1
|
Mallory CS, Widloski J, Foster DJ. Self-avoidance dominates the selection of hippocampal replay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604185. [PMID: 39071427 PMCID: PMC11275714 DOI: 10.1101/2024.07.18.604185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Spontaneous neural activity sequences are generated by the brain in the absence of external input 1-12 , yet how they are produced remains unknown. During immobility, hippocampal replay sequences depict spatial paths related to the animal's past experience or predicted future 13 . By recording from large ensembles of hippocampal place cells 14 in combination with optogenetic manipulation of cortical input in freely behaving rats, we show here that the selection of hippocampal replay is governed by a novel self-avoidance principle. Following movement cessation, replay of the animal's past path is strongly avoided, while replay of the future path predominates. Moreover, when the past and future paths overlap, early replays avoid both and depict entirely different trajectories. Further, replays avoid self-repetition, on a shorter timescale compared to the avoidance of previous behavioral trajectories. Eventually, several seconds into the stopping period, replay of the past trajectory dominates. This temporal organization contrasts with established and recent predictions 9,10,15,16 but is well-recapitulated by a symmetry-breaking attractor model of sequence generation in which individual neurons adapt their firing rates over time 26-35 . However, while the model is sufficient to produce avoidance of recently traversed or reactivated paths, it requires an additional excitatory input into recently activated cells to produce the later window of past-dominance. We performed optogenetic perturbations to demonstrate that this input is provided by medial entorhinal cortex, revealing its role in maintaining a memory of past experience that biases hippocampal replay. Together, these data provide specific evidence for how hippocampal replays are generated.
Collapse
|
2
|
Mizuno H, Ikegaya Y. Late-spiking retrosplenial cortical neurons are not synchronized with neocortical slow waves in anesthetized mice. Neurosci Res 2024; 203:51-56. [PMID: 38224839 DOI: 10.1016/j.neures.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Neocortical slow waves are critical for memory consolidation. The retrosplenial cortex is thought to facilitate the slow wave propagation to regions beyond the neocortex. However, it remains unclear which population is responsible for the slow wave propagation. To address this issue, we performed in vivo whole-cell recordings to identify neurons that were synchronous and asynchronous with slow waves. By quantifying their intrinsic membrane properties, we observed that the former exhibited regular spiking, whereas the latter exhibited late spiking. Thus, these two cell types transmit information in different directions between the neocortex and subcortical regions.
Collapse
Affiliation(s)
- Hiroyuki Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Choudhary K, Berberich S, Hahn TTG, McFarland JM, Mehta MR. Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity. Nat Commun 2024; 15:3542. [PMID: 38719802 PMCID: PMC11079062 DOI: 10.1038/s41467-024-47617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Understanding the functional connectivity between brain regions and its emergent dynamics is a central challenge. Here we present a theory-experiment hybrid approach involving iteration between a minimal computational model and in vivo electrophysiological measurements. Our model not only predicted spontaneous persistent activity (SPA) during Up-Down-State oscillations, but also inactivity (SPI), which has never been reported. These were confirmed in vivo in the membrane potential of neurons, especially from layer 3 of the medial and lateral entorhinal cortices. The data was then used to constrain two free parameters, yielding a unique, experimentally determined model for each neuron. Analytic and computational analysis of the model generated a dozen quantitative predictions about network dynamics, which were all confirmed in vivo to high accuracy. Our technique predicted functional connectivity; e. g. the recurrent excitation is stronger in the medial than lateral entorhinal cortex. This too was confirmed with connectomics data. This technique uncovers how differential cortico-entorhinal dialogue generates SPA and SPI, which could form an energetically efficient working-memory substrate and influence the consolidation of memories during sleep. More broadly, our procedure can reveal the functional connectivity of large networks and a theory of their emergent dynamics.
Collapse
Affiliation(s)
- Krishna Choudhary
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA
- HRL Laboratories, Malibu, CA, USA
| | - Sven Berberich
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Mayank R Mehta
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
- W. M. Keck Center for Neurophysics, University of California, Los Angeles, CA, USA.
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
- Departments of Neurology and Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Ramsden CE, Zamora D, Horowitz MS, Jahanipour J, Calzada E, Li X, Keyes GS, Murray HC, Curtis MA, Faull RM, Sedlock A, Maric D. ApoER2-Dab1 disruption as the origin of pTau-associated neurodegeneration in sporadic Alzheimer's disease. Acta Neuropathol Commun 2023; 11:197. [PMID: 38093390 PMCID: PMC10720169 DOI: 10.1186/s40478-023-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA.
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Mark S Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Jahandar Jahanipour
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth Calzada
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Xiufeng Li
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH (NIA/NIH), 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Richard M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Haam J, Gunin S, Wilson L, Fry S, Bernstein B, Thomson E, Noblet H, Cushman J, Yakel JL. Entorhinal cortical delta oscillations drive memory consolidation. Cell Rep 2023; 42:113267. [PMID: 37838945 PMCID: PMC10872950 DOI: 10.1016/j.celrep.2023.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Long-term memories are formed by creating stable memory representations via memory consolidation, which mainly occurs during sleep following the encoding of labile memories in the hippocampus during waking. The entorhinal cortex (EC) has intricate connections with the hippocampus, but its role in memory consolidation is largely unknown. Using cell-type- and input-specific in vivo neural activity recordings, here we show that the temporoammonic pathway neurons in the EC, which directly innervate the output area of the hippocampus, exhibit potent oscillatory activities during anesthesia and sleep. Using in vivo individual and populational neuronal activity recordings, we demonstrate that a subpopulation of the temporoammonic pathway neurons, which we termed sleep cells, generate delta oscillations via hyperpolarization-activated cyclic-nucleotide-gated channels during sleep. The blockade of these oscillations significantly impaired the consolidation of hippocampus-dependent memory. Together, our findings uncover a key driver of delta oscillations and memory consolidation that are found in the EC.
Collapse
Affiliation(s)
- Juhee Haam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - Suman Gunin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Leslie Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Sydney Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Briana Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Eric Thomson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Hayden Noblet
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jesse Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Feliciano-Ramos PA, Galazo M, Penagos H, Wilson M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learn Mem 2023; 30:221-236. [PMID: 37758288 PMCID: PMC10547389 DOI: 10.1101/lm.053834.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Episodic memories are thought to be stabilized through the coordination of cortico-hippocampal activity during sleep. However, the timing and mechanism of this coordination remain unknown. To investigate this, we studied the relationship between hippocampal reactivation and slow-wave sleep up and down states of the retrosplenial cortex (RTC) and prefrontal cortex (PFC). We found that hippocampal reactivations are strongly correlated with specific cortical states. Reactivation occurred during sustained cortical Up states or during the transition from up to down state. Interestingly, the most prevalent interaction with memory reactivation in the hippocampus occurred during sustained up states of the PFC and RTC, while hippocampal reactivation and cortical up-to-down state transition in the RTC showed the strongest coordination. Reactivation usually occurred within 150-200 msec of a cortical Up state onset, indicating that a buildup of excitation during cortical Up state activity influences the probability of memory reactivation in CA1. Conversely, CA1 reactivation occurred 30-50 msec before the onset of a cortical down state, suggesting that memory reactivation affects down state initiation in the RTC and PFC, but the effect in the RTC was more robust. Our findings provide evidence that supports and highlights the complexity of bidirectional communication between cortical regions and the hippocampus during sleep.
