1
|
De Silva ARI, Shrestha S, Page RC. Real-time bio-layer interferometry ubiquitination assays as alternatives to western blotting. Anal Biochem 2023; 679:115296. [PMID: 37604387 PMCID: PMC10529061 DOI: 10.1016/j.ab.2023.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Ubiquitination is a crucial cellular pathway enabling normal cellular functions. Abnormalities in the ubiquitination process can lead to cellular dysfunction and cause a range of diseases. Efforts to screen and develop small molecule inhibitors targeting portions of the ubiquitination cascade require rapid and robust methods for detecting ubiquitination. Enormous efforts have been made in the field to detect ubiquitination using various techniques including fluorescence, spectrophotometry, chemiluminescence, NMR, and radioactive tracers. The most common method to detect ubiquitination is western blotting. However, western blotting is time-consuming and difficult to use when seeking fine-grained time course experiments. Here we present the use of bio-layer interferometry to rapidly assay ubiquitination in real-time. An E3 ligase auto-ubiquitination system and a substrate ubiquitination assay have been applied as tests for the newly developed assay. The developed BLI ubiquitination assay provides one-second time resolution and detects the formation of polyubiquitin chains directly on a biosensor-bound target. Results are returned instantaneously, and reagent concentrations are identical to those used by traditional western blot-based ubiquitination assays. The developed BLI ubiquitination assay is a viable alternative to traditional western blot assays to detect ubiquitination in a rapid real-time manner.
Collapse
Affiliation(s)
- Anthony Ruvindi I De Silva
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Shreesti Shrestha
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States.
| |
Collapse
|
2
|
De Silva ARI, Page RC. Ubiquitination detection techniques. Exp Biol Med (Maywood) 2023; 248:1333-1346. [PMID: 37787047 PMCID: PMC10625345 DOI: 10.1177/15353702231191186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Ubiquitination is an intricately regulated post-translational modification that involves the covalent attachment of ubiquitin to a substrate protein. The complex dynamic nature of the ubiquitination process regulates diverse cellular functions including targeting proteins for degradation, cell cycle, deoxyribonucleic acid (DNA) damage repair, and numerous cell signaling pathways. Ubiquitination also serves as a crucial mechanism in protein quality control. Dysregulation in ubiquitination could result in lethal disease conditions such as cancers and neurodegenerative diseases. Therefore, the ubiquitination cascade has become an attractive target for therapeutic interventions. Enormous efforts have been made to detect ubiquitination involving different detection techniques to better grasp the underlying molecular mechanisms of ubiquitination. This review discusses a wide range of techniques stretching from the simplest assays to real-time assays. This includes western blotting/immunoblotting, fluorescence assays, chemiluminescence assays, spectrophotometric assays, and nanopore sensing assays. This review compares these applications, and the inherent advantages and limitations.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
3
|
Cunha MR, Catta-Preta CMC, Takarada JE, Moreira GA, Massirer KB, Couñago RM. A novel BRET-based assay to investigate binding and residence times of unmodified ligands to the human lysosomal ion channel TRPML1 in intact cells. J Biol Chem 2023:104807. [PMID: 37172730 DOI: 10.1016/j.jbc.2023.104807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Here we report a Bioluminescence Resonance Energy Transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human Transient Receptor Potential Mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically-relevant environment of lysosomes.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Carolina M C Catta-Preta
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Current address: Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jéssica E Takarada
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Gabriela A Moreira
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Katlin B Massirer
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| |
Collapse
|
4
|
Gaitonde SA, Bouvier M. Enhanced Bystander BRET (ebBRET) Biosensors as Biophysical Tools to Map the Signaling Profile of Neuropsychiatric Drugs Targeting GPCRs. Methods Mol Biol 2023; 2687:15-30. [PMID: 37464159 DOI: 10.1007/978-1-0716-3307-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) is a non-radiative energy transfer between a bioluminescent donor and a fluorescent acceptor with far-reaching applications in detecting physiologically relevant protein-protein interactions. The recently developed enhanced bystander BRET (ebBRET) biosensors have made it possible to rapidly determine the signaling profile of a series of ligands across a large number of GPCRs and their signaling repertoires, which has tremendous implications in the drug discovery process. Here we describe BRET and the ebBRET biosensors as investigational tools in establishing functional selectivity downstream of GPCRs.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
A Degradation Motif in STAU1 Defines a Novel Family of Proteins Involved in Inflammation. Int J Mol Sci 2022; 23:ijms231911588. [PMID: 36232890 PMCID: PMC9569955 DOI: 10.3390/ijms231911588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer development is regulated by inflammation. Staufen1 (STAU1) is an RNA-binding protein whose expression level is critical in cancer cells as it is related to cell proliferation or cell death. STAU1 protein levels are downregulated during mitosis due to its degradation by the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). In this paper, we map the molecular determinant involved in STAU1 degradation to amino acids 38-50, and by alanine scanning, we shorten the motif to F39PxPxxLxxxxL50 (FPL-motif). Mutation of the FPL-motif prevents STAU1 degradation by APC/C. Interestingly, a search in databases reveals that the FPL-motif is shared by 15 additional proteins, most of them being involved in inflammation. We show that one of these proteins, MAP4K1, is indeed degraded via the FPL-motif; however, it is not a target of APC/C. Using proximity labeling with STAU1, we identify TRIM25, an E3 ubiquitin ligase involved in the innate immune response and interferon production, as responsible for STAU1 and MAP4K1 degradation, dependent on the FPL-motif. These results are consistent with previous studies that linked STAU1 to cancer-induced inflammation and identified a novel degradation motif that likely coordinates a novel family of proteins involved in inflammation. Data are available via ProteomeXchange with the identifier PXD036675.
Collapse
|
6
|
Heydenreich FM, Plouffe B, Rizk A, Milic D, Zhou J, Breton B, Le Gouill C, Inoue A, Bouvier M, Veprintsev D. Michaelis-Menten quantification of ligand signalling bias applied to the promiscuous Vasopressin V2 receptor. Mol Pharmacol 2022; 102:139-149. [PMID: 35779859 DOI: 10.1124/molpharm.122.000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Activation of the G protein-coupled receptors by agonists may result in the activation of one or more G proteins and recruitment of arrestins. The extent of the activation of each of these pathways depends on the intrinsic efficacy of the ligand. Quantification of intrinsic efficacy relative to a reference compound is essential for the development of novel compounds. In the operational model, changes in efficacy can be compensated by changes in the "functional" affinity, resulting in poorly defined values. To separate the effects of ligand affinity from the intrinsic activity of the receptor, we developed a Michaelis-Menten based quantification of G protein activation bias that uses experimentally measured ligand affinities and provides a single measure of ligand efficacy. We used it to evaluate the signalling of a promiscuous model receptor, the Vasopressin V2 receptor (V2R). Using BRET-based biosensors, we show that the V2R engages many different G proteins across all G protein subfamilies in response to its primary endogenous agonist, arginine vasopressin (AVP), including Gs and members of the Gi/o and G12/13 families. These signaling pathways are also activated by the synthetic peptide desmopressin, oxytocin, and the non-mammalian hormone vasotocin. We compared bias quantification using the operational model with Michaelis-Menten based quantification, the latter accurately quantified ligand efficacies despite large difference in ligand affinities. Together, these results showed that V2R is promiscuous in its ability to engage several G proteins and that its' signaling profile is biased by small structural changes in the ligand. Significance Statement By modelling the G protein activation as Michaelis-Menten reaction, we developed a novel way of quantifying signalling bias. V2R activates or at least engages G proteins from all G protein subfamilies, including Gi2, Gz, Gq, G12, and G13. Their relative activation may explain its Gs-independent signalling.
