1
|
Melton AJ, Palfini VL, Ogawa Y, Oses Prieto JA, Vainshtein A, Burlingame AL, Peles E, Rasband MN. TRIM46 Is Required for Microtubule Fasciculation In Vivo But Not Axon Specification or Axon Initial Segment Formation. J Neurosci 2024; 44:e0976242024. [PMID: 39251352 PMCID: PMC11484549 DOI: 10.1523/jneurosci.0976-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Vertebrate nervous systems use the axon initial segment (AIS) to initiate action potentials and maintain neuronal polarity. The microtubule-associated protein tripartite motif containing 46 (TRIM46) was reported to regulate axon specification, AIS assembly, and neuronal polarity through the bundling, or fasciculation, of microtubules in the proximal axon. However, these claims are based on TRIM46 knockdown in cultured neurons. To investigate TRIM46 function in vivo, we examined male and female TRIM46 knock-out mice. Contrary to previous reports, we find that TRIM46 is dispensable for axon specification and AIS formation. TRIM46 knock-out mice are viable, have normal behavior, and have normal brain structure. Thus, TRIM46 is not required for AIS formation, axon specification, or nervous system function. However, we confirm that TRIM46 is required for microtubule fasciculation. We also show TRIM46 enrichment in the first ∼100 μm of axon occurs independently of ankyrinG (AnkG) in vivo, although AnkG is required to restrict TRIM46 only to the AIS. Our results highlight the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function.
Collapse
Affiliation(s)
- Allison J Melton
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Victoria L Palfini
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Juan A Oses Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
2
|
Escobedo G, Wu Y, Ogawa Y, Ding X, Rasband MN. An evolutionarily conserved AnkyrinG-dependent motif clusters axonal K2P K+ channels. J Cell Biol 2024; 223:e202401140. [PMID: 39078369 PMCID: PMC11289519 DOI: 10.1083/jcb.202401140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
The evolution of ion channel clustering at nodes of Ranvier enabled the development of complex vertebrate nervous systems. At mammalian nodes, the K+ leak channels TRAAK and TREK-1 underlie membrane repolarization. Despite the molecular similarities between nodes and the axon initial segment (AIS), TRAAK and TREK-1 are reportedly node-specific, suggesting a unique clustering mechanism. However, we show that TRAAK and TREK-1 are enriched at both nodes and AIS through a common mechanism. We identified a motif near the C-terminus of TRAAK that is necessary and sufficient for its clustering. The motif first evolved among cartilaginous fish. Using AnkyrinG (AnkG) conditional knockout mice, CRISPR/Cas9-mediated disruption of AnkG, co-immunoprecipitation, and surface recruitment assays, we show that TRAAK forms a complex with AnkG and that AnkG is necessary for TRAAK's AIS and nodal clustering. In contrast, TREK-1's clustering requires TRAAK. Our results expand the repertoire of AIS and nodal ion channel clustering mechanisms and emphasize AnkG's central role in assembling excitable domains.
Collapse
Affiliation(s)
- Gabriel Escobedo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Stankewich MC, Peters LL, Morrow JS. The loss of βΙ spectrin alters synaptic size and composition in the ja/ja mouse. Front Neurosci 2024; 18:1415115. [PMID: 39165342 PMCID: PMC11333264 DOI: 10.3389/fnins.2024.1415115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Deletion or mutation of members of the spectrin gene family contributes to many neurologic and neuropsychiatric disorders. While each spectrinopathy may generate distinct neuropathology, the study of βΙ spectrin's role (Sptb) in the brain has been hampered by the hematologic consequences of its loss. Methods Jaundiced mice (ja/ja) that lack βΙ spectrin suffer a rapidly fatal hemolytic anemia. We have used exchange transfusion of newborn ja/ja mice to blunt their hemolytic pathology, enabling an examination of βΙ spectrin deficiency in the mature mouse brain by ultrastructural and biochemical analysis. Results βΙ spectrin is widely utilized throughout the brain as the βΙΣ2 isoform; it appears by postnatal day 8, and concentrates in the CA1,3 region of the hippocampus, dentate gyrus, cerebellar granule layer, cortical layer 2, medial habenula, and ventral thalamus. It is present in a subset of dendrites and absent in white matter. Without βΙ spectrin there is a 20% reduction in postsynaptic density size in the granule layer of the cerebellum, a selective loss of ankyrinR in cerebellar granule neurons, and a reduction in the level of the postsynaptic adhesion molecule NCAM. While we find no substitution of another spectrin for βΙ at dendrites or synapses, there is curiously enhanced βΙV spectrin expression in the ja/ja brain. Discussion βΙΣ2 spectrin appears to be essential for refining postsynaptic structures through interactions with ankyrinR and NCAM. We speculate that it may play additional roles yet to be discovered.