Collapse
Affiliation(s)
- Pedro A Feliciano-Ramos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria Galazo
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Shi Y, Cui H, Li X, Chen L, Zhang C, Zhao X, Li X, Shao Q, Sun Q, Yan K, Wang G. Laminar and dorsoventral organization of layer 1 interneuronal microcircuitry in superficial layers of the medial entorhinal cortex. Cell Rep 2023; 42:112782. [PMID: 37436894 DOI: 10.1016/j.celrep.2023.112782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/03/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) participate in various brain functions by gating information flow in the neocortex, but their role in the medial entorhinal cortex (MEC) is still unknown, largely due to scant knowledge of MEC L1 microcircuitry. Using simultaneous triple-octuple whole-cell recordings and morphological reconstructions, we comprehensively depict L1IN networks in the MEC. We identify three morphologically distinct types of L1INs with characteristic electrophysiological properties. We dissect intra- and inter-laminar cell-type-specific microcircuits of L1INs, showing connectivity patterns different from those in the neocortex. Remarkably, motif analysis reveals transitive and clustered features of L1 networks, as well as over-represented trans-laminar motifs. Finally, we demonstrate the dorsoventral gradient of L1IN microcircuits, with dorsal L1 neurogliaform cells receiving fewer intra-laminar inputs but exerting more inhibition on L2 principal neurons. These results thus present a more comprehensive picture of L1IN microcircuitry, which is indispensable for deciphering the function of L1INs in the MEC.
Collapse
Affiliation(s)
- Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
8
|
Watkins de Jong L, Nejad MM, Yoon E, Cheng S, Diba K. Optogenetics reveals paradoxical network stabilizations in hippocampal CA1 and CA3. Curr Biol 2023; 33:1689-1703.e5. [PMID: 37023753 PMCID: PMC10175182 DOI: 10.1016/j.cub.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Recurrent connectivity between excitatory neurons and the strength of feedback from inhibitory neurons are critical determinants of the dynamics and computational properties of neuronal circuits. Toward a better understanding of these circuit properties in regions CA1 and CA3 of the hippocampus, we performed optogenetic manipulations combined with large-scale unit recordings in rats under anesthesia and in quiet waking, using photoinhibition and photoexcitation with different light-sensitive opsins. In both regions, we saw striking paradoxical responses: subsets of cells increased firing during photoinhibition, while other cells decreased firing during photoexcitation. These paradoxical responses were more prominent in CA3 than in CA1, but, notably, CA1 interneurons showed increased firing in response to photoinhibition of CA3. These observations were recapitulated in simulations where we modeled both CA1 and CA3 as inhibition-stabilized networks in which strong recurrent excitation is balanced by feedback inhibition. To directly test the inhibition-stabilized model, we performed large-scale photoinhibition directed at (GAD-Cre) inhibitory cells and found that interneurons in both regions increased firing when photoinhibited, as predicted. Our results highlight the often-paradoxical circuit dynamics that are evidenced during optogenetic manipulations and indicate that, contrary to long-standing dogma, both CA1 and CA3 hippocampal regions display strongly recurrent excitation, which is stabilized through inhibition.
Collapse
Affiliation(s)
- Laurel Watkins de Jong
- Department of Anesthesiology, Michigan Medicine, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Psychology, University of Wisconsin-Milwaukee, 2441 E Hartford Ave, Milwaukee, WI 53211, USA
| | | | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, 1301 Beal Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Kamran Diba
- Department of Anesthesiology, Michigan Medicine, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Psychology, University of Wisconsin-Milwaukee, 2441 E Hartford Ave, Milwaukee, WI 53211, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Hall AF, Wang DV. The two tales of hippocampal sharp-wave ripple content: The rigid and the plastic. Prog Neurobiol 2023; 221:102396. [PMID: 36563928 PMCID: PMC9899323 DOI: 10.1016/j.pneurobio.2022.102396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Sharp-wave ripples, prominently in the CA1 region of the hippocampus, are short oscillatory events accompanied by bursts of neural firing. Ripples and associated hippocampal place cell sequences communicate with cortical ensembles during slow-wave sleep, which has been shown to be critical for systems consolidation of episodic memories. This consolidation is not limited to a newly formed memory trace; instead, ripples appear to reactivate and consolidate memories spanning various experiences. Despite this broad spanning influence, ripples remain capable of producing precise memories. The underlying mechanisms that enable ripples to consolidate memories broadly and with specificity across experiences remain unknown. In this review, we discuss data that uncovers circuit-level processes that generate ripples and influence their characteristics during consolidation. Based on current knowledge, we propose that memory emerges from the integration of two parallel consolidation pathways in CA1: the rigid and plastic pathways. The rigid pathway generates ripples stochastically, providing a backbone upon which dynamic plastic pathway inputs carrying novel information are integrated.
Collapse
Affiliation(s)
- Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
10
|
Jia R, Yuan X, Zhang X, Song P, Han S, Wang S, Li Y, Zhang S, Zhao X, Zhang Y, Cheng J, Song X. Oxidative stress impairs cognitive function by affecting hippocampal fimbria volume in drug-naïve, first-episode schizophrenia. Front Neurosci 2023; 17:1153439. [PMID: 37139526 PMCID: PMC10149877 DOI: 10.3389/fnins.2023.1153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of the present study was to explore influencing factors of cognitive impairments and their interrelationships in drug-naïve, first-episode schizophrenia (SCZ). Methods Patients with drug naïve, first episode SCZ and healthy controls (HCs) were enrolled. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Serum levels of oxidative stress indices, including folate, superoxide dismutase (SOD), uric acid (UA) and homocysteine (Hcy), were determined after an overnight fast. Hippocampal subfield volumes were measured using FreeSurfer. Mediation models were conducted using the SPSS PROCESS v3.4 macro. A false discovery rate (FDR) correction was applied for multiple comparisons. Results Sixty-seven patients with SCZ and 65 HCs were enrolled in our study. The patient group had significantly lower serum levels of folate and SOD and higher serum levels of HCY compared with the HCs (all p < 0.05). The patient group had a significantly smaller volume of the whole hippocampus than the HC group (p < 0.05). We also found significant volume differences between the two groups in the following subfields: CA1, molecular layer, GC-ML-DG and fimbria (all p < 0.05, uncorrected). The partial correlation analysis controlling for age and sex showed that the fimbria volume in the patient group was significantly positively associated with NAB scores (r = 0.382, pFDR = 0.024); serum levels of SOD in the patient group showed a significantly positive correlation with fimbria volume (r = 0.360, pFDR = 0.036). Mediation analyses controlling for age and sex showed that the serum levels of SOD in patients with SCZ had significant indirect effects on the NAB scores which were mediated by the fimbria volume [indirect effect = 0.0565, 95% CI from the bootstrap test excluding zero (0.0066 to 0.0891)]. Conclusion Oxidative stress, a reduction in hippocampal subfield volumes and cognitive impairments occur in early SCZ. Oxidative stress impairs cognitive function by affecting hippocampal subfield volumes.
Collapse
Affiliation(s)
- Rufei Jia
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yajun Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Siwei Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xinyi Zhao
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jingliang Cheng, ;10
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
11
|
Fukai T. Computational models of Idling brain activity for memory processing. Neurosci Res 2022; 189:75-82. [PMID: 36592825 DOI: 10.1016/j.neures.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Studying the underlying neural mechanisms of cognitive functions of the brain is one of the central questions in modern biology. Moreover, it has significantly impacted the development of novel technologies in artificial intelligence. Spontaneous activity is a unique feature of the brain and is currently lacking in many artificially constructed intelligent machines. Spontaneous activity may represent the brain's idling states, which are internally driven by neuronal networks and possibly participate in offline processing during awake, sleep, and resting states. Evidence is accumulating that the brain's spontaneous activity is not mere noise but part of the mechanisms to process information about previous experiences. A bunch of literature has shown how previous sensory and behavioral experiences influence the subsequent patterns of brain activity with various methods in various animals. It seems, however, that the patterns of neural activity and their computational roles differ significantly from area to area and from function to function. In this article, I review the various forms of the brain's spontaneous activity, especially those observed during memory processing, and some attempts to model the generation mechanisms and computational roles of such activities.
