1
|
Zhao H, Sun J, Cheng Y, Nie S, Li W. Advances in peptide/polymer antimicrobial assemblies. J Mater Chem B 2024. [PMID: 39714335 DOI: 10.1039/d4tb02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Antimicrobial peptides (AMPs) have been extensively exploited as promising drugs to cope with antibiotic-resistant bacteria in clinical treatment. Peptide/polymer assembly provides a particularly important contribution to this topic and has emerged as a new paradigm for the development of nano-antimicrobial systems with previously unattainable outcomes. In this review article, we systematically summarize the recent advances in antimicrobial peptide/polymer assemblies. We describe a brief background and several classified systems based on peptide/polymer assemblies. We discuss the molecular design and the general rules behind the assembled nanostructures and bioactivities. The key role of polymers in improving the antimicrobial activity, stability, cytotoxicity, and bioavailability of peptides is emphasized based on the reported systems. The resulting peptide/polymer assemblies with stimuli-responsiveness, value-added properties and potential applications are demonstrated. The outlook of the antimicrobial peptide/polymer assemblies is also presented from the viewpoint of bio-applications.
Collapse
Affiliation(s)
- He Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Jiayi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Yi Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Shuaishuai Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
2
|
Jayawardena A, Hung A, Qiao G, Hajizadeh E. Molecular Dynamics Simulations of Structurally Nanoengineered Antimicrobial Peptide Polymers Interacting with Bacterial Cell Membranes. J Phys Chem B 2024. [PMID: 39686718 DOI: 10.1021/acs.jpcb.4c06691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Multidrug resistance (MDR) to conventional antibiotics is one of the most urgent global health threats, necessitating the development of effective and biocompatible antimicrobial agents that are less inclined to provoke resistance. Structurally nanoengineered antimicrobial peptide polymers (SNAPPs) are a novel and promising class of such alternatives. These star-shaped polymers are made of a dendritic core with multiple arms made of copeptides with varying amino acid sequences. Through a comprehensive set of in vivo experiments, we previously showed that SNAPPs with arms made of random blocks of lysine (K) and valine (V) residues exhibit sub-μM efficacy against Gram-negative and Gram-positive bacteria tested. Cryo-TEM images suggested pore formation by a SNAPP with random block copeptide arms as one of their modes of actions. However, the molecular mechanisms responsible for this mode of action of SNAPPs are not fully understood. To address this gap, we employed an atomistic molecular dynamics simulation technique to investigate the influence of three different sequences of amino acids, namely (1) alt-block KKV, (2) ran-block, and (3) diblock motifs on the secondary structure of their arms and SNAPP's overall configuration as well as their interactions with lipid bilayer. We, for the first time, identified a step-by-step mechanism through which alt-block and random SNAPPs interact with lipid bilayer and lead to "pore formation", hence, cell death. These insights provide a strong foundation for further optimization of the chemical structure of SNAPPs for maximum performance against MDR bacteria, therefore offering a promising avenue for addressing antibiotic resistance and the development of effective antibacterial agents.
Collapse
Affiliation(s)
- Amal Jayawardena
- Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Greg Qiao
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elnaz Hajizadeh
- Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Gao N, Fang C, Bai P, Wang J, Dong N, Shan A, Zhang L. De novo design of Na +-activated lipopeptides with selective antifungal activity: A promising strategy for antifungal drug discovery. Int J Biol Macromol 2024; 283:137894. [PMID: 39571872 DOI: 10.1016/j.ijbiomac.2024.137894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
In recent years, invasive fungal infections have posed a significant threat to human health, particularly due to the limited availability of effective antifungal medications. This study responds to the urgent need for powerful and selective antifungal agents by designing and synthesizing a series of lipopeptides with lipoylation at the N-terminus of the antimicrobial peptide I6. Compared to the parent peptide I6, lipopeptides exhibited selective antifungal efficacy in the presence of Na+. Among the variants tested, C8-I6 emerged as the most effective, with an average effective concentration of 5.3 μM against 12 different fungal species. C8-I6 combated fungal infections by disrupting both cytoplasmic and mitochondrial membranes, impairing the proton motive force, generating reactive oxygen species, and triggering apoptosis in fungal cells. Importantly, C8-I6 exhibited minimal hemolysis and cytotoxicity while effectively inhibiting fungal biofilm formation. In vivo experiments further validated the safety and therapeutic potential of C8-I6 in treating fungal skin infections. These findings underscore the significance of lipoylation in enhancing the efficacy of antimicrobial peptides, positioning C8-I6 as a promising candidate in fighting against drug-resistant fungal infections.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyang Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
4
|
Barman S, Abiodun A, Hossain MW, Parris A, Chandrasseril AB, Older EA, Li J, Decho AW, Tang C. The role of secondary structures of peptide polymers on antimicrobial efficacy and antibiotic potentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623429. [PMID: 39605571 PMCID: PMC11601527 DOI: 10.1101/2024.11.19.623429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The rise of antibiotic resistance, biofilm formation, and dormant bacterial populations poses serious global health threats. Synthetic antimicrobial peptide (AMP) mimics offer promising alternatives, though the impact of secondary structures in polymeric AMP mimics on antimicrobial efficacy is underexplored. This study investigates chirality-controlled α-peptide polymers (D-PP and DL-PP), synthesized via ring-opening polymerization of allylglycine N-carboxy anhydrides and post-polymerization modification through thiol-ene click chemistry. D-PP adopts a stable helical structure under biomimetic conditions, whereas DL-PP remains random. This helical structure enhanced D-PP's antibacterial and antibiotic potentiation activities, amplifying antibiotic efficacy by 2- to 256-fold across various classes-including tetracyclines, ansamycins, fusidanes, macrolides, cephalosporins, and monobactams-against multidrug-resistant Gram-negative pathogens, while maintaining low hemolytic activity and high protease stability. Mechanistic investigations revealed that D-PP exhibited greater membrane interaction. D-PP and antibiotic combinations eradicated dormant bacterial populations and disrupted biofilms with minimal antimicrobial resistance development. This study paves the way for the rational design of polypeptide-based antimicrobial agents, harnessing chirality and secondary structural features to enhance the efficacy of synthetic antimicrobial peptide mimics.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alimi Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Adam Parris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Ethan A. Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Chen G, Liu X, Liu H, Liang S, Sun S, Han M, Ji S. Quaternary Ammonium Salt Derivatives of Hyperbranched Polylysine with Enhanced Antibacterial Activity against Multidrug-Resistant Gram-Negative Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:7444-7452. [PMID: 39475495 DOI: 10.1021/acsabm.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria infections have gradually become a more serious health problem recently, and antibacterial drugs are urgently needed to tackle MDR Gram-negative bacteria. Herein, we synthesized a series of quaternary ammonium salt derivatives of hyperbranched polylysine (HPL-Cm-n) with different alkyl chain lengths (m = 4, 8, 12, 16) and grafting ratios (n = 5.8-21.0) of alkyl quaternary ammonium salts (Cm). HPL-Cm-ns exhibited excellent antibacterial activities against drug-sensitive E. coli and P. aeruginosa, and specifically, HPL-C12-ns were also highly active against MDR E. coli and P. aeruginosa. The cytotoxicity and hemolytic activity of HPL-Cm-ns increased with the increase in the alkyl chain length and the grafting ratio of Cm. The killing study proved that HPL-C12-9.5 had fast killing kinetics and was bactericidal toward both drug-sensitive and MDR E. coli. The mechanistic studies showed that, similar to hyperbranched polylysine (HPL), HPL-C12-9.5 killed bacteria by disrupting the cell membranes and causing leakage of the cytoplasmic contents. HPL-C12-ns might have potential as an antibacterial agent to combat MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Guohao Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hui Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuhan Liang
- Xi'an Jiaotong Liverpool University, Suzhou 215123, P. R. China
| | - Shuhong Sun
- Delegate Office in Changchun, 5696 Yatai Street, Changchun 130041, P. R. China
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
de Oliveira KBS, Leite ML, Melo NTM, Lima LF, Barbosa TCQ, Carmo NL, Melo DAB, Paes HC, Franco OL. Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections. Antibiotics (Basel) 2024; 13:1042. [PMID: 39596736 PMCID: PMC11591436 DOI: 10.3390/antibiotics13111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The extensive use of antibiotics during recent years has led to antimicrobial resistance development, a significant threat to global public health. It is estimated that around 1.27 million people died worldwide in 2019 due to infectious diseases caused by antibiotic-resistant microorganisms, according to the WHO. It is estimated that 700,000 people die each year worldwide, which is expected to rise to 10 million by 2050. Therefore, new and efficient antimicrobials against resistant pathogenic bacteria are urgently needed. Antimicrobial peptides (AMPs) present a broad spectrum of antibacterial effects and are considered potential tools for developing novel therapies to combat resistant infections. However, their clinical application is currently limited due to instability, low selectivity, toxicity, and limited bioavailability, resulting in a narrow therapeutic window. Here we describe an overview of the clinical application of AMPs against resistant bacterial infections through nanoformulation. It evaluates metal, polymeric, and lipid AMP delivery systems as promising for the treatment of resistant bacterial infections, offering a potential solution to the aforementioned limitations.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Bloco K, Universidade de Brasília, Federal District, Brasilia 70790-900, Brazil;
| | - Nadielle Tamires Moreira Melo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Talita Cristina Queiroz Barbosa
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Nathalia Lira Carmo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Douglas Afonso Bittencourt Melo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Hugo Costa Paes
- Grupo de Engenharia de Biocatalisadores, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Federal District, Brasilia 70790-900, Brazil;
- Divisão de Clínica Médica, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Federal District, Brasilia 70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Universidade de Brasília, Brasilia 70790-900, Brazil
| |
Collapse
|
7
|
Zou P, Huang L, Li Y, Liu D, Che J, Zhao T, Li H, Li J, Cui YN, Yang G, Li Z, Li LL, Gao C. Phase-Separated Nano-Antibiotics Enhanced Survival in Multidrug-Resistant Escherichia coli Sepsis by Precise Periplasmic EcDsbA Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407152. [PMID: 39279551 DOI: 10.1002/adma.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Disulfide bond (Dsb) proteins, especially DsbA, represent a promising but as-yet-unrealized target in combating multidrug-resistant (MDR) bacteria because their precise subcellular targeting through multibarrier remains a significant challenge. Here, a novel heterogenization-phase-separated nano-antibiotics (NCefoTs) is proposed, through the co-assembly of enzyme-inhibiting lipopeptides (ELp component), membrane-recognizing and disrupting lipopeptides (MLp component), and cefoperazone. The self-sorting components of MLp "concentrated island-liked clusters" on the surface of NCefoTs promote the efficient penetration of NCefoTs through the outer membrane. Triggered by the DsbA, the precisely spatiotemporal engineered NCefoTs transform to nanofibers in situ and further significantly enhance the inhibition of DsbA. The hydrolytic activity of β-lactamase and the motility function of flagella are thereby impeded, confirming the efficacy of NCefoTs in restoring susceptibility to antibiotics and inhibiting infection dissemination. By these synergistic effects of NCefoTs, the minimum inhibitory concentration of antibiotics decreases from over 300 µM to 1.56 µM for clinically isolated E. coli MDR. The survival rate of sepsis-inflicted mice is significantly enhanced from 0% to 92% upon encapsulation of cefoperazone in NCefoTs, which rapidly eliminates invading pathogens and mitigates inflammation. The universally applicable delivery system, based on an "on demands" strategy, presents a promising prospect for undruggable antibiotic targets in the periplasm to combat MDR bacteria.
