutant RNAs revealed only mild effects on structure by deletion of either ssPurines or bpPurines, while the structure was dramatically affected by the two simultaneous deletions. This suggests that ssPurines and bpPurines play a redundant role in MPMV gRNA packaging, probably as Gag binding sites to facilitate gRNA capture and encapsidation. Interestingly, the deletion of bpPurines revealed an additional severe defect on RNA propagation that was independent of the presence or absence of ssPurines or the gRNA structure of the region. These findings further suggest that the bpPurines play an additional role in the early steps of MPMV replication cycle that is yet to be identified.
Collapse
Affiliation(s)
- Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayesha Jabeen
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
26
|
Mouhand A, Pasi M, Catala M, Zargarian L, Belfetmi A, Barraud P, Mauffret O, Tisné C. Overview of the Nucleic-Acid Binding Properties of the HIV-1 Nucleocapsid Protein in Its Different Maturation States. Viruses 2020; 12:v12101109. [PMID: 33003650 PMCID: PMC7601788 DOI: 10.3390/v12101109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.
Collapse
Affiliation(s)
- Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Marco Pasi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Marjorie Catala
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Loussiné Zargarian
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Anissa Belfetmi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Olivier Mauffret
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
- Correspondence: (O.M.); (C.T.)
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
- Correspondence: (O.M.); (C.T.)
| |
Collapse
|
27
|
Xu C, Gao L, Li J, Shen L, Liang H, Luan K, Wu X. Prediction of RNA secondary structure based on stem region replacement using the RSRNA algorithm. Comput Methods Biomech Biomed Engin 2020; 24:101-114. [PMID: 32901523 DOI: 10.1080/10255842.2020.1813280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA functions, including the regulation of various cellular activities, seem to be closely related to its structure. However, accurately predicting RNA secondary structures can be difficult. Structural prediction can be achieved by selecting stem areas that are suitable and compatible from stem pools. Here, we propose a method for predicting the secondary structure of non-coding RNA based on stem region substitution, which we named RSRNA. This method is compatible with nested RNA secondary structures, while reducing any randomness. Our algorithm had higher performance and prediction accuracy than other algorithms, which deems it more effective for future RNA structure studies.
Collapse
Affiliation(s)
- Chengzhen Xu
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China.,College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Longjian Gao
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| | - Jin Li
- College of Automation, Harbin Engineering University, Harbin, China
| | - Longfeng Shen
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, China
| | - Kuan Luan
- College of Automation, Harbin Engineering University, Harbin, China
| | - Xiaomin Wu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
28
|
Boutant E, Bonzi J, Anton H, Nasim MB, Cathagne R, Réal E, Dujardin D, Carl P, Didier P, Paillart JC, Marquet R, Mély Y, de Rocquigny H, Bernacchi S. Zinc Fingers in HIV-1 Gag Precursor Are Not Equivalent for gRNA Recruitment at the Plasma Membrane. Biophys J 2020; 119:419-433. [PMID: 32574557 PMCID: PMC7376094 DOI: 10.1016/j.bpj.2020.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/16/2023] Open
Abstract
The human immunodeficiency virus type 1 Gag precursor specifically selects the unspliced viral genomic RNA (gRNA) from the bulk of cellular and spliced viral RNAs via its nucleocapsid (NC) domain and drives gRNA encapsidation at the plasma membrane (PM). To further identify the determinants governing the intracellular trafficking of Gag-gRNA complexes and their accumulation at the PM, we compared, in living and fixed cells, the interactions between gRNA and wild-type Gag or Gag mutants carrying deletions in NC zinc fingers (ZFs) or a nonmyristoylated version of Gag. Our data showed that the deletion of both ZFs simultaneously or the complete NC domain completely abolished intracytoplasmic Gag-gRNA interactions. Deletion of either ZF delayed the delivery of gRNA to the PM but did not prevent Gag-gRNA interactions in the cytoplasm, indicating that the two ZFs display redundant roles in this respect. However, ZF2 played a more prominent role than ZF1 in the accumulation of the ribonucleoprotein complexes at the PM. Finally, the myristate group, which is mandatory for anchoring the complexes at the PM, was found to be dispensable for the association of Gag with the gRNA in the cytosol.