Collapse
Affiliation(s)
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | | | - Dalibor Milic
- Department of Structural and Computational Biology, University of Vienna, Austria
| | - Joris Zhou
- Institute for Research in Immunology and Cancer, University of Montreal, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, University of Montreal, Canada
| | | | | | - Michel Bouvier
- Department of Biochemistry and Molec ular Medicine, University of Montreal, Canada
| | | |
Collapse
|
7
|
Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022; 248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Since the content levels of biomarkers at the early stage of many diseases are generally lower than the detection threshold concentration, achieving ultrasensitive and accurate detection of these biomarkers is still one of the major goals in bio-analysis. To achieve ultrasensitive and reliable bioassay, it requires developing highly sensitive biosensors. Among all kinds of biosensors, electrogenerated chemiluminescence (ECL) based biosensors have attracted enormous attention due to their excellent properties. In order to improve the performance of ECL biosensors, gold nanoparticles (Au NPs) have been widely utilized as signal amplification tags. The introduction of Au NPs could dramatically enhance the performance of the constructed ECL biosensors via diverse ways such as electrode modification material, efficient energy acceptor in ECL resonant energy transfer (ECL-RET), reaction catalyst, surface plasmon resonance (SPR) enhancer, and as nanocarrier. Herein, we summarize recent developments and progress of ECL biosensors based on Au NPs signal amplification strategies. We will cover ECL applications of Au NPs as a signal amplification tag in the detection of proteins, metal ions, nucleic acids, small molecules, living cells, exosomes, and cell imaging. Finally, brief summary and future outlooks of this field will be presented.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China; Department of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
8
|
Reiter E. [β-arrestins, their mechanisms of action and multiple roles in the biology of G protein-coupled receptors]. Biol Aujourdhui 2022; 215:107-118. [PMID: 35275055 DOI: 10.1051/jbio/2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/14/2023]
Abstract
The stimulation of G protein-coupled receptors (GPCRs) induces biological responses to a wide range of extracellular cues. The heterotrimeric G proteins, which are recruited to the active conformation of GPCRs, lead to the generation of various diffusible second messengers. Only two other families of proteins exhibit the remarkable characteristic of recognizing and binding to the active conformation of most GPCRs: GPCR kinases (GRKs) and β-arrestins. These two families of proteins were initially identified as key players in the desensitization of G protein activation by GPCRs. Over the years, β-arrestins have been implicated in an increasing number of interactions with non-receptor proteins, expanding the range of cellular functions in which they are involved. It is now well established that β-arrestins, by scaffolding and recruiting protein complexes in an agonist-dependent manner, directly regulate the trafficking and signaling of GPCRs. Remarkable advances have been made in recent years which have made it possible i) to identify biased ligands capable, by stabilizing particular conformations of a growing number of GPCRs, of activating or blocking the action of β-arrestins independently of that of G proteins, some of these ligands holding great therapeutic interest; ii) to demonstrate β-arrestins' role in the compartmentalization of GPCR signaling within the cell, and iii) to understand the molecular details of their interaction with GPCRs and of their activation through structural and biophysical approaches.
Collapse
Affiliation(s)
- Eric Reiter
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France - Inria, Centre de recherche Inria Saclay-Île-de-France, 91120 Palaiseau, France
| |
Collapse
|
9
|
Eiger DS, Pham U, Gardner J, Hicks C, Rajagopal S. GPCR Systems Pharmacology: A Different Perspective on the Development of Biased Therapeutics. Am J Physiol Cell Physiol 2022; 322:C887-C895. [PMID: 35196164 PMCID: PMC9037395 DOI: 10.1152/ajpcell.00449.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and are the target of approximately one-third of all Food and Drug Administration (FDA)-approved pharmaceutical drugs. GPCRs interact with many transducers, such as heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. Recent experiments have demonstrated that some ligands can activate distinct effector proteins over others, a phenomenon termed biased agonism. These discoveries have raised the potential of developing drugs which preferentially activate therapeutic signaling pathways over those that lead to deleterious side effects. However, to date, only one biased GPCR therapeutic has received FDA approval and many others have either failed to meet their specified primary endpoints and or demonstrate superiority over currently available treatments. Additionally, there is a lack of understanding regarding how biased agonism measured at a GPCR leads to specific downstream physiologic responses. Here, we briefly summarize the history and current status of biased agonism at GPCRs and suggest adoption of a systems pharmacology approach upon which to develop GPCR-targeted drugs that demonstrate heightened therapeutic efficacy with improved side effect profiles.
Collapse
Affiliation(s)
- Dylan Scott Eiger
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Julia Gardner
- Trinty College, Duke University, Durham, NC, United States
| | - Chloe Hicks
- Trinty College, Duke University, Durham, NC, United States
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
10
|
Pereira PHS, Garcia CRS, Bouvier M. Identifying Plasmodium falciparum receptor activation using bioluminescence resonance energy transfer (BRET)-based biosensors in HEK293 cells. Methods Cell Biol 2021; 166:223-233. [PMID: 34752334 DOI: 10.1016/bs.mcb.2021.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Throughout evolution the need for unicellular organisms to associate and form a single cluster of cells had several evolutionary advantages. G protein coupled receptors (GPCRs) are responsible for a large part of the senses that allow this clustering to succeed, playing a fundamental role in the perception of cell's external environment, enabling the interaction and coordinated development between each cell of a multicellular organism. GPCRs are not exclusive to complex multicellular organisms. In single-celled organisms, GPCRs are also present and have a similar function of detecting changes in the external environment and transforming them into a biological response. There are no reports of GPCRs in parasitic protozoa, such as the Plasmodium genus, and the identification of a protein of this family in P. falciparum would have a significant impact both on the understanding of the basic biology of the parasite and on the history of the evolution of GPCRs. The protocol described here was successfully applied to study a GPCR candidate in P. falciparum for the first time, and we hope that it helps other groups to use the same approach to study this deadly parasite.