Collapse
Affiliation(s)
- Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Dan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Junwei Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Te Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Hui Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100083, China
| | - Jiaxin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Nan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Li-Li Li
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
8
|
Ma Z, Feng Y, Yu Q, Zheng W. Gas-Controlled Self-Assembly of Metallacycle-Cored Supramolecular Star Polymer with Tunable Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404804. [PMID: 39040003 DOI: 10.1002/smll.202404804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Herein, a three-armed amphiphilic metallacycle-cored star supramolecular polymer (Por-MOM-PDMAEMA) has been designed and synthesized via highly efficient post-assembly polymerization. This star polymer is further self-assembled into nanoparticles of different sizes depending upon the experimental conditions. The gas-controlled morphology transformation and tunable antibacterial activities of Por-MOM-PDMAEMAis systematically investigated and compared with metallacycle (MOM). The superior antibacterial activity of Por-MOM-PDMAEMA against multidrug-resistant P. aeruginosa implies that the presence of photodynamic photosensitizer (Por) and cationic polymer chain will significantly enhance antibactericidal activity, which is mainly attributed to the synergistic effect of photosensitizer and polymer chain linked in one metallacycle core. By leveraging the unique properties of metallacycle and their dynamic response to gaseous stimuli, the antibacterial properties of the Por-MOM-PDMAEMA can be finely tuned in response to gas triggers.
Collapse
Affiliation(s)
- Zhewen Ma
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yuanhao Feng
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Zheng
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
9
|
Xue Y, Wang C, Zhao Y, Zhao Z, Cui R, Du B, Fang L, Wang J, Zhu B. Mixed-charge hyperbranched polymer nanoparticles with selective antibacterial action for fighting antimicrobial resistance. Acta Biomater 2024; 189:545-558. [PMID: 39222706 DOI: 10.1016/j.actbio.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The escalating menace of antimicrobial resistance (AMR) presents a profound global threat to life and assets. However, the incapacity of metal ions/reactive oxygen species (ROS) or the indiscriminate intrinsic interaction of cationic groups to distinguish between bacteria and mammalian cells undermines the essential selectivity required in these nanomaterials for an ideal antimicrobial agent. Hence, we devised and synthesized a range of biocompatible mixed-charge hyperbranched polymer nanoparticles (MCHPNs) incorporating cationic, anionic, and neutral alkyl groups to effectively combat multidrug-resistant bacteria and mitigate AMR. This outcome stemmed from the structural, antibacterial activity, and biocompatibility analysis of seven MCHPNs, among which MCHPN7, with a ratio of cationic groups, anionic groups, and long alkyl chains at 27:59:14, emerged as the lead candidate. Importantly, owing to inherent differences in membrane potential among diverse species, alongside its nano-size (6-15 nm) and high hydrophilicity (Kow = 0.04), MCHPN7 exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index > 564) in vitro and in vivo. By inducing physical membrane disruption, MCHPN7 effectively eradicated antibiotic-resistant bacteria and significantly delayed the emergence of bacterial resistance. Utilized as a coating, MCHPN7 endowed initially inert surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses in mouse models. This research heralds the advent of biocompatible polymer nanoparticles and harbors significant implications in our ongoing combat against AMR. STATEMENT OF SIGNIFICANCE: The escalating prevalence of antimicrobial resistance (AMR) has been acknowledged as one of the most significant threats to global health. Therefore, a series of mixed-charge hyperbranched polymer nanoparticles (MCHPNs) with selective antibacterial action were designed and synthesized. Owing to inherent differences in membrane potential among diverse species and high hydrophilicity (Kow = 0.04), the optimal nanoparticles exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index >564) and significantly delayed the emergence of bacterial resistance. Importantly, they endowed surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses. Furthermore, the above findings focus on addressing the problem of AMR in Post-Pandemic, which will for sure attract attention from both academic and industry research.
Collapse
Affiliation(s)
- Yunyun Xue
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Chuyao Wang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihao Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ronglu Cui
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Du
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Lifeng Fang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jianyu Wang
- Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| | - Baoku Zhu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| |
Collapse
|
10
|
Zhang R, Liu Y, Wang S, Kang J, Song Y, Yin D, Wang S, Li B, Zhao X, Duan J. Anti-bacteria, anti-biofilm, and anti-virulence activity of the synthetic compound MTEBT-3 against carbapenem-resistant Klebsiella pneumoniae strains ST3984. Microb Pathog 2024; 197:107068. [PMID: 39490595 DOI: 10.1016/j.micpath.2024.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE The rise of carbapenem-resistant Klebsiella pneumoniae (CRKP) has led to increased morbidity and mortality in clinical patients, highlighting the urgent need for effective antibacterial agents. METHODS We obtained a synthetic compound, MTEBT-3, using hydrophobic triphenylamine as the skeleton and hydrophilic ammonium salts. We determined the MIC of MTEBT-3 using the macro-broth susceptibility testing method. We isolated a clinical CRKP strain ST3984 and performed synergistic antibiotic sensitivity tests, time-kill assays, and resistance evolution studies. Biofilm formation under sub-MIC conditions was evaluated using crystal violet staining and CLSM. Additionally, biofilm proteins and polysaccharides were quantified. We assessed the bactericidal mechanism of MTEBT-3 by examining the integrity of CRKP bacterial cell membranes and analyzing the transcription of virulence-regulating genes via quantitative real-time PCR. RESULTS MTEBT-3 exhibited broad-spectrum antibacterial activity with a low resistance rate, achieving an MIC of 8 μg/mL. The compound displayed additive effects with meropenem and imipenem and synergistic effects with tigecycline. It maintained its efficacy over multiple bacterial generations, with no significant increase in resistance observed. Under sub-MIC conditions, the biomass of biofilms was significantly reduced, and the levels of proteins and polysaccharides within the biofilms were markedly lowered in a concentration-dependent manner. The bactericidal mechanism of MTEBT-3 involved disrupting the integrity of CRKP bacterial cell membranes, leading to increased permeability. Quantitative real-time PCR results showed that MTEBT-3 effectively suppressed the expression of key virulence genes, including fimH, wbbM, rmpA, and rmpA2, which are associated with biofilm formation and bacterial adhesion. CONCLUSION The significant antimicrobial activity of MTEBT-3 against clinically isolated CRKP, along with its synergistic or additive effects with commonly used antibiotics, positions it as a promising candidate for treatment. Its ability to disrupt biofilm formation and reduce virulence factor expression further underscores its potential in managing CRKP infections.