Collapse
Affiliation(s)
- Tomoki Fukai
- Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
12
|
Zhou H, Li H, Gowravaram N, Quan M, Kausar N, Gomperts SN. Disruption of hippocampal neuronal circuit function depends upon behavioral state in the APP/PS1 mouse model of Alzheimer's disease. Sci Rep 2022; 12:21022. [PMID: 36471155 PMCID: PMC9723144 DOI: 10.1038/s41598-022-25364-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The Alzheimer's disease-associated peptide amyloid-beta (Aβ) has been associated with neuronal hyperactivity under anesthesia, but clinical trials of anticonvulsants or neural system suppressors have, so far, failed to improve symptoms in AD. Using simultaneous hippocampal calcium imaging and electrophysiology in freely moving mice expressing human Aβ, here we show that Aβ aggregates perturbed neural systems in a state-dependent fashion, driving neuronal hyperactivity in exploratory behavior and slow wave sleep (SWS), yet suppressing activity in quiet wakefulness (QW) and REM sleep. In exploratory behavior and REM sleep, Aβ impaired hippocampal theta-gamma phase-amplitude coupling and altered neuronal synchronization with theta. In SWS, Aβ reduced cortical slow oscillation (SO) power, the coordination of hippocampal sharp wave-ripples with both the SO and thalamocortical spindles, and the coordination of calcium transients with the sharp wave-ripple. Physostigmine improved Aβ-associated hyperactivity in exploratory behavior and hypoactivity in QW and expanded the range of gamma that coupled with theta phase, but exacerbated hypoactivity in exploratory behavior. Together, these findings show that the effects of Aβ alone on hippocampal circuit function are profoundly state dependent and suggest a reformulation of therapeutic strategies aimed at Aβ induced hyperexcitability.
Collapse
Affiliation(s)
- Heng Zhou
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Hanyan Li
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Niket Gowravaram
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Moqin Quan
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Naila Kausar
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen N Gomperts
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
13
|
Entorhinal cortex directs learning-related changes in CA1 representations. Nature 2022; 611:554-562. [DOI: 10.1038/s41586-022-05378-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
AbstractLearning-related changes in brain activity are thought to underlie adaptive behaviours1,2. For instance, the learning of a reward site by rodents requires the development of an over-representation of that location in the hippocampus3–6. How this learning-related change occurs remains unknown. Here we recorded hippocampal CA1 population activity as mice learned a reward location on a linear treadmill. Physiological and pharmacological evidence suggests that the adaptive over-representation required behavioural timescale synaptic plasticity (BTSP)7. BTSP is known to be driven by dendritic voltage signals that we proposed were initiated by input from entorhinal cortex layer 3 (EC3). Accordingly, the CA1 over-representation was largely removed by optogenetic inhibition of EC3 activity. Recordings from EC3 neurons revealed an activity pattern that could provide an instructive signal directing BTSP to generate the over-representation. Consistent with this function, our observations show that exposure to a second environment possessing a prominent reward-predictive cue resulted in both EC3 activity and CA1 place field density that were more elevated at the cue than at the reward. These data indicate that learning-related changes in the hippocampus are produced by synaptic plasticity directed by an instructive signal from the EC3 that seems to be specifically adapted to the behaviourally relevant features of the environment.
Collapse
|
14
|
Kajikawa K, Hulse BK, Siapas AG, Lubenov EV. UP-DOWN states and ripples differentially modulate membrane potential dynamics across DG, CA3, and CA1 in awake mice. eLife 2022; 11:69596. [PMID: 35819409 PMCID: PMC9275824 DOI: 10.7554/elife.69596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hippocampal ripples are transient population bursts that structure cortico-hippocampal communication and play a central role in memory processing. However, the mechanisms controlling ripple initiation in behaving animals remain poorly understood. Here we combine multisite extracellular and whole-cell recordings in awake mice to contrast the brain state and ripple modulation of subthreshold dynamics across hippocampal subfields. We find that entorhinal input to the dentate gyrus (DG) exhibits UP and DOWN dynamics with ripples occurring exclusively in UP states. While elevated cortical input in UP states generates depolarization in DG and CA1, it produces persistent hyperpolarization in CA3 neurons. Furthermore, growing inhibition is evident in CA3 throughout the course of the ripple buildup, while DG and CA1 neurons exhibit depolarization transients 100 ms before and during ripples. These observations highlight the importance of CA3 inhibition for ripple generation, while pre-ripple responses indicate a long and orchestrated ripple initiation process in the awake state.
Collapse
Affiliation(s)
- Koichiro Kajikawa
- Division of Biology and Biological Engineering, Division of Engineering and Applied Science, Computation and Neural Systems Program, California Institute of Technology, Pasadena, United States
| | - Brad K Hulse
- Division of Biology and Biological Engineering, Division of Engineering and Applied Science, Computation and Neural Systems Program, California Institute of Technology, Pasadena, United States
| | - Athanassios G Siapas
- Division of Biology and Biological Engineering, Division of Engineering and Applied Science, Computation and Neural Systems Program, California Institute of Technology, Pasadena, United States
| | - Evgueniy V Lubenov
- Division of Biology and Biological Engineering, Division of Engineering and Applied Science, Computation and Neural Systems Program, California Institute of Technology, Pasadena, United States
| |
Collapse
|
15
|
Tukker JJ, Beed P, Brecht M, Kempter R, Moser EI, Schmitz D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev 2022; 102:653-688. [PMID: 34254836 PMCID: PMC8759973 DOI: 10.1152/physrev.00042.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.
Collapse
Affiliation(s)
- John J Tukker
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Prateep Beed
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edvard I Moser
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Ye H, Liu ZX, He YJ, Wang X. Effects of M currents on the persistent activity of pyramidal neurons in mouse primary auditory cortex. J Neurophysiol 2022; 127:1269-1278. [PMID: 35294269 DOI: 10.1152/jn.00332.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal persistent activity (PA) is a common phenomenon observed in many types of neurons. PA can be induced in neurons in the mouse auditory nucleus by activating cholinergic receptors with carbachol (CCh), a dual muscarinic and nicotinic receptor agonist. PA is presumed to be associated with learning-related auditory plasticity at the cellular level. However, the mechanism is not clearly understood. Many studies have reported that muscarinic cholinergic receptor agonists inhibit muscarinic-sensitive potassium channels (M channels). Potassium influx through M channels produces potassium currents, called M currents, which play an essential role in regulating neural excitability and synaptic plasticity. Further study is needed to determine whether M currents affect the PA of auditory central neurons and provide additional analysis of the variations in electrophysiological properties. We used in vitro whole-cell patch-clamp recordings in isolated mouse brain slices to investigate the effects of M currents on the PA in pyramidal neurons in layer V of the primary auditory cortex (AI-L5). We found that blocking M currents with XE991 depolarized the AI-L5 pyramidal neurons, which significantly increased the input resistance. The active threshold and threshold intensity were significantly reduced, indicating that the intrinsic excitability was enhanced. Our results also showed that blocking M currents with XE991 switched the neuronal firing patterns in the AI-L5 pyramidal neurons from regular-spiking to intrinsic-bursting. Blocking M currents facilitated PA by increasing the plateau potential and enhancing intrinsic excitability. Our results suggested that blocking M currents might facilitate the PA in AI-L5 pyramidal neurons, which underlies auditory plasticity.