Collapse
Affiliation(s)
- Pedro H S Pereira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Celia R S Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
11
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Sebastianutto I, Goyet E, Andreoli L, Font-Ingles J, Moreno-Delgado D, Bouquier N, Jahannault-Talignani C, Moutin E, Di Menna L, Maslava N, Pin JP, Fagni L, Nicoletti F, Ango F, Cenci MA, Perroy J. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson's disease. J Clin Invest 2020; 130:1168-1184. [PMID: 32039920 DOI: 10.1172/jci126361] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson's disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson's disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5-dependent PLC signaling was causally linked with excessive activation of extracellular signal-regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elise Goyet
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laura Andreoli
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joan Font-Ingles
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - David Moreno-Delgado
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Nathalie Bouquier
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Enora Moutin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Luisa Di Menna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Natallia Maslava
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Fagni
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fabrice Ango
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
13
|
Huang X, Jiang C, Yu L, Yang A. Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites. Front Cell Dev Biol 2020; 8:195. [PMID: 32292782 PMCID: PMC7118198 DOI: 10.3389/fcell.2020.00195] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Inter-organelle membrane contact sites (MCSs) are classically defined as areas of close proximity between heterologous membranes and established by specific proteins (termed tethers). The interest on MCSs has rapidly increased in the last years, since MCSs play a crucial role in the transfer of cellular components between different organelles and have been involved in important cellular functions such as apoptosis, organelle division and biogenesis, and cell growth. Recently, an unprecedented depth and breadth in insights into the details of MCSs have been uncovered. On one hand, extensive MCSs (organelles interactome) are revealed by comprehensive analysis of organelle network with high temporal-spatial resolution at the system level. On the other hand, more and more tethers involving in MCSs are identified and further works are focusing on addressing the role of these tethers in regulating the function of MCSs at the molecular level. These enormous progresses largely depend on the powerful approaches, including several different types of microscopies and various biochemical techniques. These approaches have greatly accelerated recent advances in MCSs at the system and molecular level. In this review, we summarize the current and emerging approaches for studying MCSs, such as various microscopies, proximity-driven fluorescent signal generation and proximity-dependent biotinylation. In addition, we highlight the advantages and disadvantages of the techniques to provide a general guidance for the study of MCSs.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Akinjiyan FA, Fazal A, Hild M, Beckwith REJ, Ross NT, Paulk J, Carbonneau S. A Novel Luminescence-Based High-Throughput Approach for Cellular Resolution of Protein Ubiquitination Using Tandem Ubiquitin Binding Entities (TUBEs). SLAS DISCOVERY 2020; 25:350-360. [PMID: 31997692 DOI: 10.1177/2472555219901261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein turnover is highly regulated by the posttranslational process of ubiquitination. Deregulation of the ubiquitin proteasome system (UPS) has been implicated in cancer and neurodegenerative diseases, and modulating this system has proven to be a viable approach for therapeutic intervention. The development of novel technologies that enable high-throughput studies of substrate protein ubiquitination is key for UPS drug discovery. Conventional approaches for studying ubiquitination either have high protein requirements or rely on exogenous or modified ubiquitin moieties, thus limiting their utility. In order to circumvent these issues, we developed a high-throughput live-cell assay that combines the NanoBiT luminescence-based technology with tandem ubiquitin binding entities (TUBEs) to resolve substrate ubiquitination. To demonstrate the effectiveness and utility of this assay, we studied compound-induced ubiquitination of the G to S Phase Transition 1 (GSPT1) protein. Using this assay, we characterized compounds with varying levels of GSPT1 ubiquitination activity. This method provides a live-cell-based approach for assaying substrate ubiquitination that can be adapted to study the kinetics of ubiquitin transfer onto a substrate protein of interest. In addition, our results show that this approach is portable for studying the ubiquitination of target proteins with diverse functions.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Aleem Fazal
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Marc Hild
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Rohan E J Beckwith
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Nathan T Ross
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Joshiawa Paulk
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Seth Carbonneau
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
15
|
Hertlein V, Flores-Romero H, Das KK, Fischer S, Heunemann M, Calleja-Felipe M, Knafo S, Hipp K, Harter K, Fitzgerald JC, García-Sáez AJ. MERLIN: a novel BRET-based proximity biosensor for studying mitochondria-ER contact sites. Life Sci Alliance 2019; 3:3/1/e201900600. [PMID: 31818884 PMCID: PMC6910062 DOI: 10.26508/lsa.201900600] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
MERLIN is a novel biosensor that generates a BRET signal with a signal-to-noise ratio that is sufficient to enable sensing the proximity between the mitochondria and the ER without forcing interaction or establishing artificial connections at the MERCs. The contacts between the ER and mitochondria play a key role in cellular functions such as the exchange of lipids and calcium between both organelles, as well as in apoptosis and autophagy signaling. The molecular architecture and spatiotemporal regulation of these distinct contact regions remain obscure and there is a need for new tools that enable tackling these questions. Here, we present a new bioluminescence resonance energy transfer–based biosensor for the quantitative analysis of distances between the ER and mitochondria that we call MERLIN (Mitochondria–ER Length Indicator Nanosensor). The main advantages of MERLIN compared with available alternatives are that it does not rely on the formation of artificial physical links between the two organelles, which could lead to artifacts, and that it allows to study contact site reversibility and dynamics. We show the applicability of MERLIN by characterizing the role of the mitochondrial dynamics machinery on the contacts of this organelle with the ER.
Collapse
Affiliation(s)
- Vanessa Hertlein
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Hector Flores-Romero
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kushal K Das
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Michael Heunemann
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Maria Calleja-Felipe
- Molecular Cognition Laboratory, Biophysics Institute, Consejo Superior de Investigaciones Cientificas, University of the Basque Country (UPV)/Euskal Herriko University, Campus Universidad del País Vasco, Leioa, Spain
| | - Shira Knafo
- Molecular Cognition Laboratory, Biophysics Institute, Consejo Superior de Investigaciones Cientificas, University of the Basque Country (UPV)/Euskal Herriko University, Campus Universidad del País Vasco, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Physiology and Cell Biology and National Institute of Biotechnology in the Negev, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Katharina Hipp
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- Hertie-Institute for Clinical Brain Research, University of Tübingen and German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Raynaud F, Homburger V, Seveno M, Vigy O, Moutin E, Fagni L, Perroy J. SNAP23-Kif5 complex controls mGlu1 receptor trafficking. J Mol Cell Biol 2019; 10:423-436. [PMID: 29762713 DOI: 10.1093/jmcb/mjy031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
Metabotropic glutamate receptors are expressed at excitatory synapses and control synaptic transmission in mammalian brain. These receptors are involved in numerous patho-physiological functions. However, little is known about the molecular determinants responsible for their intracellular transport and membrane targeting. Here we investigated the nature of the molecular motor and adaptor protein responsible for trafficking and membrane localization of the group I metabotropic glutamate mGlu1 postsynaptic receptor in cultured hippocampal neurons. In proteomic studies, we identified the synaptosome-associated protein 23 (SNAP23) and the molecular motor Kif5 kinesin as proteins interacting with mGlu1 receptor. We showed that SNAP23, but not Kif5, directly interacts with mGlu1 receptor carboxyl terminus. Using a recombination approach to impair or enhance the interaction between SNAP23 and Kif5, we found that the SNAP23-Kif5 complex controls the trafficking of mGlu1 receptor along microtubules. Additional fluorescence recovery after cleavage experiments allowed us to identify a role of the complex in the receptor cell surface targeting. In conclusion, our study indicates that along dendritic processes Kif5-SNAP23 complex contributes to proper mGlu1 receptor trafficking and cell surface expression.
Collapse
Affiliation(s)
| | | | - Martial Seveno
- BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Oana Vigy
- IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Enora Moutin
- IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Laurent Fagni
- IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Julie Perroy
- IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| |
Collapse
|
17
|
Yeh HW, Ai HW. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:129-150. [PMID: 30786216 PMCID: PMC6565457 DOI: 10.1146/annurev-anchem-061318-115027] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although fluorescent reporters and biosensors have become indispensable tools in biological and biomedical fields, fluorescence measurements require external excitation light, thereby limiting their use in thick tissues and live animals. Bioluminescent reporters and biosensors may potentially overcome this hurdle because they use enzyme-catalyzed exothermic biochemical reactions to generate excited-state emitters. This review first introduces the development of bioluminescent reporters, and next, their applications in sensing biological changes in vitro and in vivo as biosensors. Lastly, we discuss chemiluminescent sensors that produce photons in the absence of luciferases. This review aims to explore fundamentals and experimental insights and to emphasize the yet-to-be-reached potential of next-generation luminescent reporters and biosensors.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
18
|
Kobayashi H, Picard LP, Schönegge AM, Bouvier M. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Nat Protoc 2019; 14:1084-1107. [PMID: 30911173 DOI: 10.1038/s41596-019-0129-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022]
Abstract
Bioluminescence resonance energy transfer (BRET) is a transfer of energy between a luminescence donor and a fluorescence acceptor. Because BRET occurs when the distance between the donor and acceptor is <10 nm, and its efficiency is inversely proportional to the sixth power of distance, it has gained popularity as a proximity-based assay to monitor protein-protein interactions and conformational rearrangements in live cells. In such assays, one protein of interest is fused to a bioluminescent energy donor (luciferases from Renilla reniformis or Oplophorus gracilirostris), and the other protein is fused to a fluorescent energy acceptor (such as GFP or YFP). Because the BRET donor does not require an external light source, it does not lead to phototoxicity or autofluorescence. It therefore represents an interesting alternative to fluorescence-based imaging such as FRET. However, the low signal output of BRET energy donors has limited the spatiotemporal resolution of BRET imaging. Here, we describe how recent improvements in detection devices and BRET probes can be used to markedly improve the resolution of BRET imaging, thus widening the field of BRET imaging applications. The protocol described herein involves three main stages. First, cell preparation and transfection require 3 d, including cell culture time. Second, image acquisition takes 10-120 min per sample, after an initial 60 min for microscope setup. Finally, image analysis typically takes 1-2 h. The choices of energy donor, acceptor, luminescent substrates, cameras and microscope setup, as well as acquisition modes to be used for different applications, are also discussed.