Collapse
Affiliation(s)
- Michael C. Stankewich
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Jon S. Morrow
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
- Department Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
4
|
Melton AJ, Palfini VL, Ogawa Y, Rasband MN. TRIM46 is not required for axon specification or axon initial segment formation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595556. [PMID: 38826451 PMCID: PMC11142202 DOI: 10.1101/2024.05.23.595556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Vertebrate nervous systems use the axon initial segment (AIS) to initiate action potentials and maintain neuronal polarity. The microtubule-associated protein tripartite motif containing 46 (TRIM46) was reported to regulate axon specification, AIS assembly, and neuronal polarity through the bundling of microtubules in the proximal axon. However, these claims are based on TRIM46 knockdown in cultured neurons. To investigate TRIM46 function in vivo , we examined TRIM46 knockout mice. Contrary to previous reports, we find that TRIM46 is dispensable for AIS formation and maintenance, and axon specification. TRIM46 knockout mice are viable, have normal behavior, and have normal brain structure. Thus, TRIM46 is not required for AIS formation, axon specification, or nervous system function. We also show TRIM46 enrichment in the first ∼100 μm of axon occurs independently of ankyrinG (AnkG), although AnkG is required to restrict TRIM46 only to the AIS. Our results suggest an unidentified protein may compensate for loss of TRIM46 in vivo and highlight the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function. SIGNIFICANCE STATEMENT A healthy nervous system requires the polarization of neurons into structurally and functionally distinct compartments, which depends on both the axon initial segment (AIS) and the microtubule cytoskeleton. In contrast to previous reports, we show that the microtubule-associated protein TRIM46 is not required for axon specification or AIS formation in mice. Our results emphasize the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function.
Collapse
|
5
|
Scherer SS, Svaren J. Peripheral Nervous System (PNS) Myelin Diseases. Cold Spring Harb Perspect Biol 2024; 16:a041376. [PMID: 38253417 PMCID: PMC11065170 DOI: 10.1101/cshperspect.a041376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
This is a review of inherited and acquired causes of human demyelinating neuropathies and a subset of disorders that affect axon-Schwann cell interactions. Nearly all inherited demyelinating neuropathies are caused by mutations in genes that are expressed by myelinating Schwann cells, affecting diverse functions in a cell-autonomous manner. The most common acquired demyelinating neuropathies are Guillain-Barré syndrome and chronic, inflammatory demyelinating polyneuropathy, both of which are immune-mediated. An additional group of inherited and acquired disorders affect axon-Schwann cell interactions in the nodal region. Overall, these disorders affect the formation of myelin and its maintenance, with superimposed axonal loss that is clinically important.
Collapse
Affiliation(s)
- Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John Svaren
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Ding X, Wu Y, Rodriguez V, Ricco E, Okoh JT, Liu Y, Kraushaar DC, Rasband MN. Age-dependent regulation of axoglial interactions and behavior by oligodendrocyte AnkyrinG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587609. [PMID: 38617359 PMCID: PMC11014615 DOI: 10.1101/2024.04.01.587609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice. During development, AnkG is also expressed at comparable levels in oligodendrocytes and facilitates the efficient assembly of paranodal junctions. However, the physiological roles of glial AnkG in the mature nervous system, and its contributions to BD-like phenotypes, remain unexplored. Here, we generated oligodendroglia-specific AnkG conditional knockout mice and observed the destabilization of axoglial interactions in aged but not young adult mice. In addition, these mice exhibited profound histological, electrophysiological, and behavioral pathophysiologies. Unbiased translatomic profiling revealed potential compensatory machineries. These results highlight the critical functions of glial AnkG in maintaining proper axoglial interactions throughout aging and suggests a previously unrecognized contribution of oligodendroglial AnkG to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Victoria Rodriguez
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030
| | - Emily Ricco
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030
| | - James T. Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Yanhong Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Daniel C. Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
7
|
Bekku Y, Zotter B, You C, Piehler J, Leonard WJ, Salzer JL. Glia trigger endocytic clearance of axonal proteins to promote rodent myelination. Dev Cell 2024; 59:627-644.e10. [PMID: 38309265 PMCID: PMC11089820 DOI: 10.1016/j.devcel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Axons undergo striking changes in their content and distribution of cell adhesion molecules (CAMs) and ion channels during myelination that underlies the switch from continuous to saltatory conduction. These changes include the removal of a large cohort of uniformly distributed CAMs that mediate initial axon-Schwann cell interactions and their replacement by a subset of CAMs that mediate domain-specific interactions of myelinated fibers. Here, using rodent models, we examine the mechanisms and significance of this removal of axonal CAMs. We show that Schwann cells just prior to myelination locally activate clathrin-mediated endocytosis (CME) in axons, thereby driving clearance of a broad array of axonal CAMs. CAMs engineered to resist endocytosis are persistently expressed along the axon and delay both PNS and CNS myelination. Thus, glia non-autonomously activate CME in axons to downregulate axonal CAMs and presumptively axo-glial adhesion. This promotes the transition from ensheathment to myelination while simultaneously sculpting the formation of axonal domains.
Collapse
Affiliation(s)
- Yoko Bekku
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Brendan Zotter
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - James L Salzer
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
8
|
Sert O, Ding X, Zhang C, Mi R, Hoke A, Rasband MN. Postsynaptic β1 spectrin maintains Na + channels at the neuromuscular junction. J Physiol 2024; 602:1127-1145. [PMID: 38441922 PMCID: PMC10942750 DOI: 10.1113/jp285894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/16/2024] Open
Abstract
Spectrins function together with actin as obligatory subunits of the submembranous cytoskeleton. Spectrins maintain cell shape, resist mechanical forces, and stabilize ion channel and transporter protein complexes through binding to scaffolding proteins. Recently, pathogenic variants of SPTBN4 (β4 spectrin) were reported to cause both neuropathy and myopathy. Although the role of β4 spectrin in neurons is mostly understood, its function in skeletal muscle, another excitable tissue subject to large forces, is unknown. Here, using a muscle specific β4 spectrin conditional knockout mouse, we show that β4 spectrin does not contribute to muscle function. In addition, we show β4 spectrin is not present in muscle, indicating the previously reported myopathy associated with pathogenic SPTBN4 variants is neurogenic in origin. More broadly, we show that α2, β1 and β2 spectrins are found in skeletal muscle, with α2 and β1 spectrins being enriched at the postsynaptic neuromuscular junction (NMJ). Surprisingly, using muscle specific conditional knockout mice, we show that loss of α2 and β2 spectrins had no effect on muscle health, function or the enrichment of β1 spectrin at the NMJ. Muscle specific deletion of β1 spectrin also had no effect on muscle health, but, with increasing age, resulted in the loss of clustered NMJ Na+ channels. Together, our results suggest that muscle β1 spectrin functions independently of an associated α spectrin to maintain Na+ channel clustering at the postsynaptic NMJ. Furthermore, despite repeated exposure to strong forces and in contrast to neurons, muscles do not require spectrin cytoskeletons to maintain cell shape or integrity. KEY POINTS: The myopathy found in pathogenic human SPTBN4 variants (where SPTBN4 is the gene encoding β4 spectrin) is neurogenic in origin. β1 spectrin plays essential roles in maintaining the density of neuromuscular junction Nav1.4 Na+ channels. By contrast to the canonical view of spectrin organization and function, we show that β1 spectrin can function independently of an associated α spectrin. Despite the large mechanical forces experienced by muscle, we show that spectrins are not required for muscle cell integrity. This is in stark contrast to red blood cells and the axons of neurons.