Collapse
Affiliation(s)
- Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Jeremy Bonzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Halina Anton
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Maaz Bin Nasim
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Raphael Cathagne
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eléonore Réal
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Denis Dujardin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Philippe Carl
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Hugues de Rocquigny
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Tours, France.
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France.
| |
Collapse
|
29
|
Significant Differences in RNA Structure Destabilization by HIV-1 GagDp6 and NCp7 Proteins. Viruses 2020; 12:v12050484. [PMID: 32344834 PMCID: PMC7290599 DOI: 10.3390/v12050484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play distinct roles in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structures, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a complementary RNA hairpin. In contrast, during viral assembly, NC, as a domain of the group-specific antigen (Gag) polyprotein, binds the genomic RNA and facilitates packaging into new virions. It is not clear how the same protein, alone or as part of Gag, performs such different RNA binding functions in the viral life cycle. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium stability and unfolding barrier for TAR RNA. Comparing measured results with a model of discrete protein binding allows us to localize affected binding sites, in addition to quantifying hairpin stability. We find that, while both NCp7 and Gag∆p6 destabilize the TAR hairpin, Gag∆p6 binding is localized to two sites in the stem, while NCp7 targets sites near the top loop. Unlike Gag∆p6, NCp7 destabilizes this loop, shifting the location of the reaction barrier toward the folded state and increasing the natural rate of hairpin opening by ~104. Thus, our results explain why Gag cleavage and NC release is an essential prerequisite for reverse transcription within the virion.
Collapse
|
30
|
Zhang Z, Xiong P, Zhang T, Wang J, Zhan J, Zhou Y. Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity. Nucleic Acids Res 2020; 48:1451-1465. [PMID: 31872260 PMCID: PMC7026644 DOI: 10.1093/nar/gkz1192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/12/2022] Open
Abstract
Despite the large number of noncoding RNAs in human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and time-consuming 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of <5 × 104 single-to-triple mutants is sufficient to infer 25 of 26 base pairs including non-nested, nonhelical, and noncanonical base pairs with both sensitivity and precision at 96%. Such accurate inference was further confirmed by a twister ribozyme at 100% precision with only noncanonical base pairs as false negatives. The performance was resulted from analyzing covariation-induced deviation of activity by utilizing both functional and nonfunctional variants for unsupervised classification, followed by Monte Carlo (MC) simulated annealing with mutation-derived scores. Highly accurate inference can also be obtained by combining MC with evolution/direct coupling analysis, R-scape or epistasis analysis. The results highlight the usefulness of deep mutational scanning for high-accuracy structural inference of self-cleaving ribozymes with implications for other structured RNAs that permit high-throughput functional selections.
Collapse
Affiliation(s)
- Zhe Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Peng Xiong
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Tongchuan Zhang
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230031, Anhui, P. R. China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
- School of Information and Communication Technology, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
31
|
Purification and Functional Characterization of a Biologically Active Full-Length Feline Immunodeficiency Virus (FIV) Pr50 Gag. Viruses 2019; 11:v11080689. [PMID: 31357656 PMCID: PMC6723490 DOI: 10.3390/v11080689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The feline immunodeficiency virus (FIV) full-length Pr50Gag precursor is a key player in the assembly of new viral particles. It is also a critical component of the efficient selection and packaging of two copies of genomic RNA (gRNA) into the newly formed virus particles from a wide pool of cellular and spliced viral RNA. To understand the molecular mechanisms involved during FIV gRNA packaging, we expressed the His6-tagged and untagged recombinant FIV Pr50Gag protein both in eukaryotic and prokaryotic cells. The recombinant Pr50Gag-His6-tag fusion protein was purified from soluble fractions of prokaryotic cultures using immobilized metal affinity chromatography (IMAC). This purified protein was able to assemble in vitro into virus-like particles (VLPs), indicating that it preserved its ability to oligomerize/multimerize. Furthermore, VLPs formed in eukaryotic cells by the FIV full-length Pr50Gag both in the presence and absence of His6-tag could package FIV sub-genomic RNA to similar levels, suggesting that the biological activity of the recombinant full-length Pr50Gag fusion protein was retained in the presence of His6-tag at the carboxy terminus. Successful expression and purification of a biologically active, recombinant full-length Pr50Gag-His6-tag fusion protein will allow study of the intricate RNA-protein interactions involved during FIV gRNA encapsidation.
