1
|
Markwardt F, Schön EC, Raycheva M, Malisetty A, Hawro Yakoob S, Berthold M, Schmalzing G. Two serial filters control P2X7 cation selectivity, Ser342 in the central pore and lateral acidic residues at the cytoplasmic interface. PNAS NEXUS 2024; 3:pgae349. [PMID: 39262850 PMCID: PMC11388005 DOI: 10.1093/pnasnexus/pgae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
The human P2X7 receptor (hP2X7R) is a homotrimeric cell surface receptor gated by extracellular ATP4- with two transmembrane helices per subunit, TM1 and TM2. A ring of three S342 residues, one from each pore-forming TM2 helix, located halfway across the membrane bilayer, functions to close and open the gate in the apo and ATP4--bound open states, respectively. The hP2X7R is selective for small inorganic cations, but can also conduct larger organic cations such as Tris+. Here, we show by voltage-clamp electrophysiology in Xenopus laevis oocytes that mutation of S342 residues to positively charged lysines decreases the selectivity for Na+ over Tris+, but maintains cation selectivity. Deep in the membrane, laterally below the S342 ring are nine acidic residues arranged as an isosceles triangle consisting of residues E14, D352, and D356 on each side, which do not move significantly during gating. When the E14K mutation is combined with lysine substitutions of D352 and/or D356, cation selectivity is lost and permeation of the small anion Cl- is allowed. Lysine substitutions of S342 together with D352 or E14 plus D356 in the acidic triangle convert the hP2X7R mutant to a fully Cl--selective ATP4--gated receptor. We conclude that the ion selectivity of wild-type hP2X7R is determined by two sequential filters in one single pathway: (i) a primary size filter, S342, in the membrane center and (ii) three cation filters lateral to the channel axis, one per subunit interface, consisting of a total of nine acidic residues at the cytoplasmic interface.
Collapse
Affiliation(s)
- Fritz Markwardt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Eike Christian Schön
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Mihaela Raycheva
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany
| | - Aparna Malisetty
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany
| | - Sanaria Hawro Yakoob
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany
| | - Malte Berthold
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany
| |
Collapse
|
2
|
Huffer K, Tan XF, Fernández-Mariño AI, Dhingra S, Swartz KJ. Dilation of ion selectivity filters in cation channels. Trends Biochem Sci 2024; 49:417-430. [PMID: 38514273 PMCID: PMC11069442 DOI: 10.1016/j.tibs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Surbhi Dhingra
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Rupert M, Bhattacharya A, Sivcev S, Knezu M, Cimicka J, Zemkova H. Identification of residues in the first transmembrane domain of the P2X7 that regulates receptor trafficking, sensitization, and dye uptake function. J Neurochem 2023; 165:874-891. [PMID: 36945903 DOI: 10.1111/jnc.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
P2X receptors (P2X1-7) are trimeric ion channels activated by extracellular ATP. Each P2X subunit contains two transmembrane helices (TM1 and TM2). We substituted all residues in TM1 of rat P2X7 with alanine or leucine one by one, expressed mutants in HEK293T cells, and examined the pore permeability by recording both membrane currents and fluorescent dye uptake in response to agonist application. Alanine substitution of G27, K30, H34, Y40, F43, L45, M46, and D48 inhibited agonist-stimulated membrane current and dye uptake, and all but one substitution, D48A, prevented surface expression. Mutation V41A partially reduced both membrane current and dye uptake, while W31A and A44L showed reduced dye uptake not accompanied by reduced membrane current. Mutations T28A, I29A, and L33A showed small changes in agonist sensitivity, but they had no or small impact on dye uptake function. Replacing charged residues with residues of the same charge (K30R, H34K, and D48E) rescued receptor function, while replacement with residues of opposite charge inhibited (K30E and H34E) or potentiated (D48K) receptor function. Prolonged stimulation with agonist-induced current facilitation and a leftward shift in the dose-response curve in the P2X7 wild-type and most functional mutants, but sensitization was absent in the W31A, L33A, and A44L. Detailed analysis of the decay of responses revealed two kinetically distinct mechanisms of P2X7 deactivation: fast represents agonist unbinding, and slow might represent resetting of the receptor to the resting closed state. These results indicate that conserved and receptor-specific TM1 residues control surface expression of the P2X7 protein, non-polar residues control receptor sensitization, and D48 regulates intrinsic channel properties.
Collapse
Affiliation(s)
- Marian Rupert
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Anirban Bhattacharya
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sonja Sivcev
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Jana Cimicka
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
4
|
Tam SW, Huffer K, Li M, Swartz KJ. Ion permeation pathway within the internal pore of P2X receptor channels. eLife 2023; 12:e84796. [PMID: 36940138 PMCID: PMC10027316 DOI: 10.7554/elife.84796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/07/2023] [Indexed: 03/21/2023] Open
Abstract
P2X receptor channels are trimeric ATP-activated ion channels expressed in neuronal and non-neuronal cells that are attractive therapeutic targets for human disorders. Seven subtypes of P2X receptor channels have been identified in mammals that can form both homomeric and heteromeric channels. P2X1-4 and P2X7 receptor channels are cation-selective, whereas P2X5 has been reported to have both cation and anion permeability. P2X receptor channel structures reveal that each subunit is comprised of two transmembrane helices, with both N-and C-termini on the intracellular side of the membrane and a large extracellular domain that contains the ATP binding sites at subunit interfaces. Recent structures of ATP-bound P2X receptors with the activation gate open reveal the unanticipated presence of a cytoplasmic cap over the central ion permeation pathway, leaving lateral fenestrations that may be largely buried within the membrane as potential pathways for ions to permeate the intracellular end of the pore. In the present study, we identify a critical residue within the intracellular lateral fenestrations that is readily accessible to thiol-reactive compounds from both sides of the membrane and where substitutions influence the relative permeability of the channel to cations and anions. Taken together, our results demonstrate that ions can enter or exit the internal pore through lateral fenestrations that play a critical role in determining the ion selectivity of P2X receptor channels.
Collapse
Affiliation(s)
- Stephanie W Tam
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Mufeng Li
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Mansoor SE. How Structural Biology Has Directly Impacted Our Understanding of P2X Receptor Function and Gating. Methods Mol Biol 2022; 2510:1-29. [PMID: 35776317 DOI: 10.1007/978-1-0716-2384-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
P2X receptors are ATP-gated ion channels expressed in a wide variety of eukaryotic cells. They play key roles in diverse processes such as platelet activation, smooth muscle contraction, synaptic transmission, nociception, cell proliferation, and inflammation making this receptor family an important pharmacological target. Structures of P2X receptors solved by X-ray crystallography have been instrumental in helping to define mechanisms of molecular P2X receptor function. In 2009, the first X-ray structure of the P2X4 receptor subtype confirmed a trimeric stoichiometry and revealed the overall architecture of the functional ion channel. Subsequent X-ray structures have provided the molecular details to define the orthosteric ATP binding pocket, the orthosteric antagonist binding pocket, an allosteric antagonist binding pocket, and the pore architecture in each of the major conformational states of the receptor gating cycle. Moreover, the unique gating mechanism by which P2X receptor subtypes desensitize at differing rates, referred to as the helical recoil model of receptor desensitization, was discovered directly from X-ray structures of the P2X3 receptor. However, structures of P2X receptors solved by X-ray crystallography have only been able to provide limited information on the cytoplasmic domain of this receptor family, as this domain was always truncated to varying degrees in order to facilitate crystallization. Because the P2X7 receptor subtype has a significantly larger cytoplasmic domain that has been shown to be necessary for its ability to initiate apoptosis, an absence of structural information on the P2X7 receptor cytoplasmic domain has limited our understanding of its complex signaling pathways as well as its unusual ability to remain open without undergoing desensitization. This absence of cytoplasmic structural information for P2X7 receptors was recently overcome when the first full-length P2X7 receptor structures were solved by single-particle cryogenic electron microscopy. These structures finally provide insight into the large and unique P2X7 receptor cytoplasmic domain and revealed two novel structural elements and several surprising findings: first, a cytoplasmic structural element called the cytoplasmic ballast was identified that contains a dinuclear zinc ion complex and a high affinity guanosine nucleotide binding site and second, a palmitoylated membrane proximal structural element called the C-cys anchor was identified which prevents P2X7 receptor desensitization. This chapter will highlight the major structural and functional aspects of P2X receptors discovered through structural biology, with a key emphasis on the most recent cryogenic electron microscopy structures of the full-length, wild-type P2X7 receptor.