Collapse
Affiliation(s)
- Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yujie Liu
- Department of Pharmacy, The Affiliated Tianfu Hospital of Southwest Medical University, Meishan, Sichuan, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Binbin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoman Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease , Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
11
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2024:10.1007/s10534-024-00647-5. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
12
|
Aquib M, Yang W, Yu L, Kannaujiya VK, Zhang Y, Li P, Whittaker A, Fu C, Boyer C. Effect of cyclic topology versus linear terpolymers on antibacterial activity and biocompatibility: antimicrobial peptide avatars. Chem Sci 2024:d4sc05797j. [PMID: 39479165 PMCID: PMC11520352 DOI: 10.1039/d4sc05797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Host-defense peptides (HDPs) and their analogs hold significant potential for combating multidrug-resistant (MDR) bacterial infections. However, their clinical use has been hindered by susceptibility to proteases, high production costs, and cytotoxicity towards mammalian cells. Synthetic polymers with diverse topologies and compositions, designed to mimic HDPs, show promise for treating bacterial infections. In this study, we explored the antibacterial activity and biocompatibility of synthetic amphiphilic linear (LPs) and cyclic terpolymers (CPs) containing hydrophobic groups 2-ethylhexyl (E) and 2-phenylethyl (P) at 20% and 30% content. LPs were synthesized via RAFT polymerization and then cyclized into CPs through a hetero-Diels-Alder click reaction. The bioactivity of these terpolymers was correlated with their topology (LPs vs. CPs) and hydrophobic composition. LPs demonstrated superior antibacterial efficacy compared to CPs against four Gram-negative bacterial strains, with terpolymers containing (P) outperforming those with (E). Increasing the hydrophobicity from 20% to 30% in the terpolymers increased toxicity to both bacterial and mammalian cells. Notably, our terpolymers inhibited the MDR Gram-negative bacterial strain PA37 more effectively than gentamicin and ciprofloxacin. Furthermore, our terpolymers were able to disrupt cell membranes and rapidly eliminate Gram-negative bacteria (99.99% within 15 minutes). Interestingly, CPs exhibited higher hemocompatibility and biocompatibility with mammalian macrophage cells compared to LPs, showcasing a better safety profile (CPs > LPs). These findings underscore the importance of tailoring polymer architectures and optimizing the hydrophilic/hydrophobic balance to address challenges related to toxicity and selectivity in developing antimicrobial polymers.
Collapse
Affiliation(s)
- Md Aquib
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Wenting Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Luofeng Yu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Vinod Kumar Kannaujiya
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Andrew Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
13
|
Shao Z, Luo H, Nguyen THQ, Wong EHH. Effects of Secondary Amine and Molecular Weight on the Biological Activities of Cationic Amphipathic Antimicrobial Macromolecules. Biomacromolecules 2024; 25:6899-6912. [PMID: 39312184 PMCID: PMC11483101 DOI: 10.1021/acs.biomac.4c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Cationic amphipathic antimicrobial agents inspired by antimicrobial peptides (AMPs) have shown potential in combating multidrug-resistant bacteria because of minimal resistance development. Here, this study focuses on the development of novel cationic amphipathic macromolecules in the form of dendrons and polymers with different molecular weights that employ secondary amine piperidine derivative as the cationic moiety. Generally, secondary amine compounds, especially at low molecular weights, have stronger bacteriostatic, bactericidal, and inner membrane disruption abilities than those of their primary amine counterparts. Low molecular weight D2 dendrons with two cationic centers and one hydrophobic dodecyl chain produce outstanding synergistic activity with the antibiotic rifampicin against Escherichia coli, where one-eighth of the standalone dose of D2 dendrons could reduce the concentration of rifampicin required by up to 4000-fold. The low molecular weight compounds are also less toxic and therefore have higher therapeutic index values compared to compounds with larger molecular weights. This study thus reveals key information that may inform the design of future synthetic AMPs and mimics, specifically, the design of low-molecular-weight compounds with secondary amine as the cationic center to achieve high antimicrobial potency and biocompatibility.
Collapse
Affiliation(s)
- Zeyu Shao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Hao Luo
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Thi Hanh Quyen Nguyen
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Edgar H. H. Wong
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Skoulas D, Fallon M, Genoud KJ, O’Brien FJ, Hughes DF, Heise A. Shear-Thinning Extrudable Hydrogels Based on Star Polypeptides with Antimicrobial Properties. Gels 2024; 10:652. [PMID: 39451305 PMCID: PMC11507159 DOI: 10.3390/gels10100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels with low toxicity, antimicrobial potency and shear-thinning behavior are promising materials to combat the modern challenges of increased infections. Here, we report on 8-arm star block copolypeptides based on poly(L-lysine), poly(L-tyrosine) and poly(S-benzyl-L-cysteine) blocks. Three star block copolypeptides were synthesized with poly(S-benzyl-L-cysteine) always forming the outer block. The inner block comprised either two individual blocks of poly(L-lysine) and poly(L-tyrosine) or a statistical block copolypeptide from both amino acids. The star block copolypeptides were synthesized by the Ring Opening Polymerization (ROP) of the protected amino acid N-carboxyanhydrides (NCAs), keeping the overall ratio of monomers constant. All star block copolypeptides formed hydrogels and Scanning Electron Microscopy (SEM) confirmed a porous morphology. The investigation of their viscoelastic characteristics, water uptake and syringe extrudability revealed superior properties of the star polypeptide with a statistical inner block of L-lysine and L-tyrosine. Further testing of this sample confirmed no cytotoxicity and demonstrated antimicrobial activity of 1.5-log and 2.6-log reduction in colony-forming units, CFU/mL, against colony-forming reference laboratory strains of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively. The results underline the importance of controlling structural arrangements in polypeptides to optimize their physical and biological properties.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Muireann Fallon
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, D09 V2N0 Dublin, Ireland; (M.F.); (D.F.H.)
| | - Katelyn J. Genoud
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, D02 YN77 Dublin, Ireland; (K.J.G.); (F.J.O.)
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, D02 YN77 Dublin, Ireland; (K.J.G.); (F.J.O.)
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
| | - Deirdre Fitzgerald Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, D09 V2N0 Dublin, Ireland; (M.F.); (D.F.H.)
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
| |
Collapse
|
15
|
Mihaylova-Garnizova R, Davidova S, Hodzhev Y, Satchanska G. Antimicrobial Peptides Derived from Bacteria: Classification, Sources, and Mechanism of Action against Multidrug-Resistant Bacteria. Int J Mol Sci 2024; 25:10788. [PMID: 39409116 PMCID: PMC11476732 DOI: 10.3390/ijms251910788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antimicrobial peptides (AMPs) are short, usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. Bacterial AMPs, or bacteriocins, can be produced from Gram-negative and Gram-positive bacteria via ribosomal synthesis to eliminate competing organisms. Bacterial AMPs are vital in addressing the increasing antibiotic resistance of various pathogens, potentially serving as an alternative to ineffective antibiotics. Bacteriocins have a narrow spectrum of action, making them highly specific antibacterial compounds that target particular bacterial pathogens. This review covers the two main groups of bacteriocins produced by Gram-negative and Gram-positive bacteria, their modes of action, classification, sources of positive effects they can play on the human body, and their limitations and future perspectives as an alternative to antibiotics.
Collapse
Affiliation(s)
- Raynichka Mihaylova-Garnizova
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
- Department of Infectious Diseases, Military Academy, George Sofiiski Str. 3, 1606 Sofia, Bulgaria
| | - Slavena Davidova
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| | - Yordan Hodzhev
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| | - Galina Satchanska
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| |
Collapse
|
16
|
Matthyssen T, Li W, Holden JA, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Dimerization and lysine substitution of melittin have differing effects on bacteria. Front Pharmacol 2024; 15:1443497. [PMID: 39434904 PMCID: PMC11492869 DOI: 10.3389/fphar.2024.1443497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Melittin is a potent antimicrobial peptide from bee venom that is effective against both Gram-positive and Gram-negative bacteria. However, it is extremely toxic to mammalian cells and, as yet, has no clinical use. Modifications to its amino acid sequence, cyclization, truncation, and dimerization have been attempted in order to reduce its toxicity whilst maintaining its antimicrobial activity. Methods In this study, we targeted the three lysine residues present in melittin and substituted them with lysine homologs containing shorter side chains (ornithine, Orn, diaminobutyric acid, Dab, and diaminopropanoic acid, Dap) and made both parallel and antiparallel melittin dimers to observe how lysine substitution and dimerization affects its activity and toxicity. The antibacterial activity of melittin and its analogs was tested against S. aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria), and cytotoxicity was tested against the mammalian cell lines HEK293 and H4IIE. Results Overall, dimerization and lysine substitution exhibited improved antimicrobial activity toward E. coli and limited improvement toward S. aureus. However, mammalian cell toxicity was only marginally reduced compared to native melittin. Interestingly, the parallel dimer was found to be marginally more active than the antiparallel dimer, indicating orientation maybe important for activity, although both dimers were less effective than the native and Lys-analog peptides toward S. aureus. Of the Lys substitutions, Dab and Dap improved melittin's activity toward E. coli. Discussion Dimerization and Lys substitution of melittin improved the antimicrobial activity toward Gram-negative bacteria but did not significantly improve its activity toward Gram-positive bacteria. Some analogs also displayed reduced toxicity toward HEK293 and H4IIE cells but overall remained toxic at bactericidal concentrations. Our data indicates that although highly antibacterial, melittin's toxicity is the major drawback in its potential use.
Collapse
Affiliation(s)
- Tamara Matthyssen
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wenyi Li
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - James A. Holden
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jason C. Lenzo
- Western Australian Health Translation Network, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Sara Hadjigol
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Tronnet A, Salas-Ambrosio P, Roman R, Bravo-Anaya LM, Ayala M, Bonduelle C. Star-Like Polypeptides as Simplified Analogues of Horseradish Peroxidase (HRP) Metalloenzymes. Macromol Biosci 2024; 24:e2400155. [PMID: 39122460 DOI: 10.1002/mabi.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Indexed: 08/12/2024]
Abstract
Peroxidases, like horseradish peroxidase (HRP), are heme metalloenzymes that are powerful biocatalysts for various oxidation reactions. By using simple grafting-from approach, ring-opening polymerization (ROP), and manganese porphyrins, star-shaped polypeptides analogues of HRP capable of catalyzing oxidation reactions with H2O2 is successfully prepared. Like their protein model, these simplified analogues show interesting Michaelis-Menten constant (KM) in the mM range for the oxidant. Interestingly, the polymer structures are more resistant to denaturation (heat, proteolysis and oxidant concentration) than HRP, opening up interesting prospects for their use in catalysis or in biosensing devices.