Collapse
|
32
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
33
|
Smyth RP, Negroni M, Lever AM, Mak J, Kenyon JC. RNA Structure-A Neglected Puppet Master for the Evolution of Virus and Host Immunity. Front Immunol 2018; 9:2097. [PMID: 30283444 PMCID: PMC6156135 DOI: 10.3389/fimmu.2018.02097] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
The central dogma of molecular biology describes the flow of genetic information from DNA to protein via an RNA intermediate. For many years, RNA has been considered simply as a messenger relaying information between DNA and proteins. Recent advances in next generation sequencing technology, bioinformatics, and non-coding RNA biology have highlighted the many important roles of RNA in virtually every biological process. Our understanding of RNA biology has been further enriched by a number of significant advances in probing RNA structures. It is now appreciated that many cellular and viral biological processes are highly dependent on specific RNA structures and/or sequences, and such reliance will undoubtedly impact on the evolution of both hosts and viruses. As a contribution to this special issue on host immunity and virus evolution, it is timely to consider how RNA sequences and structures could directly influence the co-evolution between hosts and viruses. In this manuscript, we begin by stating some of the basic principles of RNA structures, followed by describing some of the critical RNA structures in both viruses and hosts. More importantly, we highlight a number of available new tools to predict and to evaluate novel RNA structures, pointing out some of the limitations readers should be aware of in their own analyses.
Collapse
Affiliation(s)
- Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Matteo Negroni
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000, Strasbourg, France
| | - Andrew M Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Homerton College, Cambridge, United Kingdom
| |
Collapse
|
34
|
Pitchai FNN, Ali L, Pillai VN, Chameettachal A, Ashraf SS, Mustafa F, Marquet R, Rizvi TA. Expression, purification, and characterization of biologically active full-length Mason-Pfizer monkey virus (MPMV) Pr78 Gag. Sci Rep 2018; 8:11793. [PMID: 30087395 PMCID: PMC6081465 DOI: 10.1038/s41598-018-30142-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
MPMV precursor polypeptide Pr78Gag orchestrates assembly and packaging of genomic RNA (gRNA) into virus particles. Therefore, we have expressed recombinant full-length Pr78Gag either with or without His6-tag in bacterial as well as eukaryotic cultures and purified the recombinant protein from soluble fractions of the bacterial cultures. The recombinant Pr78Gag protein has the intrinsic ability to assemble in vitro to form virus like particles (VLPs). Consistent with this observation, the recombinant protein could form VLPs in both prokaryotes and eukaryotes. VLPs formed in eukaryotic cells by recombinant Pr78Gag with or without His6-tag can encapsidate MPMV transfer vector RNA, suggesting that the inclusion of the His6-tag to the full-length Pr78Gag did not interfere with its expression or biological function. This study demonstrates the expression and purification of a biologically active, recombinant Pr78Gag, which should pave the way to study RNA-protein interactions involved in the MPMV gRNA packaging process.