Collapse
Affiliation(s)
- Huan Ye
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhen-Xu Liu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya-Jie He
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
17
|
Miyawaki H, Mizuseki K. De novo inter-regional coactivations of preconfigured local ensembles support memory. Nat Commun 2022; 13:1272. [PMID: 35277492 PMCID: PMC8917150 DOI: 10.1038/s41467-022-28929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Neuronal ensembles in the amygdala, ventral hippocampus, and prefrontal cortex are involved in fear memory; however, how inter-regional ensemble interactions support memory remains elusive. Using multi-regional large-scale electrophysiology in the aforementioned structures of fear-conditioned rats, we found that the local ensembles activated during fear memory acquisition are inter-regionally coactivated during the subsequent sleep period, which relied on brief bouts of fast network oscillations. During memory retrieval, the coactivations reappeared, together with fast oscillations. Coactivation-participating-ensembles were configured prior to memory acquisition in the amygdala and prefrontal cortex but developed through experience in the hippocampus. Our findings suggest that elements of a given memory are instantly encoded within various brain regions in a preconfigured manner, whereas hippocampal ensembles and the network for inter-regional integration of the distributed information develop in an experience-dependent manner to form a new memory, which is consistent with the hippocampal memory index hypothesis. The authors show that fear-memory-related cell-ensembles in the amygdala, hippocampus, and prefrontal cortex are inter-regionally co-activated in post-learning sleep. The co-activations are hosted by fast network oscillations and re-appear during recall.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
18
|
Pazienti A, Galluzzi A, Dasilva M, Sanchez-Vives MV, Mattia M. Slow waves form expanding, memory-rich mesostates steered by local excitability in fading anesthesia. iScience 2022; 25:103918. [PMID: 35265807 PMCID: PMC8899414 DOI: 10.1016/j.isci.2022.103918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
In the arousal process, the brain restores its integrative activity from the synchronized state of slow wave activity (SWA). The mechanisms underpinning this state transition remain, however, to be elucidated. Here we simultaneously probed neuronal assemblies throughout the whole cortex with micro-electrocorticographic recordings in mice. We investigated the progressive shaping of propagating SWA at different levels of isoflurane. We found a form of memory of the wavefront shapes at deep anesthesia, tightly alternating posterior-anterior-posterior patterns. At low isoflurane, metastable patterns propagated in more directions, reflecting an increased complexity. The wandering across these mesostates progressively increased its randomness, as predicted by simulations of a network of spiking neurons, and confirmed in our experimental data. The complexity increase is explained by the elevated excitability of local assemblies with no modifications of the network connectivity. These results shed new light on the functional reorganization of the cortical network as anesthesia fades out. Complexity of isoflurane-induced slow waves reliably determines anesthesia level In deep anesthesia, the propagation strictly alternates between front-back-front patterns In light anesthesia, there is a continuum of directions and faster propagation Local excitability underpins the cortical reorganization in fading anesthesia
Collapse
|
19
|
Purandare CS, Dhingra S, Rios R, Vuong C, To T, Hachisuka A, Choudhary K, Mehta MR. Moving bar of light evokes vectorial spatial selectivity in the immobile rat hippocampus. Nature 2022; 602:461-467. [PMID: 35140401 DOI: 10.1038/s41586-022-04404-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/04/2022] [Indexed: 11/09/2022]
Abstract
Visual cortical neurons encode the position and motion direction of specific stimuli retrospectively, without any locomotion or task demand1. The hippocampus, which is a part of the visual system, is hypothesized to require self-motion or a cognitive task to generate allocentric spatial selectivity that is scalar, abstract2,3 and prospective4-7. Here we measured rodent hippocampal selectivity to a moving bar of light in a body-fixed rat to bridge these seeming disparities. About 70% of dorsal CA1 neurons showed stable activity modulation as a function of the angular position of the bar, independent of behaviour and rewards. One-third of tuned cells also encoded the direction of revolution. In other experiments, neurons encoded the distance of the bar, with preference for approaching motion. Collectively, these demonstrate visually evoked vectorial selectivity (VEVS). Unlike place cells, VEVS was retrospective. Changes in the visual stimulus or its predictability did not cause remapping but only caused gradual changes. Most VEVS-tuned neurons behaved like place cells during spatial exploration and the two selectivities were correlated. Thus, VEVS could form the basic building block of hippocampal activity. When combined with self-motion, reward or multisensory stimuli8, it can generate the complexity of prospective representations including allocentric space9, time10,11 and episodes12.
Collapse
Affiliation(s)
- Chinmay S Purandare
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA.,Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Shonali Dhingra
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Rodrigo Rios
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Cliff Vuong
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Thuc To
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Ayaka Hachisuka
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Krishna Choudhary
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Mayank R Mehta
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA. .,Department of Neurology, UCLA, Los Angeles, CA, USA. .,Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Franco LM, Yaksi E. Experience-dependent plasticity modulates ongoing activity in the antennal lobe and enhances odor representations. Cell Rep 2021; 37:110165. [PMID: 34965425 PMCID: PMC8739562 DOI: 10.1016/j.celrep.2021.110165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
Ongoing neural activity has been observed across several brain regions and is thought to reflect the internal state of the brain. Yet, it is important to understand how ongoing neural activity interacts with sensory experience and shapes sensory representations. Here, we show that the projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity. After repeated exposure to odors, we observe a gradual and cumulative decrease in the amplitude and number of calcium events occurring in the absence of odor stimulation, as well as a reorganization of correlations between olfactory glomeruli. Accompanying these plastic changes, we find that repeated odor experience decreases trial-to-trial variability and enhances the specificity of odor representations. Our results reveal an odor-experience-dependent modulation of ongoing and sensory-evoked activity at peripheral levels of the fruit fly olfactory system. The fruit fly antennal lobe exhibits spatiotemporally organized ongoing activity Repeated odor experience decreases the amplitude and number of ongoing calcium events Odor experience enhances the robustness and the specificity of odor representations Representations of different odors become more dissimilar upon repeated exposure
Collapse
Affiliation(s)
- Luis M Franco
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Emre Yaksi
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim 7030, Norway.
| |
Collapse
|
21
|
Ross TW, Easton A. The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Memory. Neurosci Biobehav Rev 2021; 132:181-196. [PMID: 34826509 DOI: 10.1016/j.neubiorev.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
How do we recollect specific events that have occurred during continuous ongoing experience? There is converging evidence from non-human animals that spatially modulated cellular activity of the hippocampal formation supports the construction of ongoing events. On the other hand, recent human oriented event cognition models have outlined that our experience is segmented into discrete units, and that such segmentation can operate on shorter or longer timescales. Here, we describe a unification of how these dynamic physiological mechanisms of the hippocampus relate to ongoing externally and internally driven event segmentation, facilitating the demarcation of specific moments during experience. Our cross-species interdisciplinary approach offers a novel perspective in the way we construct and remember specific events, leading to the generation of many new hypotheses for future research.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom
| |
Collapse
|
22
|
Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation. Nature 2021; 599:442-448. [PMID: 34671157 DOI: 10.1038/s41586-021-03989-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
Three major pillars of hippocampal function are spatial navigation1, Hebbian synaptic plasticity2 and spatial selectivity3. The hippocampus is also implicated in episodic memory4, but the precise link between these four functions is missing. Here we report the multiplexed selectivity of dorsal CA1 neurons while rats performed a virtual navigation task using only distal visual cues5, similar to the standard water maze test of spatial memory1. Neural responses primarily encoded path distance from the start point and the head angle of rats, with a weak allocentric spatial component similar to that in primates but substantially weaker than in rodents in the real world. Often, the same cells multiplexed and encoded path distance, angle and allocentric position in a sequence, thus encoding a journey-specific episode. The strength of neural activity and tuning strongly correlated with performance, with a temporal relationship indicating neural responses influencing behaviour and vice versa. Consistent with computational models of associative and causal Hebbian learning6,7, neural responses showed increasing clustering8 and became better predictors of behaviourally relevant variables, with the average neurometric curves exceeding and converging to psychometric curves. Thus, hippocampal neurons multiplex and exhibit highly plastic, task- and experience-dependent tuning to path-centric and allocentric variables to form episodic sequences supporting navigation.
Collapse
|
23
|
Gerlei KZ, Brown CM, Sürmeli G, Nolan MF. Deep entorhinal cortex: from circuit organization to spatial cognition and memory. Trends Neurosci 2021; 44:876-887. [PMID: 34593254 DOI: 10.1016/j.tins.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
The deep layers of the entorhinal cortex are important for spatial cognition, as well as memory storage, consolidation and retrieval. A long-standing hypothesis is that deep-layer neurons relay spatial and memory-related signals between the hippocampus and telencephalon. We review the implications of recent circuit-level analyses that suggest more complex roles. The organization of deep entorhinal layers is consistent with multi-stage processing by specialized cell populations; in this framework, hippocampal, neocortical, and subcortical inputs are integrated to generate representations for use by targets in the telencephalon and for feedback to the superficial entorhinal cortex and hippocampus. Addressing individual sublayers of the deep entorhinal cortex in future experiments and models will be important for establishing systems-level mechanisms for spatial cognition and episodic memory.
