1
|
Cao S, Dong Z, Dong X, Jia W, Zhou F, Zhao Q. Zebrafish sox2 Is Required for the Swim Bladder Inflation by Controlling the Swim-Up Behavior. Zebrafish 2023; 20:10-18. [PMID: 36795618 PMCID: PMC9968866 DOI: 10.1089/zeb.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The swim bladder functions to maintain the fish balance at a certain position under water. Although the motoneuron-dependent swim-up behavior is important for swim bladder inflation, the underlying molecular mechanism remains largely unknown. We generated a sox2 KO zebrafish using TALEN and found that the posterior chamber of the swim bladder was uninflated. The tail flick and the swim-up behavior were absent in the mutant zebrafish embryos and the behavior could not be accomplished. As the tail flick behavior is absent, the mutant larvae therefore cannot reach the water surface to gulp air, ultimately leading to the uninflation of the swim bladder. To understand the mechanism underlying the swim-up defects, we crossed the sox2 null allele in the background of Tg(huc:eGFP) and Tg(hb9:GFP). The deficiency of sox2 in zebrafish resulted in abnormal motoneuron axons in the regions of trunk, tail, and swim bladder. To identify the downstream target gene of sox2 to control the motor neuron development, we performed RNA sequencing on the transcriber of mutant embryos versus wild type embryos and found that the axon guidance pathway was abnormal in the mutant embryos. RT-PCR demonstrated that the expression of sema3bl, ntn1b, and robo2 were decreased in the mutants.
Collapse
Affiliation(s)
- Shasha Cao
- Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhangji Dong
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiaohua Dong
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wenshuang Jia
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Fuyou Zhou
- Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Qingshun Zhao
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Palavalli A, Tizón-Escamilla N, Rupprecht JF, Lecuit T. Deterministic and Stochastic Rules of Branching Govern Dendrite Morphogenesis of Sensory Neurons. Curr Biol 2020; 31:459-472.e4. [PMID: 33212017 DOI: 10.1016/j.cub.2020.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Dendrite morphology is necessary for the correct integration of inputs that neurons receive. The branching mechanisms allowing neurons to acquire their type-specific morphology remain unclear. Classically, axon and dendrite patterns were shown to be guided by molecules, providing deterministic cues. However, the extent to which deterministic and stochastic mechanisms, based upon purely statistical bias, contribute to the emergence of dendrite shape is largely unknown. We address this issue using the Drosophila class I vpda multi-dendritic neurons. Detailed quantitative analysis of vpda dendrite morphogenesis indicates that the primary branch grows very robustly in a fixed direction, though secondary branch numbers and lengths showed fluctuations characteristic of stochastic systems. Live-tracking dendrites and computational modeling revealed how neuron shape emerges from few local statistical parameters of branch dynamics. We report key opposing aspects of how tree architecture feedbacks on the local probability of branch shrinkage. Child branches promote stabilization of parent branches, although self-repulsion promotes shrinkage. Finally, we show that self-repulsion, mediated by the adhesion molecule Dscam1, indirectly patterns the growth of secondary branches by spatially restricting their direction of stable growth perpendicular to the primary branch. Thus, the stochastic nature of secondary branch dynamics and the existence of geometric feedback emphasize the importance of self-organization in neuronal dendrite morphogenesis.
Collapse
Affiliation(s)
- Amrutha Palavalli
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Nicolás Tizón-Escamilla
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Jean-François Rupprecht
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France.
| | - Thomas Lecuit
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France; Collège de France, 11 Place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
3
|
Chai D, Yan J, Li C, Sun Y, Jiang H. Sevoflurane inhibits neuronal migration and axon growth in the developing mouse cerebral cortex. Aging (Albany NY) 2020; 12:6436-6455. [PMID: 32271715 PMCID: PMC7185136 DOI: 10.18632/aging.103041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022]
Abstract
The highly organized laminar structure of the mammalian brain is dependent on successful neuronal migration, and migration deficits can cause lissencephaly and behavioral and cognitive defects. Here, we investigated the contribution of neuronal migration dysregulation to anesthesia-induced neurotoxicity in the fetal brain. Pregnant C57BL/6 mice at embryonic day 14.5 received 2.5% sevoflurane daily for two days. Cortical neuron migration and axon lengths were evaluated using GFP immunostaining. Morris water maze tests were performed to assess the effects of sevoflurane exposure on spatial memory in offspring. We found that sevoflurane exposure decreased axon length and caused cognitive defects in young mice. RNA sequencing revealed that these defects were associated with reduced neuro-oncological ventral antigen 2 (Nova2) expression. In utero electroporation experiments using Nova2 shRNA recapitulated this finding. Nova2 shRNA inhibited neuronal migration and decreased axon lengths. Finally, we found that Netrin-1/Deleted in Colorectal Cancer (Dcc) proteins acted downstream of Nova2 to suppresses neuronal migration. These findings describe a novel mechanism by which prenatal anesthesia exposure affects embryonic neural development and postnatal behavior.
Collapse
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunzhu Li
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
5
|
Kuwako KI, Okano H. The LKB1-SIK Pathway Controls Dendrite Self-Avoidance in Purkinje Cells. Cell Rep 2019; 24:2808-2818.e4. [PMID: 30208308 DOI: 10.1016/j.celrep.2018.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023] Open
Abstract
Strictly controlled dendrite patterning underlies precise neural connection. Dendrite self-avoidance is a crucial system preventing self-crossing and clumping of dendrites. Although many cell-surface molecules that regulate self-avoidance have been identified, the signaling pathway that orchestrates it remains poorly understood, particularly in mammals. Here, we demonstrate that the LKB1-SIK kinase pathway plays a pivotal role in the self-avoidance of Purkinje cell (PC) dendrites by ensuring dendritic localization of Robo2, a regulator of self-avoidance. LKB1 is activated in developing PCs, and PC-specific deletion of LKB1 severely disrupts the self-avoidance of PC dendrites without affecting gross morphology. SIK1 and SIK2, downstream kinases of LKB1, mediate LKB1-dependent dendrite self-avoidance. Furthermore, loss of LKB1 leads to significantly decreased Robo2 levels in the dendrite but not in the cell body. Finally, restoration of dendritic Robo2 level via overexpression largely rescues the self-avoidance defect in LKB1-deficient PCs. These findings reveal an LKB1-pathway-mediated developmental program that establishes dendrite self-avoidance.