Collapse
Affiliation(s)
- Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lizna Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vineeta Narayana Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR, 9002, Strasbourg, France.
| | - Tahir Aziz Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
35
|
Dubois N, Khoo KK, Ghossein S, Seissler T, Wolff P, McKinstry WJ, Mak J, Paillart JC, Marquet R, Bernacchi S. The C-terminal p6 domain of the HIV-1 Pr55 Gag precursor is required for specific binding to the genomic RNA. RNA Biol 2018; 15:923-936. [PMID: 29954247 DOI: 10.1080/15476286.2018.1481696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Pr55Gag precursor specifically selects the HIV-1 genomic RNA (gRNA) from a large excess of cellular and partially or fully spliced viral RNAs and drives the virus assembly at the plasma membrane. During these processes, the NC domain of Pr55Gag interacts with the gRNA, while its C-terminal p6 domain binds cellular and viral factors and orchestrates viral particle release. Gag∆p6 is a truncated form of Pr55Gag lacking the p6 domain usually used as a default surrogate for wild type Pr55Gag for in vitro analysis. With recent advance in production of full-length recombinant Pr55Gag, here, we tested whether the p6 domain also contributes to the RNA binding specificity of Pr55Gag by systematically comparing binding of Pr55Gag and Gag∆p6 to a panel of viral and cellular RNAs. Unexpectedly, our fluorescence data reveal that the p6 domain is absolutely required for specific binding of Pr55Gag to the HIV-1 gRNA. Its deletion resulted not only in a decreased affinity for gRNA, but also in an increased affinity for spliced viral and cellular RNAs. In contrast Gag∆p6 displayed a similar affinity for all tested RNAs. Removal of the C-terminal His-tag from Pr55Gag and Gag∆p6 uniformly increased the Kd values of the RNA-protein complexes by ~ 2.5 fold but did not affect the binding specificities of these proteins. Altogether, our results demonstrate a novel role of the p6 domain in the specificity of Pr55Gag-RNA interactions, and strongly suggest that the p6 domain contributes to the discrimination of HIV-1 gRNA from cellular and spliced viral mRNAs, which is necessary for its selective encapsidation.
Collapse
Affiliation(s)
- Noé Dubois
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Keith K Khoo
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Shannon Ghossein
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Tanja Seissler
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Philippe Wolff
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France.,d Plateforme protéomique Strasbourg-Esplanade, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | | | - Johnson Mak
- b School of Medicine , Deakin University , Geelong , Australia.,e Institute for Glycomics, Griffith University , Southport , Australia
| | - Jean-Christophe Paillart
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Roland Marquet
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Serena Bernacchi
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
36
|
Mustafa F, Vivet-Boudou V, Jabeen A, Ali LM, Kalloush RM, Marquet R, Rizvi TA. The bifurcated stem loop 4 (SL4) is crucial for efficient packaging of mouse mammary tumor virus (MMTV) genomic RNA. RNA Biol 2018; 15:1047-1059. [PMID: 29929424 PMCID: PMC6161677 DOI: 10.1080/15476286.2018.1486661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Packaging the mouse mammary tumor virus (MMTV) genomic RNA (gRNA) requires the entire 5' untranslated region (UTR) in conjunction with the first 120 nucleotides of the gag gene. This region includes several palindromic (pal) sequence(s) and stable stem loops (SLs). Among these, stem loop 4 (SL4) adopts a bifurcated structure consisting of three stems, two apical loops, and an internal loop. Pal II, located in one of the apical loops, mediates gRNA dimerization, a process intricately linked to packaging. We thus hypothesized that the bifurcated SL4 structure could constitute the major gRNA packaging determinant. To test this hypothesis, the two apical loops and the flanking sequences forming the bifurcated SL4 were individually mutated. These mutations all had deleterious effects on gRNA packaging and propagation. Next, single and compensatory mutants were designed to destabilize then recreate the bifurcated SL4 structure. A structure-function analysis using bioinformatics predictions and RNA chemical probing revealed that mutations that led to the loss of the SL4 bifurcated structure abrogated RNA packaging and propagation, while compensatory mutations that recreated the native SL4 structure restored RNA packaging and propagation to wild type levels. Altogether, our results demonstrate that SL4 constitutes the principal packaging determinant of MMTV gRNA. Our findings further suggest that SL4 acts as a structural switch that can not only differentiate between RNA for translation versus packaging/dimerization, but its location also allows differentiation between spliced and unspliced RNAs during gRNA encapsidation.