Collapse
Affiliation(s)
- Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Ruifa Mi
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| |
Collapse
|
9
|
Weiss N, Zamponi GW. The T-type calcium channelosome. Pflugers Arch 2024; 476:163-177. [PMID: 38036777 DOI: 10.1007/s00424-023-02891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
Collapse
Affiliation(s)
- Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Goswami-Sewell D, Bagnetto C, Gomez CC, Anderson JT, Maheshwari A, Zuniga-Sanchez E. βII-Spectrin Is Required for Synaptic Positioning during Retinal Development. J Neurosci 2023; 43:5277-5289. [PMID: 37369589 PMCID: PMC10359034 DOI: 10.1523/jneurosci.0063-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Neural circuit assembly is a multistep process where synaptic partners are often born at distinct developmental stages, and yet they must find each other and form precise synaptic connections with one another. This developmental process often relies on late-born neurons extending their processes to the appropriate layer to find and make synaptic connections to their early-born targets. The molecular mechanism responsible for the integration of late-born neurons into an emerging neural circuit remains unclear. Here, we uncovered a new role for the cytoskeletal protein βII-spectrin in properly positioning presynaptic and postsynaptic neurons to the developing synaptic layer. Loss of βII-spectrin disrupts retinal lamination, leads to synaptic connectivity defects, and results in impaired visual function in both male and female mice. Together, these findings highlight a new function of βII-spectrin in assembling neural circuits in the mouse outer retina.SIGNIFICANCE STATEMENT Neurons that assemble into a functional circuit are often integrated at different developmental time points. However, the molecular mechanism that guides the precise positioning of neuronal processes to the correct layer for synapse formation is relatively unknown. Here, we show a new role for the cytoskeletal scaffolding protein, βII-spectrin in the developing retina. βII-spectrin is required to position presynaptic and postsynaptic neurons to the nascent synaptic layer in the mouse outer retina. Loss of βII-spectrin disrupts positioning of neuronal processes, alters synaptic connectivity, and impairs visual function.
Collapse
Affiliation(s)
| | - Caitlin Bagnetto
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Cesiah C Gomez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph T Anderson
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Akash Maheshwari
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Elizabeth Zuniga-Sanchez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
11
|
Liu B, Zhou L, Sun C, Wang L, Zheng Y, Hu B, Qiao K, Zhao C, Lu J, Lin J. Clinical profile of autoimmune nodopathy with anti-neurofascin 186 antibody. Ann Clin Transl Neurol 2023; 10:944-952. [PMID: 37060203 PMCID: PMC10270277 DOI: 10.1002/acn3.51775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE Nodal/paranodal autoantibodies identified a group of peripheral neuropathies independent from chronic inflammatory demyelinating polyneuropathy (CIDP). However, nodopathy with antibody against neurofascin 186 (NF186) was rarely reported. We presented a cohort of patients with anti-NF186 antibody and described the clinical profile of them. METHODS In this retrospective study, 195 patients diagnosed with CIDP and immune mediated idiopathic neuropathies were enrolled. Cell-based assay was used to screen anti-NF186 and anti-NF155 antibodies in serum samples. Teased-fiber immunofluorescence were used as a confirmatory assay. Clinical data of seropositive patients were collected and analyzed. RESULTS Among the patients with anti-NF186 antibody, seven patients (58.3%) presented acute or subacute disorder onset. Four patients (33.3%) were found to have asymmetric weakness or numbness. Distal weakness and/or numbness was the core feature. Sensory ataxia, tremor and central nervous system demyelination were rarely observed. Nerve conduction studies revealed predominant demyelinating with/without axonal loss. Brachial plexus MRI was normal in the majority of patients (6/7, 85.7%). Five patients (5/9, 55.6%) showed response to intravenous immunoglobulin. Eight patients (8/10, 80.0%) improved after corticosteroids. All patients (3/3,100%) responded to rituximab. INTERPRETATION In the study, we depicted the clinical profile of nodopathy with anti-NF186 antibody. The diversity of clinical features, electrophysiology results and pathological findings was specific in nodopathy with anti-NF186 antibody. Screening of autoantibody against NF186 in acute-onset neuropathy is recommended.