Collapse
Affiliation(s)
- Ken-Ichiro Kuwako
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Hendi A, Kurashina M, Mizumoto K. Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cell Mol Life Sci 2019; 76:2719-2738. [PMID: 31037336 PMCID: PMC11105629 DOI: 10.1007/s00018-019-03109-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
8
|
Branching mechanisms shaping dendrite architecture. Dev Biol 2018; 451:16-24. [PMID: 30550882 DOI: 10.1016/j.ydbio.2018.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
A neuron's contribution to the information flow within a neural circuit is governed by the structure of its dendritic arbor. The geometry of the dendritic arbor directly determines synaptic density and the size of the receptive field, both of which influence the firing pattern of the neuron. Importantly, the position of individual dendritic branches determines the identity of the neuron's presynaptic partner and thus the nature of the incoming sensory information. To generate the unique stereotypic architecture of a given neuronal subtype, nascent branches must emerge from the dendritic shaft at preprogramed branch points. Subsequently, a complex array of extrinsic factors regulates the degree and orientation of branch expansion to ensure maximum coverage of the receptive field whilst constraining growth within predetermined territories. In this review we focus on studies that best illustrate how environmental cues such as the Wnts and Netrins and their receptors sculpt the dendritic arbor. We emphasize the pivotal role played by the actin cytoskeleton and its upstream regulators in branch initiation, outgrowth and navigation. Finally, we discuss how protocadherin and DSCAM contact-mediated repulsion prevents inappropriate synapse formation between sister dendrites or dendrites and the axon from the same neuron. Together these studies highlight the clever ways evolution has solved the problem of constructing complex branch geometries.
Collapse
|
9
|
Roy V, Gagné O, Hamiche K, Labbé JC, Narbonne P. Expression pattern of endogenous PAR-4A & C after CRISPR/Cas9-mediated genome editing. MICROPUBLICATION BIOLOGY 2018; 2018:10.17912/micropub.biology.000075. [PMID: 32550374 PMCID: PMC7255809 DOI: 10.17912/micropub.biology.000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Vincent Roy
- Département de Biologie Moléculaire, de Biochimie Médicale et de Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Olivier Gagné
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Karim Hamiche
- Département de Pathologie et Biologie Cellulaire, Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Jean-Claude Labbé
- Département de Pathologie et Biologie Cellulaire, Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Patrick Narbonne
- Département de Biologie Moléculaire, de Biochimie Médicale et de Pathologie, Faculté de Médecine, Université Laval, Québec, Canada.,
Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,
Correspondence to: Patrick Narbonne ()
| |
Collapse
|
10
|
Kuwako KI, Okano H. Versatile Roles of LKB1 Kinase Signaling in Neural Development and Homeostasis. Front Mol Neurosci 2018; 11:354. [PMID: 30333724 PMCID: PMC6176002 DOI: 10.3389/fnmol.2018.00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Kinase signaling pathways orchestrate a majority of cellular structures and functions across species. Liver kinase B1 (LKB1, also known as STK11 or Par-4) is a ubiquitously expressed master serine/threonine kinase that plays crucial roles in numerous cellular events, such as polarity control, proliferation, differentiation and energy homeostasis, in many types of cells by activating downstream kinases of the AMP-activated protein kinase (AMPK) subfamily members. In contrast to the accumulating evidence for LKB1 functions in nonneuronal tissues, its functions in the nervous system have been relatively less understood until recently. In the brain, LKB1 initially emerged as a principal regulator of axon/dendrite polarity in forebrain neurons. Thereafter, recent investigations have rapidly uncovered diverse and essential functions of LKB1 in the developing and mature nervous system, such as migration, neurite morphogenesis, myelination and the maintenance of neural integrity, demonstrating that LKB1 is also a multifunctional master kinase in the nervous system. In this review article, we summarize the expanding knowledge about the functional aspects of LKB1 signaling in neural development and homeostasis.