Collapse
Affiliation(s)
- Farah Mustafa
- a Department of Biochemistry , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Valérie Vivet-Boudou
- b Université de Strasbourg , CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ayesha Jabeen
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Lizna M Ali
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Rawan M Kalloush
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| | - Roland Marquet
- b Université de Strasbourg , CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Tahir A Rizvi
- c Department of Microbiology & Immunology , College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , UAE
| |
Collapse
|
37
|
Biochemical and Functional Characterization of Mouse Mammary Tumor Virus Full-Length Pr77 Gag Expressed in Prokaryotic and Eukaryotic Cells. Viruses 2018; 10:v10060334. [PMID: 29912170 PMCID: PMC6024702 DOI: 10.3390/v10060334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) Pr77Gag polypeptide is an essential retroviral structural protein without which infectious viral particles cannot be formed. This process requires specific recognition and packaging of dimerized genomic RNA (gRNA) by Gag during virus assembly. Most of the previous work on retroviral assembly has used either the nucleocapsid portion of Gag, or other truncated Gag derivatives—not the natural substrate for virus assembly. In order to understand the molecular mechanism of MMTV gRNA packaging process, we expressed and purified full-length recombinant Pr77Gag-His6-tag fusion protein from soluble fractions of bacterial cultures. We show that the purified Pr77Gag-His6-tag protein retained the ability to assemble virus-like particles (VLPs) in vitro with morphologically similar immature intracellular particles. The recombinant proteins (with and without His6-tag) could both be expressed in prokaryotic and eukaryotic cells and had the ability to form VLPs in vivo. Most importantly, the recombinant Pr77Gag-His6-tag fusion proteins capable of making VLPs in eukaryotic cells were competent for packaging sub-genomic MMTV RNAs. The successful expression and purification of a biologically active, full-length MMTV Pr77Gag should lay down the foundation towards performing RNA–protein interaction(s), especially for structure-function studies and towards understanding molecular intricacies during MMTV gRNA packaging and assembly processes.
Collapse
|
38
|
Smyth RP, Smith MR, Jousset AC, Despons L, Laumond G, Decoville T, Cattenoz P, Moog C, Jossinet F, Mougel M, Paillart JC, von Kleist M, Marquet R. In cell mutational interference mapping experiment (in cell MIME) identifies the 5' polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Res 2018; 46:e57. [PMID: 29514260 PMCID: PMC5961354 DOI: 10.1093/nar/gky152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
Collapse
Affiliation(s)
- Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Maureen R Smith
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Anne-Caroline Jousset
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Laurence Despons
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Pierre Cattenoz
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Fabrice Jossinet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Marylène Mougel
- IRIM CNRS UMR9004, Université de Montpellier, Montpellier, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Max von Kleist
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| |
Collapse
|
39
|
Olson ED, Musier-Forsyth K. Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly. Semin Cell Dev Biol 2018; 86:129-139. [PMID: 29580971 DOI: 10.1016/j.semcdb.2018.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 02/04/2023]
Abstract
Retroviral Gag proteins are responsible for coordinating many aspects of virion assembly. Gag possesses two distinct nucleic acid binding domains, matrix (MA) and nucleocapsid (NC). One of the critical functions of Gag is to specifically recognize, bind, and package the retroviral genomic RNA (gRNA) into assembling virions. Gag interactions with cellular RNAs have also been shown to regulate aspects of assembly. Recent results have shed light on the role of MA and NC domain interactions with nucleic acids, and how they jointly function to ensure packaging of the retroviral gRNA. Here, we will review the literature regarding RNA interactions with NC, MA, as well as overall mechanisms employed by Gag to interact with RNA. The discussion focuses on human immunodeficiency virus type-1, but other retroviruses will also be discussed. A model is presented combining all of the available data summarizing the various factors and layers of selection Gag employs to ensure specific gRNA packaging and correct virion assembly.