Collapse
Affiliation(s)
- Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Louis-Philippe Picard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Schönegge
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
19
|
Abstract
Ubiquitination of G protein-coupled receptors (GPCRs) is an important dynamic posttranslational modification that has been linked to the intracellular trafficking of internalized GPCRs to lysosomes. Ubiquitination of GPCRs is mediated by specific E3 ubiquitin ligases that are scaffolded by the adaptor proteins called β-arrestins. Traditionally, detection of GPCR ubiquitination is achieved by using ubiquitin antibodies to Western blot immunoprecipitates of detergent-solubilized GPCRs expressed in heterologous cells. However, studies have also shown that bioluminescence resonance energy transfer (BRET)-based techniques can reveal ubiquitination of GPCRs in intact cells and in real time. This chapter describes a step-by-step protocol to evaluate ubiquitination of GPCRs using the BRET methodology.
Collapse
|
20
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
21
|
White CW, Johnstone EKM, See HB, Pfleger KDG. NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing. Cell Signal 2018; 54:27-34. [PMID: 30471466 DOI: 10.1016/j.cellsig.2018.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) is a versatile tool used to investigate membrane receptor signalling and function. We have recently developed a homogenous NanoBRET ligand binding assay to monitor interactions between G protein-coupled receptors and fluorescent ligands. However, this assay requires the exogenous expression of a receptor fused to the nanoluciferase (Nluc) and is thus not applicable to natively-expressed receptors. To overcome this limitation in HEK293 cells, we have utilised CRISPR/Cas9 genome engineering to insert Nluc in-frame with the endogenous ADORA2B locus this resulted in HEK293 cells expressing adenosine A2B receptors under endogenous promotion tagged on their N-terminus with Nluc. As expected, we found relatively low levels of endogenous (gene-edited) Nluc/A2B receptor expression compared to cells transiently transfected with expression vectors coding for Nluc/A2B. However, in cells expressing gene-edited Nluc/A2B receptors we observed clear saturable ligand binding of a non-specific fluorescent adenosine receptor antagonist XAC-X-BY630 (Kd = 21.4 nM). Additionally, at gene-edited Nluc/A2B receptors we derived pharmacological parameters of ligand binding; Kd as well as Kon and Koff for binding of XAC-X-BY630 by NanoBRET association kinetic binding assays. Lastly, cells expressing gene-edited Nluc/A2B were used to determine the pKi of unlabelled adenosine receptor ligands in competition ligand binding assays. Utilising CRISPR/Cas9 genome engineering here we show that NanoBRET ligand binding assays can be performed at gene-edited receptors under endogenous promotion in live cells, therefore overcoming a fundamental limitation of NanoBRET ligand assays.
Collapse
Affiliation(s)
- Carl W White
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Heng B See
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia; Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
22
|
Ma F, Zhang L, Wong BJC, Lei J. In situ simultaneous profiling of phosphorylation and ubiquitination by single excitation-duplexed luminescence resonance energy transfer. Chem Commun (Camb) 2018; 54:3648-3651. [DOI: 10.1039/c8cc01494a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dual LRET system is developed for the in situ simultaneous profiling of phosphorylation and ubiquitination on a specific protein upon 980 nm excitation.
Collapse
Affiliation(s)
- Fengjiao Ma
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Bernardino J. Córdova Wong
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
23
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
24
|
Shakhmin A, Hall MP, Walker JR, Machleidt T, Binkowski BF, Wood KV, Kirkland TA. Three Efficient Methods for Preparation of Coelenterazine Analogues. Chemistry 2016; 22:10369-75. [PMID: 27305599 DOI: 10.1002/chem.201601111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Indexed: 12/26/2022]
Abstract
The growing popularity of bioluminescent assays has highlighted the need for coelenterazine analogues possessing properties tuned for specific applications. However, the structural diversity of known coelenterazine analogues has been limited by current syntheses. Known routes for the preparation of coelenterazine analogues employ harsh reaction conditions that limit access to many substituents and functional groups. Novel synthetic routes reported here establish simple and robust methods for synthesis and investigation of structurally diverse marine luciferase substrates. Specifically, these new routes allow synthesis of coelenterazine analogues containing various heterocyclic motifs and substituted aromatic groups with diverse electronic substituents at the R(2) position. Interesting analogues described herein were characterized by their physicochemical properties, bioluminescent half-life, light output, polarity and cytotoxicity. Some of the analogues represent leads that can be utilized in the development of improved bioluminescent systems.
Collapse
Affiliation(s)
- Anton Shakhmin
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Mary P Hall
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711-5399, USA
| | - Joel R Walker
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711-5399, USA
| | - Brock F Binkowski
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711-5399, USA
| | - Keith V Wood
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711-5399, USA
| | - Thomas A Kirkland
- Promega Biosciences LLC, 277 Granada Drive, San Luis Obispo, CA, 93401, USA.
| |
Collapse
|
25
|
Jean-Charles PY, Rajiv V, Shenoy SK. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction. J Cell Physiol 2016; 231:2071-80. [PMID: 26790995 DOI: 10.1002/jcp.25317] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
The non-visual arrestins, β-arrestin1, and β-arrestin2 were originally identified as proteins that bind to seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors, GPCRs) and block heterotrimeric G protein activation, thus leading to desensitization of transmembrane signaling. However, as subsequent discoveries have continually demonstrated, their functionality is not constrained to desensitization. They are now recognized for their critical roles in mediating intracellular trafficking of 7TMRs, growth factor receptors, ion transporters, ion channels, nuclear receptors, and non-receptor proteins. Additionally, they function as crucial mediators of ubiquitination of 7TMRs as well as other receptors and non-receptor proteins. Recently, emerging studies suggest that a class of proteins with predicted structural features of β-arrestins regulate substrate ubiquitination in yeast and higher mammals, lending support to the idea that the adaptor role of β-arrestins in protein ubiquitination is evolutionarily conserved. β-arrestins also function as scaffolds for kinases and transduce signals from 7TMRs through pathways that do not require G protein activation. Remarkably, the endocytic and scaffolding functions of β-arrestin are intertwined with its ubiquitination status; the dynamic and site specific ubiquitination on β-arrestin plays a critical role in stabilizing β-arrestin-7TMR association and the formation of signalosomes. This review summarizes the current findings on ubiquitin-dependent regulation of 7TMRs as well as β-arrestins and the potential role of reversible ubiquitination as a "biological switch" in signal transduction. J. Cell. Physiol. 231: 2071-2080, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Vishwaesh Rajiv
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
26
|
Lahaie N, Kralikova M, Prézeau L, Blahos J, Bouvier M. Post-endocytotic Deubiquitination and Degradation of the Metabotropic γ-Aminobutyric Acid Receptor by the Ubiquitin-specific Protease 14. J Biol Chem 2016; 291:7156-70. [PMID: 26817839 DOI: 10.1074/jbc.m115.686907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Indexed: 02/01/2023] Open
Abstract
Mechanisms controlling the metabotropic γ-aminobutyric acid receptor (GABAB) cell surface stability are still poorly understood. In contrast with many other G protein-coupled receptors (GPCR), it is not subject to agonist-promoted internalization, but is constitutively internalized and rapidly down-regulated. In search of novel interacting proteins regulating receptor fate, we report that the ubiquitin-specific protease 14 (USP14) interacts with the GABAB(1b)subunit's second intracellular loop. Probing the receptor for ubiquitination using bioluminescence resonance energy transfer (BRET), we detected a constitutive and phorbol 12-myristate 13-acetate (PMA)-induced ubiquitination of the receptor at the cell surface. PMA also increased internalization and accelerated receptor degradation. Overexpression of USP14 decreased ubiquitination while treatment with a small molecule inhibitor of the deubiquitinase (IU1) increased receptor ubiquitination. Treatment with the internalization inhibitor Dynasore blunted both USP14 and IU1 effects on the receptor ubiquitination state, suggesting a post-endocytic site of action. Overexpression of USP14 also led to an accelerated degradation of GABABin a catalytically independent fashion. We thus propose a model whereby cell surface ubiquitination precedes endocytosis, after which USP14 acts as an ubiquitin-binding protein that targets the ubiquitinated receptor to lysosomal degradation and promotes its deubiquitination.
