1
|
Wang X, Guo T, Niu L, Zheng B, Huang W, Xu H, Huang W. Engineered targeting OIP5 sensitizes bladder cancer to chemotherapy resistance via TRIP12-PPP1CB-YBX1 axis. Oncogene 2024; 43:2850-2867. [PMID: 39155295 DOI: 10.1038/s41388-024-03136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Chemoresistance is an important cause of treatment failure in bladder cancer, and identifying genes that confer drug resistance is an important step toward developing new therapeutic strategies to improve treatment outcomes. In the present study, we show that gemcitabine plus cisplatin (GEM/DDP) therapy induces NF-κB signaling, which promotes p65-mediated transcriptional activation of OIP5. OIP5 recruits the E3 ubiquitin ligase TRIP12 to bind to and degrade the phosphatase PPP1CB, thereby enhancing the transcription factor activity of YBX1. This in turn upregulates drug-resistance-related genes under the transcriptional control of YBX1, leading to chemoresistance. Moreover, PPP1CB degradation can enhance the phosphorylation activity of IKKβ, triggering the NF-κB signaling cascade, which further stimulates OIP5 gene expression, thus forming a negative feedback regulatory loop. Consistently, elevated OIP5 expression was associated with chemoresistance and poor prognosis in patients with bladder cancer. Furthermore, we used a CRISPR/Cas9-based engineered gene circuit, which can monitor the progression of chemoresistance in real-time, to induce OIP5 knockout upon detection of increased NF-κB signaling. The gene circuit significantly inhibited tumor cell growth in vivo, underscoring the potential for synergy between gene therapy and chemotherapy in the treatment of cancer.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ting Guo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haibo Xu
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Wu RY, Wu CQ, Xie F, Xing X, Xu L. Building RNA-Mediated Artificial Signaling Pathways between Endogenous Genes. Acc Chem Res 2024; 57:1777-1789. [PMID: 38872074 DOI: 10.1021/acs.accounts.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
ConspectusSophisticated genetic networks play a pivotal role in orchestrating cellular responses through intricate signaling pathways across diverse environmental conditions. Beyond the inherent complexity of natural cellular signaling networks, the construction of artificial signaling pathways (ASPs) introduces a vast array of possibilities for reshaping cellular responses, enabling programmable control of living organisms. ASPs can be integrated with existing cellular networks and redirect output responses as desired, allowing seamless communication and coordination with other cellular processes, thereby achieving designable transduction within cells. Among diversified ASPs, establishing connections between originally independent endogenous genes is of particular significance in modifying the genetic networks, so that cells can be endowed with new capabilities to sense and deal with abnormal factors related to differentiated gene expression (i.e., solve the issues of the aberrant gene expression induced by either external or internal stimuli). In a typical scenario, the two genes X and Y in the cell are originally expressed independently. After the introduction of an ASP, changes in the expression of gene X may exert a designed impact on gene Y, subsequently inducing the cellular response related to gene Y. If X represents a disease signal and Y serves as a therapeutic module, the introduction of the ASP empowers cells with a new spontaneous defense system to handle potential risks, which holds great potential for both fundamental and translational studies.In this Account, we primarily review our endeavors in the construction of RNA-mediated ASPs between endogenous genes that can respond to differentiated RNA expression. In contrast to other molecules that may be restricted to specific pathways, synthetic RNA circuits can be easily utilized and expanded as a general platform for constructing ASPs with a high degree of programmability and tunability for diversified functionalities through predictable Watson-Crick base pairing. We first provide an overview of recent advancements in RNA-based genetic circuits, encompassing but not limited to utilization of RNA toehold switches, siRNA and CRISPR systems. Despite notable progress, most reported RNA circuits have to contain at least one exogenous RNA X as input or one engineered RNA Y as a target, which is not suitable for establishing endogenous gene connections. While exogenous RNAs can be engineered and controlled as desired, constructing a general and efficient platform for manipulation of naturally occurring RNAs poses a formidable challenge, especially for the mammalian system. With a focus on this goal, we are devoted to developing efficient strategies to manipulate cell responses by establishing RNA-mediated ASPs between endogenous genes, particularly in mammalian cells. Our step-by-step progress in engineering customized cell signaling circuits, from bacterial cells to mammalian cells, from gene expression regulation to phenotype control, and from small RNA to long mRNA of low abundance and more complex secondary structures, is systematically described. Finally, future perspectives and potential applications of these RNA-mediated ASPs between endogenous genes are also discussed.
Collapse
Affiliation(s)
- Ruo-Yue Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
4
|
Wang X, Li X, Niu L, Lv F, Guo T, Gao Y, Ran Y, Huang W, Wang B. FAK-LINC01089 negative regulatory loop controls chemoresistance and progression of small cell lung cancer. Oncogene 2024; 43:1669-1687. [PMID: 38594505 DOI: 10.1038/s41388-024-03027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The focal adhesion kinase (FAK) tyrosine kinase is activated and upregulated in multiple cancer types including small cell lung cancer (SCLC). However, FAK inhibitors have shown limited efficacy in clinical trials for cancer treatment. With the aim of identifying potential therapeutic strategies to inhibit FAK for cancer treatment, we investigated long non-coding RNAs (lncRNAs) that potentially regulate FAK in SCLC. In this study, we identified a long non-coding RNA LINC01089 that binds and inhibits FAK phosphorylation (activation). Expression analysis revealed that LINC01089 was downregulated in SCLC tissues and negatively correlated with chemoresistance and survival in SCLC patients. Functionally, LINC01089 inhibited chemoresistance and progression of SCLC in vitro and in vivo. Mechanistically, LINC01089 inhibits FAK activation by blocking binding with Src and talin kinases, while FAK negatively regulates LINC01089 transcription by activating the ERK signaling pathway to recruit the REST transcription factor. Furthermore, LINC01089-FAK axis mediates the expression of drug resist-related genes by modulating YBX1 phosphorylation, leading to drug resistance in SCLC. Intriguingly, the FAK-LINC01089 interaction depends on the co-occurrence of the novel FAK variant and the non-conserved region of LINC01089 in primates. In Conclusion, our results indicated that LINC01089 may serve as a novel high-efficiency FAK inhibitor and the FAK-LINC01089 axis represents a valuable prognostic biomarker and potential therapeutic target in SCLC.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liman Niu
- Chongqing Key Laboratory of Sichuan-Chongging Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Guo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Zheng B, Chen Y, Niu L, Zhang X, Yang Y, Wang S, Chen W, Cai Z, Huang W, Huang W. Modulating the tumoral SPARC content to enhance albumin-based drug delivery for cancer therapy. J Control Release 2024; 366:596-610. [PMID: 38184232 DOI: 10.1016/j.jconrel.2023.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Insufficient delivery of therapeutic agents into solid tumors by systemic administration remains a major challenge in cancer treatment. Secreted protein acidic and rich in cysteine (SPARC) has high binding affinity to albumin and has been shown to enhance the penetration and uptake of albumin-based drug carriers in tumors. Here, we developed a strategy to alter the tumor microenvironment (TME) by upregulating SPARC to enhance the delivery efficiency of albumin-based drug carriers into tumors. We prepared albumin nanoparticles encapsulating an NF-κB controllable CRISPR activation system (SP-NPs). SP-NPs achieved tumor-selective SPARC upregulation by responding to the highly activated NF-κB in tumor cells. Whereas a single dose of SP-NPs only modestly upregulated SPARC expression, serial administration of SP-NPs created a positive feedback loop that induced progressive increases in SPARC expression as well as tumor cell uptake and tumor penetration of the nanoparticles in vitro, in organoids, and in subcutaneous tumors in vivo. Additionally, pre-treatment with SP-NPs significantly enhanced the anti-tumor efficacy of Abraxane, a commercialized albumin-bound paclitaxel nanoformulation. Our data provide evidence that modulating SPARC in the TME can enhance the efficiency of albumin-based drug delivery to solid tumors, which may result in new strategies to increase the efficacy of nanoparticle-based cancer drugs.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xinyuan Zhang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Shanzhao Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Zhiming Cai
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China.