Collapse
Affiliation(s)
- Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH, 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
40
|
Dubois N, Marquet R, Paillart JC, Bernacchi S. Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol 2018; 9:527. [PMID: 29623074 PMCID: PMC5874298 DOI: 10.3389/fmicb.2018.00527] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 01/18/2023] Open
Abstract
The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA) molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…), the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.
Collapse
Affiliation(s)
- Noé Dubois
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
42
|
Basu A, Jain N, Tolbert BS, Komar AA, Mazumder B. Conserved structures formed by heterogeneous RNA sequences drive silencing of an inflammation responsive post-transcriptional operon. Nucleic Acids Res 2018; 45:12987-13003. [PMID: 29069516 PMCID: PMC5727460 DOI: 10.1093/nar/gkx979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/09/2017] [Indexed: 11/21/2022] Open
Abstract
RNA–protein interactions with physiological outcomes usually rely on conserved sequences within the RNA element. By contrast, activity of the diverse gamma-interferon-activated inhibitor of translation (GAIT)-elements relies on the conserved RNA folding motifs rather than the conserved sequence motifs. These elements drive the translational silencing of a group of chemokine (CC/CXC) and chemokine receptor (CCR) mRNAs, thereby helping to resolve physiological inflammation. Despite sequence dissimilarity, these RNA elements adopt common secondary structures (as revealed by 2D-1H NMR spectroscopy), providing a basis for their interaction with the RNA-binding GAIT complex. However, many of these elements (e.g. those derived from CCL22, CXCL13, CCR4 and ceruloplasmin (Cp) mRNAs) have substantially different affinities for GAIT complex binding. Toeprinting analysis shows that different positions within the overall conserved GAIT element structure contribute to differential affinities of the GAIT protein complex towards the elements. Thus, heterogeneity of GAIT elements may provide hierarchical fine-tuning of the resolution of inflammation.
Collapse
Affiliation(s)
- Abhijit Basu
- Center for Gene Regulation in Health & Disease, Department of Biology, Geology and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Niyati Jain
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anton A Komar
- Center for Gene Regulation in Health & Disease, Department of Biology, Geology and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health & Disease, Department of Biology, Geology and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| |
Collapse
|
43
|
Dawn of the in vivo RNA structurome and interactome. Biochem Soc Trans 2017; 44:1395-1410. [PMID: 27911722 DOI: 10.1042/bst20160075] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases.
Collapse
|
44
|
Todd GC, Duchon A, Inlora J, Olson ED, Musier-Forsyth K, Ono A. Inhibition of HIV-1 Gag-membrane interactions by specific RNAs. RNA (NEW YORK, N.Y.) 2017; 23:395-405. [PMID: 27932583 PMCID: PMC5311501 DOI: 10.1261/rna.058453.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
HIV-1 particle assembly, which occurs at the plasma membrane (PM) of cells, is driven by the viral polyprotein Gag. Gag recognizes phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], a PM-specific phospholipid, via the highly basic region (HBR) in its N-terminal matrix (MA) domain. The HBR is also known to bind to RNA. We have previously shown, using an in vitro liposome binding assay, that RNA inhibits Gag binding to membranes that lack PI(4,5)P2 If this RNA block is removed by RNase treatment, Gag can bind nonspecifically to other negatively charged membranes. In an effort to identify the RNA species that confer this inhibition of Gag membrane binding, we have tested the impact of purified RNAs on Gag interactions with negatively charged liposomes lacking PI(4,5)P2 We found that some tRNA species and RNAs containing stem-loop 1 of the psi region in the 5' untranslated region of the HIV-1 genome impose inhibition of Gag binding to membranes lacking PI(4,5)P2 In contrast, a specific subset of tRNAs, as well as an RNA sequence previously selected in vitro for MA binding, failed to suppress Gag-membrane interactions. Furthermore, switching the identity of charged residues in the HBR did not diminish the susceptibility of Gag-liposome binding for each of the RNAs tested, while deletion of most of the NC domain abrogates the inhibition of membrane binding mediated by the RNAs that are inhibitory to WT Gag-liposome binding. These results support a model in which NC facilitates binding of RNA to MA and thereby promotes RNA-based inhibition of Gag-membrane binding.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemical synthesis