Collapse
Affiliation(s)
- Steven E Mansoor
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Racigh V, Pierdominici-Sottile G, Palma J. Ion Selectivity in P2X Receptors: A Comparison between hP2X3 and zfP2X4. J Phys Chem B 2021; 125:13385-13393. [PMID: 34851131 DOI: 10.1021/acs.jpcb.1c07308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge discrimination in P2X receptors occurs in two stages. The first stage takes place in the extracellular vestibule. The second one happens as the ions travel across the pore. The search of the amino acids required to achieve these goals has focused on negatively charged residues conserved among the family members. This strategy, however, has afforded baffling results since residues that strongly influence ion selectivity in a given member are not present in others. This finding suggests that alternative family members could achieve the same goal using different molecular approaches. We have compared the mechanisms of charge discrimination in the extracellular vestibule of zebrafish P2X4 (zfP2X4) and human P2X3 (hP2X3), employing molecular dynamics simulations. In particular, we have analyzed how the mutation of residues D59 and D61 of zfP2X4 and residues E46, D53, and E57 of hP2X3 influence ion behavior. The results indicate that both D59 and D61 are required to confer the extracellular vestibule of zfP2X4 a preference for cations. In contrast, the presence of D53 suffices to provide that capacity to hP2X3. We also computed the potentials of mean force for the passage of Na+ and Cl- through the pore of hP2X3. These profiles were compared against those already available for zfP2X4. Altogether, the results provide a detailed description of the mechanisms employed by these receptors to discriminate between cations and anions.
Collapse
Affiliation(s)
- Vanesa Racigh
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, C1425FQB CABA, Argentina
| | - Gustavo Pierdominici-Sottile
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, C1425FQB CABA, Argentina
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, C1425FQB CABA, Argentina
| |
Collapse
|
7
|
Andriani RT, Kubo Y. Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization. eLife 2021; 10:65822. [PMID: 34009126 PMCID: PMC8184218 DOI: 10.7554/elife.65822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Gating of the ATP-activated channel P2X2 has been shown to be dependent not only on [ATP] but also on membrane voltage, despite the absence of a canonical voltage-sensor domain. We aimed to investigate the structural rearrangements of rat P2X2 during ATP- and voltage-dependent gating, using a voltage-clamp fluorometry technique. We observed fast and linearly voltage-dependent fluorescence intensity (F) changes at Ala337 and Ile341 in the TM2 domain, which could be due to the electrochromic effect, reflecting the presence of a converged electric field. We also observed slow and voltage-dependent F changes at Ala337, which reflect structural rearrangements. Furthermore, we determined that the interaction between Ala337 in TM2 and Phe44 in TM1, which are in close proximity in the ATP-bound open state, is critical for activation. Taking these results together, we propose that the voltage dependence of the interaction within the converged electric field underlies the voltage-dependent gating.
Collapse
Affiliation(s)
- Rizki Tsari Andriani
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| |
Collapse
|
8
|
Yamashita M, Prakriya M. Interrogating permeation and gating of Orai channels using chemical modification of cysteine residues. Methods Enzymol 2021; 652:213-239. [PMID: 34059283 DOI: 10.1016/bs.mie.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemical modification of ion channels using the substituted cysteine accessibility method has a rich and successful history in elucidating the structural basis of ion channel function. In this approach, cysteine residues are introduced in regions of interest into the protein and their accessibility to water soluble thiol-reactive reagents is determined by monitoring ion channel activity. Because a wide range of these reagents are available with differing size, charge, and membrane solubility, the physio-chemical environment of the introduced cysteine residue and therefore the protein domain of interest can be probed with great precision. The approach has been widely employed for determining the secondary structure of specific ion channel domains, the location and nature of the channel gate, and the conformational rearrangements in the channel pore that underlie the opening/closing of the pore. In this chapter, we describe the use of these and related approaches to probe the functional architecture and gating of store-operated Orai1 channels.
Collapse
Affiliation(s)
- Megumi Yamashita
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
9
|
Unravelling the intricate cooperativity of subunit gating in P2X2 ion channels. Sci Rep 2020; 10:21751. [PMID: 33303878 PMCID: PMC7729398 DOI: 10.1038/s41598-020-78672-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
Ionotropic purinergic (P2X) receptors are trimeric channels that are activated by the binding of ATP. They are involved in multiple physiological functions, including synaptic transmission, pain and inflammation. The mechanism of activation is still elusive. Here we kinetically unraveled and quantified subunit activation in P2X2 receptors by an extensive global fit approach with four complex and intimately coupled kinetic schemes to currents obtained from wild type and mutated receptors using ATP and its fluorescent derivative 2-[DY-547P1]-AET-ATP (fATP). We show that the steep concentration-activation relationship in wild type channels is caused by a subunit flip reaction with strong positive cooperativity, overbalancing a pronounced negative cooperativity for the three ATP binding steps, that the net probability fluxes in the model generate a marked hysteresis in the activation-deactivation cycle, and that the predicted fATP binding matches the binding measured by fluorescence. Our results shed light into the intricate activation process of P2X channels.
Collapse
|
10
|
Stavrou A, Evans RJ, Schmid R. Identification of a distinct desensitisation gate in the ATP-gated P2X2 receptor. Biochem Biophys Res Commun 2020; 523:190-195. [PMID: 31843194 PMCID: PMC7008354 DOI: 10.1016/j.bbrc.2019.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022]
Abstract
P2X receptors are trimeric ATP-gated ion channels. In response to ATP binding, conformational changes lead to opening of the channel and ion flow. Current flow can decline during continued ATP binding in a process called desensitisation. The rate and extent of desensitisation is affected by multiple factors, for instance the T18A mutation in P2X2 makes the ion channel fast desensitising. We have used this mutation to investigate whether the gate restricting ion flow is different in the desensitised and the closed state, by combining molecular modelling and cysteine modification using MTSET (2-(Trimethylammonium)ethyl methanethiosulfonate). Homology modelling of the P2X2 receptor and negative space imaging of the channel suggested a movement of the restriction gate with residue T335 being solvent accessible in the desensitised, but not the closed state. This was confirmed experimentally by probing the accessibility of T335C in the P2X2 T18A/T335C (fast desensitisation) and T335C (slow desensitisation) mutants with MTSET which demonstrates that the barrier to ion flow is different in the closed and the desensitised states. To investigate the T18A induced switch in desensitisation we compared molecular dynamics simulations of the wild type and T18A P2X2 receptor which suggest that the differences in time course of desensitisation are due to structural destabilization of a hydrogen bond network of conserved residues in the proximity of T18.