| |
Collapse
|
6
|
Zheng B, Niu L, Xu H, Yang Y, Chen Y, Wang C, Chen W, Huang W. Engineering redirected NF-κB/OIP5 expression programs to enhance tumor responses to chemotherapy in bladder cancer. Sci Bull (Beijing) 2023; 68:3207-3224. [PMID: 37993335 DOI: 10.1016/j.scib.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Nuclear factor kappa-B (NF-κB), a pivotal transcriptional regulator, plays a crucial role in modulating downstream genes implicated in tumor drug resistance. We establish a programmable system within bladder cancer cells to tailor drug responses by employing a synthetic clustered regularly interspaced short palindromic repeats (CRISPR)-based expression strategy that emulates natural transcriptional regulators. Our investigation uncovers the functional significance of Opa-interacting protein 5 (OIP5), upregulated upon NF-κB activation, as a key regulator governing drug-resistance to vincristine (VCR) treatment in bladder cancer. Through engineered guide RNAs (sgRNAs) targeting OIP5 to integrate NF-κB aptamers, we construct a modular scaffold RNA that encodes both the target locus and regulatory functionality. This engineered CRISPR scaffold RNA effectively responds to VCR stimulus by binding with activated NF-κB. Intriguingly, it redirects NF-κB to attenuate OIP5 expression-a reversal of its original role-while concurrently obstructing multiple NF-κB-mediated drug resistance pathways. This dual action thwarts drug resistance development. Further enhancing therapeutic potential, we develop a versatile nanoparticle system capable of co-delivering CRISPR scaffold RNAs and VCR. This synergistic approach demonstrates potent anti-tumor effects in both in vitro and in vivo settings. Our nanoparticle-mediated combination presents a compelling proof-of-concept, showcasing the utility of engineered CRISPR-based synthetic expression programs to reconfigure cellular drug responses and heighten tumor cell susceptibility to chemotherapy.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haibo Xu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China
| | - Chenguang Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China.
| |
Collapse
|
7
|
Hjazi A, Ghaffar E, Asghar W, Alauldeen Khalaf H, Ikram Ullah M, Mireya Romero-Parra R, Hussien BM, Abdulally Abdulhussien Alazbjee A, Singh Bisht Y, Fakri Mustafa Y, Reza Hosseini-Fard S. CDKN2B-AS1 as a novel therapeutic target in cancer: Mechanism and clinical perspective. Biochem Pharmacol 2023; 213:115627. [PMID: 37257723 DOI: 10.1016/j.bcp.2023.115627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long non-coding RNAs (lncRNA) have been identified as essential components having considerable modulatory impactson biological activities through altering gene transcription, epigenetic changes, and protein translation. Cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), a recently discovered lncRNA, was shown to be substantially elevated in various cancers.Furthermore, via modulation ofvarious signalingaxes, it is effectively connected to the control of critical cancer-associatedbiological pathways likecell proliferation, apoptosis, cell cycle, epithelial-mesenchymal transition(EMT), invasion, and migration. Considering the crucial functions ofCDKN2B-AS1in cancer onset and development, this lncRNA offers immense therapeutic implications for usage as a new diagnostic or treatment approach. In this article, we evaluate the most recent discoveries made into the functions of the lncRNA CDKN2B-AS1 in cancer, in addition to its prospect asbeneficial properties,prognostic anddiagnostic biomarkersin the cancer-related treatment, emphasizingits participation in a broad network of signalingaxes whichcould affectvariouscancers and investigating its promising therapeutic possibility.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Biochemistry Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang X, Wang B, Li F, Li X, Guo T, Gao Y, Wang D, Huang W. The c-Src/LIST Positive Feedback Loop Sustains Tumor Progression and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300115. [PMID: 37156751 PMCID: PMC10369257 DOI: 10.1002/advs.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Chemotherapy resistance and treatment failure hinder clinical cancer treatment. Src, the first mammalian proto-oncogene to be discovered, is a valuable anti-cancer therapeutic target. Although several c-Src inhibitors have reached the clinical stage, drug resistance remains a challenge during treatment. Herein, a positive feedback loop between a previously uncharacterized long non-coding RNA (lncRNA), which the authors renamed lncRNA-inducing c-Src tumor-promoting function (LIST), and c-Src is uncovered. LIST directly binds to and regulates the Y530 phosphorylation activity of c-Src. As a c-Src agonist, LIST promotes tumor chemoresistance and progression in vitro and in vivo in multiple cancer types. c-Src can positively regulate LIST transcription by activating the NF-κB signaling pathway and then recruiting the P65 transcription factor to the LIST promoter. Interestingly, the LIST/c-Src interaction is associated with evolutionary new variations of c-Src. It is proposed that the human-specific LIST/c-Src axis renders an extra layer of control over c-Src activity. Additionally, the LIST/c-Src axis is of high physiological relevance in cancer and may be a valuable prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Bing Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Fang Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xingkai Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Ting Guo
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Yushun Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Dawei Wang
- Department of Thoracic SurgeryChifeng Municipal HospitalChifeng024000China
| | - Weiren Huang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
9
|
Qi Q, Liu X, Fu F, Shen W, Cui S, Yan S, Zhang Y, Du Y, Tian T, Zhou X. Utilizing Epigenetic Modification as a Reactive Handle To Regulate RNA Function and CRISPR-Based Gene Regulation. J Am Chem Soc 2023; 145:11678-11689. [PMID: 37191624 DOI: 10.1021/jacs.3c01864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The current methods to control RNA functions in living conditions are limited. The new RNA-controlling strategy presented in this study involves utilizing 5-formylcytidine (f5C)-directed base manipulation. This study shows that malononitrile and pyridine boranes can effectively manipulate the folding, small molecule binding, and enzyme recognition of f5C-bearing RNAs. We further demonstrate the efficiency of f5C-directed reactions in controlling two different clustered regularly interspaced short palindromic repeat (CRISPR) systems. Although further studies are needed to optimize the efficiency of these reactions in vivo, this small molecule-based approach presents exciting new opportunities for regulating CRISPR-based gene expression and other applications.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Fang Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Shuangyu Cui
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Shen Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yutong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuhao Du
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
10
|
Koh KD, Bonser LR, Eckalbar WL, Yizhar-Barnea O, Shen J, Zeng X, Hargett KL, Sun DI, Zlock LT, Finkbeiner WE, Ahituv N, Erle DJ. Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma. CELL GENOMICS 2023; 3:100229. [PMID: 36777184 PMCID: PMC9903679 DOI: 10.1016/j.xgen.2022.100229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.
Collapse
Affiliation(s)
- Kyung Duk Koh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luke R. Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter L. Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ofer Yizhar-Barnea
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiangshan Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kirsten L. Hargett
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dingyuan I. Sun
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorna T. Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter E. Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David J. Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
12
|
Kelvin D, Suess B. Tapping the potential of synthetic riboswitches: reviewing the versatility of the tetracycline aptamer. RNA Biol 2023; 20:457-468. [PMID: 37459466 DOI: 10.1080/15476286.2023.2234732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
Synthetic riboswitches are a versatile class of regulatory elements that are becoming increasingly established in synthetic biology applications. They are characterized by their compact size and independence from auxiliary protein factors. While naturally occurring riboswitches were mostly discovered in bacteria, synthetic riboswitches have been designed for all domains of life. Published design strategies far exceed the number of riboswitches found in nature. A core element of any riboswitch is a binding domain, called an aptamer, which is characterized by high specificity and affinity for its ligand. Aptamers can be selected de novo, allowing the design of synthetic riboswitches against a broad spectrum of targets. The tetracycline aptamer has proven to be well suited for riboswitch engineering. Since its selection, it has been used in a variety of applications and is considered to be well established and characterized. Using the tetracycline aptamer as an example, we aim to discuss a large variety of design approaches for synthetic riboswitch engineering and their application. We aim to demonstrate the versatility of riboswitches in general and the high potential of synthetic RNA devices for creating new solutions in both the scientific and medical fields.