Collapse
Affiliation(s)
- Nicolas Lahaie
- From the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Michaela Kralikova
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, 14220 Prague 4, Czech Republic, and
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier 1 and 2, 34090 Montpellier, France
| | - Jaroslav Blahos
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, 14220 Prague 4, Czech Republic, and
| | - Michel Bouvier
- From the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3T 1J4, Canada,
| |
Collapse
|
27
|
Abstract
Application of bioluminescence resonance energy transfer (BRET) assay has been of special value in measuring dynamic events such as protein-protein interactions (PPIs) in vitro or in vivo. It was only in the late 1990s the BRET assay using RLuc-YFP was introduced for biological research showing its use in determining interaction of two proteins involved in circadian rhythm. Several inherent attributes such as rapid and fairly sensitive ratiometric measurements, assessment of PPI irrespective of protein location in cellular compartment, and cost-effectiveness consenting to high-throughput assay development make BRET a popular genetic reporter-based assay for PPI studies. In BRET-based screening, within a defined proximity range of 10-100 Å, excited state energy of the luminescence molecule can excite the acceptor fluorophore in the form of resonance energy transfer, causing it to emit at its characteristic emission wavelength. Based on this principle, several such donor-acceptor pairs, using the Renilla luciferase or its mutants as donor and either GFP2, YFP, mOrange, TagRFP, or TurboFP as acceptor, have been reported for use.In recent years, BRET-related research has become significantly versatile in the assay format and its applicability by adopting the assay on multiple detection devices such as small-animal optical imaging platform or bioluminescence microscope. Beyond the scope of quantitative measurement of PPIs and protein dimerization, molecular optical imaging applications based on BRET assays have broadened its scope for screening of pharmacological compounds by unifying in vitro, live cell, and in vivo animal/plant measurement all on one platform. Taking examples from the literature, this chapter contributes to in-depth methodological details on how to perform in vitro and in vivo BRET experiments, and illustrates its advantages as a single-format assay.
Collapse
Affiliation(s)
- Shalini Dimri
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Soumya Basu
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Abhijit De
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.
| |
Collapse
|
28
|
Deng L, Chen HY, Xu JJ. A novel electrochemiluminescence resonance energy transfer system for ultrasensitive detection of prostate-specific antigen. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
29
|
Ubiquitination of Dopamine Receptor Studied by Sequential Double Immunoprecipitation. NEUROMETHODS 2015. [DOI: 10.1007/978-1-4939-2196-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Boulay K, Ghram M, Viranaicken W, Trépanier V, Mollet S, Fréchina C, DesGroseillers L. Cell cycle-dependent regulation of the RNA-binding protein Staufen1. Nucleic Acids Res 2014; 42:7867-83. [PMID: 24906885 PMCID: PMC4081104 DOI: 10.1093/nar/gku506] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Staufen1 (Stau1) is a ribonucleic acid (RNA)-binding protein involved in the post-transcriptional regulation of gene expression. Recent studies indicate that Stau1-bound messenger RNAs (mRNAs) mainly code for proteins involved in transcription and cell cycle control. Consistently, we report here that Stau1 abundance fluctuates through the cell cycle in HCT116 and U2OS cells: it is high from the S phase to the onset of mitosis and rapidly decreases as cells transit through mitosis. Stau1 down-regulation is mediated by the ubiquitin-proteasome system and the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Stau1 interacts with the APC/C co-activators Cdh1 and Cdc20 via its first 88 N-terminal amino acids. The importance of controlling Stau155 levels is underscored by the observation that its overexpression affects mitosis entry and impairs proliferation of transformed cells. Microarray analyses identified 275 Stau155-bound mRNAs in prometaphase cells, an early mitotic step that just precedes Stau1 degradation. Interestingly, several of these mRNAs are more abundant in Stau155-containing complexes in cells arrested in prometaphase than in asynchronous cells. Our results point out for the first time to the possibility that Stau1 participates in a mechanism of post-transcriptional regulation of gene expression that is linked to cell cycle progression in cancer cells.
Collapse
Affiliation(s)
- Karine Boulay
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Mehdi Ghram
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Wildriss Viranaicken
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Véronique Trépanier
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Stéphanie Mollet
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Céline Fréchina
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de Biochimie, Faculté de médecine, Université de Montréal, 2900 Edouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
31
|
Deriziotis P, Graham SA, Estruch SB, Fisher SE. Investigating protein-protein interactions in live cells using bioluminescence resonance energy transfer. J Vis Exp 2014. [PMID: 24893771 DOI: 10.3791/51438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Collapse
Affiliation(s)
- Pelagia Deriziotis
- Language and Genetics Department, Max Planck Institute for Psycholinguistics
| | - Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics
| | - Sara B Estruch
- Language and Genetics Department, Max Planck Institute for Psycholinguistics
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour;
| |
Collapse
|
32
|
Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria. mBio 2014; 5:e01050-14. [PMID: 24846380 PMCID: PMC4030481 DOI: 10.1128/mbio.01050-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells, thus allowing the detection of protein-protein interactions in live bacterial cells. This BRET system added another useful tool to address important questions in microbiological studies.
Collapse
|
33
|
Pons V, Serhan N, Gayral S, Malaval C, Nauze M, Malet N, Laffargue M, Galés C, Martinez LO. Role of the ubiquitin-proteasome system in the regulation of P2Y13 receptor expression: impact on hepatic HDL uptake. Cell Mol Life Sci 2014; 71:1775-88. [PMID: 24030815 PMCID: PMC11113673 DOI: 10.1007/s00018-013-1471-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 01/03/2023]
Abstract
The protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R. When transiently expressed, P2Y13-R was mainly detected in the endoplasmic reticulum (ER) and strongly subjected to proteasome degradation while its homologous P2Y12 receptor (P2Y12-R) was efficiently targeted to the plasma membrane. We observed an inverse correlation between cell surface expression and ubiquitination level of P2Y13-R in the ER, suggesting a close link between ubiquitination of P2Y13-R and its efficient targeting to the plasma membrane. The C-terminus tail exchange between P2Y13-R and P2Y12-R strongly restored plasma membrane expression of P2Y13-R, suggesting the involvement of the intra-cytoplasmic tail of P2Y13-R in expression defect. Accordingly, proteasomal inhibition increased plasma membrane expression of functionally active P2Y13-R in hepatocytes, and consequently stimulated P2Y13-R-mediated HDL endocytosis. Importantly, proteasomal inhibition strongly potentiated HDL hepatic uptake (>200 %) in wild-type but not in P2Y13-R-deficient mice, thus reinforcing the role of P2Y13-R expression in regulating HDL metabolism. Therefore, specific inhibition of the ubiquitin-proteasome system might be a novel powerful HDL therapy to enhance P2Y13-R expression and consequently promote the overall RCT.