Collapse
Affiliation(s)
- Anastasios Stavrou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
11
|
Jara-Oseguera A, Huffer KE, Swartz KJ. The ion selectivity filter is not an activation gate in TRPV1-3 channels. eLife 2019; 8:51212. [PMID: 31724952 PMCID: PMC6887487 DOI: 10.7554/elife.51212] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Activation of TRPV1 channels in sensory neurons results in opening of a cation permeation pathway that triggers the sensation of pain. Opening of TRPV1 has been proposed to involve two gates that appear to prevent ion permeation in the absence of activators: the ion selectivity filter on the external side of the pore and the S6 helices that line the cytosolic half of the pore. Here we measured the access of thiol-reactive ions across the selectivity filters in rodent TRPV1-3 channels. Although our results are consistent with structural evidence that the selectivity filters in these channels are dynamic, they demonstrate that cations can permeate the ion selectivity filters even when channels are closed. Our results suggest that the selectivity filters in TRPV1-3 channels do not function as activation gates but might contribute to coupling structural rearrangements in the external pore to those in the cytosolic S6 gate.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Katherine E Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
12
|
Hearing loss mutations alter the functional properties of human P2X2 receptor channels through distinct mechanisms. Proc Natl Acad Sci U S A 2019; 116:22862-22871. [PMID: 31636190 DOI: 10.1073/pnas.1912156116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of P2X2 receptor channels by extracellular ATP is thought to play important roles in cochlear adaptation to elevated sound levels and protection from overstimulation. Each subunit of a trimeric P2X2 receptor is composed of intracellular N and C termini, a large extracellular domain containing the ATP binding site and 2 transmembrane helices (TM1 and TM2) that form a cation permeable pore. Whole-exome sequencing and linkage analysis have identified 3 hP2X2 receptor mutations (V60L, D273Y, and G353R) that cause dominantly inherited progressive sensorineural hearing loss (DFNA41). Available structures of related P2X receptors suggest that these 3 mutations localize to TM1 (V60L), TM2 (G353R), or the β-sheet linking the TMs to the extracellular ATP binding sites (D273Y). Previous studies have concluded that the V60L and G353R mutants are nonfunctional, whereas the D273Y mutant has yet to be studied. Here, we demonstrate that both V60L and G353R mutations do form functional channels, whereas the D273Y mutation prevents the expression of functional channels on the cell membrane. Our results show that the V60L mutant forms constitutively active channels that are insensitive to ATP or the antagonist suramin, suggesting uncoupling of the pore and the ligand binding domains. In contrast, the G353R mutant can be activated by ATP but exhibits alterations in sensitivity to ATP, inward rectification, and ion selectivity. Collectively, our results demonstrate that the loss of functional P2X2 receptors or distinct alterations of its functional properties lead to noise-induced hearing loss, highlighting the importance of these channels in preserving hearing.
Collapse
|
13
|
Li M, Wang Y, Banerjee R, Marinelli F, Silberberg S, Faraldo-Gómez JD, Hattori M, Swartz KJ. Molecular mechanisms of human P2X3 receptor channel activation and modulation by divalent cation bound ATP. eLife 2019; 8:47060. [PMID: 31232692 PMCID: PMC6590987 DOI: 10.7554/elife.47060] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
P2X3 receptor channels expressed in sensory neurons are activated by extracellular ATP and serve important roles in nociception and sensory hypersensitization, making them attractive therapeutic targets. Although several P2X3 structures are known, it is unclear how physiologically abundant Ca2+-ATP and Mg2+-ATP activate the receptor, or how divalent cations regulate channel function. We used structural, computational and functional approaches to show that a crucial acidic chamber near the nucleotide-binding pocket in human P2X3 receptors accommodates divalent ions in two distinct modes in the absence and presence of nucleotide. The unusual engagement between the receptor, divalent ion and the γ-phosphate of ATP enables channel activation by ATP-divalent complex, cooperatively stabilizes the nucleotide on the receptor to slow ATP unbinding and recovery from desensitization, a key mechanism for limiting channel activity. These findings reveal how P2X3 receptors recognize and are activated by divalent-bound ATP, aiding future physiological investigations and drug development.
Collapse
Affiliation(s)
- Mufeng Li
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Yao Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rahul Banerjee
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Shai Silberberg
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
14
|
Gasparri F, Wengel J, Grutter T, Pless SA. Molecular determinants for agonist recognition and discrimination in P2X2 receptors. J Gen Physiol 2019; 151:898-911. [PMID: 31126967 PMCID: PMC6605687 DOI: 10.1085/jgp.201912347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022] Open
Abstract
P2X receptors (P2XRs) are ligand-gated cation channels involved in pain and inflammation. Gasparri et al. show that the backbone carbonyl atoms of amino acid residue Thr184 are involved in ligand discrimination, while those of Lys69 contribute mostly to ligand recognition by rat P2X2Rs. P2X receptors (P2XRs) are trimeric ligand-gated ion channels that open a cation-selective pore in response to ATP binding. P2XRs contribute to synaptic transmission and are involved in pain and inflammation, thus representing valuable drug targets. Recent crystal structures have confirmed the findings of previous studies with regards to the amino acid chains involved in ligand recognition, but they have also suggested that backbone carbonyl atoms contribute to ATP recognition and discrimination. Here we use a combination of site-directed mutagenesis, amide-to-ester substitutions, and a range of ATP analogues with subtle alterations to either base or sugar component to investigate the contributions of backbone carbonyl atoms toward ligand recognition and discrimination in rat P2X2Rs. Our findings demonstrate that while the Lys69 backbone carbonyl makes an important contribution to ligand recognition, the discrimination between different ligands is mediated by both the side chain and the backbone carbonyl oxygen of Thr184. Together, our data demonstrate how conserved elements in P2X2Rs recognize and discriminate agonists.
Collapse
Affiliation(s)
- Federica Gasparri
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Thomas Grutter
- University of Strasbourg, Centre National de la Recherche Scientifique, Conception et Application de Molécules Bioactives Unité Mixte de Recherche 7199, Strasbourg, France
| | - Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Peverini L, Beudez J, Dunning K, Chataigneau T, Grutter T. New Insights Into Permeation of Large Cations Through ATP-Gated P2X Receptors. Front Mol Neurosci 2018; 11:265. [PMID: 30108481 PMCID: PMC6080412 DOI: 10.3389/fnmol.2018.00265] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022] Open
Abstract
The permeability of large cations through the P2X pore has remained arguably the most controversial and complicated topic in P2X-related research, with the emergence of conflicting studies on the existence, mechanism and physiological relevance of a so-called “dilated” state. Due to the important role of several “dilating” P2X subtypes in numerous diseases, a clear and detailed understanding of this phenomenon represents a research priority. Recent advances, however, have challenged the existence of a progressive, ATP-induced pore dilation, by demonstrating that this phenomenon is an artifact of the method employed. Here, we discuss briefly the history of this controversial and enigmatic dilated state, from its initial discovery to its recent reconsideration. We will discuss the literature in which mechanistic pathways to a large cation-permeable state are proposed, as well as important advances in the methodology employed to study this elusive state. Considering recent literature, we will also open the discussion as to whether an intrinsically dilating P2X pore exists, as well as the physiological relevance of such a large cation-permeable pore and its potential use as therapeutic pathway.