Collapse
Affiliation(s)
- Antoine Tronnet
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
- CNRS, LCC (Laboratoire de Chimie de Coordination (UPR8241)), University of Toulouse, 205 route de Narbonne, Toulouse, F-31077, France
| | - Pedro Salas-Ambrosio
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Rosa Roman
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | | | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | - Colin Bonduelle
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| |
Collapse
|
18
|
Yu W, Guo X, Li X, Wei Y, Lyu Y, Zhang L, Wang J, Shan A. Novel multidomain peptide self-assembly biomaterials based on bola structure and terminal anchoring: Nanotechnology meets antimicrobial therapy. Mater Today Bio 2024; 28:101183. [PMID: 39221200 PMCID: PMC11363844 DOI: 10.1016/j.mtbio.2024.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
To ameliorate the diminished antimicrobial efficiency and physiological stability associated with monomeric antimicrobial peptides (AMPs) molecules, future research will focus on the artificial design of self-assembling peptides to replace monomeric entities, aiming to combat the antibiotic resistance crisis caused by microbial infections. In this study, the "bola" structure was used as the foundational architecture driving molecular self-assembly, with hydrophobic amino acids at the termini to anchor and finely adjust the sequence, thereby organizing a range of novel multidomain peptides (MDPs) templates into an ABA block motif. The results indicate that FW2 (GMSI = 53.94) exhibits the highest selectivity index among all MDPs and can form spherical micelles in an aqueous medium without the addition of any exogenous additives. FW2 exhibited high stability in vitro in the presence of physiological salt ions, serum, and various pH conditions. It exhibited excellent biocompatibility and efficacy both in vivo and in vitro. Furthermore, FW2 strongly interacts with the lipid membrane and employs various synergistic mechanisms, such as reactive oxygen species (ROS) accumulation, collectively driving cellular apoptosis. This study demonstrates a straightforward strategy for designing self-assembling peptides and promotes the advancement of peptide-based biomaterials integration progress with nanotechnology.
Collapse
Affiliation(s)
- Weikang Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuefeng Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingxin Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yinfeng Lyu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
19
|
Shao Z, Xu YD, Luo H, Hakobyan K, Zhang M, Xu J, Stenzel MH, Wong EHH. Smart Galactosidase-Responsive Antimicrobial Dendron: Towards More Biocompatible Membrane-Disruptive Agents. Macromol Rapid Commun 2024; 45:e2400350. [PMID: 38895813 DOI: 10.1002/marc.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of β-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.
Collapse
Affiliation(s)
- Zeyu Shao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - You Dan Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Hao Luo
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Mengnan Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
20
|
Zhang N, Dhumal D, Kuo SH, Lew SQ, Patil PD, Taher R, Vaidya S, Galanakou C, Elkihel A, Oh MW, Chong SY, Marson D, Zheng J, Rouvinski O, Abolarin WO, Pricl S, Lau GW, Lee LTO, Peng L. Targeting the phosphatidylglycerol lipid: An amphiphilic dendrimer as a promising antibacterial candidate. SCIENCE ADVANCES 2024; 10:eadn8117. [PMID: 39321303 PMCID: PMC11423894 DOI: 10.1126/sciadv.adn8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
The rapid emergence and spread of multidrug-resistant bacterial pathogens require the development of antibacterial agents that are robustly effective while inducing no toxicity or resistance development. In this context, we designed and synthesized amphiphilic dendrimers as antibacterial candidates. We report the promising potent antibacterial activity shown by the amphiphilic dendrimer AD1b, composed of a long hydrophobic alkyl chain and a tertiary amine-terminated poly(amidoamine) dendron, against a panel of Gram-negative bacteria, including multidrug-resistant Escherichia coli and Acinetobacter baumannii. AD1b exhibited effective activity against drug-resistant bacterial infections in vivo. Mechanistic studies revealed that AD1b targeted the membrane phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), leading to the disruption of the bacterial membrane and proton motive force, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. Together, AD1b that specifically interacts with PG/CL in bacterial membranes supports the use of small amphiphilic dendrimers as a promising strategy to target drug-resistant bacterial pathogens and addresses the global antibiotic crisis.
Collapse
Affiliation(s)
- Nian Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dinesh Dhumal
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pankaj D Patil
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Raleb Taher
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sanika Vaidya
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Christina Galanakou
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Abdechakour Elkihel
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Oleg Rouvinski
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Williams O Abolarin
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Ling Peng
- Aix-Marseille Universite, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisee Ligue Contre le Cancer," 13288 Marseille, France
| |
Collapse
|
21
|
Luo Y, Gao Z, Guo H, Duan K, Lan T, Tao B, Shen X, Guo Q. Multifunctional Photothermal Nanorods for Targeted Treatment of Drug-Resistant Bacteria-Induced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51480-51495. [PMID: 39287360 DOI: 10.1021/acsami.4c10198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The challenge of drug-resistant bacteria-induced wound healing in clinical and public healthcare settings is significant due to the negative impacts on surrounding tissues and difficulties in monitoring the healing progress. We developed photothermal antibacterial nanorods (AuNRs-PU) with the aim of selectively targeting and combating drug-resistant Pseudomonas aeruginosa (P. aeruginosa). The AuNRs-PU were engineered with a bacterial-specific targeting polypeptide (UBI29-41) and a bacterial adhesive carbohydrate polymer composed of galactose and phenylboronic acid. The objective was to facilitate sutureless wound closure by specially distinguishing between bacteria and nontarget cells and subsequently employing photothermal methods to eradicate the bacteria. AuNRs-PU demonstrated high photothermal conversion efficiency in 808 nm laser and effectively caused physical harm to drug-resistant P. aeruginosa. By integrating the multifunctional bacterial targeting copolymer onto AuNRs, AuNRs-PU showed rapid and efficient bacterial targeting and aggregation in the presence of bacteria and cells, consequently shielding cells from bacterial harm. In a diabetic rat wound model, AuNRs-PU played a crucial role in enhancing healing by markedly decreasing inflammation and expediting epidermis formation, collagen deposition, and neovascularization levels. Consequently, the multifunctional photothermal therapy shows promise in addressing the complexities associated with managing drug-resistant infected wound healing.
Collapse
Affiliation(s)
- Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Zhenglan Gao
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Honglei Guo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Kunyuan Duan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Tianyu Lan
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, Guizhou 550025, China
| | - Buhui Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| |
Collapse
|
22
|
Sun X, Li A, Li N, Ji G, Song Z. Facile Preparation of Heteropolypeptides from Crude Mixtures of α-Amino Acid N-Carboxyanhydrides. Biomacromolecules 2024; 25:6093-6102. [PMID: 39167691 DOI: 10.1021/acs.biomac.4c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heteropolypeptides bearing two or more functional side chains are promising polymeric materials for various biomedical applications. However, conventional preparation of heteropolypeptides relies on the synthesis and purification of each N-carboxyanhydride (NCA) monomer in a separate manner, which substantially increases the time and cost. Herein, we report the facile preparation of heteropolypeptides with up to 86% yield within several hours, which are obtained from a mixture of crude NCA monomers. The combination of n-hexane precipitation and biphasic segregation effectively removed >90% impurities from crude NCA mixtures, allowing for the successful polymerization process. Various heteropolypeptides with monomodal distribution and narrow dispersity were efficiently prepared, whose compositions were predetermined by the feeding ratios of amino acids. We believe that this work significantly simplifies the preparation of various heteropolypeptides, boosting the downstream studies of these promising materials.
Collapse
Affiliation(s)
- Xiao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Aoting Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ning Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Xiang L, Li W, Liu Y, Sathishkumar G, He X, Wu H, Ran R, Zhang K, Rao X, Kang ET, Xu L. Copper tannate nanosheets-embedded multifunctional coating for antifouling and photothermal bactericidal applications. Colloids Surf B Biointerfaces 2024; 245:114208. [PMID: 39255749 DOI: 10.1016/j.colsurfb.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Implant-associated infections (IAIs), triggered by pathogenic bacteria, are a leading cause of implant failure. The design of functionalized coatings on biomedical materials is crucial to address IAIs. Herein, a multifunctional coating with good antifouling effect and antibacterial photothermal therapy (aPTT) performance was developed. The copper tannate nanosheets (CuTA NSs) were formed via coordination bonding of Cu2+ ions and tannic acid (TA). The CuTA NSs were then integrated into the TA and poly(ethylene glycol) (PEG) network to form the TCP coating for deposition on the titanium (Ti) substrates via surface adhesion of TA and gravitational effect. The resulting Ti-TCP substrate exhibited good antifouling property, reactive oxygen species (ROS) scavenging capability and cytocompatibility. The TCP coating exhibited antifouling efficacy in conjunction with aPTT, curtailing the surface adhesion and biofilm formation of pathogens, such as Staphylococcus aureus and Escherichia coli. Notably, the Ti-TCP substrate also exhibited the ability to prevent bacterial infection in vivo in a subcutaneous implantation model. The present work demonstrated a promising approach in designing high-performance antifouling and photothermal bactericidal coatings to combat IAIs.