Collapse
Affiliation(s)
- Ken-Ichiro Kuwako
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Wang Z, Li P, Wu T, Zhu S, Deng L, Cui G. Axon guidance pathway genes are associated with schizophrenia risk. Exp Ther Med 2018; 16:4519-4526. [PMID: 30542400 PMCID: PMC6257106 DOI: 10.3892/etm.2018.6781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023] Open
Abstract
In the present study, we analyzed schizophrenia (SCZ)-related genome-wide association studies (GWAS) to identify genes and pathways associated with SCZ. We identified 1,098 common genes (1,098/9,468) and 20 shared KEGG pathways (both P<0.01) by integrating candidate genes from the European and American SCZ-related GWAS. The pathways related to axon guidance, long term potentiation and arrhythmogenic right ventricular cardiomyopathy (ARVC) were highly significant (P<10-3). Moreover, 15 axon guidance pathway-related genes were associated with SCZ. The association between axon guidance pathway genes and SCZ was validated by a two-stage case-control study on Shandong migrants in northeastern China. Moreover, individuals with the rs9944880 TT polymorphism in the deleted in colorectal cancer (DCC) gene were associated with SCZ. These findings indicate that the axon guidance pathway genes and the rs9944880 SNP in DCC gene are associated with SCZ pathogenesis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Academic Research, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Ping Li
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Tong Wu
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shuangyue Zhu
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang 310007, P.R. China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Guangcheng Cui
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
12
|
Chen Z. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin Cell Dev Biol 2018; 85:71-77. [PMID: 29274387 DOI: 10.1016/j.semcdb.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Topographic arrangement of neuronal cell bodies and axonal tracts are crucial for proper wiring of the nervous system. This involves often-coordinated neuronal migration and axon guidance during development. Most neurons migrate from their birthplace to specific topographic coordinates as they adopt the final cell fates and extend axons. The axons follow temporospatial specific guidance cues to reach the appropriate targets. When neuronal or axonal migration or their coordination is disrupted, severe consequences including neurodevelopmental disorders and neurological diseases, can arise. Neuronal and axonal migration shares some molecular mechanisms, as genes originally identified as axon guidance molecules have been increasingly shown to direct both navigation processes. This review focuses on axon guidance pathways that are shown to also direct neuronal migration in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Zhe Chen
- Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
13
|
Torres-Berrío A, Lopez JP, Bagot RC, Nouel D, Dal Bo G, Cuesta S, Zhu L, Manitt C, Eng C, Cooper HM, Storch KF, Turecki G, Nestler EJ, Flores C. DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218. Biol Psychiatry 2017; 81:306-315. [PMID: 27773352 PMCID: PMC5239724 DOI: 10.1016/j.biopsych.2016.08.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUD Variations in the expression of the Netrin-1 guidance cue receptor DCC (deleted in colorectal cancer) appear to confer resilience or susceptibility to psychopathologies involving prefrontal cortex (PFC) dysfunction. METHODS With the use of postmortem brain tissue, mouse models of defeat stress, and in vitro analysis, we assessed microRNA (miRNA) regulation of DCC and whether changes in DCC levels in the PFC lead to vulnerability to depression-like behaviors. RESULTS We identified miR-218 as a posttranscriptional repressor of DCC and detected coexpression of DCC and miR-218 in pyramidal neurons of human and mouse PFC. We found that exaggerated expression of DCC and reduced levels of miR-218 in the PFC are consistent traits of mice susceptible to chronic stress and of major depressive disorder in humans. Remarkably, upregulation of Dcc in mouse PFC pyramidal neurons causes vulnerability to stress-induced social avoidance and anhedonia. CONCLUSIONS These data are the first demonstration of microRNA regulation of DCC and suggest that, by regulating DCC, miR-218 may be a switch of susceptibility versus resilience to stress-related disorders.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, Montréal, Québec, Canada; Douglas Mental Health University Institute; Montréal, Québec, Canada
| | - Juan Pablo Lopez
- Department of Human Genetics; Montréal, Québec, Canada; McGill Group for Suicide Studies, Montréal, Québec, Canada
| | | | - Dominique Nouel
- Douglas Mental Health University Institute; Montréal, Québec, Canada
| | - Gregory Dal Bo
- Douglas Mental Health University Institute; Montréal, Québec, Canada; Département de Toxicologie et risques chimiques, IRBA, Brétigny sur Orge, France
| | - Santiago Cuesta
- Psychiatry, McGill University; Montréal, Québec, Canada; Douglas Mental Health University Institute; Montréal, Québec, Canada
| | - Lei Zhu
- Douglas Mental Health University Institute; Montréal, Québec, Canada
| | - Colleen Manitt
- Douglas Mental Health University Institute; Montréal, Québec, Canada
| | - Conrad Eng
- Douglas Mental Health University Institute; Montréal, Québec, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Florian Storch
- Psychiatry, McGill University; Montréal, Québec, Canada; Douglas Mental Health University Institute; Montréal, Québec, Canada
| | - Gustavo Turecki
- Psychiatry, McGill University; Montréal, Québec, Canada; Douglas Mental Health University Institute; Montréal, Québec, Canada; McGill Group for Suicide Studies, Montréal, Québec, Canada
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Psychiatry, McGill University; Montréal, Québec, Canada; Douglas Mental Health University Institute; Montréal, Québec, Canada.
| |
Collapse
|
14
|
Leggere JC, Saito Y, Darnell RB, Tessier-Lavigne M, Junge HJ, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. eLife 2016; 5. [PMID: 27223328 PMCID: PMC4930329 DOI: 10.7554/elife.14264] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/23/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins (RBPs) control multiple aspects of post-transcriptional gene regulation and function during various biological processes in the nervous system. To further reveal the functional significance of RBPs during neural development, we carried out an in vivo RNAi screen in the dorsal spinal cord interneurons, including the commissural neurons. We found that the NOVA family of RBPs play a key role in neuronal migration, axon outgrowth, and axon guidance. Interestingly, Nova mutants display similar defects as the knockout of the Dcc transmembrane receptor. We show here that Nova deficiency disrupts the alternative splicing of Dcc, and that restoring Dcc splicing in Nova knockouts is able to rescue the defects. Together, our results demonstrate that the production of DCC splice variants controlled by NOVA has a crucial function during many stages of commissural neuron development.
Collapse
Affiliation(s)
- Janelle C Leggere
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, United States
| | - Harald J Junge
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
| | - Zhe Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
| |
Collapse
|
15
|
Levy-Strumpf N. Orchestrating A/P and D/V guidance - A Wnt/Netrin tale. WORM 2016; 5:e1146857. [PMID: 27073738 PMCID: PMC4805361 DOI: 10.1080/21624054.2016.1146857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
While ample information was gathered in identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is intracellularly to generate normal patterning. Netrin and Wnt signaling pathways play key roles in normal development as well as in malignancies. In C. elegans, as in vertebrates, dorso-ventral (D/V) graded distributions of UNC-6/Netrin and antero-posterior (A/P) graded distributions of Wnts provide instructive polarity information to guide cells and axons along their respective gradients. In this commentary, I will discuss recent findings demonstrating that these 2 signaling pathways also function redundantly to regulate polarity orthogonal to the axis of their gradation. Thus, Wnt signaling components contribute to D/V polarity, while Netrin signaling components contribute to A/P polarity and their joint action collaboratively governs migratory transitions from one axis to the other. These findings pave the way to unraveling broader roles of Wnt and Netrin signaling pathways, roles that are masked due to their redundant nature, and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated to establish polarity in multiple biological processes.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| |
Collapse
|
16
|
Mironov VI, Semyanov AV, Kazantsev VB. Dendrite and Axon Specific Geometrical Transformation in Neurite Development. Front Comput Neurosci 2016; 9:156. [PMID: 26858635 PMCID: PMC4729915 DOI: 10.3389/fncom.2015.00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023] Open
Abstract
We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size.