Collapse
Affiliation(s)
- Laurie Peverini
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Juline Beudez
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Kate Dunning
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thierry Chataigneau
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thomas Grutter
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Young CNJ, Górecki DC. P2RX7 Purinoceptor as a Therapeutic Target-The Second Coming? Front Chem 2018; 6:248. [PMID: 30003075 PMCID: PMC6032550 DOI: 10.3389/fchem.2018.00248] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
The P2RX7 receptor is a unique member of a family of extracellular ATP (eATP)-gated ion channels expressed in immune cells, where its activation triggers the inflammatory cascade. Therefore, P2RX7 has been long investigated as a target in the treatment of infectious and inflammatory diseases. Subsequently, P2RX7 signaling has been documented in other physiological and pathological processes including pain, CNS and psychiatric disorders and cancer. As a result, a range of P2RX7 antagonists have been developed and trialed. Interestingly, the recent crystallization of mammalian and chicken receptors revealed that most widely-used antagonists may bind a unique allosteric site. The availability of crystal structures allows rational design of improved antagonists and modeling of binding sites of the known or presumed inhibitors. However, several unanswered questions limit the cogent development of P2RX7 therapies. Firstly, this receptor functions as an ion channel, but its chronic stimulation by high eATP causes opening of the non-selective large pore (LP), which can trigger cell death. Not only the molecular mechanism of LP opening is still not fully understood but its function(s) are also unclear. Furthermore, how can tumor cells take advantage of P2RX7 for growth and spread and yet survive overexpression of potentially cytotoxic LP in the eATP-rich environment? The recent discovery of the feedback loop, wherein the LP-evoked release of active MMP-2 triggers the receptor cleavage, provided one explanation. Another mechanism might be that of cancer cells expressing a structurally altered P2RX7 receptor, devoid of the LP function. Exploiting such mechanisms should lead to the development of new, less toxic anticancer treatments. Notably, targeted inhibition of P2RX7 is crucial as its global blockade reduces the immune and inflammatory responses, which have important anti-tumor effects in some types of malignancies. Therefore, another novel approach is the synthesis of tissue/cell specific P2RX7 antagonists. Progress has been aided by the development of p2rx7 knockout mice and new conditional knock-in and knock-out models are being created. In this review, we seek to summarize the recent advances in our understanding of molecular mechanisms of receptor activation and inhibition, which cause its re-emergence as an important therapeutic target. We also highlight the key difficulties affecting this development.
Collapse
Affiliation(s)
- Chris N. J. Young
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Health and Life Sciences, The School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Dariusz C. Górecki
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
17
|
Abstract
Extracellular ATP-gated P2X receptors are trimeric non-selective cation channels important for many physiological events including immune response and neural transmission. These receptors belong to a unique class of ligand-gated ion channels composed of only six transmembrane helices and a relatively small extracellular domain that harbors three ATP-binding pockets. The crystal structures of P2X receptors, including the recent P2X3 structures representing three different stages of the gating cycle, have provided a compelling structural foundation for understanding how this class of ligand-gated ion channels function. These structures, in combination with numerous functional studies ranging from classic mutagenesis and electrophysiology to modern optogenetic pharmacology, have uncovered unique molecular mechanisms of P2X receptor function. This review article summarizes the current knowledge in P2X receptor activation, especially focusing on the mechanisms underlying ATP-binding, conformational changes in the extracellular domain, and channel gating and desensitization.
Collapse
|
18
|
On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proc Natl Acad Sci U S A 2017; 114:E3786-E3795. [PMID: 28442564 DOI: 10.1073/pnas.1701379114] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pore dilation is thought to be a hallmark of purinergic P2X receptors. The most commonly held view of this unusual process posits that under prolonged ATP exposure the ion pore expands in a striking manner from an initial small-cation conductive state to a dilated state, which allows the passage of larger synthetic cations, such as N-methyl-d-glucamine (NMDG+). However, this mechanism is controversial, and the identity of the natural large permeating cations remains elusive. Here, we provide evidence that, contrary to the time-dependent pore dilation model, ATP binding opens an NMDG+-permeable channel within milliseconds, with a conductance that remains stable over time. We show that the time course of NMDG+ permeability superimposes that of Na+ and demonstrate that the molecular motions leading to the permeation of NMDG+ are very similar to those that drive Na+ flow. We found, however, that NMDG+ "percolates" 10 times slower than Na+ in the open state, likely due to a conformational and orientational selection of permeating molecules. We further uncover that several P2X receptors, including those able to desensitize, are permeable not only to NMDG+ but also to spermidine, a large natural cation involved in ion channel modulation, revealing a previously unrecognized P2X-mediated signaling. Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones. This permeation mechanism has considerable physiological significance.
Collapse
|
19
|
Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc Natl Acad Sci U S A 2017; 114:E2156-E2165. [PMID: 28235784 DOI: 10.1073/pnas.1610414114] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The P2X7 receptor (P2X7R) belongs to the P2X family of ATP-gated cation channels. P2X7Rs are expressed in epithelial cells, leukocytes, and microglia, and they play important roles in immunological and inflammatory processes. P2X7Rs are obligate homotrimers, with each subunit having two transmembrane helices, TM1 and TM2. Structural and functional data regarding the P2X2 and P2X4 receptors indicate that the central trihelical TM2 bundle forms the intrinsic transmembrane channel of P2X receptors. Here, we studied the accessibility of single cysteines substituted along the pre-TM2 and TM2 helix (residues 327-357) of the P2X7R using as readouts (i) the covalent maleimide fluorescence accessibility of the surface-bound P2X7R and (ii) covalent modulation of macroscopic and single-channel currents using extracellularly and intracellularly applied methanethiosulfonate (MTS) reagents. We found that the channel opening extends from the pre-TM2 region through the outer half of the trihelical TM2 channel. Covalently adducted MTS ethylammonium+ (MTSEA+) strongly increased the probability that the channel was open by delaying channel closing of seven of eight responsive human P2X7R (hP2X7R) mutants. Structural modeling, as supported by experimental probing, suggested that resulting intraluminal hydrogen bonding interactions stabilize the open-channel state. The additional decrease in single-channel conductance by MTSEA+ in five of seven positions identified Y336, S339, L341C, Y343, and G345 as the narrowest part of the channel lumen. The gate and ion-selectivity filter of the P2X7R could be colocalized at and around residue S342. None of our results provided any evidence for dilation of the hP2X7R channel on sustained stimulation with ATP4.
Collapse
|
20
|
Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc Natl Acad Sci U S A 2016; 113:4741-6. [PMID: 27071117 DOI: 10.1073/pnas.1600519113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s(-1)), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region.
Collapse
|
21
|
Linsdell P. Metal bridges to probe membrane ion channel structure and function. Biomol Concepts 2016; 6:191-203. [PMID: 26103632 DOI: 10.1515/bmc-2015-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/29/2015] [Indexed: 11/15/2022] Open
Abstract
Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed.