Collapse
Affiliation(s)
- Daniel Kelvin
- Fachbereich Biologie, TU Darmstadt, Darmstadt, Germany
| | - Beatrix Suess
- Fachbereich Biologie, TU Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, Darmstadt, Germany
| |
Collapse
|
13
|
Hu LF, Li YX, Wang JZ, Zhao YT, Wang Y. Controlling CRISPR-Cas9 by guide RNA engineering. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1731. [PMID: 35393779 DOI: 10.1002/wrna.1731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/15/2022] [Indexed: 01/31/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a product of million years of evolution by microbes to fight against invading genetic materials. Around 10 years ago, scientists started to repurpose the CRISPR as genetic tools by molecular engineering approaches. The guide RNA provides a versatile and unique platform for the innovation to improve and expand the application of CRISPR-Cas9 system. In this review, we will first introduce the basic sequence and structure of guide RNA and its role during the function of CRISPR-Cas9. We will then summarize recent progress on the development of various guide RNA engineering strategies. These strategies have been dedicated to improve the performance of CRISPR-Cas9, to achieve precise spatiotemporal control of CRISPR-Cas9, and to broaden the application of CRISPR-Cas9. Finally, we will briefly discuss the uniqueness and advantage of guide RNA-engineering based systems versus those with engineered Cas9 proteins and speculate potential future directions in guide RNA engineering. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Lu-Feng Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yu-Xuan Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jia-Zhen Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yu-Ting Zhao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
14
|
Pelea O, Fulga TA, Sauka-Spengler T. RNA-Responsive gRNAs for Controlling CRISPR Activity: Current Advances, Future Directions, and Potential Applications. CRISPR J 2022; 5:642-659. [PMID: 36206027 PMCID: PMC9618385 DOI: 10.1089/crispr.2022.0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/17/2022] [Indexed: 01/31/2023] Open
Abstract
CRISPR-Cas9 has emerged as a major genome manipulation tool. As Cas9 can cause off-target effects, several methods for controlling the expression of CRISPR systems were developed. Recent studies have shown that CRISPR activity could be controlled by sensing expression levels of endogenous transcripts. This is particularly interesting, as endogenous RNAs could harbor important information about the cell type, disease state, and environmental challenges cells are facing. Single-guide RNA (sgRNA) engineering played a major role in the development of RNA-responsive CRISPR systems. Following further optimizations, RNA-responsive sgRNAs could enable the development of novel therapeutic and research applications. This review introduces engineering strategies that could be employed to modify Streptococcus pyogenes sgRNAs with a focus on recent advances made toward the development of RNA-responsive sgRNAs. Future directions and potential applications of these technologies are also discussed.
Collapse
Affiliation(s)
- Oana Pelea
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
| | - Tudor A. Fulga
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
15
|
Dykstra PB, Rando TA, Smolke CD. Modulating myoblast differentiation with RNA-based controllers. PLoS One 2022; 17:e0275298. [PMID: 36166456 PMCID: PMC9514614 DOI: 10.1371/journal.pone.0275298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023] Open
Abstract
Tunable genetic controllers play a critical role in the engineering of biological systems that respond to environmental and cellular signals. RNA devices, a class of engineered RNA-based controllers, enable tunable gene expression control of target genes in response to molecular effectors. RNA devices have been demonstrated in a number of systems showing proof-of-concept of applying ligand-responsive control over therapeutic activities, including regulation of cell fate decisions such as T cell proliferation and apoptosis. Here, we describe the application of a theophylline-responsive RNA device in a muscle progenitor cell system to control myogenic differentiation. Ribozyme-based RNA switches responsive to theophylline control fluorescent reporter expression in C2C12 myoblasts in a ligand dependent manner. HRAS and JAK1, both anti-differentiation proteins, were incorporated into RNA devices. Finally, we demonstrate that the regulation of HRAS expression via theophylline-responsive RNA devices results in the modulation of myoblast differentiation in a theophylline-dependent manner. Our work highlights the potential for RNA devices to exert drug-responsive, tunable control over cell fate decisions with applications in stem cell therapy and basic stem cell biology research.
Collapse
Affiliation(s)
- Peter B. Dykstra
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Christina D. Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|
16
|
Ding M, Lin J, Qin C, Wei P, Tian J, Lin T, Xu T. Application of synthetic biology in bladder cancer. Chin Med J (Engl) 2022; 135:2178-2187. [PMID: 36209735 PMCID: PMC9771244 DOI: 10.1097/cm9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Bladder cancer (BC) is the most common malignant tumor of the genitourinary system. The age of individuals diagnosed with BC tends to decrease in recent years. A variety of standard therapeutic options are available for the clinical management of BC, but limitations exist. It is difficult to surgically eliminate small lesions, while radiation and chemotherapy damage normal tissues, leading to severe side effects. Therefore, new approaches are required to improve the efficacy and specificity of BC treatment. Synthetic biology is a field emerging in the last decade that refers to biological elements, devices, and materials that are artificially synthesized according to users' needs. In this review, we discuss how to utilize genetic elements to regulate BC-related gene expression periodically and quantitatively to inhibit the initiation and progression of BC. In addition, the design and construction of gene circuits to distinguish cancer cells from normal cells to kill the former but spare the latter are elaborated. Then, we introduce the development of genetically modified T cells for targeted attacks on BC. Finally, synthetic nanomaterials specializing in detecting and killing BC cells are detailed. This review aims to describe the innovative details of the clinical diagnosis and treatment of BC from the perspective of synthetic biology.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Jiaxing Lin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 528403, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
17
|
Hao Y, Li M, Zhang Q, Shi J, Li J, Li Q, Fan C, Wang F. DNA Origami‐Based Single‐Molecule CRISPR Machines for Spatially Resolved Searching. Angew Chem Int Ed Engl 2022; 61:e202205460. [DOI: 10.1002/anie.202205460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yaya Hao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiye Shi
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiang Li
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
18
|
Ji H, Xiong W, Zhang K, Tian T, Zhou X. Hydrogen Peroxide-triggered Chemical Strategy for Controlling CRISPR systems. Chem Asian J 2022; 17:e202200214. [PMID: 35483968 DOI: 10.1002/asia.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Indexed: 11/09/2022]
Abstract
The function of the CRISPR system can be conditionally controlled through rationally guided RNA engineering such that the target sequences can be precisely selected and manipulated. In particular, gRNA, as an important component of the CRISPR system, provides a unique tool for multifunctional control of the system based on the structure of the RNA itself. Therefore, we introduced here a protective group on the 2'-OH position of RNA to inhibit RNA-guided nucleic acid cleavage. Next, the modified gRNA can restore its original function under the chemical stimulation of hydrogen peroxide to realize the control of the CRISPR system. The experiment result demonstrated that the operating mechanism of this strategy may be based on chemical modifications that reduce the number of complementary base pairs between RNAs and targets, and the RNA-protein interaction. This further enriches the toolbox of conditional control of CRISPR function and has broad potential for gene editing in living cells and disease treatment using endogenous hydrogen peroxide.
Collapse
Affiliation(s)
- Huimin Ji
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Wei Xiong
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Kaisong Zhang
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Tian Tian
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| | - Xiang Zhou
- The Institute of Molecular Medicine, Wuhan University People's Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, Hubei, P. R. China
| |
Collapse
|
19
|
Swartjes T, Shang P, van den Berg DTM, Künne T, Geijsen N, Brouns SJJ, van der Oost J, Staals RHJ, Notebaart RA. Modulating CRISPR-Cas Genome Editing Using Guide-Complementary DNA Oligonucleotides. CRISPR J 2022; 5:571-585. [PMID: 35856642 PMCID: PMC9419950 DOI: 10.1089/crispr.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.