Collapse
Affiliation(s)
- Vasily I Mironov
- Department of Neurotechnologies, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Alexey V Semyanov
- Department of Neurotechnologies, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Victor B Kazantsev
- Department of Neurotechnologies, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny NovgorodNizhny Novgorod, Russia; Laboratory of Nonlinear Dynamics of Living Systems, Institute of Applied Physics of the Russian Academy of ScienceNizhny Novgorod, Russia
| |
Collapse
|
17
|
Valnegri P, Puram SV, Bonni A. Regulation of dendrite morphogenesis by extrinsic cues. Trends Neurosci 2015; 38:439-47. [PMID: 26100142 DOI: 10.1016/j.tins.2015.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/19/2023]
Abstract
Dendrites play a central role in the integration and flow of information in the nervous system. The morphogenesis and maturation of dendrites is hence an essential step in the establishment of neuronal connectivity. Recent studies have uncovered crucial functions for extrinsic cues in the development of dendrites. We review the contribution of secreted polypeptide growth factors, contact-mediated proteins, and neuronal activity in distinct phases of dendrite development. We also highlight how extrinsic cues influence local and global intracellular mechanisms of dendrite morphogenesis. Finally, we discuss how these studies have advanced our understanding of neuronal connectivity and have shed light on the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pamela Valnegri
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Azad Bonni
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Nagel AN, Marshak S, Manitt C, Santos RA, Piercy MA, Mortero SD, Shirkey-Son NJ, Cohen-Cory S. Netrin-1 directs dendritic growth and connectivity of vertebrate central neurons in vivo. Neural Dev 2015; 10:14. [PMID: 26058786 PMCID: PMC4481067 DOI: 10.1186/s13064-015-0041-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Netrins are a family of extracellular proteins that function as chemotropic guidance cues for migrating cells and axons during neural development. In the visual system, netrin-1 has been shown to play a key role in retinal ganglion cell (RGC) axon growth and branching at the target, where presynaptic RGC axons form partnerships with the dendrites of tectal neurons. However, the signals that guide the connections between RGC axons and their postsynaptic partners are yet unknown. Here, we explored dynamic cellular mechanisms by which netrin-1 influences visual circuit formation, particularly those that impact postsynaptic neuronal morphology and connectivity during retinotectal wiring. RESULTS Time-lapse in vivo imaging of individual Xenopus laevis optic tectal neurons co-expressing tdTomato and PSD95-GFP revealed rapid remodeling and reorganization of dendritic arbors following acute manipulations in netrin-1 levels. Effects of altered netrin signaling on developing dendritic arbors of tectal neurons were distinct from its effects on presynaptic RGC axons. Within 4 h of treatment, tectal injection of recombinant netrin-1 or sequestration of endogenous netrin with an UNC-5 receptor ectodomain induced significant changes in the directionality and orientation of dendrite growth and in the maintenance of already established dendrites, demonstrating that relative levels of netrin are important for these functions. In contrast, altering DCC-mediated netrin signaling with function-blocking antibodies induced postsynaptic specialization remodeling and changed growth directionality of already established dendrites. Reducing netrin signaling also decreased avoidance behavior in a visually guided task, suggesting that netrin is essential for emergent visual system function. CONCLUSIONS These in vivo findings together with the patterns of expression of netrin and its receptors reveal an important role for netrin in the early growth and guidance of vertebrate central neuron dendritic arbors. Collectively, our studies indicate that netrin shapes both pre- and postsynaptic arbor morphology directly and in multiple ways at stages critical for functional visual system development.
Collapse
Affiliation(s)
- Anastasia N Nagel
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Sonya Marshak
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA. .,Present address: Phamatech, Inc., 15175 Innovation Dr., San Diego, CA, 92128, USA.
| | - Colleen Manitt
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Rommel A Santos
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Marc A Piercy
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Sarah D Mortero
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| | - Nicole J Shirkey-Son
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA. .,Present address: Department of Biology, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN, 55057, USA.
| | - Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA.
| |
Collapse
|
19
|
Abstract
In a tractable model for cell invasion, the Caenorhabditis elegans anchor cell migrates through basement membranes towards a polarity cue provided by netrin. A new study reveals that the anchor cell polarity network can break symmetry and oscillate in the absence of netrin, suggesting the presence of interlinked positive and negative feedback loops, which are common in polarity pathways.
Collapse
|
20
|
Abstract
The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors.