Collapse
|
22
|
Habermacher C, Martz A, Calimet N, Lemoine D, Peverini L, Specht A, Cecchini M, Grutter T. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. eLife 2016; 5:e11050. [PMID: 26808983 PMCID: PMC4739762 DOI: 10.7554/elife.11050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extracellular domain following agonist binding. However, the mechanism of pore opening still remains controversial. Here we use photo-switchable cross-linkers as ‘molecular tweezers’ to monitor a series of inter-residue distances in the transmembrane domain of the P2X2 receptor during activation. These experimentally based structural constraints combined with computational studies provide high-resolution models of the channel in the open and closed states. We show that the extent of the outer pore expansion is significantly reduced compared to the ATP-bound structure. Our data further reveal that the inner and outer ends of adjacent pore-lining helices come closer during opening, likely through a hinge-bending motion. These results provide new insight into the gating mechanism of P2X receptors and establish a versatile strategy applicable to other membrane proteins. DOI:http://dx.doi.org/10.7554/eLife.11050.001 Protein receptors in the cell membrane play an important role transmitting signals from outside to inside the cell. Members of the P2X family of receptors are ion channels that form pores through the membrane. When a molecule of ATP binds to the external region of the receptor, it activates it and causes the receptor to change from a closed to an open shape. Once opened, ions flow through the channel’s pore and trigger a response inside the cell. P2X receptors are found on most animal cells (including nerve cells) and are involved in both normal cellular activity and processes linked to disease, including inflammation and chronic pain. The P2X receptor has three parts or subunits, and each contributes to the channel’s pore. Recent research using a technique called X-ray crystallography has revealed how ATP binding causes shape changes in the external region of the receptor. But these three-dimensional structures did not reveal details of how the subunits move to open or close the channel’s pore. Habermacher et al. have now added light-sensitive linkers onto the P2X receptor in a way that meant that different colors of light could be used to force parts of the receptor to come closer together or move apart. This allowed the pore to be opened and closed in response to changes in light. Habermacher et al. then studied the behavior of these modified receptors within a natural membrane and found that the light stimulated movements were similar to those seen with ATP. When the behavior of the receptor and light-sensitive linkers was studied using computer simulations, it led to new models of the P2X pore in the open and closed state. In these models, the open channel was more tightly packed than in the previous structure and an unexpected hinge-bending movement was seen to accompany the opening of the channel. It is hoped that this new approach will also be useful for probing how other membrane proteins change their shape when activated. DOI:http://dx.doi.org/10.7554/eLife.11050.002
Collapse
Affiliation(s)
- Chloé Habermacher
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Adeline Martz
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Nicolas Calimet
- ISIS, Unité Mixte de Recherche 7006, Laboratoire d'Ingénierie des Fonctions Moléculaires, Strasbourg, France
| | - Damien Lemoine
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Laurie Peverini
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Alexandre Specht
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| | - Marco Cecchini
- ISIS, Unité Mixte de Recherche 7006, Laboratoire d'Ingénierie des Fonctions Moléculaires, Strasbourg, France
| | - Thomas Grutter
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.,Centre National de la Recherche Scientifique, Laboratoire de Conception et Application de Molécules Bioactives, Unité Mixte de Recherche 7199, Équipe de Chimie et Neurobiologie Moléculaire, Illkirch, France
| |
Collapse
|
23
|
Manipulation of P2X Receptor Activities by Light Stimulation. Mediators Inflamm 2016; 2016:7852168. [PMID: 26884649 PMCID: PMC4739260 DOI: 10.1155/2016/7852168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels.
Collapse
|
24
|
Mahaut-Smith MP, Taylor KA, Evans RJ. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:305-29. [PMID: 27161234 DOI: 10.1007/978-3-319-26974-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Kirk A Taylor
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| |
Collapse
|
25
|
Insights into the channel gating of P2X receptors from structures, dynamics and small molecules. Acta Pharmacol Sin 2016; 37:44-55. [PMID: 26725734 DOI: 10.1038/aps.2015.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022] Open
Abstract
P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na(+), K(+) and Ca(2+). Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors.
Collapse
|
26
|
Hausmann R, Kless A, Schmalzing G. Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 2015; 22:799-818. [PMID: 25439586 PMCID: PMC4460280 DOI: 10.2174/0929867322666141128163215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation
channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory
and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences
became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose
key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish
P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has
ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional
models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years
have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated
ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure
eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the
pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors
are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures.
Collapse
Affiliation(s)
| | | | - Gunther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| |
Collapse
|
27
|
Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat Neurosci 2015; 18:1577-83. [PMID: 26389841 DOI: 10.1038/nn.4120] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022]
Abstract
The selectivity of ion channels is fundamental for their roles in electrical and chemical signaling and in ion homeostasis. Although most ion channels exhibit stable ion selectivity, the prevailing view of purinergic P2X receptor channels, transient receptor potential V1 (TRPV1) channels and acid-sensing ion channels (ASICs) is that their ion conduction pores dilate upon prolonged activation. We investigated this mechanism in P2X receptors and found that the hallmark shift in equilibrium potential observed with prolonged channel activation does not result from pore dilation, but from time-dependent alterations in the concentration of intracellular ions. We derived a physical model to calculate ion concentration changes during patch-clamp recordings, which validated our experimental findings and provides a quantitative guideline for effectively controlling ion concentration. Our results have fundamental implications for understanding ion permeation and gating in P2X receptor channels, as well as more broadly for using patch-clamp techniques to study ion channels and neuronal excitability.
Collapse
|
28
|
Tong X, Lopez W, Ramachandran J, Ayad WA, Liu Y, Lopez-Rodriguez A, Harris AL, Contreras JE. Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules. J Gen Physiol 2015; 146:245-54. [PMID: 26324677 PMCID: PMC4555470 DOI: 10.1085/jgp.201511375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/12/2015] [Indexed: 12/14/2022] Open
Abstract
Cysteine-scanning mutagenesis combined with thiol reagent modification is a powerful method with which to define the pore-lining elements of channels and the changes in structure that accompany channel gating. Using the Xenopus laevis oocyte expression system and two-electrode voltage clamp, we performed cysteine-scanning mutagenesis of several pore-lining residues of connexin 26 (Cx26) hemichannels, followed by chemical modification using a methanethiosulfonate (MTS) reagent, to help identify the position of the gate. Unexpectedly, we observed that the effect of MTS modification on the currents was reversed within minutes of washout. Such a reversal should not occur unless reducing agents, which can break the disulfide thiol-MTS linkage, have access to the site of modification. Given the permeability to large metabolites of connexin channels, we tested whether cytosolic glutathione (GSH), the primary cell reducing agent, was reaching the modified sites through the connexin pore. Inhibition of gamma-glutamylcysteine synthetase by buthionine sulfoximine decreased the cytosolic GSH concentration in Xenopus oocytes and reduced reversibility of MTS modification, as did acute treatment with tert-butyl hydroperoxide, which oxidizes GSH. Cysteine modification based on thioether linkages (e.g., maleimides) cannot be reversed by reducing agents and did not reverse with washout. Using reconstituted hemichannels in a liposome-based transport-specific fractionation assay, we confirmed that homomeric Cx26 and Cx32 and heteromeric Cx26/Cx32 are permeable to GSH and other endogenous reductants. These results show that, for wide pores, accessibility of cytosolic reductants can lead to reversal of MTS-based thiol modifications. This potential for reversibility of thiol modification applies to on-cell accessibility studies of connexin channels and other channels that are permeable to large molecules, such as pannexin, CALHM, and VRAC.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103 Department of Pharmacology, Bengbu Medical College, Bengbu, Anhui Province 233000, China
| | - William Lopez
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Jayalakshmi Ramachandran
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Wafaa A Ayad
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Yu Liu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Angelica Lopez-Rodriguez
- Molecular Neurophysiology Section, Porter Neuroscience Research Center, National Institutes of Health, Bethesda, MD 20892
| | - Andrew L Harris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| |
Collapse
|
29
|
Habermacher C, Dunning K, Chataigneau T, Grutter T. Molecular structure and function of P2X receptors. Neuropharmacology 2015; 104:18-30. [PMID: 26231831 DOI: 10.1016/j.neuropharm.2015.07.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
ATP-gated P2X receptors are trimeric ion channels selective to cations. Recent progress in the molecular biophysics of these channels enables a better understanding of their function. In particular, data obtained from biochemical, electrophysiogical and molecular engineering in the light of recent X-ray structures now allow delineation of the principles of ligand binding, channel opening and allosteric modulation. However, although a picture emerges as to how ATP triggers channel opening, there are a number of intriguing questions that remain to be answered, in particular how the pore itself opens in response to ATP and how the intracellular domain, for which structural information is limited, moves during activation. In this review, we provide a summary of functional studies in the context of the post-structure era, aiming to clarify our understanding of the way in which P2X receptors function in response to ATP binding, as well as the mechanism by which allosteric modulators are able to regulate receptor function. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Chloé Habermacher
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Kate Dunning
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Thierry Chataigneau
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France
| | - Thomas Grutter
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400, Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400, Illkirch, France.