Collapse
Affiliation(s)
- Véronique Pons
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31432, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Steel E, Murray VL, Liu AP. Multiplex detection of homo- and heterodimerization of g protein-coupled receptors by proximity biotinylation. PLoS One 2014; 9:e93646. [PMID: 24691126 PMCID: PMC3972117 DOI: 10.1371/journal.pone.0093646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/08/2014] [Indexed: 11/30/2022] Open
Abstract
Dimerization of G protein-coupled receptors (GPCRs) represents a potential mechanism by which GPCR functions are regulated. Several resonance energy transfer (RET)-based methods have revealed GPCR homo- and heterodimerization. However, interpretation of an increase in FRET efficiency could be attributed to either dimerization/oligomerization events or conformational changes within an already dimerized/oligomerized receptor complex. Furthermore, RET-based methods can only measure pairwise dimerization, and cannot easily achieve multiplex detection. In this study, we applied proximity-based biotinylation for detecting receptor dimerization by utilizing a specific enzyme-substrate pair that are fused to GPCRs. The biotin ligase BirA is fused to CXCR4 and site-specifically biotinylates an acceptor peptide (AP) in the presence of biotin. As a test case for our newly developed assay, we have characterized the homo-dimerization of chemokine receptor CXCR4 and heterodimerization of CXCR4 with CCR2 or CCR5. The degree of biotinylation varies with the amount of GPCR-AP as well as biotinylation time. Using enzyme/substrate receptor pairs and measuring receptor biotinylation, we demonstrate that CXCR4 can homo-dimerize and hetero-dimerize with CCR2 and CCR5. The effect of CXCL12, agonist for CXCR4, was found to decrease surface biotinylation of CXCR4-AP. This effect is due to a combination of CXCR4 endocytosis and stabilization of CXCR4 homodimers. Finally, when CXCR4-AP, CCR2-AP, and CCR5-AP were expressed together, we observed CXCR4-CXCR4 homodimers and CXCR4-CCR2 and CXCR4-CCR5 heterodimers. The newly developed assay opens new opportunity for multiplex detection for GPCR homo- and heterodimerization within the same cellular context.
Collapse
Affiliation(s)
- Elisabeth Steel
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Victoria L. Murray
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
35
|
Measuring activity in the ubiquitin-proteasome system: from large scale discoveries to single cells analysis. Cell Biochem Biophys 2014; 67:75-89. [PMID: 23686610 DOI: 10.1007/s12013-013-9621-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS has provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington's disease. These reporters, usually consisting of a recognition sequence fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes. This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, a recent study is presented highlighting the development of a novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples.
Collapse
|
36
|
Paley MA, Prescher JA. Bioluminescence: a versatile technique for imaging cellular and molecular features. MEDCHEMCOMM 2014; 5:255-267. [PMID: 27594981 PMCID: PMC5006753 DOI: 10.1039/c3md00288h] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems.
Collapse
Affiliation(s)
- Miranda A. Paley
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
37
|
Boularan C, Kamenyeva O, Cho H, Kehrl JH. Resistance to inhibitors of cholinesterase (Ric)-8A and Gαi contribute to cytokinesis abscission by controlling vacuolar protein-sorting (Vps)34 activity. PLoS One 2014; 9:e86680. [PMID: 24466196 PMCID: PMC3897744 DOI: 10.1371/journal.pone.0086680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
Resistance to inhibitors of cholinesterase (Ric)-8A is a guanine nucleotide exchange factor for Gαi, Gαq, and Gα12/13, which is implicated in cell signaling and as a molecular chaperone required for the initial association of nascent Gα subunits with cellular membranes. Ric-8A, Gαi subunits, and their regulators are localized at the midbody prior to abscission and linked to the final stages of cell division. Here, we identify a molecular mechanism by which Ric-8A affects cytokinesis and abscission by controlling Vps34 activity. We showed that Ric-8A protein expression is post-transcriptionally controlled during the cell cycle reaching its maximum levels at mitosis. A FRET biosensor created to measure conformational changes in Ric-8A by FLIM (Fluorescence Lifetime Imaging Microscopy) revealed that Ric-8A was in a close-state during mitosis and particularly so at cytokinesis. Lowering Ric-8A expression delayed the abscission time of dividing cells, which correlated with increased intercellular bridge length and multinucleation. During cytokinesis, Ric-8A co-localized with Vps34 at the midbody along with Gαi and LGN, where these proteins functioned to regulate Vps34 phosphatidylinositol 3-kinase activity.
Collapse
Affiliation(s)
- Cedric Boularan
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olena Kamenyeva
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hyeseon Cho
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John H. Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
38
|
Abstract
The two homologous mammalian proteins called β-arrestin1 (also known as arrestin2) and β-arrestin2 (also called arrestin3) are now widely accepted as endocytic and signaling adaptors for G protein-coupled receptors (GPCRs), growth factor receptors, and ion channels. The sustained interactions of β-arrestins with activated GPCRs have been shown to correlate with the agonist-induced ubiquitination on distinct domains in the β-arrestin molecule. Additionally, ubiquitination of β-arrestin promotes its interaction with proteins that mediate endocytosis (e.g., clathrin) and signaling (e.g., c-RAF). Recent studies have demonstrated that deubiquitination of β-arrestin by specific deubiquitinating enzymes (DUBs) acts as an important regulatory mechanism, which determines the stability of β-arrestin-GPCR binding and fine-tunes β-arrestin-dependent signaling to downstream kinases. Accordingly, ubiquitination/deubiquitination of β-arrestin can serve as an on/off switch for its signaling and endocytic functions. Moreover, by regulating the stability and localization of signalosomes, deubiquitination of β-arrestins by DUBs imparts spatial and temporal resolution in GPCR signaling.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
39
|
Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications. Handb Exp Pharmacol 2014; 219:187-203. [PMID: 24292831 DOI: 10.1007/978-3-642-41199-1_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arrestins constitute a small family of four homologous adaptor proteins (arrestins 1-4), which were originally identified as inhibitors of signal transduction elicited by the seven-transmembrane G protein-coupled receptors. Currently arrestins (especially arrestin2 and arrestin3; also called β-arrestin1 and β-arrestin2) are known to be activators of cell signaling and modulators of endocytic trafficking. Arrestins mediate these effects by binding to not only diverse cell-surface receptors but also by associating with a variety of critical signaling molecules in different intracellular compartments. Thus, the functions of arrestins are multifaceted and demand interactions with a host of proteins and require an array of selective conformations. Furthermore, receptor ligands that specifically induce signaling via arrestins are being discovered and their physiological roles are emerging. Recent evidence suggests that the activity of arrestin is regulated in space and time by virtue of its dynamic association with specific enzymes of the ubiquitination pathway. Ubiquitin-dependent, arrestin-mediated signaling could serve as a potential platform for developing novel therapeutic strategies to target transmembrane signaling and physiological responses.
Collapse
|
40
|
Moutin E, Compan V, Raynaud F, Clerté C, Bouquier N, Labesse G, Ferguson ML, Fagni L, Royer CA, Perroy J. Stoichiometry of scaffold complexes in living neurons - DLC2 as a dimerization engine for GKAP. J Cell Sci 2014; 127:3451-62. [DOI: 10.1242/jcs.145748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative spatio-temporal characterization of protein interactions in living cells remains a major challenge facing modern biology. We have investigated in living neurons the spatial dependence of the stoichiometry of interactions between two core proteins of the NMDA receptor-associated scaffolding complex, GKAP and DLC2, using a novel variation of Fluorescence Fluctuation Microscopy called two-photon scanning Number and Brightness (sN&B). We found that dimerization of DLC2 was required for its interaction with GKAP, which in turn potentiated GKAP self-association. In dendritic shaft, the DLC2-GKAP hetero-oligomeric complexes were composed mainly of 2 DLC2 and 2 GKAP monomers, while in spines, the hetero-complexes were much larger, with an average of ∼16 DLC2 and ∼13 GKAP. Disruption of the GKAP-DLC2 interaction strongly destabilized the oligomers, decreasing the spine-preferential localization of GKAP and inhibiting NMDA receptor activity. Hence, DLC2 serves a hub function in the control of glutamatergic transmission via ordering of GKAP-containing complexes in dendritic spines. Beyond illuminating the role of DLC2–GKAP interactions in glutamergic signalling, these data underscore the power of the sN&B approach for quantitative spatio-temporal imaging of other important protein complexes.