Collapse
|
21
|
Levy-Strumpf N, Culotti JG. Netrins and Wnts function redundantly to regulate antero-posterior and dorso-ventral guidance in C. elegans. PLoS Genet 2014; 10:e1004381. [PMID: 24901837 PMCID: PMC4046927 DOI: 10.1371/journal.pgen.1004381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/31/2014] [Indexed: 02/01/2023] Open
Abstract
Guided migrations of cells and developing axons along the dorso-ventral (D/V) and antero-posterior (A/P) body axes govern tissue patterning and neuronal connections. In C. elegans, as in vertebrates, D/V and A/P graded distributions of UNC-6/Netrin and Wnts, respectively, provide instructive polarity information to guide cells and axons migrating along these axes. By means of a comprehensive genetic analysis, we found that simultaneous loss of Wnt and Netrin signaling components reveals previously unknown and unexpected redundant roles for Wnt and Netrin signaling pathways in both D/V and A/P guidance of migrating cells and axons in C. elegans, as well as in processes essential for organ function and viability. Thus, in addition to providing polarity information for migration along the axis of their gradation, Wnts and Netrin are each able to guide migrations orthogonal to the axis of their gradation. Netrin signaling not only functions redundantly with some Wnts, but also counterbalances the effects of others to guide A/P migrations, while the involvement of Wnt signaling in D/V guidance identifies Wnt signaling as one of the long sought mechanisms that functions in parallel to Netrin signaling to promote D/V guidance of cells and axons. These findings provide new avenues for deciphering how A/P and D/V guidance signals are integrated within the cell to establish polarity in multiple biological processes, and implicate broader roles for Netrin and Wnt signaling - roles that are currently masked due to prevalent redundancy. While ample information was gathered in past decades on identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is integrated within the cell to generate normal patterning. Netrin and Wnt signaling pathways are both critical to multiple developmental processes and play key roles in normal development as well as in malignancies. The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis. In this study we show that these two signaling pathways function redundantly in both antero-posterior and dorso-ventral guidance as well as in processes essential for viability. Furthermore, we demonstrate that a fine balance between Wnt and Netrin signaling pathways is critical for proper polarity establishment and identify Wnt signaling as one of the long sought mechanisms that signal in parallel to Netrin to promote dorso-ventral guidance of cells and axons in Caenorhabditis elegans. These findings pave the way to unraveling the broader roles of Wnt and Netrin signaling pathways and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joseph G. Culotti
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Wang Z, Chi Q, Sherwood DR. MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans. Development 2014; 141:1342-53. [PMID: 24553288 PMCID: PMC3943185 DOI: 10.1242/dev.102434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/09/2014] [Indexed: 02/04/2023]
Abstract
To transmigrate basement membrane, cells must coordinate distinct signaling activities to breach and pass through this dense extracellular matrix barrier. Netrin expression and activity are strongly associated with invasion in developmental and pathological processes, but how netrin signaling is coordinated with other pathways during invasion is poorly understood. Using the model of anchor cell (AC) invasion in C. elegans, we have previously shown that the integrin receptor heterodimer INA-1/PAT-3 promotes netrin receptor UNC-40 (DCC) localization to the invasive cell membrane of the AC. UNC-6 (netrin)/UNC-40 interactions generate an invasive protrusion that crosses the basement membrane. To understand how UNC-40 signals during invasion, we have used genetic, site of action and live-cell imaging studies to examine the roles of known effectors of UNC-40 signaling in axon outgrowth during AC invasion. UNC-34 (Ena/VASP), the Rac GTPases MIG-2 and CED-10 and the actin binding protein UNC-115 (abLIM) are dedicated UNC-40 effectors that are recruited to the invasive membrane by UNC-40 and generate F-actin. MIG-10 (lamellipodin), an effector of UNC-40 in neurons, however, has independent functions from UNC-6/UNC-40. Furthermore, unlike other UNC-40 effectors, its expression is regulated by FOS-1A, a transcription factor that promotes basement membrane breaching. Similar to UNC-40, however, MIG-10 localization to the invasive cell membrane is also dependent on the integrin INA-1/PAT-3. These studies indicate that MIG-10 has distinct functions from UNC-40 signaling in cell invasion, and demonstrate that integrin coordinates invasion by localizing these molecules to the cell-basement membrane interface.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R. Sherwood
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, NC 27708, USA
| |
Collapse
|
23
|
Clark CEJ, Richards LJ, Stacker SA, Cooper HM. Wnt5a induces Ryk-dependent and -independent effects on callosal axon and dendrite growth. Growth Factors 2014; 32:11-7. [PMID: 24471468 DOI: 10.3109/08977194.2013.875544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The non-canonical Wnt receptor, Ryk, promotes chemorepulsive axon guidance in the developing mouse brain and spinal cord in response to Wnt5a. Ryk has also been identified as a major suppressor of axonal regrowth after spinal cord injury. Thus, a comprehensive understanding of how growing axons and dendrites respond to Wnt5a-mediated Ryk activation is required if we are to overcome this detrimental activity. Here we undertook a detailed analysis of the effect of Wnt5a/Ryk interactions on axonal and dendritic growth in dissociated embryonic mouse cortical neuron cultures, focusing on callosal neurons known to be responsive to Ryk-induced chemorepulsion. We show that Ryk inhibits axonal growth in response to Wnt5a. We also show that Wnt5a inhibits dendrite growth independently of Ryk. However, this inhibition is relieved when Ryk is present. Therefore, Wnt5a-mediated Ryk activation triggers divergent responses in callosal axons and dendrites in the in vitro context.
Collapse
Affiliation(s)
- Charlotte E J Clark
- Queensland Brain Institute, The University of Queensland, St Lucia , Queensland , Australia
| | | | | | | |
Collapse
|
24
|
Protein kinase LKB1 regulates polarized dendrite formation of adult hippocampal newborn neurons. Proc Natl Acad Sci U S A 2013; 111:469-74. [PMID: 24367100 DOI: 10.1073/pnas.1321454111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult-born granule cells in the dentate gyrus of the rodent hippocampus are important for memory formation and mood regulation, but the cellular mechanism underlying their polarized development, a process critical for their incorporation into functional circuits, remains unknown. We found that deletion of the serine-threonine protein kinase LKB1 or overexpression of dominant-negative LKB1 reduced the polarized initiation of the primary dendrite from the soma and disrupted its oriented growth toward the molecular layer. This abnormality correlated with the dispersion of Golgi apparatus that normally accumulated at the base and within the initial segment of the primary dendrite, and was mimicked by disrupting Golgi organization via altering the expression of Golgi structural proteins GM130 or GRASP65. Thus, besides its known function in axon formation in embryonic pyramidal neurons, LKB1 plays an additional role in regulating polarized dendrite morphogenesis in adult-born granule cells in the hippocampus.