Collapse
Affiliation(s)
- Li Xiang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Weizhe Li
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yanqing Liu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gnanasekar Sathishkumar
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaodong He
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Huajun Wu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Runlong Ran
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Kai Zhang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xi Rao
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - En-Tang Kang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Liqun Xu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
24
|
Hu X, Li D, Li H, Piao Y, Wan H, Zhou T, Karimi M, Zhao X, Li Y, Shi L, Liu Y. Reaction-Induced Self-Assembly of Polymyxin Mitigates Cytotoxicity and Reverses Drug Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406156. [PMID: 39022883 DOI: 10.1002/adma.202406156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Polymyxins have been regarded as an efficient therapeutic against many life-threatening, multidrug resistant Gram-negative bacterial infections; however, the cytotoxicity and emergence of drug resistance associated with polymyxins have greatly hindered their clinical potential. Herein, the reaction-induced self-assembly (RISA) of polymyxins and natural aldehydes in aqueous solution is presented. The resulting assemblies effectively mask the positively charged nature of polymyxins, reducing their cytotoxicity. Moreover, the representative PMBA4 (composed of polymyxin B (PMB) and (E)-2-heptenal (A4)) assemblies demonstrate enhanced binding to Gram-negative bacterial outer membranes and exhibit multiple antimicrobial mechanisms, including increased membrane permeability, elevated bacterial metabolism, suppression of quorum sensing, reduced ATP synthesis, and potential reduction of bacterial drug resistance. Remarkably, PMBA4 assemblies reverse drug resistance in clinically isolated drug-resistant strains of Gram-negative bacteria, demonstrating exceptional efficacy in preventing and eradicating bacterial biofilms. PMBA4 assemblies efficiently eradicate Gram-negative bacterial biofilm infections in vivo and alleviate inflammatory response. This RISA strategy offers a practical and clinically applicable approach to minimize side effects, reverse drug resistance, and prevent the emergence of resistance associated with free polymyxins.
Collapse
Affiliation(s)
- Xiaowen Hu
- Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Orthodontics School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Dongdong Li
- Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Huaping Li
- Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yinzi Piao
- Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tieli Zhou
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanfeng Li
- Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
25
|
Doherty A, Murphy R, Heise A, Fitzpatrick F, Fitzgerald-Hughes D. Antimicrobial spectrum against wound pathogens and cytotoxicity of star-arranged poly-l-lysine-based antimicrobial peptide polymers. J Med Microbiol 2024; 73. [PMID: 39268705 PMCID: PMC11394093 DOI: 10.1099/jmm.0.001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Introduction. As growing numbers of patients are at higher risk of infection, novel topical broad-spectrum antimicrobials are urgently required for wound infection management. Robust pre-clinical studies should support the development of such novel antimicrobials.Gap statement. To date, evidence of robust investigation of the cytotoxicity and antimicrobial spectrum of activity of antimicrobial peptides (AMP)s is lacking in published literature. Using a more clinical lens, we address this gap in experimental approach, building on our experience with poly-l-lysine (PLL)-based AMP polymers.Aim. To evaluate the in vitro bactericidal activity and cytotoxicity of a PLL-based 16-armed star AMP polymer, designated 16-PLL10, as a novel candidate antimicrobial.Methods. Antimicrobial susceptibilities of clinical isolates and reference strains of ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) pathogens, to 16-PLL10 were investigated. Human erythrocyte haemolysis and keratinocyte viability assays were used to assess toxicity. Modifications were made to 16-PLL10 and re-evaluated for improvement.Results. Minimum bactericidal concentration of 16-PLL10 ranged from 1.25 µM to ≥25 µM. At 2.5 µM, 16-PLL10 was broadly bactericidal against ESKAPE strains/wound isolates. Log-reduction in colony forming units (c.f.u.) per millilitre after 1 h, ranged from 0.3 (E. cloacae) to 5.6 (K. pneumoniae). At bactericidal concentrations, 16-PLL10 was toxic to human keratinocyte and erythrocytes. Conjugates of 16-PLL10, Trifluoroacetylated (TFA)-16-PLL10, and Poly-ethylene glycol (PEG)ylated 16-PLL10, synthesised to address toxicity, only moderately reduced cytotoxicity and haemolysis.Conclusions. Due to poor selectivity indices, further development of 16-PLL10 is unlikely warranted. However, considering the unmet need for novel topical antimicrobials, the ease of AMP polymer synthesises/modification is attractive. To support more rational development, prioritising clinically relevant pathogens and human cells, to establish selective toxicity profiles in vitro, is critical. Further characterisation and discovery utilising artificial intelligence and computational screening approaches can accelerate future AMP nanomaterial development.
Collapse
Affiliation(s)
- Aaron Doherty
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
- Department of Clinical Microbiology, Beaumont Hospital, Dublin 9, Ireland
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Robert Murphy
- Department of Chemistry, Royal College of Surgeons in Ireland University of Medicine and Health Science, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Andreas Heise
- Department of Chemistry, Royal College of Surgeons in Ireland University of Medicine and Health Science, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
- Department of Clinical Microbiology, Beaumont Hospital, Dublin 9, Ireland
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
26
|
Qian Y, Wang J, Geng X, Jia B, Wang L, Li YQ, Geng B, Huang W. Graphene Quantum Dots Nanoantibiotic-Sensitized TiO 2- x Heterojunctions for Sonodynamic-Nanocatalytic Therapy of Multidrug-Resistant Bacterial Infections. Adv Healthc Mater 2024; 13:e2400659. [PMID: 38700840 DOI: 10.1002/adhm.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Indexed: 05/12/2024]
Abstract
The exploration of sonodynamic therapy (SDT) as a possible replacement for antibiotics by creating reactive oxygen species (ROS) is suggested as a non-drug-resistant theranostic method. However, the low-efficiency ROS generation and complex tumor microenvironment which can deplete ROS and promote tumor growth will cause the compromised antibacterial efficacy of SDT. Herein, through an oxygen vacancy engineering strategy, TiO2- x microspheres with an abundance of Ti3+ are synthesized using a straightforward reductant co-assembly approach. The narrow bandgaps and Ti3+/Ti4+-mediated multiple-enzyme catalytic activities of the obtained TiO2- x microspheres make them suitable for use as sonosensitizers and nanozymes. When graphene quantum dot (GQD) nanoantibiotics are deposited on TiO2- x microspheres, the resulting GQD/TiO2- x shows an increased production of ROS, which can be ascribed to the accelerated separation of electron-hole pairs, as well as the peroxidase-like catalytic activity mediated by Ti3+, and the depletion of glutathione mediated by Ti4+. Moreover, the catalytic activities of TiO2- x microspheres are amplified by the heterojunctions-accelerated carrier transfer. In addition, GQDs can inhibit Topo I, displaying strong antibacterial activity and further enhancing the antibacterial activity. Collectively, the combination of GQD/TiO2- x-mediated SDT/NCT with nanoantibiotics can result in a synergistic effect, allowing for multimodal antibacterial treatment that effectively promotes wound healing.
Collapse
Affiliation(s)
- Ying Qian
- Endocrinology Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| | - Jingming Wang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| | - Xudong Geng
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Bingqing Jia
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Lei Wang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Weimin Huang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| |
Collapse
|
27
|
Zhou Q, Li K, Wang K, Hong W, Chen J, Chai J, Yu L, Si Z, Li P. Fluoroamphiphilic polymers exterminate multidrug-resistant Gram-negative ESKAPE pathogens while attenuating drug resistance. SCIENCE ADVANCES 2024; 10:eadp6604. [PMID: 39196947 PMCID: PMC11352906 DOI: 10.1126/sciadv.adp6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
ESKAPE pathogens are a panel of most recalcitrant bacteria that could "escape" the treatment of antibiotics and exhibit high incidence of drug resistance. The emergence of multidrug-resistant (MDR) ESKAPE pathogens (particularly Gram-negative bacteria) accounts for high risk of mortality and increased resource utilization in health care. Worse still, there has been no new class of antibiotics approved for exterminating the Gram-negative bacteria for more than 50 years. Therefore, it is urgent to develop novel antibacterial agents with low resistance and potent killing efficacy against Gram-negative ESKAPE pathogens. Herein, we present a class of fluoropolymers by mimicking the amphiphilicity of cationic antimicrobial peptides. Our optimal fluoroamphiphilic polymer (PD45HF5) displayed selective antimicrobial ability for all MDR Gram-negative ESAKPE pathogens, low resistance, high in vitro cell selectivity, and in vivo curative efficacy. These findings implied great potential of fluoroamphiphilic cationic polymers as promising antibacterial agents against MDR Gram-negative ESKAPE bacteria and alleviating antibiotic resistance.
Collapse
Affiliation(s)
- Qian Zhou
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jingjie Chen
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jin Chai
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Zhangyong Si
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo Cixi Institute of Biomedical Engineering, 1219 West Zhongguan Road, Ningbo 315201, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| |
Collapse
|
28
|
Liang Y, Zhang Y, Huang Y, Xu C, Chen J, Zhang X, Huang B, Gan Z, Dong X, Huang S, Li C, Jia S, Zhang P, Yuan Y, Zhang H, Wang Y, Yuan B, Bao Y, Xiao S, Xiong M. Helicity-directed recognition of bacterial phospholipid via radially amphiphilic antimicrobial peptides. SCIENCE ADVANCES 2024; 10:eadn9435. [PMID: 39213359 PMCID: PMC11364095 DOI: 10.1126/sciadv.adn9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
The fundamental differences in phospholipids between bacterial and mammalian cell membranes present remarkable opportunities for antimicrobial design. However, it is challenging to distinguish bacterial anionic phospholipid phosphatidylglycerol (PG) from mammalian anionic phosphatidylserine (PS) with the same net charge. Here, we report a class of radially amphiphilic α helix antimicrobial peptides (RAPs) that can selectively discriminate PG from PS, relying on the helix structure. The representative RAP, L10-MMBen, can direct the rearrangement of PG vesicles into a lamellar structure with its helix axis parallel to the PG membrane surface. The helical structure imparts both the thermodynamic and kinetic advantages of L10-MMBen/PG assembly, and the hiding of hydrophobic regions in RAPs is crucial for PG recognition. L10-MMBen exhibits high selectivity against bacteria depending on PG recognition, showing low in vivo toxicity and significant treatment efficacy in mice infection models. Our study introduces a helicity-direct bacterial phospholipid recognition paradigm for designing highly selective antimicrobial peptides.