Collapse
Affiliation(s)
- Bingyou Liu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Lei Zhou
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Chong Sun
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Longjie Wang
- Electron Microscopy Center, Department of Nephrology, Huashan Hospital North BranchFudan UniversityShanghaiChina
| | - Yongsheng Zheng
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Bin Hu
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
| | - Kai Qiao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Chongbo Zhao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiahong Lu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Lin
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Gao Z, Jiang C, Zhang J, Jiang X, Li L, Zhao P, Yang H, Huang Y, Li J. Hierarchical graph learning for protein-protein interaction. Nat Commun 2023; 14:1093. [PMID: 36841846 PMCID: PMC9968329 DOI: 10.1038/s41467-023-36736-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, "HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]" is a domain-knowledge-driven and interpretable framework for PPI prediction studies.
Collapse
Affiliation(s)
- Ziqi Gao
- Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China.,Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chenran Jiang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Jiawen Zhang
- Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China
| | - Xiaosen Jiang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Lanqing Li
- AI Lab, Tencent, Shenzhen, 518000, China
| | | | - Huanming Yang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jia Li
- Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China. .,Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
14
|
Bartley CM, Ngo TT, Cadwell CR, Harroud A, Schubert RD, Alvarenga BD, Hawes IA, Zorn KC, Hunyh T, Teliska LH, Kung AF, Shah S, Gelfand JM, Chow FC, Rasband MN, Dubey D, Pittock SJ, DeRisi JL, Wilson MR, Pleasure SJ. Dual ankyrinG and subpial autoantibodies in a man with well-controlled HIV infection with steroid-responsive meningoencephalitis: A case report. Front Neurol 2023; 13:1102484. [PMID: 36756346 PMCID: PMC9900111 DOI: 10.3389/fneur.2022.1102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
Neuroinvasive infection is the most common cause of meningoencephalitis in people living with human immunodeficiency virus (HIV), but autoimmune etiologies have been reported. We present the case of a 51-year-old man living with HIV infection with steroid-responsive meningoencephalitis whose comprehensive pathogen testing was non-diagnostic. Subsequent tissue-based immunofluorescence with acute-phase cerebrospinal fluid revealed anti-neural antibodies localizing to the axon initial segment (AIS), the node of Ranvier (NoR), and the subpial space. Phage display immunoprecipitation sequencing identified ankyrinG (AnkG) as the leading candidate autoantigen. A synthetic blocking peptide encoding the PhIP-Seq-identified AnkG epitope neutralized CSF IgG binding to the AIS and NoR, thereby confirming a monoepitopic AnkG antibody response. However, subpial immunostaining persisted, indicating the presence of additional autoantibodies. Review of archival tissue-based staining identified candidate AnkG autoantibodies in a 60-year-old woman with metastatic ovarian cancer and seizures that were subsequently validated by cell-based assay. AnkG antibodies were not detected by tissue-based assay and/or PhIP-Seq in control CSF (N = 39), HIV CSF (N = 79), or other suspected and confirmed neuroinflammatory CSF cases (N = 1,236). Therefore, AnkG autoantibodies in CSF are rare but extend the catalog of AIS and NoR autoantibodies associated with neurological autoimmunity.
Collapse
Affiliation(s)
- Christopher M. Bartley
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Thomas T. Ngo
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Cathryn R. Cadwell
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Adil Harroud
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ryan D. Schubert
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Bonny D. Alvarenga
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Isobel A. Hawes
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Kelsey C. Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Trung Hunyh
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Lindsay H. Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew F. Kung
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Shailee Shah
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey M. Gelfand
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Felicia C. Chow
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic Foundation, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Rochester, MN, United States
| | - Sean J. Pittock
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Neurology, Mayo Clinic Foundation, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Rochester, MN, United States
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Michael R. Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Samuel J. Pleasure
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
16
|
Teliska LH, Dalla Costa I, Sert O, Twiss JL, Rasband MN. Axon Initial Segments Are Required for Efficient Motor Neuron Axon Regeneration and Functional Recovery of Synapses. J Neurosci 2022; 42:8054-8065. [PMID: 36096668 PMCID: PMC9636994 DOI: 10.1523/jneurosci.1261-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The axon initial segment (AIS) generates action potentials and maintains neuronal polarity by regulating the differential trafficking and distribution of proteins, transport vesicles, and organelles. Injury and disease can disrupt the AIS, and the subsequent loss of clustered ion channels and polarity mechanisms may alter neuronal excitability and function. However, the impact of AIS disruption on axon regeneration after injury is unknown. We generated male and female mice with AIS-deficient multipolar motor neurons by deleting AnkyrinG, the master scaffolding protein required for AIS assembly and maintenance. We found that after nerve crush, neuromuscular junction reinnervation was significantly delayed in AIS-deficient motor neurons compared with control mice. In contrast, loss of AnkyrinG from pseudo-unipolar sensory neurons did not impair axon regeneration into the intraepidermal nerve fiber layer. Even after AIS-deficient motor neurons reinnervated the neuromuscular junction, they failed to functionally recover because of reduced synaptic vesicle protein 2 at presynaptic terminals. In addition, mRNA trafficking was disrupted in AIS-deficient axons. Our results show that, after nerve injury, an intact AIS is essential for efficient regeneration and functional recovery of axons in multipolar motor neurons. Our results also suggest that loss of polarity in AIS-deficient motor neurons impairs the delivery of axonal proteins, mRNAs, and other cargoes necessary for regeneration. Thus, therapeutic strategies for axon regeneration must consider preservation or reassembly of the AIS.SIGNIFICANCE STATEMENT Disruption of the axon initial segment is a common event after nervous system injury. For multipolar motor neurons, we show that axon initial segments are essential for axon regeneration and functional recovery after injury. Our results may help explain injuries where axon regeneration fails, and suggest strategies to promote more efficient axon regeneration.