Collapse
|
25
|
Tian C, Shi H, Xiong S, Hu F, Xiong WC, Liu J. The neogenin/DCC homolog UNC-40 promotes BMP signaling via the RGM protein DRAG-1 in C. elegans. Development 2013; 140:4070-80. [PMID: 24004951 DOI: 10.1242/dev.099838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The deleted in colorectal cancer (DCC) homolog neogenin functions in both netrin- and repulsive guidance molecule (RGM)-mediated axon guidance and in bone morphogenetic protein (BMP) signaling. How neogenin functions in mediating BMP signaling is not well understood. We show that the sole C. elegans DCC/neogenin homolog UNC-40 positively modulates a BMP-like pathway by functioning in the signal-receiving cells at the ligand/receptor level. This function of UNC-40 is independent of its role in netrin-mediated axon guidance, but requires its association with the RGM protein DRAG-1. We have identified the key residues in the extracellular domain of UNC-40 that are crucial for UNC-40-DRAG-1 interaction and UNC-40 function. Surprisingly, the extracellular domain of UNC-40 is sufficient to promote BMP signaling, in clear contrast to the requirement of its intracellular domain in mediating axon guidance. Mouse neogenin lacking the intracellular domain is also capable of mediating BMP signaling. These findings reveal an unexpected mode of action for neogenin regulation of BMP signaling.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
26
|
Pfister A, Johnson A, Ellers O, Horch HW. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus. Front Physiol 2013; 3:367. [PMID: 23986706 PMCID: PMC3750946 DOI: 10.3389/fphys.2012.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.
Collapse
Affiliation(s)
- Alexandra Pfister
- Department of Invertebrate Zoology, American Museum of Natural History New York, NY, USA
| | | | | | | |
Collapse
|
27
|
Li P, Collins KM, Koelle MR, Shen K. LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans. eLife 2013; 2:e00378. [PMID: 23539368 PMCID: PMC3601818 DOI: 10.7554/elife.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/07/2013] [Indexed: 12/22/2022] Open
Abstract
The diverse cell types and the precise synaptic connectivity between them are the cardinal features of the nervous system. Little is known about how cell fate diversification is linked to synaptic target choices. Here we investigate how presynaptic neurons select one type of muscles, vm2, as a synaptic target and form synapses on its dendritic spine-like muscle arms. We found that the Notch-Delta pathway was required to distinguish target from non-target muscles. APX-1/Delta acts in surrounding cells including the non-target vm1 to activate LIN-12/Notch in the target vm2. LIN-12 functions cell-autonomously to up-regulate the expression of UNC-40/DCC and MADD-2 in vm2, which in turn function together to promote muscle arm formation and guidance. Ectopic expression of UNC-40/DCC in non-target vm1 muscle is sufficient to induce muscle arm extension from these cells. Therefore, the LIN-12/Notch signaling specifies target selection by selectively up-regulating guidance molecules and forming muscle arms in target cells. DOI:http://dx.doi.org/10.7554/eLife.00378.001 The development of the nervous system involves the formation of complex networks of connections between diverse cell types, such as motor neurons, interneurons and pyramidal cells. However, the mechanisms by which individual cells are programmed to acquire particular identities, and how they are instructed to form connections with other specific cells, remain unclear. In many species, the Notch signaling pathway has a role in setting up these networks. Notch is a transmembrane protein, which means that it has one component inside the cell and another outside. When a ligand binds to the extracellular part of Notch, this causes the receptor to break in two. The intracellular domain then travels to the nucleus where it can influence gene expression. The nematode worm (C. elegans), which has two Notch receptors, is often used to study the formation of neuronal networks because each worm has only around 300 neurons, and they are connected in roughly the same way in each worm. C. elegans relies on two types of cell that are very similar to each other—type-1 and type-2 vulval muscle cells—to lay eggs, and the neurons that trigger egg-laying form synaptic connections on specialized structures called muscle arms. However, these structures are found only in type-2 vulval muscle. To investigate the mechanisms underlying the formation of the egg-laying circuit, Li et al. screened large numbers of mutant worms to find animals that lacked muscle arms. They identified a number of such mutants, which laid fewer eggs compared to wild-type worms, and found that they all had mutations in genes that encode for proteins or ligands that are involved in the LIN-12/Notch pathway. This pathway mediates cell–cell interactions that help to specify cell fates. Li et al. showed that type-2 vulval muscle cells develop muscle arms when their neighbors—type-1 vulval muscle cells and vulval epithelial cells—produce enough ligand to activate the LIN-12 Notch receptor on the type-2 vulval muscle cells. They also identified two of the downstream targets of LIN-12, and found that artificially expressing one of these in type-1 vulval muscle cells is sufficient to trigger the formation of muscle arms. The work of Li et al. provides further evidence that the Notch signalling pathway, which is well known for its role in early development, also acts at later developmental stages to determine cell fate and patterns of connectivity. DOI:http://dx.doi.org/10.7554/eLife.00378.002
Collapse
Affiliation(s)
- Pengpeng Li
- Department of Biology , Howard Hughes Medical Institute, Stanford University , Stanford , United States
| | | | | | | |
Collapse
|
28
|
Yan J, Chao DL, Toba S, Koyasako K, Yasunaga T, Hirotsune S, Shen K. Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife 2013; 2:e00133. [PMID: 23482306 PMCID: PMC3591006 DOI: 10.7554/elife.00133] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