Collapse
Affiliation(s)
- Yangbin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yu Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, P. R. China
| | - Jingxian Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinshuang Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Bingchuan Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xuehui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Songyin Huang
- Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Chengrun Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuyi Jia
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Pengfei Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Yueling Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Houbing Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, P. R. China
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
29
|
Rezić I, Somogyi Škoc M. Computational Methodologies in Synthesis, Preparation and Application of Antimicrobial Polymers, Biomolecules, and Nanocomposites. Polymers (Basel) 2024; 16:2320. [PMID: 39204538 PMCID: PMC11359845 DOI: 10.3390/polym16162320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The design and optimization of antimicrobial materials (polymers, biomolecules, or nanocomposites) can be significantly advanced by computational methodologies like molecular dynamics (MD), which provide insights into the interactions and stability of the antimicrobial agents within the polymer matrix, and machine learning (ML) or design of experiment (DOE), which predicts and optimizes antimicrobial efficacy and material properties. These innovations not only enhance the efficiency of developing antimicrobial polymers but also enable the creation of materials with tailored properties to meet specific application needs, ensuring safety and longevity in their usage. Therefore, this paper will present the computational methodologies employed in the synthesis and application of antimicrobial polymers, biomolecules, and nanocomposites. By leveraging advanced computational techniques such as MD, ML, or DOE, significant advancements in the design and optimization of antimicrobial materials are achieved. A comprehensive review on recent progress, together with highlights of the most relevant methodologies' contributions to state-of-the-art materials science will be discussed, as well as future directions in the field will be foreseen. Finally, future possibilities and opportunities will be derived from the current state-of-the-art methodologies, providing perspectives on the potential evolution of polymer science and engineering of novel materials.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Somogyi Škoc
- Department of Materials Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
30
|
Vitiello A, Rezza G, Silenzi A, Salzano A, Alise M, Boccellino MR, Ponzo A, Zovi A, Sabbatucci M. Therapeutic Strategies to Combat Increasing Rates of Multidrug Resistant Pathogens. Pharm Res 2024; 41:1557-1571. [PMID: 39107513 DOI: 10.1007/s11095-024-03756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/29/2024] [Indexed: 08/30/2024]
Abstract
The emergence of antimicrobic-resistant infectious pathogens and the consequent rising in the incidence and prevalence of demises caused by or associated to infections which are not sensitive to drug treatments is one of today's major global health challenges. Antimicrobial resistance (AMR) can bring to therapeutic failure, infection's persistence and risk of serious illness, in particular in vulnerable populations such as the elderly, patients with neoplastic diseases or the immunocompromised. It is assessed that AMR will induce until 10 million deaths per year by 2050, becoming the leading cause of disease-related deaths. The World Health Organisation (WHO) and the United Nations General Assembly urgently call for new measures to combat the phenomenon. Research and development of new antimicrobial agents has decreased due to market failure. However, promising results are coming from new alternative therapeutic strategies such as monoclonal antibodies, microbiome modulators, nanomaterial-based therapeutics, vaccines, and phages. This narrative review aimed to analyse the benefits and weaknesses of alternative therapeutic strategies to antibiotics which treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Giovanni Rezza
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Andrea Silenzi
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Antonio Salzano
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Mosè Alise
- Directorate General of Animal Health and Veterinary Medicines, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | | | - Annarita Ponzo
- Department of Biology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Andrea Zovi
- Directorate General for Hygiene, Food Safety and Nutrition, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy.
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
31
|
Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 2024; 22:507-521. [PMID: 38575708 DOI: 10.1038/s41579-024-01035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Bennett ID, Burns JR, Ryadnov MG, Howorka S, Pyne ALB. Lipidated DNA Nanostructures Target and Rupture Bacterial Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207585. [PMID: 38840451 DOI: 10.1002/smll.202207585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2024] [Indexed: 06/07/2024]
Abstract
Chemistry has the power to endow supramolecular nanostructures with new biomedically relevant functions. Here it is reported that DNA nanostructures modified with cholesterol tags disrupt bacterial membranes to cause microbial cell death. The lipidated DNA nanostructures bind more readily to cholesterol-free bacterial membranes than to cholesterol-rich, eukaryotic membranes. These highly negatively charged, lipidated DNA nanostructures cause bacterial cell death by rupturing membranes. Strikingly, killing is mediated by clusters of barrel-shaped nanostructures that adhere to the membrane without the involvement of expected bilayer-puncturing barrels. These DNA nanomaterials may inspire the development of polymeric or small-molecule antibacterial agents that mimic the principles of selective binding and rupturing to help combat antimicrobial resistance.
Collapse
Affiliation(s)
- Isabel D Bennett
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
- Division of Medicine, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jonathan R Burns
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
- Department of Physics, King's College London, Strand Lane, London, WC2R 2LS, United Kingdom
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, United Kingdom
| | - Alice L B Pyne
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, United Kingdom
| |
Collapse
|
33
|
Zhang MY, Li S, Wang CY, Zhang ZX, Han YL, Liu XQ, Cheng J, Zhou XY, Zhang YX. A novel antimicrobial peptide S24 combats serious wound infections caused by Pseudomonas aeruginosa and Acinetobacter baumannii. J Antimicrob Chemother 2024; 79:1951-1961. [PMID: 38863365 DOI: 10.1093/jac/dkae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa and Acinetobacter baumannii are ranked as top-priority organisms by WHO. Antimicrobial peptides (AMPs) are promising antimicrobial agents that are highly effective against serious bacterial infections. METHODS In our previous study, a series of α-helical AMPs were screened using a novel multiple-descriptor strategy. The current research suggested that S24 exhibited strong antimicrobial activity against major pathogenic bacteria, and displayed minimal haemolysis, good serum stability and maintained salt resistance. RESULTS We found that S24 exerted an antimicrobial effect by destroying outer membrane permeability and producing a strong binding effect on bacterial genomic DNA that inhibits genomic DNA migration. Furthermore, S24 exerted a strong ability to promote healing in wound infected by P. aeruginosa, A. baumannii and mixed strains in a mouse model. CONCLUSIONS Overall, S24 showed good stability under physiological conditions and excellent antimicrobial activity, suggesting it may be a potential candidate for the development of serious bacterial infection treatment.
Collapse
Affiliation(s)
- Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Ling Han
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Qi Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xun-Yong Zhou
- Weihuakang (Shenzhen) Biotech. Co., Ltd., Shenzhen 518001, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
34
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
35
|
Li Y, Chang R, Liu YJ, Chen F, Chen YX. Self-assembled branched polypeptides as amelogenin mimics for enamel repair. J Mater Chem B 2024; 12:6452-6465. [PMID: 38860913 DOI: 10.1039/d3tb02709k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The regeneration of demineralized enamel holds great significance in the treatment of dental caries. Amelogenin (Ame), an essential protein for mediating natural enamel growth, is no longer secreted after enamel has fully matured in childhood. Although biomimetic mineralization based on peptides or proteins has made significant progress, easily accessible, low-cost, biocompatible and highly effective Ame mimics are still lacking. Herein, we construct a series of amphiphilic branched polypeptides (CAMPs) by facile coupling of the Ame's C-terminal segment and poly(γ-benzyl-L-glutamate), which serves to simulate the Ame's hydrophobic N-terminal segment. Among them, CAMP15 is the best biomimetic mineralization template with great self-assembly performance to guide the oriented crystallization of hydroxyapatite and is capable of inhibiting the adhesion of Streptococcus mutans and Staphylococcus aureus on the enamel surfaces. This work highlights the potential application of amphiphilic branched polypeptide as Ame mimics in repairing defected enamel, providing a promising strategy for prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yang-Jia Liu
- Central Laboratory Peking University Hospital of Stomatology, Beijing 100081, China.
| | - Feng Chen
- Central Laboratory Peking University Hospital of Stomatology, Beijing 100081, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Diao H, Lu G, Zhang Y, Wang Z, Liu X, Ma Q, Yu H, Li Y. Risk factors for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii infection of patients admitted in intensive care unit: a systematic review and meta-analysis. J Hosp Infect 2024; 149:77-87. [PMID: 38710306 DOI: 10.1016/j.jhin.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Acinetobacter baumannii infections pose challenges for clinical treatment and cause high mortality, particularly in intensive care units (ICUs). AIM To systematically summarize and analyse the risk factors for MDR/XDR A. baumannii-infected patients admitted to ICUs. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were searched for eligible original studies published in English before October 2023. Meta-analysis was conducted where appropriate, with mean differences (MDs) and odds ratios (ORs) calculated for continuous and nominal scaled data. The quality of included studies was assessed using the Newcastle-Ottawa Scale (NOS). FINDINGS Ten studies reporting 1199 ICU patients (604 from general ICUs, 435 from neonatal ICUs, and 160 from paediatric ICUs) from eight countries were included in our analysis. Risk factors associated with MDR A. baumannii infection among patients admitted to general ICUs included high Acute Physiology And Clinical Health II (APACHE Ⅱ) score (mean difference (MD): 7.52; 95% confidence interval (CI): 3.24-11.80; P = 0.0006), invasive procedures (odds ratio (OR): 3.47; 95% CI: 1.70-7.10; P = 0.0006), longer ICU stay (MD: 3.40; 95% CI: 2.94-3.86; P < 0.00001), and use of antibiotics (OR: 2.69; 95% CI: 1.22-5.94; P = 0.01). In the sub-group analysis, longer neonatal ICU stay (MD: 16.88; 95% CI: 9.79-23.97; P < 0.00001) was associated with XDR A. baumannii infection. CONCLUSION Close attention should be paid to patients with longer ICU stays, undergoing invasive procedures, using antibiotics, and with high APACHE Ⅱ scores to reduce the risk of MDR and XDR A. baumannii infections.