Collapse
Affiliation(s)
- Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
17
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
18
|
Bartley CM, Ngo TT, Alvarenga BD, Kung AF, Teliska LH, Sy M, DeRisi JL, Rasband MN, Pittock SJ, Dubey D, Wilson MR, Pleasure SJ. βIV-Spectrin Autoantibodies in 2 Individuals With Neuropathy of Possible Paraneoplastic Origin: A Case Series. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1188. [PMID: 35581007 PMCID: PMC9128026 DOI: 10.1212/nxi.0000000000001188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To identify the autoantigen in 2 individuals with possible seronegative paraneoplastic neuropathy. METHODS Serum and CSF were screened by tissue-based assay and panned for candidate autoantibodies by phage display immunoprecipitation sequencing (PhIP-Seq). The candidate antigen was validated by immunostaining knockout tissue and HEK 293T cell-based assay. RESULTS Case 1 presented with gait instability, distal lower extremity numbness, and paresthesias after a recent diagnosis of serous uterine and fallopian carcinoma. Case 2 had a remote history of breast adenocarcinoma and presented with gait instability, distal lower extremity numbness, and paresthesias that progressed to generalized weakness. CSF and serum from both patients immunostained the axon initial segment (AIS) and node of Ranvier (NoR) of mice and enriched βIV-spectrin by PhIP-Seq. Patient CSF and serum failed to immunostain NoRs in dorsal root sensory neurons from βI/βIV-deficient mice. βIV-spectrin autoantibodies were confirmed by overexpression of AIS and nodal βIV-spectrin isoforms Σ1 and Σ6 by a cell-based assay. βIV-spectrin was not enriched in a combined 4,815 PhIP-Seq screens of healthy and other neurologic disease patients. DISCUSSION Therefore, βIV-spectrin autoantibodies may be a marker of paraneoplastic neuropathy. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that βIV-spectrin antibodies are specific autoantibody biomarkers for paraneoplastic neuropathy.
Collapse
Affiliation(s)
| | | | - Bonny D. Alvarenga
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Andrew F. Kung
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Lindsay H. Teliska
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Michael Sy
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Joseph L. DeRisi
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Matthew N. Rasband
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Sean J. Pittock
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Divyanshu Dubey
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Michael R. Wilson
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| | - Samuel J. Pleasure
- From the Weill Institute for Neurosciences (C.M.B., T.T.N., B.D.A., M.R.W., S.J. Pleasure), Department of Psychiatry and Behavioral Sciences (C.M.B., T.T.N.), Department of Neurology (B.D.A., M.R.W., S.J. Pleasure), UCSF School of Medicine (A.F.K.), University of California, San Francisco; Department of Neuroscience (L.H.T., M.N.R.), Baylor College of Medicine, Houston, TX; Department of Neurology (M.S.), University of California, Irvine; Chan Zuckerberg Biohub (J.L.D.), San Francisco, CA; Department of Biochemistry and Biophysics (J.L.D.), University of California, San Francisco; Department of Laboratory Medicine and Pathology (S.J. Pittock, D.D.), Department of Neurology (S.J. Pittock, D.D.), andCenter MS and Autoimmune Neurology (S.J. Pittock, D.D.), Mayo Clinic, Rochester, MN
| |
Collapse
|
19
|
Loss of β4-spectrin impairs Na v channel clustering at the heminode and temporal fidelity of presynaptic spikes in developing auditory brain. Sci Rep 2022; 12:5854. [PMID: 35393465 PMCID: PMC8991253 DOI: 10.1038/s41598-022-09856-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/15/2022] [Indexed: 01/21/2023] Open
Abstract
Beta-4 (β4)-spectrin, encoded by the gene Sptbn4, is a cytoskeleton protein found at nodes and the axon initial segments (AIS). Sptbn4 mutations are associated with myopathy, neuropathy, and auditory deficits in humans. Related to auditory dysfunction, however, the expression and roles of β4-spectrin at axon segments along the myelinated axon in the developing auditory brain are not well explored. We found during postnatal development, β4-spectrin is critical for voltage-gated sodium channel (Nav) clustering at the heminode along the nerve terminal, but not for the formation of nodal and AIS structures in the auditory brainstem. Presynaptic terminal recordings in Sptbn4geo mice, β4-spectrin null mice, showed an elevated threshold of action potential and increased failures during action potential train at high-frequency. Sptbn4geo mice exhibited a slower central conduction and showed no startle responses, but had normal cochlear function. Taken together, the lack of β4-spectrin impairs Nav clustering at the heminode along the nerve terminal and the temporal fidelity and reliability of presynaptic spikes, leading to central auditory processing deficits during postnatal development.