In neurons, microtubules (MTs) span the length of both axons and dendrites, and the molecular motors use these intracellular ‘highways' to transport diverse cargo to the appropriate subcellular locations. Whereas axonal MTs are organized such that the plus-end is oriented out from the cell body, dendrites exhibit a mixed MTs polarity containing both minus-end-out and plus-end-out MTs. The molecular mechanisms underlying this differential organization, as well as its functional significance, are unknown. Here, we show that kinesin-1 is critical in establishing the characteristic minus-end-out MT organization of the dendrite in vivo. In unc-116 (kinesin-1/kinesin heavy chain) mutants, the dendritic MTs adopt an axonal-like plus-end-out organization. Kinesin-1 protein is able to cross-link anti-paralleled MTs in vitro. We propose that kinesin-1 regulates the dendrite MT polarity through directly gliding the plus-end-out MTs out of the dendrite using both the motor domain and the C-terminal MT-binding domain. DOI:http://dx.doi.org/10.7554/eLife.00133.001 Neurons, or nerve cells, are excitable cells that transmit information using electrical and chemical signals. Nerve cells are generally composed of a cell body, multiple dendrites, and a single axon. The dendrites are responsible for receiving inputs and for transferring these signals to the cell body, whereas the axon carries signals away from the cell body and relays them to other cells. Like all cells, nerve cells have a cytoskeleton made up of microtubules, which help to determine cellular shape and which act as ‘highways' for intracellular transport. Microtubules are long hollow fibers composed of alternating α- and β-tubulin proteins: each microtubule has a ‘plus'-end, where the β subunits are exposed, and a ‘minus'-end, where the α subunits are exposed. Nerve cells are highly polarized: within the axon, the microtubules are uniformly oriented with their plus-ends pointing outward, whereas in dendrites, there are many microtubules with their minus-ends pointing outward. This arrangement is conserved across the animal kingdom, but the mechanisms that establish it are largely unknown. Yan et al. use the model organism Caenorhabditis elegans (the nematode worm) to conduct a detailed in vivo analysis of dendritic microtubule organization. They find that a motor protein called kinesin-1 is critical for generating the characteristic minus-end-out pattern in dendrites: when the gene that codes for this protein is knocked out, the dendrites in microtubules undergo a dramatic polarity shift and adopt the plus-end-out organization that is typical of axons. The mutant dendrites also show other axon-like features: for example, they lack many of the proteins that are usually found in dendrites. Based on these and other data, Yan et al. propose that kinesin-1 determines microtubule polarity in dendrites by moving plus-end-out microtubules out of dendrites. These first attempts to explain, at the molecular level, how dendritic microtubule polarity is achieved in vivo could lead to new insights into the structure and function of the neuronal cytoskeleton. DOI:http://dx.doi.org/10.7554/eLife.00133.002
Collapse
Affiliation(s)
- Jing Yan
- Department of Biology , Howard Hughes Medical Institute, Stanford University , Stanford , United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Rao S, Ge S, Shelly M. Centrosome positioning and primary cilia assembly orchestrate neuronal development. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
31
|
Ogura KI, Asakura T, Goshima Y. Localization mechanisms of the axon guidance molecule UNC-6/Netrin and its receptors, UNC-5 and UNC-40, in Caenorhabditis elegans. Dev Growth Differ 2012; 54:390-7. [PMID: 22524608 DOI: 10.1111/j.1440-169x.2012.01349.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Netrin is an evolutionarily conserved, secretory axon guidance molecule. Netrin's receptors, UNC-5 and UNC-40/DCC, are single trans-membrane proteins with immunoglobulin domains at their extra-cellular regions. Netrin is thought to provide its positional information by establishing a concentration gradient. UNC-5 and UNC-40 act at growth cones, which are specialized axonal tip structures that are generally located at a long distance from the neural cell body. Thus, the proper localization of both Netrin and its receptors is critical for their function. This review addresses the localization mechanisms of UNC-6/Netrin and its receptors in Caenorhabditis elegans, focusing on our recent reports. These findings include novel insights on cytoplasmic proteins that function upstream of the receptors.
Collapse
Affiliation(s)
- Ken-ichi Ogura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| | | | | |
Collapse
|
32
|
Smith CJ, Watson JD, VanHoven MK, Colón-Ramos DA, Miller DM. Netrin (UNC-6) mediates dendritic self-avoidance. Nat Neurosci 2012; 15:731-7. [PMID: 22426253 PMCID: PMC3337961 DOI: 10.1038/nn.3065] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/10/2012] [Indexed: 12/13/2022]
Abstract
Dendrites from a single neuron may be highly branched but typically do not overlap. This self-avoidance behavior has been shown to depend on cell-specific membrane proteins that trigger mutual repulsion. Here we report the surprising discovery that a diffusible cue, the axon guidance protein UNC-6/Netrin, is required for self-avoidance of sister dendrites from the PVD nociceptive neuron in C. elegans. We used time lapse imaging to show that dendrites fail to withdraw upon mutual contact in the absence of UNC-6/Netrin signaling. We propose a model in which the UNC-40/DCC receptor captures UNC-6/Netrin at the tips of growing dendrites for interaction with UNC-5 on the apposing branch to induce mutual repulsion. UNC-40/DCC also responds to dendritic contact through an additional pathway that is independent of UNC-6/Netrin. Our findings offer a new model for how an evolutionarily conserved morphogenic cue and its cognate receptors can pattern a fundamental feature of dendritic architecture.