| |
Collapse
|
30
|
Li GH. Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain. J Mol Graph Model 2015. [PMID: 26209765 DOI: 10.1016/j.jmgm.2015.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The P2X receptors are trimeric ATP-gated ion channels and mediate chemical communication between eukaryotic cells. Each P2X subunit contains two transmembrane helices, M1 and M2, and the M2 helix packs around an ion conduction pore. Here, I have reconstructed the three-dimensional models of the zebrafish P2X4 transmembrane domain using spatial restraints on helical packing. The models are stable in lipid bilayers during molecular dynamics simulation and adopt different conformations depending on bilayer hydrophobic thickness. Comparison of these conformations shows that the pore-lining residues L340, A344 and A347 each have multiple packing sites that define the pore configurations. Shift of L340 packing between different sites alters the side-chain orientation that occludes the pore or removes this occlusion. L340, A344 and A347 also gate the pore by expansion-contraction mechanism based on their packing patterns. Finally, pore expansions at the L340 and A344 levels are mutually exclusive, so the P2X gating may involve sequential pore opening at L340 and A344 levels to allow ion conduction. In summary, the current study shows that the computational assembly of the helical membrane protein is not only possible, but also necessary to provide insights into the mechanisms of channel gating.
Collapse
Affiliation(s)
- Guo-Hua Li
- School of Life Sciences, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
31
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2015; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
32
|
Pharmacological blockage and P2X7 deletion hinder aversive memories: Reversion in an enriched environment. Neuroscience 2014; 280:220-30. [DOI: 10.1016/j.neuroscience.2014.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022]
|
33
|
Alves LA, de Melo Reis RA, de Souza CAM, de Freitas MS, Teixeira PCN, Neto Moreira Ferreira D, Xavier RF. The P2X7 receptor: Shifting from a low- to a high-conductance channel — An enigmatic phenomenon? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2578-87. [DOI: 10.1016/j.bbamem.2014.05.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 04/22/2014] [Accepted: 05/13/2014] [Indexed: 01/08/2023]
|
34
|
Keceli B, Kubo Y. Voltage- and ATP-dependent structural rearrangements of the P2X2 receptor associated with the gating of the pore. J Physiol 2014; 592:4657-76. [PMID: 25172943 DOI: 10.1113/jphysiol.2014.278507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2X2 is an extracellular ATP-gated cation channel which has a voltage-dependent gating property even though it lacks a canonical voltage sensor. It is a trimer in which each subunit has two transmembrane helices and a large extracellular domain. The three inter-subunit ATP binding sites are linked to the pore forming transmembrane (TM) domains by β-strands. We analysed structural rearrangements of the linker strands between the ATP binding site and TM domains upon ligand binding and voltage change, electrophysiologically in Xenopus oocytes, using mutants carrying engineered thiol-modifiable cysteine residues. (1) We demonstrated that the double mutant D315C&I67C (at β-14 and β-1, respectively) shows a 2- to 4-fold increase in current amplitude after treatment with a reducing reagent, dithiothreitol (DTT). Application of the thiol-reactive metal Cd(2+) induced current decline due to bond formation between D315C and I67C. This effect was not observed in wild type (WT) or in single point mutants. (2) Cd(2+)-induced current decline was analysed in hyperpolarized and depolarized conditions with different pulse protocols, and also in the presence and absence of ATP. (3) Current decline induced by Cd(2+) could be clearly observed in the presence of ATP, but was not clear in the absence of ATP, showing a state-dependent modification. (4) In the presence of ATP, Cd(2+) modification was significantly faster in hyperpolarized than in depolarized conditions, showing voltage-dependent structural rearrangements of the linker strands. (5) Experiments using tandem trimeric constructs (TTCs) with controlled number and position of mutations in the trimer showed that the bridging by Cd(2+) between 315 and 67 was not intra- but inter-subunit. (6) Finally, we performed similar analyses of a pore mutant T339S, which makes the channel activation voltage insensitive. Cd(2+) modification rates of T339S were similar in hyperpolarized and depolarized conditions. Taking these results together, we demonstrated that structural rearrangements of the linker region of the P2X2 receptor channel are induced not only by ligand binding but also by membrane potential change.
Collapse
Affiliation(s)
- Batu Keceli
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), School of Life Science, Hayama, Kanagawa, 240-0155, Japan
| |
Collapse
|
35
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
36
|
Kellenberger S, Grutter T. Architectural and functional similarities between trimeric ATP-gated P2X receptors and acid-sensing ion channels. J Mol Biol 2014; 427:54-66. [PMID: 24937752 DOI: 10.1016/j.jmb.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022]
Abstract
ATP-gated P2X receptors and acid-sensing ion channels are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons) and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only been rarely made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and we outline key unanswered questions that, if addressed experimentally, may help us to elucidate how two unrelated ion channels have adopted a similar fold of the pore.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland.
| | - Thomas Grutter
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7199, Laboratoire de Conception et Application de Molécules Bioactives, Équipe de Chimie et Neurobiologie Moléculaire, F-67400 Illkirch, France; Université de Strasbourg, Faculté de Pharmacie, F-67400 Illkirch, France.
| |
Collapse
|
37
|
Navarrete LC, Barrera NP, Huidobro-Toro JP. Vas deferens neuro-effector junction: from kymographic tracings to structural biology principles. Auton Neurosci 2014; 185:8-28. [PMID: 24956963 DOI: 10.1016/j.autneu.2014.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Abstract
The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter's release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts.
Collapse
Affiliation(s)
- L Camilo Navarrete
- Laboratorio de Estructura de Proteínas de Membrana y Señalización, Núcleo Milenio de Biología Estructural, NuBEs, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Chile
| | - Nelson P Barrera
- Laboratorio de Estructura de Proteínas de Membrana y Señalización, Núcleo Milenio de Biología Estructural, NuBEs, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Chile
| | - J Pablo Huidobro-Toro
- Laboratorio de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
38
|
Alves LA, da Silva JHM, Ferreira DNM, Fidalgo-Neto AA, Teixeira PCN, de Souza CAM, Caffarena ER, de Freitas MS. Structural and molecular modeling features of P2X receptors. Int J Mol Sci 2014; 15:4531-49. [PMID: 24637936 PMCID: PMC3975412 DOI: 10.3390/ijms15034531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023] Open
Abstract
Currently, adenosine 5'-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.