Collapse
|
20
|
Impairment of μ-calpain activation by rhTNFR:Fc reduces severe burn-induced membrane disruption in the heart. Cell Death Dis 2022; 8:10. [PMID: 35013173 PMCID: PMC8748603 DOI: 10.1038/s41420-021-00810-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
Stress cardiomyopathy is a major clinical complication after severe burn. Multiple upstream initiators have been identified; however, the downstream targets are not fully understood. This study assessed the role of the plasma membrane in this process and its relationship with the protease μ-calpain and tumor necrosis factor-alpha (TNF-α). Here, third-degree burn injury of approximately 40% of the total body surface area was established in rats. Plasma levels of LDH and cTnI and cardiac cell apoptosis increased at 0.5 h post burn, reached a peak at 6 h, and gradually declined at 24 h. This effect correlated well with not only the disruption of cytoskeletal proteins, including dystrophin and ankyrin-B, but also with the activation of μ-calpain, as indicated by the cleaved fragments of α-spectrin and membrane recruitment of the catalytic subunit CAPN1. More importantly, these alterations were diminished by blocking calpain activity with MDL28170. Burn injury markedly increased the cellular uptake of Evans blue, indicating membrane integrity disruption, and this effect was also reversed by MDL28170. Compared with those in the control group, cardiac cells in the burn plasma-treated group were more prone to damage, as indicated by a marked decrease in cell viability and increases in LDH release and apoptosis. Of note, these alterations were mitigated by CAPN1 siRNA. Moreover, after neutralizing TNF-α with rhTNFR:Fc, calpain activity was blocked, and heart function was improved. In conclusion, we identified μ-calpain as a trigger for severe burn-induced membrane disruption in the heart and provided evidence for the application of rhTNFR:Fc to inhibit calpain for cardioprotection.
Collapse
|
21
|
Stevens SR, van der Heijden ME, Ogawa Y, Lin T, Sillitoe RV, Rasband MN. Ankyrin-R Links Kv3.3 to the Spectrin Cytoskeleton and Is Required for Purkinje Neuron Survival. J Neurosci 2022; 42:2-15. [PMID: 34785580 PMCID: PMC8741159 DOI: 10.1523/jneurosci.1132-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
Ankyrin scaffolding proteins are critical for membrane domain organization and protein stabilization in many different cell types including neurons. In the cerebellum, Ankyrin-R (AnkR) is highly enriched in Purkinje neurons, granule cells, and in the cerebellar nuclei (CN). Using male and female mice with a floxed allele for Ank1 in combination with Nestin-Cre and Pcp2-Cre mice, we found that ablation of AnkR from Purkinje neurons caused ataxia, regional and progressive neurodegeneration, and altered cerebellar output. We show that AnkR interacts with the cytoskeletal protein β3 spectrin and the potassium channel Kv3.3. Loss of AnkR reduced somatic membrane levels of β3 spectrin and Kv3.3 in Purkinje neurons. Thus, AnkR links Kv3.3 channels to the β3 spectrin-based cytoskeleton. Our results may help explain why mutations in β3 spectrin and Kv3.3 both cause spinocerebellar ataxia.SIGNIFICANCE STATEMENT Ankyrin scaffolding proteins localize and stabilize ion channels in the membrane by linking them to the spectrin-based cytoskeleton. Here, we show that Ankyrin-R (AnkR) links Kv3.3 K+ channels to the β3 spectrin-based cytoskeleton in Purkinje neurons. Loss of AnkR causes Purkinje neuron degeneration, altered cerebellar physiology, and ataxia, which is consistent with mutations in Kv3.3 and β3 spectrin causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Lin
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
22
|
Ultrafast population coding and axo-somatic compartmentalization. PLoS Comput Biol 2022; 18:e1009775. [PMID: 35041645 PMCID: PMC8797191 DOI: 10.1371/journal.pcbi.1009775] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
Populations of cortical neurons respond to common input within a millisecond. Morphological features and active ion channel properties were suggested to contribute to this astonishing processing speed. Here we report an exhaustive study of ultrafast population coding for varying axon initial segment (AIS) location, soma size, and axonal current properties. In particular, we studied their impact on two experimentally observed features 1) precise action potential timing, manifested in a wide-bandwidth dynamic gain, and 2) high-frequency boost under slowly fluctuating correlated input. While the density of axonal channels and their distance from the soma had a very small impact on bandwidth, it could be moderately improved by increasing soma size. When the voltage sensitivity of axonal currents was increased we observed ultrafast coding and high-frequency boost. We conclude that these computationally relevant features are strongly dependent on axonal ion channels’ voltage sensitivity, but not their number or exact location. We point out that ion channel properties, unlike dendrite size, can undergo rapid physiological modification, suggesting that the temporal accuracy of neuronal population encoding could be dynamically regulated. Our results are in line with recent experimental findings in AIS pathologies and establish a framework to study structure-function relations in AIS molecular design. In large nervous systems, a signal often diverges to hundreds or thousands of neurons. This population’s spike rate can track changes in this common input for frequencies up to several hundred Hertz. This ultrafast population response is experimentally well established and critically impacts cortical information processing. Its underlying biophysical determinants, however, are not understood. Experiments suggest that the ion channels at the axon initial segment strongly contribute to the ultrafast response, but recent theoretical studies emphasize the importance of neuron morphology and the resulting resistive coupling between axon and somato-dendritic compartments. We provide an exhaustive analysis of the population response of a simplified multi-compartment model. We vary the axo-somatic interaction and also active axonal properties and compare models at equivalent working points, avoiding bias. This approach provides a guideline for future experimental and theoretical studies. In this framework, the population response is closely associated with the AP generation speed at the AP initiation site, which is mostly determined by axonal ion channel voltage sensitivity. The resistive axo-somatic coupling has an additional modulatory influence. These insights are expected to hold for encoding mechanisms of more sophisticated models, suggesting that physiological changes to axonal ion channels could modulate the population response rapidly.