Collapse
Affiliation(s)
- Thomas Swartjes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peng Shang
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Tim Künne
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Liu XH, Li BR, Ying ZM, Tang LJ, Wang F, Jiang JH. Small-Molecule-Mediated Split-Aptamer Assembly for Inducible CRISPR-dCas9 Transcription Activation. ACS Chem Biol 2022; 17:1769-1777. [PMID: 35700146 DOI: 10.1021/acschembio.2c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inducible CRISPR-dCas9 transcription system has become a powerful tool for transcription regulation and sensing. Here, we develop a new concept of small-molecule-mediated split-aptamer assembly for inducible CRISPR-dCas9 transcription activation, allowing quantitative detection and imaging of S-adenosyl methionine (SAM) in live cells. This inducible transcription system is designed by integrating one fragment of a split SAM aptamer to guide RNA (gRNA) and the other to MS2 arrays. SAM-mediated reassembly of the split fragments recruits an MCP-fused transcription activator to the gRNA-dCas9 complex, activating the expression of a near-infrared fluorescent protein for imaging. We demonstrate that this inducible transcription system achieves quantitative detection of SAM with high sensitivity in live cells. Our system shows that methionine adenosyltransferase 1A (MAT1A) and MAT2A can both catalyze SAM production in live cells and the SAM levels in cancer cells can be increased via upregulation of MAT1A mRNA by epigenetic inhibitors. This split-aptamer assembly strategy could afford a new approach for controlling the CRISPR-dCas9 system, enabling conditional transcription regulation in response to endogenous metabolites in live cells.
Collapse
Affiliation(s)
- Xiao-Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bang-Rui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhan-Ming Ying
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
21
|
He M, Zhou X, Li Z, Yin X, Han W, Zhou J, Sun X, Liu X, Yao D, Liang H. Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex. J Am Chem Soc 2022; 144:12690-12697. [DOI: 10.1021/jacs.2c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miao He
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Zhou
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhigang Li
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xue Yin
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenjie Han
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junxiang Zhou
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyun Sun
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyu Liu
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongbao Yao
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haojun Liang
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Hao Y, Li M, Zhang Q, Shi J, Li J, Li Q, Fan C, Wang F. DNA origami‐based single‐molecule CRISPR machines for spatially resolved searching. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaya Hao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHRISTMAS ISLAND
| | - Mingqiang Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qian Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jiye Shi
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Division of Physical Biology CHINA
| | - Jiang Li
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Division of Physical Biology CHINA
| | - Qian Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering Dongchuan Rd 800 200240 Shanghai CHINA
| | - Fei Wang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
23
|
Liu R, Yang J, Yao J, Zhao Z, He W, Su N, Zhang Z, Zhang C, Zhang Z, Cai H, Zhu L, Zhao Y, Quan S, Chen X, Yang Y. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol 2022; 40:779-786. [PMID: 34980910 DOI: 10.1038/s41587-021-01112-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA effectors, LicV allows for optogenetic control of RNA localization, splicing, translation and stability in cell culture. Furthermore, LicV-assisted CRISPR-Cas systems allow for efficient and tunable photoswitchable regulation of transcription and genomic locus labeling. These data demonstrate that the photoswitchable RBP LicV can serve as a programmable scaffold for the spatiotemporal control of synthetic RNA effectors.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhou Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei He
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zeyi Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chenxia Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
24
|
Liu Y, Pinto F, Wan X, Yang Z, Peng S, Li M, Cooper JM, Xie Z, French CE, Wang B. Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors. Nat Commun 2022; 13:1937. [PMID: 35410423 PMCID: PMC9001733 DOI: 10.1038/s41467-022-29604-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
In type II CRISPR systems, the guide RNA (gRNA) comprises a CRISPR RNA (crRNA) and a hybridized trans-acting CRISPR RNA (tracrRNA), both being essential in guided DNA targeting functions. Although tracrRNAs are diverse in sequence and structure across type II CRISPR systems, the programmability of crRNA-tracrRNA hybridization for Cas9 is not fully understood. Here, we reveal the programmability of crRNA-tracrRNA hybridization for Streptococcus pyogenes Cas9, and in doing so, redefine the capabilities of Cas9 proteins and the sources of crRNAs, providing new biosensing applications for type II CRISPR systems. By reprogramming the crRNA-tracrRNA hybridized sequence, we show that engineered crRNA-tracrRNA interactions can not only enable the design of orthogonal cellular computing devices but also facilitate the hijacking of endogenous small RNAs/mRNAs as crRNAs. We subsequently describe how these re-engineered gRNA pairings can be implemented as RNA sensors, capable of monitoring the transcriptional activity of various environment-responsive genomic genes, or detecting SARS-CoV-2 RNA in vitro, as an Atypical gRNA-activated Transcription Halting Alarm (AGATHA) biosensor.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemical and Biological Engineering & Hangzhou Innovation Center, Zhejiang University, Hangzhou, 311200, China
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Filipe Pinto
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Xinyi Wan
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Zhugen Yang
- Research Centre for Biological Computation, Zhejiang Laboratory, Hangzhou, 311100, China
- Cranfield Water Science Institute, School of Water, Environment and Energy, Cranfield University, Cranfield, MK43 0AL, UK
| | - Shuguang Peng
- Center for Synthetic and System Biology, Department of Automation, Beijing National Research Centre for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Mengxi Li
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Jonathan M Cooper
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Zhen Xie
- Center for Synthetic and System Biology, Department of Automation, Beijing National Research Centre for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Christopher E French
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
- Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, Zhejiang University International Campus, Haining, 314400, China
| | - Baojun Wang
- College of Chemical and Biological Engineering & Hangzhou Innovation Center, Zhejiang University, Hangzhou, 311200, China.
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.
- Research Centre for Biological Computation, Zhejiang Laboratory, Hangzhou, 311100, China.
- Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, Zhejiang University International Campus, Haining, 314400, China.
| |
Collapse
|
25
|
Dykstra PB, Kaplan M, Smolke CD. Engineering synthetic RNA devices for cell control. Nat Rev Genet 2022; 23:215-228. [PMID: 34983970 PMCID: PMC9554294 DOI: 10.1038/s41576-021-00436-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
The versatility of RNA in sensing and interacting with small molecules, proteins and other nucleic acids while encoding genetic instructions for protein translation makes it a powerful substrate for engineering biological systems. RNA devices integrate cellular information sensing, processing and actuation of specific signals into defined functions and have yielded programmable biological systems and novel therapeutics of increasing sophistication. However, challenges centred on expanding the range of analytes that can be sensed and adding new mechanisms of action have hindered the full realization of the field's promise. Here, we describe recent advances that address these limitations and point to a significant maturation of synthetic RNA-based devices.
Collapse
Affiliation(s)
- Peter B. Dykstra
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Matias Kaplan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christina D. Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,
| |
Collapse
|
26
|
Zhan Y, Li A, Cao C, Liu Y. CRISPR signal conductor 2.0 for redirecting cellular information flow. Cell Discov 2022; 8:26. [PMID: 35288535 PMCID: PMC8921274 DOI: 10.1038/s41421-021-00371-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
A key challenge in designing intelligent artificial gene circuits is generating flexible connections between arbitrary components and directly coupling them with endogenous signaling pathways. The CRISPR signal conductor based on conditionally inducible artificial transcriptional regulators can link classic cellular protein signals with targeted gene expression, but there are still problems with multiple signal processing and gene delivery. With the discovery and characterization of new Cas systems and long noncoding RNA (lncRNA) functional motifs, and because of the compatibility of guide RNA with noncoding RNA elements at multiple sites, it is increasingly possible to solve these problems. In this study, we developed CRISPR signal conductor version 2.0 by integrating various lncRNA functional motifs into different parts of the crRNA in the CRISPR-dCasΦ system. This system can directly regulate the expression of target genes by recruiting cellular endogenous transcription factors and efficiently sense a variety of protein signals that are not detected by a classical synthetic system. The new system solved the problems of background leakage and insensitive signaling responses and enabled the construction of logic gates with as many as six input signals, which can be used to specifically target cancer cells. By rewiring endogenous signaling networks, we further demonstrated the effectiveness and biosafety of this system for in vivo cancer gene therapy.