Collapse
Affiliation(s)
- Klára Z Gerlei
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Christina M Brown
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Gülşen Sürmeli
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
24
|
Bartoszek EM, Ostenrath AM, Jetti SK, Serneels B, Mutlu AK, Chau KTP, Yaksi E. Ongoing habenular activity is driven by forebrain networks and modulated by olfactory stimuli. Curr Biol 2021; 31:3861-3874.e3. [PMID: 34416179 PMCID: PMC8445323 DOI: 10.1016/j.cub.2021.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
Ongoing neural activity, which represents internal brain states, is constantly modulated by the sensory information that is generated by the environment. In this study, we show that the habenular circuits act as a major brain hub integrating the structured ongoing activity of the limbic forebrain circuitry and the olfactory information. We demonstrate that ancestral homologs of amygdala and hippocampus in zebrafish forebrain are the major drivers of ongoing habenular activity. We also reveal that odor stimuli can modulate the activity of specific habenular neurons that are driven by this forebrain circuitry. Our results highlight a major role for the olfactory system in regulating the ongoing activity of the habenula and the forebrain, thereby altering brain's internal states.
Collapse
Affiliation(s)
- Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Anna Maria Ostenrath
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Suresh Kumar Jetti
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Aytac Kadir Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway; Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium.
| |
Collapse
|
25
|
Zheng A, Montez DF, Marek S, Gilmore AW, Newbold DJ, Laumann TO, Kay BP, Seider NA, Van AN, Hampton JM, Alexopoulos D, Schlaggar BL, Sylvester CM, Greene DJ, Shimony JS, Nelson SM, Wig GS, Gratton C, McDermott KB, Raichle ME, Gordon EM, Dosenbach NUF. Parallel hippocampal-parietal circuits for self- and goal-oriented processing. Proc Natl Acad Sci U S A 2021; 118:e2101743118. [PMID: 34404728 PMCID: PMC8403906 DOI: 10.1073/pnas.2101743118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. Using individual-specific precision functional mapping of resting-state functional MRI data, we found the anterior hippocampus (head and body) to be preferentially functionally connected to the default mode network (DMN), as expected. The hippocampal tail, however, was strongly preferentially functionally connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This anterior-posterior dichotomy of resting-state functional connectivity was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the hippocampal head and body (DMN), relatively sparing the tail (PMN). The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel but distinct circuits between the hippocampus and medial parietal cortex for self- versus goal-oriented processing.
Collapse
Affiliation(s)
- Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Adrian W Gilmore
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline M Hampton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, CA 92093
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL 60208
- Department of Neurology, Northwestern University, Evanston, IL 60208
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
26
|
In Vivo Calcium Imaging of CA3 Pyramidal Neuron Populations in Adult Mouse Hippocampus. eNeuro 2021; 8:ENEURO.0023-21.2021. [PMID: 34330817 PMCID: PMC8387150 DOI: 10.1523/eneuro.0023-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Neuronal population activity in the hippocampal CA3 subfield is implicated in cognitive brain functions such as memory processing and spatial navigation. However, because of its deep location in the brain, the CA3 area has been difficult to target with modern calcium imaging approaches. Here, we achieved chronic two-photon calcium imaging of CA3 pyramidal neurons with the red fluorescent calcium indicator R-CaMP1.07 in anesthetized and awake mice. We characterize CA3 neuronal activity at both the single-cell and population level and assess its stability across multiple imaging days. During both anesthesia and wakefulness, nearly all CA3 pyramidal neurons displayed calcium transients. Most of the calcium transients were consistent with a high incidence of bursts of action potentials (APs), based on calibration measurements using simultaneous juxtacellular recordings and calcium imaging. In awake mice, we found state-dependent differences with striking large and prolonged calcium transients during locomotion. We estimate that trains of >30 APs over 3 s underlie these salient events. Their abundance in particular subsets of neurons was relatively stable across days. At the population level, we found that co-activity within the CA3 network was above chance level and that co-active neuron pairs maintained their correlated activity over days. Our results corroborate the notion of state-dependent spatiotemporal activity patterns in the recurrent network of CA3 and demonstrate that at least some features of population activity, namely co-activity of cell pairs and likelihood to engage in prolonged high activity, are maintained over days.
Collapse
|
27
|
Cha YH, Ding L, Yuan H. Neuroimaging Markers of Mal de Débarquement Syndrome. Front Neurol 2021; 12:636224. [PMID: 33746890 PMCID: PMC7970001 DOI: 10.3389/fneur.2021.636224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mal de débarquement syndrome (MdDS) is a motion-induced disorder of oscillating vertigo that persists after the motion has ceased. The neuroimaging characteristics of the MdDS brain state have been investigated with studies on brain metabolism, structure, functional connectivity, and measurements of synchronicity. Baseline metabolism and resting-state functional connectivity studies indicate that a limbic focus in the left entorhinal cortex and amygdala may be important in the pathology of MdDS, as these structures are hypermetabolic in MdDS and exhibit increased functional connectivity to posterior sensory processing areas and reduced connectivity to the frontal and temporal cortices. Both structures are tunable with periodic stimulation, with neurons in the entorhinal cortex required for spatial navigation, acting as a critical efferent pathway to the hippocampus, and sending and receiving projections from much of the neocortex. Voxel-based morphometry measurements have revealed volume differences between MdDS and healthy controls in hubs of multiple resting-state networks including the default mode, salience, and executive control networks. In particular, volume in the bilateral anterior cingulate cortices decreases and volume in the bilateral inferior frontal gyri/anterior insulas increases with longer duration of illness. Paired with noninvasive neuromodulation interventions, functional neuroimaging with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and simultaneous fMRI-EEG have shown changes in resting-state functional connectivity that correlate with symptom modulation, particularly in the posterior default mode network. Reduced parieto-occipital connectivity with the entorhinal cortex and reduced long-range fronto-parieto-occipital connectivity correlate with symptom improvement. Though there is a general theme of desynchronization correlating with reduced MdDS symptoms, the prediction of optimal stimulation parameters for noninvasive brain stimulation in individuals with MdDS remains a challenge due to the large parameter space. However, the pairing of functional neuroimaging and noninvasive brain stimulation can serve as a probe into the biological underpinnings of MdDS and iteratively lead to optimal parameter space identification.
Collapse
Affiliation(s)
- Yoon Hee Cha
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
28
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
29
|
Hay YA, Jarzebowski P, Zhang Y, Digby R, Brendel V, Paulsen O, Magloire V. Cholinergic modulation of Up-Down states in the mouse medial entorhinal cortex in vitro. Eur J Neurosci 2020; 53:1378-1393. [PMID: 33131134 DOI: 10.1111/ejn.15032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Cholinergic tone is high during wake and rapid eye movement sleep and lower during slow wave sleep (SWS). Nevertheless, the low tone of acetylcholine during SWS modulates sharp wave ripple incidence in the hippocampus and slow wave activity in the neocortex. Linking the hippocampus and neocortex, the medial entorhinal cortex (mEC) regulates the coupling between these structures during SWS, alternating between silent Down states and active Up states, which outlast neocortical ones. Here, we investigated how low physiological concentrations of acetylcholine (ACh; 100-500 nM) modulate Up and Down states in a mEC slice preparation. We find that ACh has a dual effect on mEC activity: it prolongs apparent Up state duration as recorded in individual cells and decreases the total synaptic charge transfer, without affecting the duration of detectable synaptic activity. The overall outcome of ACh application is excitatory and we show that ACh increases Up state incidence via muscarinic receptor activation. The mean firing rate of principal neurons increased in around half of the cells while the other half showed a decrease in firing rate. Using two-photon calcium imaging of population activity, we found that population-wide network events are more frequent and rhythmic during ACh and confirmed that ACh modulates cell participation in these network events, consistent with a role for cholinergic modulation in regulating information flow between the hippocampus and neocortex during SWS.