Collapse
Affiliation(s)
- Luiz Anastacio Alves
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - João Herminio Martins da Silva
- Oswaldo Cruz Foundation (FIOCRUZ) Ceará Avenida Santos Dumont, 5753, Torre Saúde, Sala 1303, Papicu, Fortaleza-CE, CEP 60180-900, Brazil.
| | - Dinarte Neto Moreira Ferreira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Antonio Augusto Fidalgo-Neto
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Pedro Celso Nogueira Teixeira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Cristina Alves Magalhães de Souza
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Ernesto Raúl Caffarena
- Scientific Computation Program, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Mônica Santos de Freitas
- Jiri Jonas Nuclear Magnetic Resonance Center, Science and Technology Institute of Structural Biology and Bioimaging, Leopoldo de Meis Medical Biochemistry Institute, Rio de Janeiro Federal University (UFRJ), Carlos Chagas Filho ave, 373, Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|
39
|
Stelmashenko O, Compan V, Browne LE, North RA. Ectodomain movements of an ATP-gated ion channel (P2X2 receptor) probed by disulfide locking. J Biol Chem 2014; 289:9909-17. [PMID: 24515105 PMCID: PMC3975035 DOI: 10.1074/jbc.m113.542811] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ectodomain of the P2X receptor is formed mainly from two- or three-stranded β-sheets provided symmetrically by each of the three subunits. These enclose a central cavity that is closed off furthest from the plasma membrane (the turret) and that joins with the transmembrane helices to form the ion permeation pathway. Comparison of closed and open crystal structures indicates that ATP binds in a pocket positioned between strands provided by different subunits and that this flexes the β-sheets of the lower body and enlarges the central cavity: this pulls apart the outer ends of the transmembrane helices and thereby opens an aperture, or gate, where they intersect within the membrane bilayer. In the present work, we examined this opening model by introducing pairs of cysteines into the rat P2X2 receptor that might form disulfide bonds within or between subunits. Receptors were expressed in human embryonic kidney cells, and disulfide formation was assessed by observing the effect of dithiothreitol on currents evoked by ATP. Substitutions in the turret (P90C, P89C/S97C), body wall (S65C/S190C, S65C/D315C) and the transmembrane domains (V48C/I328C, V51C/I328C, S54C/I328C) strongly inhibited ATP-evoked currents prior to reduction with dithiothreitol. Western blotting showed that these channels also formed predominately as dimers and/or trimers rather than monomers. The results strongly support the channel opening mechanism proposed on the basis of available crystal structures.
Collapse
|
40
|
Samways DSK, Li Z, Egan TM. Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 2014; 8:6. [PMID: 24550775 PMCID: PMC3914235 DOI: 10.3389/fncel.2014.00006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 12/25/2022] Open
Abstract
P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate.
Collapse
Affiliation(s)
| | - Zhiyuan Li
- Guangzhou Institute of Biomedicine and Health, University of Chinese Academy of Sciences Guangzhou, China
| | - Terrance M Egan
- Department of Pharmacological and Physiological Science, The Center for Excellence in Neuroscience, Saint Louis University School of Medicine St. Louis, MO, USA
| |
Collapse
|
41
|
Rokic MB, Stojilkovic SS, Zemkova H. Structural and functional properties of the rat P2X4 purinoreceptor extracellular vestibule during gating. Front Cell Neurosci 2014; 8:3. [PMID: 24523669 PMCID: PMC3905210 DOI: 10.3389/fncel.2014.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/04/2014] [Indexed: 11/13/2022] Open
Abstract
P2X receptors are ATP-gated cation channels consisting of three subunits that are mutually intertwined and form an upper, central, and extracellular vestibule with three lateral portals and the channel pore. Here we used cysteine and alanine scanning mutagenesis of the rat P2X4R receptor V47–V61 and K326–N338 sequences to study structural and functional properties of extracellular vestibule during gating. Cysteine mutants were used to test the accessibility of these residue side chains to cadmium during closed-open-desensitized transitions, whereas alanine mutants served as controls. This study revealed the accessibility of residues E51, T57, S59, V61, K326, and M336 to cadmium in channels undergoing a transition from a closed-to-open state and the accessibility of residues V47, G53, D331, I332, I333, T335, I337, and N338 in channels undergoing a transition from an open-to-desensitized state; residues E56 and K329 were accessible during both transitions. The effect of cadmium on channel gating was stimulatory in all reactive V47–V61 mutants and inhibitory in the majority of reactive K326–N338 mutants. The rat P2X4 receptor homology model suggests that residues affected by cadmium in the closed-to-open transition were located within the lumen of the extracellular vestibule and toward the central vestibule; however, the residues affected by cadmium in the open-to-desensitized state were located at the bottom of the vestibule near the pore. Analysis of the model assumed that there is ion access to extracellular and central vestibules through lateral ports when the channel is closed, with residues above the first transmembrane domain being predominantly responsible for ion uptake. Upon receptor activation, there is passage of ions toward the residues located on the upper region of the second transmembrane domain, followed by permeation through the gate region.
Collapse
Affiliation(s)
- Milos B Rokic
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Academy of Sciences of the Czech Republic Prague, Czech Republic ; Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
42
|
Hausmann R, Bahrenberg G, Kuhlmann D, Schumacher M, Braam U, Bieler D, Schlusche I, Schmalzing G. A hydrophobic residue in position 15 of the rP2X3 receptor slows desensitization and reveals properties beneficial for pharmacological analysis and high-throughput screening. Neuropharmacology 2014; 79:603-15. [PMID: 24452010 DOI: 10.1016/j.neuropharm.2014.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/24/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022]
Abstract
The homotrimeric P2X3 subtype, one of the seven members of the ATP-gated P2X receptor family, plays a role in sensory neurotransmission, including nociception. To overcome the bias resulting from fast desensitization of the P2X3 receptor in dose-response analyses, a non-desensitizing P2X2-X3 receptor chimera has been repeatedly used as a surrogate for the P2X3 receptor for functional analysis. Here, we show that only three of the P2X2-specific amino acid residues of the P2X2-X3 chimera, (19)P(21)V(22)I, are needed to confer a slowly desensitizing phenotype to the P2X3 receptor. The strongest delay in desensitization of the P2X3 receptor by a single residue was observed when (15)Ser was replaced by Val or another hydrophobic residue. Pharmacologically, the S(15)V-rP2X3 mutant behaved similarly to the wt-P2X3 receptor. Analysis of the S(15)V-rP2X3 receptor in 1321N1 astrocytoma cells by a common calcium-imaging-based assay showed 10-fold higher calcium transients relative to those of the wt-rP2X3 receptor. The S(15)V-rP2X3 cell line enabled reliable analysis of antagonistic potencies and correctly reported the mechanism of action of the P2X3 receptor antagonists A-317491 and TNP-ATP by a calcium-imaging assay. Together, these data suggest that the S(15)V-rP2X3 mutant may be suitable not only for automated fluorescence-based screening of molecule libraries for identification of lead compounds but also for facilitated pharmacological characterization of specific P2X3 receptor ligands. We suggest that the mechanism of desensitization of the P2X3 receptor may involve the movement of an N-terminal inactivation particle, in analogy to the "hinged-lid" or "ball and chain" mechanisms of voltage-gated NaV and Shaker KV channels, respectively.