Collapse
Affiliation(s)
- Cody J Smith
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
33
|
LIN-44/Wnt directs dendrite outgrowth through LIN-17/Frizzled in C. elegans Neurons. PLoS Biol 2011; 9:e1001157. [PMID: 21949641 PMCID: PMC3176756 DOI: 10.1371/journal.pbio.1001157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
Nervous system function requires proper development of two functional and morphological domains of neurons, axons and dendrites. Although both these domains are equally important for signal transmission, our understanding of dendrite development remains relatively poor. Here, we show that in C. elegans the Wnt ligand, LIN-44, and its Frizzled receptor, LIN-17, regulate dendrite development of the PQR oxygen sensory neuron. In lin-44 and lin-17 mutants, PQR dendrites fail to form, display stunted growth, or are misrouted. Manipulation of temporal and spatial expression of LIN-44, combined with cell-ablation experiments, indicates that this molecule is patterned during embryogenesis and acts as an attractive cue to define the site from which the dendrite emerges. Genetic interaction between lin-44 and lin-17 suggests that the LIN-44 signal is transmitted through the LIN-17 receptor, which acts cell autonomously in PQR. Furthermore, we provide evidence that LIN-17 interacts with another Wnt molecule, EGL-20, and functions in parallel to MIG-1/Frizzled in this process. Taken together, our results reveal a crucial role for Wnt and Frizzled molecules in regulating dendrite development in vivo. Neurons have distinct compartments, which include axons and dendrites. Both of these compartments are essential for communication between neurons, as signals are received by dendrites and transmitted by axons. Although dendrites are vital for neural connectivity, very little is known about how they are formed. Here, we have investigated how dendrites develop in vivo by examining an oxygen sensory neuron (PQR) in the nematode C. elegans. Using a genetic approach, we have discovered that Wnt proteins, a group of highly conserved secreted morphogens, interact with their canonical Frizzled receptors to control the development of the PQR dendrite. We show that Wnt molecules act as attractive signals to determine the initiation and direction of dendrite outgrowth. Interestingly, Wnt proteins act specifically on the dendrite without affecting the axon, suggesting that outgrowth of the dendrite can be regulated by distinct processes that are independent of axon formation. We predict that similar mechanisms may be in place in other species owing to the conserved roles of Wnt and Frizzled molecules in development.
Collapse
|
34
|
Abstract
The formation of axon/dendrite polarity is critical for the neuron to perform its signaling function in the brain. Recent advance in our understanding of cellular and molecular mechanisms underlying the development and maintenance of neuronal polarity has been greatly facilitated by the use of the culture system of dissociated hippocampal neurons. Among many polarization-related proteins, we here focus on the mammalian LKB1, the counterpart of the C. elegans Par-4, which is an upstream regulator among six Par (partitioning-defective) genes that act as master regulators of cell polarity in different cell types across evolutionary distant species. Recent studies have identified LKB1 and its downstream targets SAD/MARK kinases (mammalian homologs of Par-1) as key regulators of neuronal polarization and axon development in cultured neurons and in developing cortical neurons in vivo. We will review the properties of and interactions among proteins in this LKB1-SAD/MARK pathway, drawing upon information obtained from both neuronal and non-neuronal systems. Due to central role of the protein kinase A-dependent phosphorylation of LKB1 in the activation of this pathway, we will review recent findings on how cAMP and cGMP signaling may serve as antagonistic second messengers for axon/dendrite development, and how these cyclic nucleotides may mediate the action of extracellular polarizing factors by modulating the activity of the LKB1-SAD/MARK pathway.
Collapse
Affiliation(s)
- Maya Shelly
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794-5230, USA.
| | | |
Collapse
|
35
|
Park J, Knezevich PL, Wung W, O'Hanlon SN, Goyal A, Benedetti KL, Barsi-Rhyne BJ, Raman M, Mock N, Bremer M, Vanhoven MK. A conserved juxtacrine signal regulates synaptic partner recognition in Caenorhabditis elegans. Neural Dev 2011; 6:28. [PMID: 21663630 PMCID: PMC3130637 DOI: 10.1186/1749-8104-6-28] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/10/2011] [Indexed: 02/04/2023] Open
Abstract
Background An essential stage of neural development involves the assembly of neural circuits via formation of inter-neuronal connections. Early steps in neural circuit formation, including cell migration, axon guidance, and the localization of synaptic components, are well described. However, upon reaching their target region, most neurites still contact many potential partners. In order to assemble functional circuits, it is critical that within this group of cells, neurons identify and form connections only with their appropriate partners, a process we call synaptic partner recognition (SPR). To understand how SPR is mediated, we previously developed a genetically encoded fluorescent trans-synaptic marker called NLG-1 GRASP, which labels synaptic contacts between individual neurons of interest in dense cellular environments in the genetic model organism Caenorhabditis elegans. Results Here, we describe the first use of NLG-1 GRASP technology, to identify SPR genes that function in this critical process. The NLG-1 GRASP system allows us to assess synaptogenesis between PHB sensory neurons and AVA interneurons instantly in live animals, making genetic analysis feasible. Additionally, we employ a behavioral assay to specifically test PHB sensory circuit function. Utilizing this approach, we reveal a new role for the secreted UNC-6/Netrin ligand and its transmembrane receptor UNC-40/Deleted in colorectal cancer (DCC) in SPR. Synapses between PHB and AVA are severely reduced in unc-6 and unc-40 animals despite normal axon guidance and subcellular localization of synaptic components. Additionally, behavioral defects indicate a complete disruption of PHB circuit function in unc-40 mutants. Our data indicate that UNC-40 and UNC-6 function in PHB and AVA, respectively, to specify SPR. Strikingly, overexpression of UNC-6 in postsynaptic neurons is sufficient to promote increased PHB-AVA synaptogenesis and to potentiate the behavioral response beyond wild-type levels. Furthermore, an artificially membrane-tethered UNC-6 expressed in the postsynaptic neurons promotes SPR, consistent with a short-range signal between adjacent synaptic partners. Conclusions These results indicate that the conserved UNC-6/Netrin-UNC-40/DCC ligand-receptor pair has a previously unknown function, acting in a juxtacrine manner to specify recognition of individual postsynaptic neurons. Furthermore, they illustrate the potential of this new approach, combining NLG-1 GRASP and behavioral analysis, in gene discovery and characterization.
Collapse
Affiliation(s)
- Joori Park
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|