Collapse
|
41
|
Jaeger WC, Armstrong SP, Hill SJ, Pfleger KDG. Biophysical Detection of Diversity and Bias in GPCR Function. Front Endocrinol (Lausanne) 2014; 5:26. [PMID: 24634666 PMCID: PMC3943086 DOI: 10.3389/fendo.2014.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in complexes with a range of molecules and proteins including ligands, G proteins, arrestins, ubiquitin, and other receptors. Elements of these complexes may interact constitutively or dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephosphorylation. They may also be allosterically modulated by other proteins in a manner that changes temporally and spatially within the cell. Elucidating how these complexes function has been greatly enhanced by biophysical technologies that are able to monitor proximity and/or binding, often in real time and in live cells. These include resonance energy transfer approaches such as bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent ligands has enabled novel insights into allosteric interactions between GPCRs. Consequently, biophysical approaches are helping to unlock the amazing diversity and bias in G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Werner C. Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen P. Armstrong
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen J. Hill
- Cell Signalling Research Group, School of Life Sciences, Queen’s Medical Centre, University of Nottingham Medical School, Nottingham, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Dimerix Bioscience Pty Ltd, Perth, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, QQ Block, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia e-mail:
| |
Collapse
|
42
|
Lin H, Liu AP, Smith TH, Trejo J. Cofactoring and dimerization of proteinase-activated receptors. Pharmacol Rev 2013; 65:1198-213. [PMID: 24064459 DOI: 10.1124/pr.111.004747] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteinase-activated receptors (PARs) are G protein-coupled receptors that transmit cellular responses to extracellular proteases and have important functions in vascular physiology, development, inflammation, and cancer progression. The established paradigm for PAR activation involves proteolytic cleavage of the extracellular N terminus, which reveals a new N terminus that functions as a tethered ligand by binding intramolecularly to the receptor to trigger transmembrane signaling. Most cells express more than one PAR, which can influence the mode of PAR activation and signaling. Clear examples include murine PAR3 cofactoring of PAR4 and transactivation of PAR2 by PAR1. Thrombin binds to and cleaves murine PAR3, which facilitates PAR4 cleavage and activation. This process is essential for thrombin signaling and platelet activation, since murine PAR3 cannot signal alone. Although PAR1 and PAR4 are both competent to signal, PAR1 is able to act as a cofactor for PAR4, facilitating more rapid cleavage and activation by thrombin. PAR1 can also facilitate PAR2 activation through a different mechanism. Cleavage of the PAR1 N terminus by thrombin generates a tethered ligand domain that can bind intermolecularly to PAR2 to activate signaling. Thus, PARs can regulate each other's activity by localizing thrombin when in complex with PAR3 and PAR4 or by cleaved PAR1, providing its tethered ligand domain for PAR2 activation. The ability of PARs to cofactor or transactivate other PARs would necessitate that the two receptors be in close proximity, likely in the form of a heterodimer. Here, we discuss the cofactoring and dimerization of PARs and the functional consequences on signaling.
Collapse
Affiliation(s)
- Huilan Lin
- University of California, San Diego, 9500 Gilman Drive, Biomedical Sciences Building, MC-0636, La Jolla, CA 92093.
| | | | | | | |
Collapse
|
43
|
De A, Jasani A, Arora R, Gambhir SS. Evolution of BRET Biosensors from Live Cell to Tissue-Scale In vivo Imaging. Front Endocrinol (Lausanne) 2013; 4:131. [PMID: 24065957 PMCID: PMC3779814 DOI: 10.3389/fendo.2013.00131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/05/2013] [Indexed: 11/13/2022] Open
Abstract
Development of bioluminescence resonance energy transfer (BRET) based genetic sensors for sensing biological functions such as protein-protein interactions (PPIs) in vivo has a special value in measuring such dynamic events at their native environment. Since its inception in the late nineties, BRET related research has gained significant momentum in terms of adding versatility to the assay format and wider applicability where it has been suitably used. Beyond the scope of quantitative measurement of PPIs and protein dimerization, molecular imaging applications based on BRET assays have broadened its scope for screening pharmacologically important compounds by in vivo imaging as well. In this mini-review we focus on an in-depth analysis of engineered BRET systems developed and their successful application to cell-based assays as well as in vivo non-invasive imaging in live subjects.
Collapse
Affiliation(s)
- Abhijit De
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
- *Correspondence: Abhijit De, Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India e-mail:
| | - Akshi Jasani
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Rohit Arora
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Sanjiv S. Gambhir
- MIPS, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
44
|
Antidepressant-induced differential ubiquitination of β-arrestins 1 and 2 in mononuclear leucocytes of patients with depression. Int J Neuropsychopharmacol 2013; 16:1745-54. [PMID: 23672745 DOI: 10.1017/s1461145713000291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins 1 and 2, cytosolic proteins known to mediate receptor desensitization, endocytosis and G protein-independent signalling, are post-translationally modified by ubiquitination regulating their ability to serve as adaptors and scaffolds. β-Arrestins were suggested to play a role in the pathophysiology of depression and in antidepressant mechanism of action. To determine whether a depressive episode or antidepressant treatment induce significant selective differences in β-arrestin 1 and 2 levels or their ubiquitination patterns in leucocytes of patients with depression, 46 outpatients diagnosed with a depressive episode were examined before and after 4-wk antidepressant treatment compared with age- and gender-matched control subjects. β-Arrestin levels were measured by immunoblotting using anti-arrestin antibodies. Ubiquitination of β-arrestins was measured using anti-ubiquitin antibodies followed by an immunoprecipitation step and immunoblotting using anti-arrestin antibodies. Antidepressants induced selective alterations in leucocyte β-arrestin 1 and 2 levels and ubiquitination. The levels of β-arrestin 1 and 2 and their ubiquitinated forms in leucocytes of yet untreated patients with depression were significantly decreased in a symptom severity correlated manner compared to control subjects. Antidepressants normalized β-arrestin 1 and 2 levels and uncovered novel differences between the two isoforms: (a) while antidepressants normalized ubiquitination of β-arrestin 1, ubiquination of β-arrestin 2 was unaffected; (b) while under antidepressants ubiquitination extent of β-arrestin 1 positively correlated with its level, an inverse picture of negative correlation was found between ubiquitination extent of β-arrestin 2 and its level. We conclude that antidepressants may serve as a tool to detect functional differences between the two β-arrestin isoforms and that through these differential effects antidepressants can induce specific alterations in alternative cellular signalling.
Collapse
|
45
|
Armstrong SP, Seeber RM, Ayoub MA, Feldman BJ, Pfleger KDG. Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V). PLoS One 2013; 8:e65885. [PMID: 23762448 PMCID: PMC3675069 DOI: 10.1371/journal.pone.0065885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/30/2013] [Indexed: 02/01/2023] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI), whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). Here we provide further characterization of two mutant V2Rs, R181C and M311V, reported to cause complete and partial NDI respectively, together with a V266A variant, in a patient diagnosed with NSIAD. Our data in HEK293FT cells revealed that for cAMP accumulation, AVP was about 500- or 30-fold less potent at the R181C and M311V mutants than at the wild-type receptor respectively (and about 4000- and 60-fold in COS7 cells respectively). However, in contrast to wild type V2R, the R181C mutant failed to increase inositol phosphate production, while with the M311V mutant, AVP exhibited only partial agonism in addition to a 37-fold potency decrease. Similar responses were detected in a BRET assay for β-arrestin recruitment, with the R181C receptor unresponsive to AVP, and partial agonism with a 23-fold decrease in potency observed with M311V in both HEK293FT and COS7 cells. Notably, the V266A V2R appeared functionally identical to the wild-type receptor in all assays tested, including cAMP and inositol phosphate accumulation, β-arrestin interaction, and in a BRET assay of receptor ubiquitination. Each receptor was expressed at comparable levels. Hence, the M311V V2R retains greater activity than the R181C mutant, consistent with the milder phenotype of NDI associated with this mutant. Notably, the R181C mutant appears to be a Gs protein-biased receptor incapable of signaling to inositol phosphate or recruiting β-arrestin. The etiology of NSIAD in the patient with V266A V2R remains unknown.