Collapse
|
23
|
Gao Y, Kong L, Liu S, Liu K, Zhu J. Impact of Neurofascin on Chronic Inflammatory Demyelinating Polyneuropathy via Changing the Node of Ranvier Function: A Review. Front Mol Neurosci 2021; 14:779385. [PMID: 34975399 PMCID: PMC8716720 DOI: 10.3389/fnmol.2021.779385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
The effective conduction of action potential in the peripheral nervous system depends on the structural and functional integrity of the node of Ranvier and paranode. Neurofascin (NF) plays an important role in the conduction of action potential in a saltatory manner. Two subtypes of NF, NF186, and NF155, are involved in the structure of the node of Ranvier. In patients with chronic inflammatory demyelinating polyneuropathy (CIDP), anti-NF antibodies are produced when immunomodulatory dysfunction occurs, which interferes with the conduction of action potential and is considered the main pathogenic factor of CIDP. In this study, we describe the assembling mechanism and anatomical structure of the node of Ranvier and the necessary cell adhesion molecules for its physiological function. The main points of this study are that we summarized the recent studies on the role of anti-NF antibodies in the changes in the node of Ranvier function and its impact on clinical manifestations and analyzed the possible mechanisms underlying the pathogenesis of CIDP.
Collapse
Affiliation(s)
- Ying Gao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lingxin Kong
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
24
|
Membrane excitability: Ankyrins keep neuromuscular junctions firing. Curr Biol 2021; 31:R1061-R1063. [PMID: 34520721 DOI: 10.1016/j.cub.2021.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated sodium channels are clustered and immobilized at high densities in electrically excitable cells. A new study shows that ankyrins are essential to tether sodium channels and prevent synaptic fatigue at the neuromuscular junction.
Collapse
|
25
|
Zhang C, Joshi A, Liu Y, Sert O, Haddix SG, Teliska LH, Rasband A, Rodney GG, Rasband MN. Ankyrin-dependent Na + channel clustering prevents neuromuscular synapse fatigue. Curr Biol 2021; 31:3810-3819.e4. [PMID: 34289389 DOI: 10.1016/j.cub.2021.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023]
Abstract
Skeletal muscle contraction depends on activation of clustered acetylcholine receptors (AchRs) and muscle-specific Na+ channels (Nav1.4). Some Nav1.4 channels are highly enriched at the neuromuscular junction (NMJ), and their clustering is thought to be essential for effective muscle excitation. However, this has not been experimentally tested, and how NMJ Na+ channels are clustered is unknown. Here, using muscle-specific ankyrinR, ankyrinB, and ankyrinG single, double, and triple-conditional knockout mice, we show that Nav1.4 channels fail to cluster only after deletion of all three ankyrins. Remarkably, ankyrin-deficient muscles have normal NMJ morphology, AchR clustering, sarcolemmal levels of Nav1.4, and muscle force, and they show no indication of degeneration. However, mice lacking clustered NMJ Na+ channels have significantly reduced levels of motor activity and their NMJs rapidly fatigue after repeated nerve-dependent stimulation. Thus, the triple redundancy of ankyrins facilitates NMJ Na+ channel clustering to prevent neuromuscular synapse fatigue.
Collapse
Affiliation(s)
- Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhijeet Joshi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanhong Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seth G Haddix
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Stevens SR, Longley CM, Ogawa Y, Teliska LH, Arumanayagam AS, Nair S, Oses-Prieto JA, Burlingame AL, Cykowski MD, Xue M, Rasband MN. Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K + channels. eLife 2021; 10:66491. [PMID: 34180393 PMCID: PMC8257253 DOI: 10.7554/elife.66491] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Neuronal ankyrins cluster and link membrane proteins to the actin and spectrin-based cytoskeleton. Among the three vertebrate ankyrins, little is known about neuronal Ankyrin-R (AnkR). We report AnkR is highly enriched in Pv+ fast-spiking interneurons in mouse and human. We identify AnkR-associated protein complexes including cytoskeletal proteins, cell adhesion molecules (CAMs), and perineuronal nets (PNNs). We show that loss of AnkR from forebrain interneurons reduces and disrupts PNNs, decreases anxiety-like behaviors, and changes the intrinsic excitability and firing properties of Pv+ fast-spiking interneurons. These changes are accompanied by a dramatic reduction in Kv3.1b K+ channels. We identify a novel AnkR-binding motif in Kv3.1b, and show that AnkR is both necessary and sufficient for Kv3.1b membrane localization in interneurons and at nodes of Ranvier. Thus, AnkR regulates Pv+ fast-spiking interneuron function by organizing ion channels, CAMs, and PNNs, and linking these to the underlying β1 spectrin-based cytoskeleton.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Colleen M Longley
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | | - Supna Nair
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
27
|
Deardorff AS, Romer SH, Fyffe RE. Location, location, location: the organization and roles of potassium channels in mammalian motoneurons. J Physiol 2021; 599:1391-1420. [DOI: 10.1113/jp278675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Adam S. Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
- Department of Neurology and Internal Medicine, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| | - Shannon H. Romer
- Odyssey Systems Environmental Health Effects Laboratory, Navy Medical Research Unit‐Dayton Wright‐Patterson Air Force Base OH 45433 USA
| | - Robert E.W. Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine Dayton OH 45435 USA
| |
Collapse
|
28
|