Collapse
Affiliation(s)
- Yonghao Zhan
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aolin Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Congcong Cao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China. .,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Simmons TR, Ellington AD, Contreras LM. RNP-Based Control Systems for Genetic Circuits in Synthetic Biology Beyond CRISPR. Methods Mol Biol 2022; 2518:1-31. [PMID: 35666436 DOI: 10.1007/978-1-0716-2421-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ribonucleoproteins (RNPs) are RNA-protein complexes utilized natively in both prokaryotes and eukaryotes to regulate essential processes within the cell. Over the past few years, many of these native systems have been adapted to provide control over custom genetic targets. Engineered RNP-based control systems allow for fine-tune regulation of desired targets, by providing customizable nucleotide-nucleotide interactions. However, as there have been several engineered RNP systems developed recently, identifying an optimal system for various bioprocesses is challenging. Here, we review the most successful engineered RNP systems and their applications to survey the current state of the field. Additionally, we provide selection criteria to provide users a streamlined method for identifying an RNP control system most useful to their own work. Lastly, we discuss future applications of RNP control systems and how they can be utilized to address the current grand challenges of the synthetic biology community.
Collapse
Affiliation(s)
- Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
28
|
Lin J, Wang WJ, Wang Y, Liu Y, Xu L. Building Endogenous Gene Connections through RNA Self-Assembly Controlled CRISPR/Cas9 Function. J Am Chem Soc 2021; 143:19834-19843. [PMID: 34788038 DOI: 10.1021/jacs.1c09041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Construction of synthetic circuits that can artificially establish endogenous gene connections is essential to introduce new phenotypes for cellular behaviors. Given the diversity of endogenous genes, it lacks a general and easy-to-design toolbox to manipulate the genetic network. Here we present a type of self-assembly-induced RNA circuit that can directly build regulatory connections between endogenous genes. Inspired from the natural assembling process of guide RNA in the CRISPR/Cas9 complex, this design employs an independent trigger RNA strand to induce the formation of a ternary guide RNA assembly for functional control of CRISPR/Cas9. With this general principle, expressional regulations of endogenous genes can be controlled by totally independent endogenous small RNAs and mRNAs in E. coli via activatable CRISPR/Cas9 function. Moreover, the cellular phenotype of E. coli is successfully programmed with introduction of new gene connections. In addition, the functionality of this design is also verified in the mammalian system. This self-assembly-based RNA circuit exhibits a great flexibility and simplicity of design and provides a unique approach to build endogenous gene connections, which paves a broad way toward manipulation of cellular genetic networks.
Collapse
Affiliation(s)
- Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei-Jia Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Kong H, Ju E, Yi K, Xu W, Lao Y, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102051. [PMID: 34665528 PMCID: PMC8693080 DOI: 10.1002/advs.202102051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia University3960 Broadway Lasker Room 450New YorkNY10032USA
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen University135 Xingangxi RoadGuangzhou510275P. R. China
| | - Qi Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
30
|
Oesinghaus L, Simmel FC. Kontrolle von Genexpression in Säugetierzellen mithilfe von parallel schaltbaren Guide‐RNAs für Cas12a**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lukas Oesinghaus
- Physics Department, E14 TU München Am Coulombwall 4a 85748 Garching Deutschland
| | - Friedrich C. Simmel
- Physics Department, E14 TU München Am Coulombwall 4a 85748 Garching Deutschland
| |
Collapse
|
31
|
Oesinghaus L, Simmel FC. Controlling Gene Expression in Mammalian Cells Using Multiplexed Conditional Guide RNAs for Cas12a*. Angew Chem Int Ed Engl 2021; 60:23894-23902. [PMID: 34533878 PMCID: PMC8596743 DOI: 10.1002/anie.202107258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Indexed: 12/26/2022]
Abstract
Spatiotemporal control of the activity of CRISPR-associated (Cas) proteins is of considerable interest for basic research and therapeutics. Here, we show that conditional guide RNAs (gRNAs) for Cas12a can be transcribed in mammalian cells by RNA polymerase II, followed by activation via input-dependent processing of the 3' tail of the gRNA transcript. We demonstrate processing using an RNA strand displacement mechanism, as well as microRNA-dependent processing, and cleavage by a guanine-responsive ribozyme. We further demonstrate that Cas12a along with several independently switchable gRNAs can be compactly integrated on a single transcript using stabilizing RNA triplexes, providing a route towards Cas12a-based gene regulation constructs with multi-input switching capabilities. The principle is shown to work in HEK and mouse fibroblast cells using luminescence, fluorescence, and is also demonstrated for the conditional upregulation of an endogenous gene.
Collapse
Affiliation(s)
- Lukas Oesinghaus
- Physics Department, E14TU MunichAm Coulombwall 4a85748GarchingGermany
| | | |
Collapse
|
32
|
Finke M, Brecht D, Stifel J, Gense K, Gamerdinger M, Hartig JS. Efficient splicing-based RNA regulators for tetracycline-inducible gene expression in human cell culture and C. elegans. Nucleic Acids Res 2021; 49:e71. [PMID: 33893804 PMCID: PMC8266659 DOI: 10.1093/nar/gkab233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023] Open
Abstract
Synthetic riboswitches gain increasing interest for controlling transgene expression in diverse applications ranging from synthetic biology, functional genomics, and pharmaceutical target validation to potential therapeutic approaches. However, existing systems often lack the pharmaceutically suited ligands and dynamic responses needed for advanced applications. Here we present a series of synthetic riboswitches for controlling gene expression through the regulation of alternative splicing. Placing the 5′-splice site into a stem structure of a tetracycline-sensing aptamer allows us to regulate the accessibility of the splice site. In the presence of tetracycline, an exon with a premature termination codon is skipped and gene expression can occur, whereas in its absence the exon is included into the coding sequence, repressing functional protein expression. We were able to identify RNA switches controlling protein expression in human cells with high dynamic ranges and different levels of protein expression. We present minimalistic versions of this system that circumvent the need to insert an additional exon. Further, we demonstrate the robustness of our approach by transferring the devices into the important research model organism Caenorhabditis elegans, where high levels of functional protein with very low background expression could be achieved.
Collapse
Affiliation(s)
- Monika Finke
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Dominik Brecht
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julia Stifel
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karina Gense
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Martin Gamerdinger
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
33
|
Pei WD, Zhang Y, Yin TL, Yu Y. Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges. Brief Funct Genomics 2021; 19:215-228. [PMID: 31819946 DOI: 10.1093/bfgp/elz035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Epigenome editing is a promising approach for both basic research and clinical application. With the convergence of techniques from different fields, regulating gene expression artificially becomes possible. From a clinical point of view, targeted epigenome editing by CRISPR/Cas9 of disease-related genes offers novel therapeutic avenues for many diseases. In this review, we summarize the EpiEffectors used in epigenome editing by CRISPR/Cas9, current applications of epigenome editing and progress made in this field. Moreover, application challenges such as off-target effects, inefficient delivery, stability and immunogenicity are discussed. In conclusion, epigenome editing by CRISPR/Cas9 has broad prospects in the clinic, and future work will promote the application of this technology.