- Aptamers, Nucleotide/pharmacology
- Base Pairing
- Base Sequence
- Binding Sites
- Cell Membrane/chemistry
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HIV-1/chemistry
- Humans
- Liposomes/antagonists & inhibitors
- Liposomes/chemistry
- Nucleic Acid Conformation
- Phosphatidylinositol 4,5-Diphosphate/chemistry
- Phosphatidylinositol 4,5-Diphosphate/deficiency
- Protein Binding/drug effects
- RNA, Transfer/chemistry
- RNA, Transfer/pharmacology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/chemistry
- Static Electricity
- gag Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors
- gag Gene Products, Human Immunodeficiency Virus/chemistry
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Gabrielle C Todd
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Alice Duchon
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jingga Inlora
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
45
|
Keane SC, Summers MF. NMR Studies of the Structure and Function of the HIV-1 5'-Leader. Viruses 2016; 8:v8120338. [PMID: 28009832 PMCID: PMC5192399 DOI: 10.3390/v8120338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
The 5′-leader of the human immunodeficiency virus type 1 (HIV-1) genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA) fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR) spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.
Collapse
Affiliation(s)
- Sarah C Keane
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
46
|
Bernacchi S, Abd El-Wahab EW, Dubois N, Hijnen M, Smyth RP, Mak J, Marquet R, Paillart JC. HIV-1 Pr55 Gag binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biol 2016; 14:90-103. [PMID: 27841704 DOI: 10.1080/15476286.2016.1256533] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The HIV-1 Pr55Gag precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55Gag and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55Gag specifically associate with the 5' region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55Gag binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55Gag. Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55Gag recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55Gag among a variety of svRNAs, all harboring SL1 in their first common exon.
Collapse
Affiliation(s)
- Serena Bernacchi
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ekram W Abd El-Wahab
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Noé Dubois
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Marcel Hijnen
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia
| | - Redmond P Smyth
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Johnson Mak
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia.,d School of Medicine, Faculty of Health, Deakin University , Geelong , Victoria , Australia.,e Commonwealth Scientific and Industrial Research Organization, Livestock Industries, Australian Animal Health Laboratory , Geelong , Victoria , Australia
| | - Roland Marquet
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | | |
Collapse
|
47
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
48
|
Rye-McCurdy T, Olson ED, Liu S, Binkley C, Reyes JP, Thompson BR, Flanagan JM, Parent LJ, Musier-Forsyth K. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag. Viruses 2016; 8:v8090256. [PMID: 27657107 PMCID: PMC5035970 DOI: 10.3390/v8090256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.
Collapse
Affiliation(s)
- Tiffiny Rye-McCurdy
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Erik D Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Shuohui Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Christiana Binkley
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Joshua-Paolo Reyes
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Brian R Thompson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Leslie J Parent
- Departments of Medicine and Microbiology and Immunology, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Comas-Garcia M, Davis SR, Rein A. On the Selective Packaging of Genomic RNA by HIV-1. Viruses 2016; 8:v8090246. [PMID: 27626441 PMCID: PMC5035960 DOI: 10.3390/v8090246] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag-gRNA complex will nucleate particle assembly more efficiently than other Gag-RNA complexes. New data shows that among cellular mRNAs, those with long 3'-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3'-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Sean R Davis
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
The Life-Cycle of the HIV-1 Gag-RNA Complex. Viruses 2016; 8:v8090248. [PMID: 27626439 PMCID: PMC5035962 DOI: 10.3390/v8090248] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.
Collapse
|