Collapse
Affiliation(s)
- Y Audrey Hay
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Przemyslaw Jarzebowski
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Yu Zhang
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Richard Digby
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Viktoria Brendel
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Vincent Magloire
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, UK.,UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
30
|
Beed P, de Filippo R, Holman C, Johenning FW, Leibold C, Caputi A, Monyer H, Schmitz D. Layer 3 Pyramidal Cells in the Medial Entorhinal Cortex Orchestrate Up-Down States and Entrain the Deep Layers Differentially. Cell Rep 2020; 33:108470. [DOI: 10.1016/j.celrep.2020.108470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 06/26/2020] [Accepted: 11/10/2020] [Indexed: 01/27/2023] Open
|
31
|
Bright IM, Meister MLR, Cruzado NA, Tiganj Z, Buffalo EA, Howard MW. A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proc Natl Acad Sci U S A 2020; 117:20274-20283. [PMID: 32747574 PMCID: PMC7443936 DOI: 10.1073/pnas.1917197117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Episodic memory is believed to be intimately related to our experience of the passage of time. Indeed, neurons in the hippocampus and other brain regions critical to episodic memory code for the passage of time at a range of timescales. The origin of this temporal signal, however, remains unclear. Here, we examined temporal responses in the entorhinal cortex of macaque monkeys as they viewed complex images. Many neurons in the entorhinal cortex were responsive to image onset, showing large deviations from baseline firing shortly after image onset but relaxing back to baseline at different rates. This range of relaxation rates allowed for the time since image onset to be decoded on the scale of seconds. Further, these neurons carried information about image content, suggesting that neurons in the entorhinal cortex carry information about not only when an event took place but also, the identity of that event. Taken together, these findings suggest that the primate entorhinal cortex uses a spectrum of time constants to construct a temporal record of the past in support of episodic memory.
Collapse
Affiliation(s)
- Ian M Bright
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - Miriam L R Meister
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, Seattle, WA 98195
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Nathanael A Cruzado
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - Zoran Tiganj
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
- Department of Computer Science, Indiana University, Bloomington, IN 47405
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, Seattle, WA 98195
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215;
| |
Collapse
|
32
|
Lin C, Sherathiya VN, Oh MM, Disterhoft JF. Persistent firing in LEC III neurons is differentially modulated by learning and aging. eLife 2020; 9:e56816. [PMID: 32687058 PMCID: PMC7371426 DOI: 10.7554/elife.56816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/21/2020] [Indexed: 01/18/2023] Open
Abstract
Whether and how persistent firing in lateral entorhinal cortex layer III (LEC III) supports temporal associative learning is still unknown. In this study, persistent firing was evoked in vitro from LEC III neurons from young and aged rats that were behaviorally naive or trained on trace eyeblink conditioning. Persistent firing ability from neurons from behaviorally naive aged rats was lower compared to neurons from young rats. Neurons from learning impaired aged animals also exhibited reduced persistent firing capacity, which may contribute to aging-related learning impairments. Successful acquisition of the trace eyeblink task, however, increased persistent firing ability in both young and aged rats. These changes in persistent firing ability are due to changes to the afterdepolarization, which may in turn be modulated by the postburst afterhyperpolarization. Together, these data indicate that successful learning increases persistent firing ability and decreases in persistent firing ability contribute to learning impairments in aging.
Collapse
Affiliation(s)
- Carmen Lin
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Venus N Sherathiya
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - M Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
33
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
34
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
35
|
Sun C, Yang W, Martin J, Tonegawa S. Hippocampal neurons represent events as transferable units of experience. Nat Neurosci 2020; 23:651-663. [PMID: 32251386 PMCID: PMC11210833 DOI: 10.1038/s41593-020-0614-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
The brain codes continuous spatial, temporal and sensory changes in daily experience. Recent studies suggest that the brain also tracks experience as segmented subdivisions (events), but the neural basis for encoding events remains unclear. Here, we designed a maze for mice, composed of four materially indistinguishable lap events, and identify hippocampal CA1 neurons whose activity are modulated not only by spatial location but also lap number. These 'event-specific rate remapping' (ESR) cells remain lap-specific even when the maze length is unpredictably altered within trials, which suggests that ESR cells treat lap events as fundamental units. The activity pattern of ESR cells is reused to represent lap events when the maze geometry is altered from square to circle, which suggests that it helps transfer knowledge between experiences. ESR activity is separately manipulable from spatial activity, and may therefore constitute an independent hippocampal code: an 'event code' dedicated to organizing experience by events as discrete and transferable units.
Collapse
Affiliation(s)
- Chen Sun
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Wannan Yang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jared Martin
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susumu Tonegawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute at Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Bačić I, Franović I. Two paradigmatic scenarios for inverse stochastic resonance. CHAOS (WOODBURY, N.Y.) 2020; 30:033123. [PMID: 32237779 DOI: 10.1063/1.5139628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Inverse stochastic resonance comprises a nonlinear response of an oscillatory system to noise where the frequency of noise-perturbed oscillations becomes minimal at an intermediate noise level. We demonstrate two generic scenarios for inverse stochastic resonance by considering a paradigmatic model of two adaptively coupled stochastic active rotators whose local dynamics is close to a bifurcation threshold. In the first scenario, shown for the two rotators in the excitable regime, inverse stochastic resonance emerges due to a biased switching between the oscillatory and the quasi-stationary metastable states derived from the attractors of the noiseless system. In the second scenario, illustrated for the rotators in the oscillatory regime, inverse stochastic resonance arises due to a trapping effect associated with a noise-enhanced stability of an unstable fixed point. The details of the mechanisms behind the resonant effect are explained in terms of slow-fast analysis of the corresponding noiseless systems.
Collapse
Affiliation(s)
- Iva Bačić
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
37
|
Kang L, DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. eLife 2019; 8:46351. [PMID: 31736462 PMCID: PMC6901334 DOI: 10.7554/elife.46351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Grid cells fire in sequences that represent rapid trajectories in space. During locomotion, theta sequences encode sweeps in position starting slightly behind the animal and ending ahead of it. During quiescence and slow wave sleep, bouts of synchronized activity represent long trajectories called replays, which are well-established in place cells and have been recently reported in grid cells. Theta sequences and replay are hypothesized to facilitate many cognitive functions, but their underlying mechanisms are unknown. One mechanism proposed for grid cell formation is the continuous attractor network. We demonstrate that this established architecture naturally produces theta sequences and replay as distinct consequences of modulating external input. Driving inhibitory interneurons at the theta frequency causes attractor bumps to oscillate in speed and size, which gives rise to theta sequences and phase precession, respectively. Decreasing input drive to all neurons produces traveling wavefronts of activity that are decoded as replays.
Collapse
Affiliation(s)
- Louis Kang
- Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Michael R DeWeese
- Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
38
|
Bartsch U, Simpkin AJ, Demanuele C, Wamsley E, Marston HM, Jones MW. Distributed slow-wave dynamics during sleep predict memory consolidation and its impairment in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:18. [PMID: 31685816 PMCID: PMC6828759 DOI: 10.1038/s41537-019-0086-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022]
Abstract
The slow waves (SW) of non-rapid eye movement (NREM) sleep reflect neocortical components of network activity during sleep-dependent information processing; their disruption may therefore impair memory consolidation. Here, we quantify sleep-dependent consolidation of motor sequence memory, alongside sleep EEG-derived SW properties and synchronisation, and SW–spindle coupling in 21 patients suffering from schizophrenia and 19 healthy volunteers. Impaired memory consolidation in patients culminated in an overnight improvement in motor sequence task performance of only 1.6%, compared with 15% in controls. During sleep after learning, SW amplitudes and densities were comparable in healthy controls and patients. However, healthy controls showed a significant 45% increase in frontal-to-occipital SW coherence during sleep after motor learning in comparison with a baseline night (baseline: 0.22 ± 0.05, learning: 0.32 ± 0.05); patient EEG failed to show this increase (baseline: 0.22 ± 0.04, learning: 0.19 ± 0.04). The experience-dependent nesting of spindles in SW was similarly disrupted in patients: frontal-to-occipital SW–spindle phase-amplitude coupling (PAC) significantly increased after learning in healthy controls (modulation index baseline: 0.17 ± 0.02, learning: 0.22 ± 0.02) but not in patients (baseline: 0.13 ± 0.02, learning: 0.14 ± 0.02). Partial least-squares regression modelling of coherence and PAC data from all electrode pairs confirmed distributed SW coherence and SW–spindle coordination as superior predictors of overnight memory consolidation in healthy controls but not in patients. Quantifying the full repertoire of NREM EEG oscillations and their long-range covariance therefore presents learning-dependent changes in distributed SW and spindle coordination as fingerprints of impaired cognition in schizophrenia.