Collapse
Affiliation(s)
- Wen-Di Pei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191 China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191 China.,Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191 China
| |
Collapse
|
34
|
Sledzinski P, Dabrowska M, Nowaczyk M, Olejniczak M. Paving the way towards precise and safe CRISPR genome editing. Biotechnol Adv 2021; 49:107737. [PMID: 33785374 DOI: 10.1016/j.biotechadv.2021.107737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments. More recently, large-scale experiments revealed a previously overlooked feature: Cas9 can generate reproducible mutation patterns. As a result, it has become apparent that Cas9-induced double-strand break (DSB) repair is nonrandom and can be predicted to some extent. Here, we review the present state of knowledge regarding the specificity and safety of CRISPR-Cas9 technology to define gRNA, protein and target-related problems and solutions. These issues include sequence-specific off-target effects, immune responses, genetic variation and chromatin accessibility. We present new insights into the role of DNA repair in genome editing and define factors influencing editing outcomes. In addition, we propose practical guidelines for increasing the specificity of editing and discuss novel perspectives in improvement of this technology.
Collapse
Affiliation(s)
- Pawel Sledzinski
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Mateusz Nowaczyk
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland.
| |
Collapse
|
35
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
36
|
Liu Y, Wang Y, Lin J, Xu L. Theophylline-induced synergic activation of guide RNA to control CRISPR/Cas9 function. Chem Commun (Camb) 2021; 57:5418-5421. [PMID: 33949481 DOI: 10.1039/d1cc01260f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ligand-induced activation of CRISPR/Cas9 function is achieved based on a synergic approach through the integration of the theophylline aptamer into protein-unrecognized regions of guide RNA. This design of allosteric regulation opens a new window towards the broad involvement of RNA aptamers for conditional control of CRISPR/Cas9 function.
Collapse
Affiliation(s)
- Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
37
|
Yang K, Zhou Y, Zhong H. CRISPReader System Sensing the Ets-1 Transcription Factor Can Effectively Identify Cancer Cells. Front Mol Biosci 2021; 8:672040. [PMID: 34124154 PMCID: PMC8194308 DOI: 10.3389/fmolb.2021.672040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
By targeting key genes, the CRISPR system can effectively exert its anti-cancer activity. The latest research suggests that the CRISPReader system that regulates gene transcription can effectively target and inhibit bladder cancer cells by sensing transcription factors such as c-Myc and Get-1 in the cell. An interesting question is whether the CRISPReader system can exert its anti-cancer ability against a variety of tumors by sensing the broad-spectrum transcription factor Ets-1. In this work, a CRISPReader system that senses the Ets-1 transcription factor has been constructed. It can effectively identify a variety of cancer cell lines, and specifically induce apoptosis in cancer cells. This study fully confirmed the effectiveness of Ets-1 as a broad-spectrum cancer related signal and provided a new anti-cancer tool based on the CRISPReader system.
Collapse
Affiliation(s)
- Kang Yang
- HuiZhou Municipal Central Hospital, Huizhou, China
| | - Yan Zhou
- Logistics Management Office, HuiZhou University, Huizhou, China
| | | |
Collapse
|
38
|
Hochrein LM, Li H, Pierce NA. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-Selective Regulation of CRISPR/Cas. ACS Synth Biol 2021; 10:964-971. [PMID: 33930275 DOI: 10.1021/acssynbio.1c00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activity of a conditional guide RNA (cgRNA) is dependent on the presence or absence of an RNA trigger, enabling cell-selective regulation of CRISPR/Cas function. cgRNAs are programmable at two levels, with the target-binding sequence controlling the target of Cas activity (edit, silence, or induce a gene of choice) and the trigger-binding sequence controlling the scope of Cas activity (subset of cells expressing the trigger RNA). Allosteric cgRNA mechanisms enable independent design of the target and trigger sequences, providing the flexibility to select the regulatory target and scope independently. Building on prior advances in dynamic RNA nanotechnology that demonstrated the cgRNA concept, here we set the goal of engineering high-performance allosteric cgRNA mechanisms for the mammalian setting, pursuing both ON → OFF logic (conditional inactivation by an RNA trigger) and OFF → ON logic (conditional activation by an RNA trigger). For each mechanism, libraries of orthogonal cgRNA/trigger pairs were designed using NUPACK. In HEK 293T cells expressing cgRNAs, triggers, and inducing dCas9: (1) a library of four ON → OFF "terminator switch" cgRNAs exhibit a median fold-change of ≈50×, a median fractional dynamic range of ≈20%, and a median crosstalk modulus of ≈9%; (2) a library of three OFF → ON "split-terminator switch" cgRNAs exhibit a median fold-change of ≈150×, a median fractional dynamic range of ≈50%, and a median crosstalk modulus of ≈4%. Further, we demonstrate that xrRNA elements that protect viral RNAs from degradation by exoribonucleases can dramatically enhance the performance of RNA synthetic biology. The high-performance allosteric cgRNAs demonstrated here for ON → OFF and OFF → ON logic in mammalian cells provide a foundation for pursuing applications of programmable cell-selective regulation.
Collapse
Affiliation(s)
- Lisa M Hochrein
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Heyun Li
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
39
|
Smart Nucleic Acids as Future Therapeutics. Trends Biotechnol 2021; 39:1289-1307. [PMID: 33980422 DOI: 10.1016/j.tibtech.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022]
Abstract
Nucleic acid therapeutics (NATs) hold promise in treating undruggable diseases and are recognized as the third major category of therapeutics in addition to small molecules and antibodies. Despite the milestones that NATs have made in clinical translation over the past decade, one important challenge pertains to increasing the specificity of this class of drugs. Activating NATs exclusively in disease-causing cells is highly desirable because it will safely broaden the application of NATs to a wider range of clinical indications. Smart NATs are triggered through a photo-uncaging reaction or a specific molecular input such as a transcript, protein, or small molecule, thus complementing the current strategy of targeting cells and tissues with receptor-specific ligands to enhance specificity. This review summarizes the programmable modalities that have been incorporated into NATs to build in responsive behaviors. We discuss the various inputs, transduction mechanisms, and output response functions that have been demonstrated to date.
Collapse
|
40
|
Yu Q, Ren K, You M. Genetically encoded RNA nanodevices for cellular imaging and regulation. NANOSCALE 2021; 13:7988-8003. [PMID: 33885099 PMCID: PMC8122502 DOI: 10.1039/d0nr08301a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleic acid-based nanodevices have been widely used in the fields of biosensing and nanomedicine. Traditionally, the majority of these nanodevices were first constructed in vitro using synthetic DNA or RNA oligonucleotides and then delivered into cells. Nowadays, the emergence of genetically encoded RNA nanodevices has provided a promising alternative approach for intracellular analysis and regulation. These genetically encoded RNA-based nanodevices can be directly transcribed and continuously produced inside living cells. A variety of highly precise and programmable nanodevices have been constructed in this way during the last decade. In this review, we will summarize the recent advances in the design and function of these artificial genetically encoded RNA nanodevices. In particular, we will focus on their applications in regulating cellular gene expression, imaging, logic operation, structural biology, and optogenetics. We believe these versatile RNA-based nanodevices will be broadly used in the near future to probe and program cells and other biological systems.