Collapse
Affiliation(s)
- H Diao
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, China
| | - G Lu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, China
| | - Y Zhang
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, China
| | - Z Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-Intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - X Liu
- Neuro-Intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Q Ma
- Neuro-Intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - H Yu
- Neuro-Intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Y Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-Intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China; Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
37
|
Yang F, Yang F, Huang J, Yu H, Qiao S. Microcin C7 as a Potential Antibacterial-Immunomodulatory Agent in the Postantibiotic Era: Overview of Its Bioactivity Aspects and Applications. Int J Mol Sci 2024; 25:7213. [PMID: 39000321 PMCID: PMC11241378 DOI: 10.3390/ijms25137213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In the postantibiotic era, the pathogenicity and resistance of pathogens have increased, leading to an increase in intestinal inflammatory disease. Bacterial infections remain the leading cause of animal mortality. With increasing resistance to antibiotics, there has been a significant decrease in resistance to both inflammation and disease in animals, thus decreasing production efficiency and increasing production costs. These side effects have serious consequences and have detracted from the development of China's pig industry. Microcin C7 (McC7) demonstrates potent antibacterial activity against a broad spectrum of pathogens, stable physicochemical properties, and low toxicity, reducing the likelihood of resistance development. Thus, McC7 has received increasing attention as a potential clinical antibacterial and immunomodulatory agent. McC7 has the potential to serve as a new generation of antibiotic substitutes; however, its commercial applications in the livestock and poultry industry have been limited. In this review, we summarize and discuss the biosynthesis, biochemical properties, structural characteristics, mechanism of action, and immune strategies of McC7. We also describe the ability of McC7 to improve intestinal health. Our aim in this study was to provide a theoretical basis for the application of McC7 as a new feed additive or new veterinary drug in the livestock and poultry breeding industry, thus providing a new strategy for alleviating resistance through feed and mitigating drug resistance. Furthermore, this review provides insight into the new functions and anti-infection mechanisms of bacteriocin peptides and proposes crucial ideas for the research, product development, and application of bacteriocin peptides in different fields, such as the food and medical industries.
Collapse
Affiliation(s)
- Fengjuan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
38
|
Wang W, Chu F, Zhang W, Xiao T, Teng J, Wang Y, He B, Ge B, Gao J, Ge H. Silver Mineralized Protein Hydrogel with Intrinsic Cell Proliferation Promotion and Broad-Spectrum Antimicrobial Properties for Accelerated Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400047. [PMID: 38364079 DOI: 10.1002/adhm.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The presence of multidrug-resistant bacteria has challenged the clinical treatment of bacterial infection. There is a real need for the development of novel biocompatible materials with broad-spectrum antimicrobial activities. Antimicrobial hydrogels show great potential in infected wound healing but are still being challenged. Herein, broad-spectrum antibacterial and mechanically tunable amyloid-based hydrogels based on self-assembly and local mineralization of silver nanoparticles are reported. The mineralized hydrogels are biocompatible and have the advantages of sustained release of silver, prolonged antimicrobial effect, and improved adhesion capacity. Moreover, the mineralized hydrogels display a significant antimicrobial effect against both Gram-positive and Gram-negative bacteria in cells and mice by inducing membrane damage and reactive oxygen species toxicity in bacteria. In addition, the mineralized hydrogels can rapidly accelerate wound healing by the synergy between their antibacterial activity and intrinsic improvement for cell proliferation and migration. This study provides a modular approach to developing a multifunctional protein hydrogel platform based on biomolecule-coordinated self-assembly for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Weiqiang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Fengjiao Chu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Weifeng Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Tingting Xiao
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Jingjing Teng
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Yan Wang
- Department of Physical and Chemical Analysis, Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, P. R. China
| | - Bo He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiajia Gao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Honghua Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
39
|
Qian Q, Chen J, Qin M, Pei Y, Chen C, Tang D, Makvandi P, Du W, Yang G, Fang H, Zhou Y. Enhancing antibacterial properties by regulating valence configurations of copper: a focus on Cu-carboxyl chelates. J Mater Chem B 2024; 12:5128-5139. [PMID: 38699827 DOI: 10.1039/d4tb00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Optimizing the antibacterial effectiveness of copper ions while reducing environmental and cellular toxicity is essential for public health. A copper chelate, named PAI-Cu, is skillfully created using a specially designed carboxyl copolymer (a combination of acrylic and itaconic acids) with copper ions. PAI-Cu demonstrates a broad-spectrum antibacterial capability both in vitro and in vivo, without causing obvious cytotoxic effects. When compared to free copper ions, PAI-Cu displays markedly enhanced antibacterial potency, being about 35 times more effective against Escherichia coli and 16 times more effective against Staphylococcus aureus. Moreover, Gaussian and ab initio molecular dynamics (AIMD) analyses reveal that Cu+ ions can remain stable in the carboxyl compound's aqueous environment. Thus, the superior antibacterial performance of PAI-Cu largely stems from its modulation of copper ions between mono- and divalent states within the Cu-carboxyl chelates, especially via the carboxyl ligand. This modulation leads to the generation of reactive oxygen species (˙OH), which is pivotal in bacterial eradication. This research offers a cost-effective strategy for amplifying the antibacterial properties of Cu ions, paving new paths for utilizing copper ions in advanced antibacterial applications.
Collapse
Affiliation(s)
- Qiuping Qian
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Jige Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Qin
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Yu Pei
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Chunxiu Chen
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Dongping Tang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou, Zhejiang 324000, China
| | - Wei Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Yang
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Fang
- School of Physics and National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yunlong Zhou
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
40
|
Hussein M, Mahboob MBH, Tait JR, Grace JL, Montembault V, Fontaine L, Quinn JF, Velkov T, Whittaker MR, Landersdorfer CB. Providing insight into the mechanism of action of cationic lipidated oligomers using metabolomics. mSystems 2024; 9:e0009324. [PMID: 38606960 PMCID: PMC11097639 DOI: 10.1128/msystems.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
The increasing resistance of clinically relevant microbes against current commercially available antimicrobials underpins the urgent need for alternative and novel treatment strategies. Cationic lipidated oligomers (CLOs) are innovative alternatives to antimicrobial peptides and have reported antimicrobial potential. An understanding of their antimicrobial mechanism of action is required to rationally design future treatment strategies for CLOs, either in monotherapy or synergistic combinations. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of one CLO, C12-o-(BG-D)-10, which we have previously shown to be effective against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. The metabolomes of MRSA ATCC 43300 at 1, 3, and 6 h following treatment with C12-o-(BG-D)-10 (48 µg/mL, i.e., 3× MIC) were compared to those of the untreated controls. Our findings reveal that the studied CLO, C12-o-(BG-D)-10, disorganized the bacterial membrane as the first step toward its antimicrobial effect, as evidenced by marked perturbations in the bacterial membrane lipids and peptidoglycan biosynthesis observed at early time points, i.e., 1 and 3 h. Central carbon metabolism and the biosynthesis of DNA, RNA, and arginine were also vigorously perturbed, mainly at early time points. Moreover, bacterial cells were under osmotic and oxidative stress across all time points, as evident by perturbations of trehalose biosynthesis and pentose phosphate shunt. Overall, this metabolomics study has, for the first time, revealed that the antimicrobial action of C12-o-(BG-D)-10 may potentially stem from the dysregulation of multiple metabolic pathways.IMPORTANCEAntimicrobial resistance poses a significant challenge to healthcare systems worldwide. Novel anti-infective therapeutics are urgently needed to combat drug-resistant microorganisms. Cationic lipidated oligomers (CLOs) show promise as new antibacterial agents against Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Understanding their molecular mechanism(s) of antimicrobial action may help design synergistic CLO treatments along with monotherapy. Here, we describe the first metabolomics study to investigate the killing mechanism(s) of CLOs against MRSA. The results of our study indicate that the CLO, C12-o-(BG-D)-10, had a notable impact on the biosynthesis and organization of the bacterial cell envelope. C12-o-(BG-D)-10 also inhibits arginine, histidine, central carbon metabolism, and trehalose production, adding to its antibacterial characteristics. This work illuminates the unique mechanism of action of C12-o-(BG-D)-10 and opens an avenue to design innovative antibacterial oligomers/polymers for future clinical applications.
Collapse
Affiliation(s)
- Maytham Hussein
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Muhammad Bilal Hassan Mahboob
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jessica R. Tait
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - James L. Grace
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS–Le Mans Université, Le Mans, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS–Le Mans Université, Le Mans, France
| | - John F. Quinn
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael R. Whittaker
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Luo R, Xian D, Li F, Zhou G, Jiang L, Wu J, Lin L, Zheng Y, Liu G, Xu Q, Pan X, Wu C, Peng T, Quan G, Lu C. Epsilon-poly-l-lysine microneedle patch loaded with amorphous doxycycline nanoparticles for synergistic treatment of skin infection. Int J Biol Macromol 2024; 266:131383. [PMID: 38580030 DOI: 10.1016/j.ijbiomac.2024.131383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 μg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.