Collapse
MESH Headings
- Animals
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Arginine Vasopressin/metabolism
- Arrestins/genetics
- Arrestins/metabolism
- COS Cells
- Chlorocebus aethiops
- Cyclic AMP/metabolism
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/metabolism
- Diabetes Insipidus, Nephrogenic/pathology
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gene Expression Regulation
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/pathology
- HEK293 Cells
- Humans
- Inappropriate ADH Syndrome/genetics
- Inappropriate ADH Syndrome/metabolism
- Inappropriate ADH Syndrome/pathology
- Inositol Phosphates/metabolism
- Mutation
- Polymorphism, Genetic
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- Stephen P. Armstrong
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Ruth M. Seeber
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Mohammed Akli Ayoub
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
- Protein Research Chair - Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Brian J. Feldman
- Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Kevin D. G. Pfleger
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
46
|
Abstract
BACKGROUND Bioluminescence technology is based on the luciferin-luciferase reaction and is generally well known as a reporter gene assay system that uses firefly luciferase. It has revolutionized the field of transcriptional analysis owing to its usability and quantitative capability. Several methods for transcription analysis have emerged in the past two decades. Recently, novel bioluminescence techniques that differ from typical approaches were developed for the detection of transcriptional regulation or direct protein-protein interactions. OBJECTIVE As each method has its own characteristics, this review summarizes the latest bioluminescence methods that are applicable to the field of drug discovery research. METHODS Considering the diversity of related techniques, this review covers several aspects that have been divided into the following classes: variation of reporter gene assays, secretion properties, protein-protein interaction assays in living cells and bioluminescence imaging of living cells. RESULTS/CONCLUSIONS The practical application of several luciferins and/or luciferases and the generation of novel applications by incorporating fluorescent molecules into bioluminescence techniques will become increasingly important because bioluminescence technology has a significant potential depending on how we use it.
Collapse
Affiliation(s)
- Hideto Hoshino
- Cell Dynamics Research Group Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan +81 72 751 7997 ; +81 72 751 9628 ;
| |
Collapse
|
47
|
Wang J, Zhao WW, Zhou H, Xu JJ, Chen HY. Amplified electrochemiluminescence detection of DNA-binding protein based on the synergy effect of electron and energy transfer between CdS nanocrystals and gold nanoparticles. Biosens Bioelectron 2013; 41:615-20. [DOI: 10.1016/j.bios.2012.09.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
48
|
Tollip-induced down-regulation of MARCH1. RESULTS IN IMMUNOLOGY 2013; 3:17-25. [PMID: 24600555 DOI: 10.1016/j.rinim.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 12/31/2022]
Abstract
In addition to their classical antigen presenting functions, MHC class II molecules potentiate the TLR-triggered production of pro-inflammatory cytokines. Here, we have addressed the effect of Tollip and MARCH1 on the regulation of MHC II trafficking and TLR signaling. Our results show that MARCH1-deficient mice splenocytes are impaired in their capacity to produce pro-inflammatory cytokines in response to poly(I:C) and that TLR3 and MHC II molecules interact in the endocytic pathway. Knocking down Tollip expression in human CIITA(+) HeLa cells increased expression of HLA-DR but reduced the proportion of MHC II molecules associated with the CLIP peptide. Truncation of the HLA-DR cytoplasmic tails abrogated the effect of Tollip on MHC class II expression. While overexpression of Tollip did not affect HLA-DR levels, it antagonized the function of co-transfected MARCH1. We found that Tollip strongly reduced MARCH1 protein levels and that the two molecules appear to compete for binding to MHC II molecules. Altogether, our results demonstrate that Tollip regulates MHC class II trafficking and that MARCH1 may represent a new Tollip target.
Collapse
Key Words
- APCs, antigen presenting cells
- Antigen presentation
- Btk, Bruton tyrosine kinase
- C2, internal protein kinase C conserved region 2
- CIITA, class II trans-activator
- CUE, coupling of ubiquitin to endoplasmic reticulum degradation domain
- DCs, dendritic cells
- IL-1RAcP, IL-1R-associated protein
- IL-1RI, IL-1 receptor
- IRAK, IL-1 receptor-associated kinase
- MARCH, membrane-associated RING-CH
- MARCH1
- MFVs, mean fluorescence values
- MHC II
- MHC II, MHC class II
- MIR, modulator of immune recognition
- PAMPs, pathogen-associated molecular patterns
- SOCS1, suppressor of cytokine signaling 1
- TBD, Tom1-binding domain
- TGFBR1, TGF-beta type I receptor
- TIR, Toll/IL-1 receptor
- TLR, toll-like receptor
- TLR3
- Tfr, transferrin receptor
- Tollip
- Tollip, Toll-interacting protein
- iDCs, immature DCs
Collapse
|
49
|
Leonard AP, Appleton KM, Luttrell LM, Peterson YK. A high-content, live-cell, and real-time approach to the quantitation of ligand-induced β-Arrestin2 and Class A/Class B GPCR mobilization. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:150-170. [PMID: 23351552 PMCID: PMC4169994 DOI: 10.1017/s1431927612014067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the development of a method to analyze receptor and β-arrestin2 mobilization between Class A and B GPCRs via time-resolved fluorescent microscopy coupled with semiautomated high-content multiparametric analysis. Using transiently expressed, tagged β2-adrenergic receptor (β₂-AR) or parathyroid hormone receptor type 1 (PTH₁R), we quantified trafficking of the receptors along with the mobilization and colocalization of coexpressed tagged β-arrestin2. This classification system allows for exclusion of cells with nonoptimal characteristics and calculation of multiple morphological and spatial parameters including receptor endosome formation, β-arrestin mobilization, colocalization, areas, and shape. Stimulated Class A and B receptors demonstrate dramatically different patterns with regard to β-arrestin interactions. The method provides high kinetic resolution measurement of receptor translocation, which allows for the identification of the fleeting β-arrestin interaction found with β₂-AR agonist stimulation, in contrast to stronger mobilization and receptor colocalization with agonist stimulation of the PTH₁R. Though especially appropriate for receptor kinetic studies, this method is generalizable to any dual fluorescence probe system in which quantification of object formation and movement is desired. These methodologies allow for quantitative, unbiased measurement of microscopy data and are further enhanced by providing real-time kinetics.
Collapse
Affiliation(s)
- Anthony P. Leonard
- Medical University of South Carolina, Pharmaceutical and Biomedical Sciences, Charleston, SC 29425, USA
| | - Kathryn M. Appleton
- Medical University of South Carolina, Pharmaceutical and Biomedical Sciences, Charleston, SC 29425, USA
| | - Louis M. Luttrell
- Medical University of South Carolina, Medicine, Charleston, SC 29425, USA
| | - Yuri K. Peterson
- Medical University of South Carolina, Pharmaceutical and Biomedical Sciences, Charleston, SC 29425, USA
| |
Collapse
|
50
|
Kommaddi RP, Shenoy SK. Arrestins and protein ubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:175-204. [PMID: 23764054 DOI: 10.1016/b978-0-12-394440-5.00007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adaptor proteins, β-arrestins 1 and 2, were originally identified as inhibitors of G protein signaling at the seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors or GPCRs). Subsequent studies have established β-arrestins as critical multifunctional 7TMR adaptors that mediate receptor trafficking and activate G protein-independent signaling pathways. 7TMR activation leads not only to the recruitment of arrestin proteins upon phosphorylation by GPCR kinases but also to β-arrestin ubiquitination. This posttranslational modification of β-arrestin is appended by specific E3 ubiquitin ligases and reversed by deubiquitinases, which are also recruited in a receptor- and agonist-specific manner. β-Arrestin ubiquitination allows it to form protein complexes with activated 7TMRs, endocytic proteins such as clathrin, and phosphorylated ERK1/2. β-Arrestin ubiquitination is dependent on its activated conformation and likely regulates timing and subcellular localization of various protein interactions during receptor trafficking and signaling. β-Arrestins also serve as adaptors that escort E3 ubiquitin ligases to mediate ubiquitination of a wide list of substrate proteins including 7TMRs and provide an added layer of regulation for defining substrate specificity in the cellular ubiquitination pathway.
Collapse
Affiliation(s)
- Reddy Peera Kommaddi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|