Collapse
Affiliation(s)
- Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
41
|
Collins SP, Rostain W, Liao C, Beisel CL. Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch. Nucleic Acids Res 2021; 49:2985-2999. [PMID: 33619539 PMCID: PMC7968991 DOI: 10.1093/nar/gkab100] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR technologies increasingly require spatiotemporal and dosage control of nuclease activity. One promising strategy involves linking nuclease activity to a cell's transcriptional state by engineering guide RNAs (gRNAs) to function only after complexing with a ‘trigger’ RNA. However, standard gRNA switch designs do not allow independent selection of trigger and guide sequences, limiting gRNA switch application. Here, we demonstrate the modular design of Cas12a gRNA switches that decouples selection of these sequences. The 5′ end of the Cas12a gRNA is fused to two distinct and non-overlapping domains: one base pairs with the gRNA repeat, blocking formation of a hairpin required for Cas12a recognition; the other hybridizes to the RNA trigger, stimulating refolding of the gRNA repeat and subsequent gRNA-dependent Cas12a activity. Using a cell-free transcription-translation system and Escherichia coli, we show that designed gRNA switches can respond to different triggers and target different DNA sequences. Modulating the length and composition of the sensory domain altered gRNA switch performance. Finally, gRNA switches could be designed to sense endogenous RNAs expressed only under specific growth conditions, rendering Cas12a targeting activity dependent on cellular metabolism and stress. Our design framework thus further enables tethering of CRISPR activities to cellular states.
Collapse
Affiliation(s)
- Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - William Rostain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.,Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany.,Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
42
|
Zhang Y, Wang Q, Wang J, Tang X. Chemical Modification and Transformation Strategies of Guide RNAs in CRISPR-Cas9 Gene Editing Systems. Chempluschem 2021; 86:587-600. [PMID: 33830675 DOI: 10.1002/cplu.202000785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Indexed: 12/19/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) is a most powerful tool and has been widely used in gene editing and gene regulation since its discovery. However, wild-type CRISPR-Cas9 suffers from off-target effects and low editing efficiency. To overcome these limitations, engineered Cas9 proteins have been extensively investigated. In addition to Cas9 protein engineering, chemically synthesized guide RNAs have been developed to improve the efficiency and specificity of genome editing as well as spatiotemporal controllability, which broadens the biological applications of CRISPR-Cas9 gene editing system and increases their potentials as therapeutics. In this review, we summarize the latest research advances in remodeling guide RNAs through length optimization, chemical modifications, and conditional control, as well as their powerful applications in gene editing tools and promising therapeutic agents.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| |
Collapse
|
43
|
Li C, Cao Y, Zhang L, Li J, Wang J, Zhou Y, Wei H, Guo M, Liu L, Liu C, Zhang S, Liu G. CRISPR-CasRx Targeting LncRNA LINC00341 Inhibits Tumor Cell Growth in vitro and in vivo. Front Mol Biosci 2021; 8:638995. [PMID: 33855047 PMCID: PMC8040045 DOI: 10.3389/fmolb.2021.638995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR-CasRx technology provides a new and powerful method for studying cellular RNA in human cancer. Herein, the pattern of expression of long noncoding RNA 00341 (LINC00341) as well as its biological function in bladder cancer were studied using CRISPR-CasRx. qRT-PCR was employed to quantify the levels of expression of LINC00341 in tumor tissues along with the matched non-tumor tissues. sgRNA targeting LINC00341 or the sgRNA negative control were transiently transfected into the T24 as well as 5,637 human bladder cancer cell lines. CCK-8, ELISA as well as wound healing methods were employed to explore cell proliferation, apoptosis and migration, respectively. The tumorigenicity experiment in nude mice also performed to detect cell proliferation. The expression of p21, Bax as well as E-cadherin were assayed using western blot. The results demonstrated that LINC00341 was overexpressed in bladder cancer in contrast with the healthy tissues. The LINC00341 expression level in high-grade tumors was higher in contrast with that in low-grade tumors. The expression of linc00341 was higher relative to that of non-invasive tumors. In T24 as well as 5637-cell lines harboring LINC00341-sgRNA, inhibition of cell proliferation (in vitro and in vivo), elevated apoptosis rate and diminished migration ability. Moreover, silencing LINC00341 upregulated the expressions of p21, Bax as well as E-cadherin. Knockout of these genes could eliminate the phenotypic changes caused by sgRNA targeting LINC00341. Our data demonstrate that LINC00341 has a carcinogenic role in human bladder cancer.
Collapse
Affiliation(s)
- Chunjing Li
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yu Cao
- Ningxiang Hospital, Hunan University of Traditional Chinese Medicine, NingXiang, China
| | - Li Zhang
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jierong Li
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianfeng Wang
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanfen Zhou
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Huiling Wei
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Mingjuan Guo
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Liang Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shilin Zhang
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guoqing Liu
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Huang X, Wang M, Liu Y, Gui Y. Synthesis of RNA-based gene regulatory devices for redirecting cellular signaling events mediated by p53. Am J Cancer Res 2021; 11:4688-4698. [PMID: 33754021 PMCID: PMC7978309 DOI: 10.7150/thno.55856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/12/2021] [Indexed: 11/05/2022] Open
Abstract
Rationale: The p53 gene is a well-known tumor suppressor, and its mutation often contributes to the occurrence and development of tumors. Due to the diversity and complexity of p53 mutations, there is still no effective p53 gene therapy. In this study, we designed and constructed an aptazyme switch that could effectively sense cellular wild-type p53 protein and regulate downstream gene function flexibly. The application of this artificial device in combination with Cre-LoxP and dCas9-VP64 tools achieved a precisely targeted killing effect on tumor cells. Methods: The affinity of the aptamer to p53 protein was verified by SPR. p53 aptazyme and gene circuits were chemically synthesized. The function of the gene circuit was detected by cell proliferation assay, apoptosis assay and Western blot. The nude mouse transplantation tumor experiment was used to evaluate the inhibitory effect of gene circuits on tumor cells in vivo. Results: The results of the SPR experiment showed that the p53 aptamer RNA sequence had a robust binding effect with p53 protein. The p53 aptazyme could efficiently sense wild-type p53 protein and initiate self-cleavage in cells. The Cre-p53 aptazyme gene circuit and dCas9-VP64/sgRNA mediated gene circuit designed based on p53 aptazyme significantly inhibited the growth and promoted the apoptosis of wild-type p53-deficient cancer cells in vitro. In addition, the gene circuits also had a significant inhibitory effect on tumors in vivo. Conclusion: The study developed a novel and efficient ribozyme switch for p53-specific recognition and provided a modular strategy for aptazyme binding to cellular proteins. In addition, the p53 aptazyme successfully inhibited tumor growth through a combined application with other synthetic biological tools, providing a new perspective for cancer therapy.