Collapse
Affiliation(s)
- Ullrich Bartsch
- Translational & Integrative Neuroscience, Lilly Research Centre, Windlesham, Surrey, GU20 6PH, UK. .,School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Andrew J Simpkin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Charmaine Demanuele
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, 02215, USA.,Athinoula A. Martinos Centicaer for Biomedl Imaging, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Erin Wamsley
- Department of Psychology, Furman University, Greenville, SC, 29613, USA
| | - Hugh M Marston
- Translational & Integrative Neuroscience, Lilly Research Centre, Windlesham, Surrey, GU20 6PH, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
39
|
Hauer BE, Pagliardini S, Dickson CT. The Reuniens Nucleus of the Thalamus Has an Essential Role in Coordinating Slow-Wave Activity between Neocortex and Hippocampus. eNeuro 2019; 6:ENEURO.0365-19.2019. [PMID: 31548369 PMCID: PMC6800294 DOI: 10.1523/eneuro.0365-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 01/17/2023] Open
Abstract
Sleep is a period of profound neural synchrony throughout the brain, a phenomenon involved in various physiological functions. The coordination between neocortex and hippocampus, in particular, appears to be critical for episodic memory, and, indeed, enhanced synchrony in this circuit is a hallmark of slow-wave sleep. However, it is unclear how this coordination is mediated. To this end, we examined the role of the thalamic nucleus reuniens (RE), a midline body with reciprocal connections to both prefrontal and hippocampal cortices. Using a combination of electrophysiological, optogenetic, and chemogenetic techniques in the urethane-anesthetized rat (a model of forebrain sleep activity), we directly assessed the role of the RE in mediating slow oscillatory synchrony. Using unit recording techniques, we confirmed that RE neurons showed slow rhythmic activity patterns during deactivated forebrain states that were coupled to ongoing slow oscillations. Optogenetic activation of RE neurons or their projection fibers in the cingulum bundle caused an evoked potential in hippocampus that was maximal at the level of stratum lacunosum-moleculare of CA1. A similar but longer-latency response could be evoked by stimulation of the medial prefrontal cortex that was then abolished by chemogenetic inhibition of the RE. Inactivation of the RE also severely reduced the coherence of the slow oscillation across cortical and hippocampal sites, suggesting that its activity is necessary to couple slow-wave activity across these regions. These results indicate an essential role of the RE in coordinating neocortico-hippocampal slow oscillatory activity, which may be fundamental for slow-wave sleep-related episodic memory consolidation.
Collapse
Affiliation(s)
- Brandon E Hauer
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Silvia Pagliardini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Clayton T Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
40
|
Zhou H, Neville KR, Goldstein N, Kabu S, Kausar N, Ye R, Nguyen TT, Gelwan N, Hyman BT, Gomperts SN. Cholinergic modulation of hippocampal calcium activity across the sleep-wake cycle. eLife 2019; 8:39777. [PMID: 30843520 PMCID: PMC6435325 DOI: 10.7554/elife.39777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Calcium is a critical second messenger in neurons that contributes to learning and memory, but how the coordination of action potentials of neuronal ensembles with the hippocampal local field potential (LFP) is reflected in dynamic calcium activity remains unclear. Here, we recorded hippocampal calcium activity with endoscopic imaging of the genetically encoded fluorophore GCaMP6 with concomitant LFP in freely behaving mice. Dynamic calcium activity was greater in exploratory behavior and REM sleep than in quiet wakefulness and slow wave sleep, behavioral states that differ with respect to theta and septal cholinergic activity, and modulated at sharp wave ripples (SWRs). Chemogenetic activation of septal cholinergic neurons expressing the excitatory hM3Dq DREADD increased calcium activity and reduced SWRs. Furthermore, inhibition of muscarinic acetylcholine receptors (mAChRs) reduced calcium activity while increasing SWRs. These results demonstrate that hippocampal dynamic calcium activity depends on behavioral and theta state as well as endogenous mAChR activation.
Collapse
Affiliation(s)
- Heng Zhou
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Kevin R Neville
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Nitsan Goldstein
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Shushi Kabu
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Naila Kausar
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Rong Ye
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Thuan Tinh Nguyen
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Noah Gelwan
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Bradley T Hyman
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| | - Stephen N Gomperts
- MasGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, United States
| |
Collapse
|
41
|
Chiang C, Shivacharan RS, Wei X, Gonzalez‐Reyes LE, Durand DM. Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling. J Physiol 2019; 597:249-269. [PMID: 30295923 PMCID: PMC6312416 DOI: 10.1113/jp276904] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/26/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Slow periodic activity can propagate with speeds around 0.1 m s-1 and be modulated by weak electric fields. Slow periodic activity in the longitudinal hippocampal slice can propagate without chemical synaptic transmission or gap junctions, but can generate electric fields which in turn activate neighbouring cells. Applying local extracellular electric fields with amplitude in the range of endogenous fields is sufficient to modulate or block the propagation of this activity both in the in silico and in the in vitro models. Results support the hypothesis that endogenous electric fields, previously thought to be too small to trigger neural activity, play a significant role in the self-propagation of slow periodic activity in the hippocampus. Experiments indicate that a neural network can give rise to sustained self-propagating waves by ephaptic coupling, suggesting a novel propagation mechanism for neural activity under normal physiological conditions. ABSTRACT Slow oscillations are a standard feature observed in the cortex and the hippocampus during slow wave sleep. Slow oscillations are characterized by low-frequency periodic activity (<1 Hz) and are thought to be related to memory consolidation. These waves are assumed to be a reflection of the underlying neural activity, but it is not known if they can, by themselves, be self-sustained and propagate. Previous studies have shown that slow periodic activity can be reproduced in the in vitro preparation to mimic in vivo slow oscillations. Slow periodic activity can propagate with speeds around 0.1 m s-1 and be modulated by weak electric fields. In the present study, we show that slow periodic activity in the longitudinal hippocampal slice is a self-regenerating wave which can propagate with and without chemical or electrical synaptic transmission at the same speeds. We also show that applying local extracellular electric fields can modulate or even block the propagation of this wave in both in silico and in vitro models. Our results support the notion that ephaptic coupling plays a significant role in the propagation of the slow hippocampal periodic activity. Moreover, these results indicate that a neural network can give rise to sustained self-propagating waves by ephaptic coupling, suggesting a novel propagation mechanism for neural activity under normal physiological conditions.
Collapse
Affiliation(s)
- Chia‐Chu Chiang
- Neural Engineering CenterDepartment of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Rajat S. Shivacharan
- Neural Engineering CenterDepartment of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Xile Wei
- School of Electrical and Information EngineeringTianjin UniversityTianjin300072China
| | - Luis E. Gonzalez‐Reyes
- Neural Engineering CenterDepartment of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Dominique M. Durand
- Neural Engineering CenterDepartment of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| |
Collapse
|
42
|
Bačić I, Klinshov V, Nekorkin V, Perc M, Franović I. Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/124/40004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Valero M, de la Prida LM. The hippocampus in depth: a sublayer-specific perspective of entorhinal–hippocampal function. Curr Opin Neurobiol 2018; 52:107-114. [DOI: 10.1016/j.conb.2018.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
44
|
Yuan H, Shou G, Gleghorn D, Ding L, Cha YH. Resting State Functional Connectivity Signature of Treatment Effects of Repetitive Transcranial Magnetic Stimulation in Mal de Debarquement Syndrome. Brain Connect 2018; 7:617-626. [PMID: 28967282 PMCID: PMC5695731 DOI: 10.1089/brain.2017.0514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been used in experimental protocols to treat mal de debarquement syndrome (MdDS), a neurological condition that represents a maladaptive brain state resulting from entrainment to external oscillating motion. Medical treatments and biomarkers for MdDS remain limited but neuromodulation with rTMS has shown evidence for therapeutic effects. This study took a neuroimaging approach to examine the neuromodulatory effect of rTMS on MdDS. Twenty individuals with MdDS underwent five daily treatments of rTMS over bilateral dorsolateral prefrontal cortex (DLPFC). Participants received 1 Hz over right DLPFC (1200 pulses) followed by 10 Hz over left DLPFC (2000 pulses). Resting state functional magnetic resonance imaging was acquired before and after treatments to determine functional connectivity changes associated with a positive treatment effect. A single-subject-based analysis protocol was developed to capture the degree of resting state functional connectivity (RSFC) between the rTMS target and the entorhinal cortex (EC), an area previously shown to be hypermetabolic in MdDS. Our results showed that rocking motion perception in subjects was modulated by rTMS over the DLPFC. Improvements in symptoms correlated most strongly with a post-rTMS reduction in functional connectivity between the left EC and the precuneus, right inferior parietal lobule, and the contralateral EC, which are part of the posterior default mode network. Positive response to rTMS correlated with higher baseline RSFC between the DLPFC and the EC. Our findings suggest that baseline prefrontal-limbic functional connectivity may serve as a predictor of treatment response to prefrontal stimulation in MdDS and that RSFC may serve as a dynamic biomarker of symptom status.