Collapse
Affiliation(s)
- Ralf Hausmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Gregor Bahrenberg
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Daniel Kuhlmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Michaela Schumacher
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Ursula Braam
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Dagmar Bieler
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Ilka Schlusche
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Günther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
43
|
Samways DSK. Applications for mass spectrometry in the study of ion channel structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:237-61. [PMID: 24952185 DOI: 10.1007/978-3-319-06068-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ion channels are intrinsic membrane proteins that form gated ion-permeable pores across biological membranes. Depending on the type, ion channels exhibit sensitivities to a diverse range of stimuli including changes in membrane potential, binding by diffusible ligands, changes in temperature and direct mechanical force. The purpose of these proteins is to facilitate the passive diffusion of ions down their respective electrochemical gradients into and out of the cell, and between intracellular compartments. In doing so, ion channels can affect transmembrane potentials and regulate the intracellular homeostasis of the important second messenger, Ca(2+). The ion channels of the plasma membrane are of particular clinical interest due to their regulation of cell excitability and cytosolic Ca(2+) levels, and the fact that they are most amenable to manipulation by exogenously applied drugs and toxins. A critical step in improving the pharmacopeia of chemicals available that influence the activity of ion channels is understanding how their three-dimensional structure imparts function. Here, progress has been slow relative to that for soluble protein structures in large part due to the limitations of applying conventional structure determination methods, such as X-ray crystallography, nuclear magnetic resonance imaging, and mass spectrometry, to membrane proteins. Although still an underutilized technique in the assessment of membrane protein structure, recent advances have pushed mass spectrometry to the fore as an important complementary approach to studying the structure and function of ion channels. In addition to revealing the subtle conformational changes in ion channel structure that accompany gating and permeation, mass spectrometry is already being used effectively for identifying tissue-specific posttranslational modifications and mRNA splice variants. Furthermore, the use of mass spectrometry for high-throughput proteomics analysis, which has proven so successful for soluble proteins, is already providing valuable insight into the functional interactions of ion channels within the context of the macromolecular-signaling complexes that they inhabit in vivo. In this chapter, the potential for mass spectrometry as a complementary approach to the study of ion channel structure and function will be reviewed with examples of its application.
Collapse
Affiliation(s)
- Damien S K Samways
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA,
| |
Collapse
|
44
|
Abstract
The powerful optogenetic pharmacology method allows the optical control of neuronal activity by photoswitchable ligands tethered to channels and receptors. However, this approach is technically demanding, as it requires the design of pharmacologically active ligands. The development of versatile technologies therefore represents a challenging issue. Here, we present optogating, a method in which the gating machinery of an ATP-activated P2X channel was reprogrammed to respond to light. We found that channels covalently modified by azobenzene-containing reagents at the transmembrane segments could be reversibly turned on and off by light, without the need of ATP, thus revealing an agonist-independent, light-induced gating mechanism. We demonstrate photocontrol of neuronal activity by a light-gated, ATP-insensitive P2X receptor, providing an original tool devoid of endogenous sensitivity to delineate P2X signaling in normal and pathological states. These findings open new avenues to specifically activate other ion channels independently of their natural stimulus.
Collapse
|
45
|
Inter- and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels. Proc Natl Acad Sci U S A 2013; 110:E4045-54. [PMID: 24082111 DOI: 10.1073/pnas.1311071110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
P2X receptor channels open in response to the binding of extracellular ATP, a property that is essential for purinergic sensory signaling. Apo and ATP-bound X-ray structures of the detergent-solubilized zebrafish P2X4 receptor provide a blueprint for receptor mechanisms but unexpectedly showed large crevices between subunits within the transmembrane (TM) domain of the ATP-bound structure. Here we investigate both intersubunit and intrasubunit interactions between TM helices of P2X receptors in membranes using both computational and functional approaches. Our results suggest that intersubunit crevices found in the TM domain of the ATP-bound crystal structure are not present in membrane-embedded receptors but substantiate helix interactions within individual subunits and identify a hot spot at the internal end of the pore where both the gating and permeation properties of P2X receptors can be tuned. We propose a model for the structure of the open state that has stabilizing intersubunit interactions and that is compatible with available structural constraints from functional channels in membrane environments.
Collapse
|
46
|
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Natl Acad Sci U S A 2013; 110:E3455-63. [PMID: 23959888 DOI: 10.1073/pnas.1308088110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.
Collapse
|
47
|
Liang X, Xu H, Li C, Yin S, Xu T, Liu J, Li Z. Functional identification of close proximity amino acid side chains within the transmembrane-spanning helixes of the P2X2 receptor. PLoS One 2013; 8:e70629. [PMID: 23936459 PMCID: PMC3735612 DOI: 10.1371/journal.pone.0070629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/20/2013] [Indexed: 01/15/2023] Open
Abstract
The transition from the closed to open state greatly alters the intra- and inter-subunit interactions of the P2X receptor (P2XR). The interactions that occur in the transmembrane domain of the P2X2R remain unclear. We used substituted cysteine mutagenesis disulfide mapping to identify pairs of residues that are in close proximity within the transmembrane domain of rP2X2R and compared our results to the predicted positions of these amino acids obtained from a rat P2X2R homology model of the available open and closed zebrafish P2X4R structures. Alternations in channel function were measured as a change in the ATP-gated current before and after exposure to dithiothreitol. Thirty-six pairs of double mutants of rP2X2R expressed in HEK293 cells produced normal functioning channels. Thirty-five pairs of these mutants did not exhibit a functionally detectable disulfide bond. The double mutant H33C/S345C formed redox-dependent cross-links in the absence of ATP. Dithiothreitol ruptured the disulfide bond of H33C/S345C and induced a 2 to 3-fold increase in current. The EC50 for H33C/S345C before dithiothreitol treatment was ∼2-fold higher than that after dithiothreitol treatment. Dithiothreitol reduced the EC50 to wild-type levels. Furthermore, expression of trimeric concatamer receptors with Cys mutations at some but not all six positions showed that the more disulfide bond formation sites within the concatamer, the greater current potentiation after dithiothreitol incubation. Immunoblot analysis of H33C/S345C revealed one monomer band under nonreducing conditions strongly suggesting that disulfide bonds are formed within single subunits (intra-subunit) and not between two subunits (inter-subunit). Taken together, these data indicate that His33 and Ser345 are proximal to each other across an intra-subunit interface. The relative movement between the first transmembrane and the second transmembrane in the intra-subunit is likely important for transmitting the action of ATP binding to the opening of the channel.
Collapse
Affiliation(s)
- Xin Liang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Huijuan Xu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Caiyue Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shikui Yin
- The School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
48
|
Sun C, Heid ME, Keyel PA, Salter RD. The second transmembrane domain of P2X7 contributes to dilated pore formation. PLoS One 2013; 8:e61886. [PMID: 23613968 PMCID: PMC3629090 DOI: 10.1371/journal.pone.0061886] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/18/2013] [Indexed: 01/07/2023] Open
Abstract
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors.
Collapse
Affiliation(s)
- Chengqun Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michelle E. Heid
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Peter A. Keyel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Russell D. Salter
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bhargava Y, Rettinger J, Mourot A. Allosteric nature of P2X receptor activation probed by photoaffinity labelling. Br J Pharmacol 2013; 167:1301-10. [PMID: 22725669 DOI: 10.1111/j.1476-5381.2012.02083.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera - BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding.
Collapse
Affiliation(s)
- Y Bhargava
- Department of Biophysical Chemistry, Max-Planck-Institute of Biophysics, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
50
|
Abstract
Ion channels, as membrane proteins, are the sensors of the cell. They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells. Because of their importance in cellular communication, ion channels have been intensively studied at the structural and functional levels. Here, we summarize the diverse approaches, including molecular and cellular, chemical, optical, biophysical, and computational, used to probe the structural and functional rearrangements that occur during channel activation (or sensitization), inactivation (or desensitization), and various forms of modulation. The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.
Collapse
Affiliation(s)
- Wei-Guang Li
- Neuroscience Division, Department of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|