Collapse
|
45
|
Wu H, Wang F, Jiang JH. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation. Chembiochem 2021; 22:1894-1900. [PMID: 33433941 DOI: 10.1002/cbic.202000723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Indexed: 12/21/2022]
Abstract
The clustered, regularly interspaced short palindromic repeats-associated protein 9 endonuclease (CRISPR-Cas9) and the nuclease-deactivated Cas9 (dCas9) systems have revolutionized our ability to precisely engineer and regulate genomes. Inducible CRISPR-dCas9-based transcriptional systems have been rapidly developed to conditionally control genetic manipulation. Current strategies mainly focus on conditional control of gRNA function and dCas9 protein using exogenous and endogenous triggers, including external light, small molecules, synthetic and intracellular oligonucleotides. These strategies have established novel platforms for the spatiotemporal regulation of genome activation and repression, epigenome editing, and so on. Herein, we summarize the recent progress in conditionally controlling CRISPR-dCas9 transcriptional systems through gRNA modulation and dCas9 protein engineering.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
46
|
Zhang Z, Chen J, Zhu Z, Zhu Z, Liao X, Wu J, Cheng J, Zhang X, Mei H, Yang G. CRISPR-Cas13-Mediated Knockdown of lncRNA-GACAT3 Inhibited Cell Proliferation and Motility, and Induced Apoptosis by Increasing p21, Bax, and E-Cadherin Expression in Bladder Cancer. Front Mol Biosci 2021; 7:627774. [PMID: 33537343 PMCID: PMC7848205 DOI: 10.3389/fmolb.2020.627774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
The current study is to investigate the expression pattern and biological function of long non-coding RNA Focally gastric cancer-associated transcript3 (GACAT3) in bladder cancer. Real-time quantitative qPCR was used to detect the expression level of GACAT-3 in tumor tissues and paired normal tissues. Human bladder cancer T24 and 5637 cell lines were transiently transfected with specific CRISPR-Cas13 or negative control CRISPR-Cas13. Cell migration, proliferation, and apoptosis were measured by using wound healing assay CCK-8 assay and Caspase-3 ELISA assay, respectively. The expression changes of p21, Bax, and E-cadherin after knockdown of GACAT3 were detected by using Western blot. The results demonstrated that GACAT3 was up-regulated in bladder cancer tissues than that in the paired normal tissues. Inhibition of cell proliferation, increased apoptosis, and decreased motility were observed in T24 and 5637 cell lines transfected by CRISPR-Cas13 targeting GACAT3. Downregulation of GACAT3 increased p21, Bax, and E-cadherin expression and silencing these genes could eliminate the phenotypic changes induced by knockdown of GACAT3. A ceRNA mechanism for GACAT3 was also revealed. By using CRISPR-Cas13 biotechnology, we suggested that GACAT3 may be a novel target for diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Zhongfu Zhang
- The Second School of Clinical Medicine, Southern Medical University Affiliated Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jieqing Chen
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | | | - Zhongqing Zhu
- Hong Kong University Shenzhen Hospital, Shenzhen, China
| | - Xinhui Liao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianting Wu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianli Cheng
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xintao Zhang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbing Mei
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Guosheng Yang
- The Second School of Clinical Medicine, Southern Medical University Affiliated Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Brown W, Zhou W, Deiters A. Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control. Chembiochem 2021; 22:63-72. [PMID: 32833316 PMCID: PMC7928076 DOI: 10.1002/cbic.202000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Indexed: 12/26/2022]
Abstract
Conditional control of CRISPR/Cas9 has been developed by using a variety of different approaches, many focusing on manipulation of the Cas9 protein itself. However, more recent strategies for governing CRISPR/Cas9 function are based on guide RNA (gRNA) modifications. They include control of gRNAs by light, small molecules, proteins, and oligonucleotides. These designs have unique advantages compared to other approaches and have allowed precise regulation of gene editing and transcription. Here, we discuss strategies for conditional control of gRNA function and compare effectiveness of these methods.
Collapse
Affiliation(s)
| | | | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (USA)
| |
Collapse
|
48
|
Gao N, Hu J, He B, Ji Z, Hu X, Huang J, Wei Y, Peng J, Wei Y, Zhou Y, Shen X, Li H, Feng X, Xiao Q, Shi L, Sun Y, Zhou C, Zhou H, Yang H. Endogenous promoter-driven sgRNA for monitoring the expression of low-abundance transcripts and lncRNAs. Nat Cell Biol 2021; 23:99-108. [PMID: 33398178 DOI: 10.1038/s41556-020-00610-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023]
Abstract
Detection of endogenous signals and precise control of genetic circuits in the natural context are essential to understand biological processes. However, the tools to process endogenous information are limited. Here we developed a generalizable endogenous transcription-gated switch that releases single-guide RNAs in the presence of an endogenous promoter. When the endogenous transcription-gated switch is coupled with the highly sensitive CRISPR-activator-associated reporter we developed, we can reliably detect the activity of endogenous genes, including genes with very low expression (<0.001 relative to Gapdh; quantitative-PCR analysis). Notably, we could also monitor the transcriptional activity of typically long non-coding RNAs expressed at low levels in living cells using this approach. Together, our method provides a powerful platform to sense the activity of endogenous genetic elements underlying cellular functions.
Collapse
Affiliation(s)
- Ni Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bingbing He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengbang Ji
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianpeng Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghui Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingsi Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaowen Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingquan Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
49
|
Shechner DM. Targeting Noncoding RNA Domains to Genomic Loci with CRISPR-Display: Guidelines for Designing, Building, and Testing sgRNA-ncRNA Expression Constructs. Methods Mol Biol 2021; 2162:115-152. [PMID: 32926381 DOI: 10.1007/978-1-0716-0687-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CRISPR-Display uses the S. pyogenes Cas9 protein to posttranscriptionally localize noncoding RNA (ncRNA) domains to any genomic site, by directly fusing these domains to the Cas9 sgRNA cofactor. This versatile technology enables numerous applications for interrogating natural chromatin-regulatory ncRNAs, or for utilizing artificial ncRNA and ribonucleoprotein (RNP) devices at individual chromatin loci. To achieve these, a successful CRISPR-Display experiment requires that chimeric sgRNA-ncRNA fusions are stably expressed and incorporated into Cas9 complexes, and that they retain their ncRNA "cargo" domains at the targeted genomic sites. Here, I describe a workflow for designing, building, and testing such chimeric sgRNA-ncRNA expression constructs. I detail strategies for choosing expression systems and sgRNA insertion topologies, for assaying the incorporation of sgRNA-ncRNA fusions into functional Cas9 complexes, and for surveying the activities of ncRNA domains at targeted genomic loci. This establishes an initial set of "best practices" for the design and implementation of CRISPR-Display experiments.
Collapse
Affiliation(s)
- David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
50
|
Yao L, Zhang Q, Li A, Ma B, Zhang Z, Liu J, Liang L, Zhu S, Gan Y, Zhang Q. Synthetic Artificial Long Non-coding RNA Shows Higher Efficiency in Specific Malignant Phenotype Inhibition Compared to the CRISPR/Cas Systems. Front Mol Biosci 2020; 7:617600. [PMID: 33363214 PMCID: PMC7755931 DOI: 10.3389/fmolb.2020.617600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: Both oncogenic transcription factors (TFs) and microRNAs (miRNAs) play an important regulator in human cancer by transcriptional and post-transcriptional regulation, respectively. These phenomena raise questions about the ability of artificial device to regulate miRNAs and TFs simultaneously. In this study, we aimed to construct an artificial long non-coding RNA, “alncRNA,” which imitated CRISPR/Cas systems and to illuminate its therapeutic effects in bladder cancer cell lines. At the same time, we also compared the efficiency of alncRNA and CRISPR/Cas systems in regulating gene expression. Study Design and Methods: Based on engineering principles of synthetic biology, we combined tandem arrayed cDNA sequences of aptamer for TFs with tandem arrayed cDNA copies of binding sites for the miRNAs to construct alncRNA. In order to prove the utility of this platform, we chose β -catenin, NF-κB, miR-940, and miR-495 as the functional targets and used the bladder cancer cell lines 5637 and T24 as the test models. Real-time Quantitative PCR (qPCR), dual-luciferase assay and relative phenotypic experiments were applied to severally test the expression of relative gene and therapeutic effects of our devices. Result: Dual-luciferase assay indicated alncRNA could inhibit transcriptional activity of TFs. What’s more, the result of qPCR showed that expression levels of the relative TFs target genes and miRNAs were reduced by corresponding alncRNA and the inhibitory effect was better than CRIPSR dCas9-KRAB. By functional experiments, decreased cell proliferation, increased apoptosis, and motility inhibition were observed in alncRNA-infected bladder cells. Conclusion: In summary, our synthetic devices indeed function as anti-tumor regulator, which synchronously accomplish transcriptional and post-transcriptional regulation in bladder cancer cell and show higher efficiency in specific malignant phenotype inhibition compared to the CRISPR/Cas systems. Most importantly, Anti-cancer effects were induced by the synthetic alncRNA in the bladder cancer lines. Our devices, therefore, provides a novel strategy for cancer therapy and could be a useful “weapon” for cancer cell.
Collapse
Affiliation(s)
- Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Quan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Aolin Li
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Binglei Ma
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Zhenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Jun Liu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Lei Liang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Shiyu Zhu
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Ying Gan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Research Center for Genitourinary Oncology, Beijing, China
| |
Collapse
|