Collapse
Affiliation(s)
- Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guiling Zhou
- Unit of Pharmaco-Therapy, -Epidemiology and -Economics (PTEE), Department of Pharmacy, University of Groningen, Groningen 9712 CP, the Netherlands
| | - Ling Jiang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Jieyi Wu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Guanyu Liu
- School of Physics & Photoelectric Engineering, Guangdong University of Technology, Guangzhou 510650, China
| | - Qian Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China.
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511436, China.
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
43
|
Schaefer S, Melodia D, Corrigan N, Lenardon MD, Boyer C. Effect of Star Topology Versus Linear Polymers on Antifungal Activity and Mammalian Cell Toxicity. Macromol Biosci 2024; 24:e2300452. [PMID: 38009827 DOI: 10.1002/mabi.202300452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/05/2023] [Indexed: 11/29/2023]
Abstract
The global increase in invasive fungal infections and the emergence of drug-resistant strains demand the urgent development of novel antifungal drugs. In this context, synthetic polymers with diverse compositions, mimicking natural antimicrobial peptides, have shown promising potential for combating fungal infections. This study investigates how altering polymer end-groups and topology from linear to branched star-like structures affects their efficacy against Candida spp., including clinical isolates. Additionally, the polymers' biocompatibility is accessed with murine embryonic fibroblasts and red blood cells in vitro. Notably, a low-molecular weight star polymer outperforms both its linear polymeric counterparts and amphotericin B (AmpB) in terms of an improved therapeutic index and reduced haemolytic activity, despite a higher minimum inhibitory concentration against Candida albicans (C. albicans) SC5314 (16-32 µg mL-1 vs 1 µg mL-1 for AmpB). These findings demonstrate the potential of synthetic polymers with diverse topologies as promising candidates for antifungal applications.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Daniele Melodia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| | - Megan Denise Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
44
|
Zhou M, Liu L, Cong Z, Jiang W, Xiao X, Xie J, Luo Z, Chen S, Wu Y, Xue X, Shao N, Liu R. A dual-targeting antifungal is effective against multidrug-resistant human fungal pathogens. Nat Microbiol 2024; 9:1325-1339. [PMID: 38589468 DOI: 10.1038/s41564-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Longqiang Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zihao Cong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Weinan Jiang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Ximian Xiao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayang Xie
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhengjie Luo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sheng Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yueming Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ning Shao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
45
|
Zhao Y, Zhao W, Lv Y, Jin L, Ni Y, Hadjichristidis N. Well-defined star (co)polypeptides via a fast, efficient, and metal-free strategy. Int J Biol Macromol 2024; 264:130566. [PMID: 38432269 DOI: 10.1016/j.ijbiomac.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Polypeptides, especially star polypeptides, as a unique kind of biological macromolecules have broad applications in biomedical fields such as drug release, gene delivery, tissue engineering, and regenerative medicines due to their close structural similarity to naturally occurring peptides and proteins, biocompatibility, and amino acid functionality. However, the synthesis of star polypeptide mainly relies on the conventional primary amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCA) and suffers from low polymerization activity and limited controllability. This study proposes a fast, efficient and metal-free strategy to access star (co)polypeptides by combining the Michael reaction between acrylates and secondary aminoalcohols with the hydrogen-bonding organocatalytic ROP of NCA. This approach enables the preparation of a library of star (co)polypeptides with predesigned molecular weights, narrow molecular weight distributions, tunable arm number, and arm compositions. Importantly, this method exhibits high activity and selectivity at room temperature, making it both practical and versatile in synthesis applications.
Collapse
Affiliation(s)
- Yi Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Wei Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China.
| | - Yanfeng Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Liuping Jin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, New Brunswick, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
46
|
Wu W, Song J, Li T, Li W, Wang J, Wang S, Dong N, Shan A. Unlocking Antibacterial Potential: Key-Site-Based Regulation of Antibacterial Spectrum of Peptides. J Med Chem 2024; 67:4131-4149. [PMID: 38420875 DOI: 10.1021/acs.jmedchem.3c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In the pursuit of combating multidrug-resistant bacteria, antimicrobial peptides (AMPs) have emerged as promising agents; however, their application in clinical settings still presents challenges. Specifically, the exploration of crucial structural parameters that influence the antibacterial spectrum of AMPs and the subsequent development of tailored variants with either broad- or narrow-spectrum characteristics to address diverse clinical therapeutic needs has been overlooked. This study focused on investigating the effects of amino acid sites and hydrophobicity on the peptide's antibacterial spectrum through Ala scanning and fixed-point hydrophobic amino acid substitution techniques. The findings revealed that specific amino acid sites played a pivotal role in determining the antibacterial spectrum of AMPs and confirmed that broadening the spectrum could be achieved only by increasing hydrophobicity at certain positions. In conclusion, this research provided a theoretical basis for future precise regulation of an antimicrobial peptide's spectrum by emphasizing the intricate balance between amino acid sites and hydrophobicity.
Collapse
Affiliation(s)
- Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jing Song
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenyu Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shuo Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Na Dong
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
47
|
Fang W, Xu J, Wei Z, Wu J, Wu W, Wang Y, Chen S. Enhancing bactericidal activities of ciprofloxacin by targeting the trans-translation system that is involved in stress responses in Klebsiella pneumoniae. Arch Microbiol 2024; 206:154. [PMID: 38478112 DOI: 10.1007/s00203-024-03872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 04/16/2024]
Abstract
Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.
Collapse
Affiliation(s)
- Wendong Fang
- Department of Laboratory Medicine, The PLA 307 Clinical College, Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jie Xu
- Department of Laboratory Medicine, The PLA 307 Clinical College, Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zilan Wei
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jiahui Wu
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China.
| | | | - Shuiping Chen
- Department of Laboratory Medicine, The PLA 307 Clinical College, Fifth Clinical Medical College of Anhui Medical University, Beijing, China.
- Department of Laboratory Medicine, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.
- Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
48
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
49
|
Xu L, He L, Li Y, Cai T, Zhang J, Chu Z, Shen X, Cai R, Shi H, Zhu C. Stimuli-triggered multilayer films in response to temperature and ionic strength changes for controlled favipiravir drug release. Biomed Mater 2024; 19:035004. [PMID: 38364282 DOI: 10.1088/1748-605x/ad2a3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
The block copolymer micelles and natural biopolymers were utilized to form layer-by-layer (LbL) films via electrostatic interaction, which were able to effectively load and controllably release favipiravir, a potential drug for the treatment of coronavirus epidemic. The LbL films demonstrated reversible swelling/shrinking behavior along with the manipulation of temperature, which could also maintain the integrity in the structure and the morphology. Due to dehydration of environmentally responsive building blocks, the drug release rate from the films was decelerated by elevating environmental temperature and ionic strength. In addition, the pulsed release of favipiravir was observed from the multilayer films under the trigger of temperature, which ensured the precise control in the content of the therapeutic reagents at a desired time point. The nanoparticle-based LbL films could be used for on-demandin vitrorelease of chemotherapeutic reagents.
Collapse
Affiliation(s)
- Li Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Lang He
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yinzhao Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Tingwei Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jianhua Zhang
- N.O.D topia (GuangZhou) Biotechnology Co., Ltd, Guangzhou, Guangdong 510599, People's Republic of China
| | - Zihan Chu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaochen Shen
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, Jiangsu 210019, People's Republic of China
| | - Raymond Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Chunyin Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
50
|
Zhang H, Wang Y, Zhu Y, Huang P, Gao Q, Li X, Chen Z, Liu Y, Jiang J, Gao Y, Huang J, Qin Z. Machine learning and genetic algorithm-guided directed evolution for the development of antimicrobial peptides. J Adv Res 2024:S2090-1232(24)00078-X. [PMID: 38431124 DOI: 10.1016/j.jare.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) are valuable alternatives to traditional antibiotics, possess a variety of potent biological activities and exhibit immunomodulatory effects that alleviate difficult-to-treat infections. Clarifying the structure-activity relationships of AMPs can direct the synthesis of desirable peptide therapeutics. OBJECTIVES In this study, the lipopolysaccharide-binding domain (LBD) was identified through machine learning-guided directed evolution, which acts as a functional domain of the anti-lipopolysaccharide factor family of AMPs identified from Marsupenaeus japonicus. METHODS LBDA-D was identified as an output of this algorithm, in which the original LBDMj sequence was the input, and the three-dimensional solution structure of LBDB was determined using nuclear magnetic resonance. Furthermore, our study involved a comprehensive series of experiments, including morphological studies and in vitro and in vivo antibacterial tests. RESULTS The NMR solution structure showed that LBDB possesses a circular extended structure with a disulfide crosslink at the terminus and two 310-helices and exhibits a broad antimicrobial spectrum. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that LBDB induced the formation of a cluster of bacteria wrapped in a flexible coating that ruptured and consequently killed the bacteria. Finally, coinjection of LBDB, Vibrio alginolyticus and Staphylococcus aureus in vivo improved the survival of M. japonicus, demonstrating the promising therapeutic role of LBDB for treating infectious disease. CONCLUSIONS The findings of this study pave the way for the rational drug design of activity-enhanced peptide antibiotics.
Collapse
Affiliation(s)
- Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yihan Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yanran Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Pengtao Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Qiandi Gao
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xiaojie Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhaoying Chen
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yu Liu
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiakun Jiang
- Center for Statistics and Data Science, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| |
Collapse
|