Collapse
Affiliation(s)
- Han Yuan
- 1 Stephenson School of Biomedical Engineering, University of Oklahoma , Norman, Oklahoma.,2 Laureate Institute for Brain Research , Tulsa, Oklahoma
| | - Guofa Shou
- 1 Stephenson School of Biomedical Engineering, University of Oklahoma , Norman, Oklahoma
| | | | - Lei Ding
- 1 Stephenson School of Biomedical Engineering, University of Oklahoma , Norman, Oklahoma.,2 Laureate Institute for Brain Research , Tulsa, Oklahoma
| | - Yoon-Hee Cha
- 2 Laureate Institute for Brain Research , Tulsa, Oklahoma
| |
Collapse
|
45
|
Van Hoof TJ, Doyle TJ. Learning science as a potential new source of understanding and improvement for continuing education and continuing professional development. MEDICAL TEACHER 2018; 40:880-885. [PMID: 29334306 DOI: 10.1080/0142159x.2018.1425546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Learning science is an emerging interdisciplinary field that offers educators key insights about what happens in the brain when learning occurs. In addition to explanations about the learning process, which includes memory and involves different parts of the brain, learning science offers effective strategies to inform the planning and implementation of activities and programs in continuing education and continuing professional development. This article provides a brief description of learning, including the three key steps of encoding, consolidation and retrieval. The article also introduces four major learning-science strategies, known as distributed learning, retrieval practice, interleaving, and elaboration, which share the importance of considerable practice. Finally, the article describes how learning science aligns with the general findings from the most recent synthesis of systematic reviews about the effectiveness of continuing medical education.
Collapse
Affiliation(s)
- Thomas J Van Hoof
- a University of Connecticut School of Nursing , Storrs , CT , USA
- b Department of Community Medicine and Health Care , University of Connecticut School of Medicine , Farmington , CT , USA
- c Faculty Development , Center for Excellence in Teaching and Learning, University of Connecticut , Storrs , CT , USA
| | - Terrence J Doyle
- d Ferris State University , Big Rapids , MI , USA
- e Learner Centered Teaching Consultants , Big Rapids , MI , USA
| |
Collapse
|
46
|
Transient and Persistent UP States during Slow-wave Oscillation and their Implications for Cell-Assembly Dynamics. Sci Rep 2018; 8:10680. [PMID: 30013083 PMCID: PMC6048140 DOI: 10.1038/s41598-018-28973-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/15/2018] [Indexed: 11/08/2022] Open
Abstract
The membrane potentials of cortical neurons in vivo exhibit spontaneous fluctuations between a depolarized UP state and a resting DOWN state during the slow-wave sleeps or in the resting states. This oscillatory activity is believed to engage in memory consolidation although the underlying mechanisms remain unknown. Recently, it has been shown that UP-DOWN state transitions exhibit significantly different temporal profiles in different cortical regions, presumably reflecting differences in the underlying network structure. Here, we studied in computational models whether and how the connection configurations of cortical circuits determine the macroscopic network behavior during the slow-wave oscillation. Inspired by cortical neurobiology, we modeled three types of synaptic weight distributions, namely, log-normal, sparse log-normal and sparse Gaussian. Both analytic and numerical results suggest that a larger variance of weight distribution results in a larger chance of having significantly prolonged UP states. However, the different weight distributions only produce similar macroscopic behavior. We further confirmed that prolonged UP states enrich the variety of cell assemblies activated during these states. Our results suggest the role of persistent UP states for the prolonged repetition of a selected set of cell assemblies during memory consolidation.
Collapse
|
47
|
Huo Q, Chen M, He Q, Zhang J, Li B, Jin K, Chen X, Long C, Yang L. Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice. Cereb Cortex 2018; 27:4060-4072. [PMID: 27552836 DOI: 10.1093/cercor/bhw218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
Genetic and biochemical studies have focused on the role of amyloid β protein in the pathogenesis of Alzheimer's disease. In comparison, the physiological roles of its precursor protein, amyloid precursor protein (APP), in synaptic and network activity is less well studied. Using an APP knockout (APP-/-) mouse model, we show that the duration of UP state, which is a key feature of cortical synaptic integration occurring predominantly during slow-wave sleep, is significantly increased in the prefrontal cortex (PFC) in the absence of APP. This was accompanied by a specific reduction in the glutamine synthetase and tissue GABA content and sequential upregulation in the levels of GABABR expression. Pharmacological reinforcement of GABA signaling by application of either a GABA uptake inhibitor or an agonist of GABABR rescued the abnormality of UP-state duration and the former rescues altered GABABR expression as well. In addition to revealing an essential role of APP in the regulation of PFC network function, this study evidences the viability of GABA signaling pathway and its receptors, especially GABABRs, as a target for the treatment of aberrant neural network activity and thus information processing.
Collapse
Affiliation(s)
- Qingwei Huo
- School of Psychology South China Normal University, Guangzhou 510631, China.,School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ming Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Quansheng He
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiajia Zhang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bo Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Jin
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Brain Science Institute, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Psychology South China Normal University, Guangzhou 510631, China.,Brain Science Institute, South China Normal University, Guangzhou 510631, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
48
|
Abstract
Spontaneous brain activity, typically investigated using resting-state fMRI (rsfMRI), provides a measure of inter-areal resting-state functional connectivity (RSFC). Although it has been established that RSFC is non-stationary, previous dynamic rsfMRI studies mainly focused on revealing the spatial characteristics of dynamic RSFC patterns, but the temporal relationship between these RSFC patterns remains elusive. Here we investigated the temporal organization of characteristic RSFC patterns in awake rats and humans. We found that transitions between RSFC patterns were not random but followed specific sequential orders. The organization of RSFC pattern transitions was further analyzed using graph theory, and pivotal RSFC patterns in transitions were identified. This study has demonstrated that spontaneous brain activity is not only nonrandom spatially, but also nonrandom temporally, and this feature is well conserved between rodents and humans. These results offer new insights into understanding the spatiotemporal dynamics of spontaneous activity in the mammalian brain.
Collapse
Affiliation(s)
- Zhiwei Ma
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, State College, United States
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Huck Institutes of Life Sciences, The Pennsylvania State University, State College, United States
| |
Collapse
|
49
|
Penagos H, Varela C, Wilson MA. Oscillations, neural computations and learning during wake and sleep. Curr Opin Neurobiol 2018; 44:193-201. [PMID: 28570953 DOI: 10.1016/j.conb.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior.
Collapse
Affiliation(s)
- Hector Penagos
- Center for Brains, Minds and Machines, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carmen Varela
- Center for Brains, Minds and Machines, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A Wilson
- Center for Brains, Minds and Machines, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
50
|
Abstract
Study Objectives: To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call “LOW” activity sleep. Methods: We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260–360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2 Results: LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of “LOW-active” cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. Conclusions: We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI.,Current address: Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yazan N Billeh
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA
| | - Kamran Diba
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI
| |
Collapse
|