Stevens SR, Rasband MN. Ankyrins and neurological disease. Curr Opin Neurobiol 2021; 69:51-57. [PMID: 33485190 DOI: 10.1016/j.conb.2021.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Ankyrins are scaffolding proteins widely expressed throughout the nervous system. Ankyrins recruit diverse membrane proteins, including ion channels and cell adhesion molecules, into specialized subcellular membrane domains. These domains are stabilized by ankyrins interacting with the spectrin cytoskeleton. Ankyrin genes are highly associated with a number of neurological disorders, including Alzheimer's disease, schizophrenia, autism spectrum disorders, and bipolar disorder. Here, we discuss ankyrin function and their role in neurological disease. We propose mutations in ankyrins contribute to disease through two primary mechanisms: 1) altered neuronal excitability by disrupting ion channel clustering at key excitable domains, and 2) altered neuronal connectivity via impaired stabilization of membrane proteins.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
29
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics identifies neuronal differentiation pathway networks activated by cathepsin inhibition treatment in neuroblastoma cells that are enhanced by concurrent 13-cis retinoic acid treatment. J Proteomics 2020; 232:104068. [PMID: 33278663 DOI: 10.1016/j.jprot.2020.104068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
30
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
31
|
Torii T, Ogawa Y, Liu CH, Ho TSY, Hamdan H, Wang CC, Oses-Prieto JA, Burlingame AL, Rasband MN. NuMA1 promotes axon initial segment assembly through inhibition of endocytosis. J Cell Biol 2020; 219:jcb.201907048. [PMID: 31727776 PMCID: PMC7041696 DOI: 10.1083/jcb.201907048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/22/2022] Open
Abstract
Axon initial segments (AISs) initiate action potentials and regulate the trafficking of vesicles between somatodendritic and axonal compartments. Torii et al. show that NuMA1 is transiently located at the AIS and promotes rapid AIS assembly by inhibiting the endocytosis of neurofascin-186. Axon initial segments (AISs) initiate action potentials and regulate the trafficking of vesicles between somatodendritic and axonal compartments. However, the mechanisms controlling AIS assembly remain poorly defined. We performed differential proteomics and found nuclear mitotic apparatus protein 1 (NuMA1) is downregulated in AIS-deficient neonatal mouse brains and neurons. NuMA1 is transiently located at the AIS during development where it interacts with the scaffolding protein 4.1B and the dynein regulator lissencephaly 1 (Lis1). Silencing NuMA1 or protein 4.1B by shRNA disrupts AIS assembly, but not maintenance. Silencing Lis1 or overexpressing NuMA1 during AIS assembly increased the density of AIS proteins, including ankyrinG and neurofascin-186 (NF186). NuMA1 inhibits the endocytosis of AIS NF186 by impeding Lis1’s interaction with doublecortin, a potent facilitator of NF186 endocytosis. Our results indicate the transient expression and AIS localization of NuMA1 stabilizes the developing AIS by inhibiting endocytosis and removal of AIS proteins.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Cheng-Hsin Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Tammy Szu-Yu Ho
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Hamdan Hamdan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Chih-Chuan Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | | |
Collapse
|
32
|
Lubetzki C, Sol-Foulon N, Desmazières A. Nodes of Ranvier during development and repair in the CNS. Nat Rev Neurol 2020; 16:426-439. [DOI: 10.1038/s41582-020-0375-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
|
33
|
Li J, Chen K, Zhu R, Zhang M. Structural Basis Underlying Strong Interactions between Ankyrins and Spectrins. J Mol Biol 2020; 432:3838-3850. [DOI: 10.1016/j.jmb.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
|
34
|
Liu CH, Seo R, Ho TSY, Stankewich M, Mohler PJ, Hund TJ, Noebels JL, Rasband MN. β spectrin-dependent and domain specific mechanisms for Na + channel clustering. eLife 2020; 9:e56629. [PMID: 32425157 PMCID: PMC7237202 DOI: 10.7554/elife.56629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Previously, we showed that a hierarchy of spectrin cytoskeletal proteins maintains nodal Na+ channels (Liu et al., 2020). Here, using mice lacking β1, β4, or β1/β4 spectrins, we show this hierarchy does not function at axon initial segments (AIS). Although β1 spectrin, together with AnkyrinR (AnkR), compensates for loss of nodal β4 spectrin, it cannot compensate at AIS. We show AnkR lacks the domain necessary for AIS localization. Whereas loss of β4 spectrin causes motor impairment and disrupts AIS, loss of β1 spectrin has no discernable effect on central nervous system structure or function. However, mice lacking both neuronal β1 and β4 spectrin show exacerbated nervous system dysfunction compared to mice lacking β1 or β4 spectrin alone, including profound disruption of AIS Na+ channel clustering, progressive loss of nodal Na+ channels, and seizures. These results further define the important role of AIS and nodal spectrins for nervous system function.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Ryan Seo
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | - Tammy Szu-Yu Ho
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | | | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbusUnited States
| | - Thomas J Hund
- Department of Biomedical Engineering, The Ohio State UniversityColumbusUnited States
| | - Jeffrey L Noebels
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
35
|
Tang L, Huang Q, Qin Z, Tang X. Distinguish CIDP with autoantibody from that without autoantibody: pathogenesis, histopathology, and clinical features. J Neurol 2020; 268:2757-2768. [PMID: 32266541 DOI: 10.1007/s00415-020-09823-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is considered to be an immune-mediated heterogeneous disease involving cellular and humoral immunity. In recent years, autoantibodies against nodal/paranodal protein neurofascin155 (NF155), neurofascin186 (NF186), contactin-1 (CNTN1), and contactin-associated protein 1 (CASPR1) have been identified in a small subset of patients with CIDP, which disrupt axo-glial interactions at nodes/paranodes. Although CIDP electrodiagnosis was made in patients with anti-nodal/paranodal component autoantibodies, macrophage-induced demyelination, the characteristic of typical CIDP, was not observed. Apart from specific histopathology, the pathogenic mechanisms and clinical manifestations of CIDP with autoantibody are also distinct. We herein compared pathogenesis, histopathology, clinical manifestations, and therapeutic response in CIDP with autoantibody vs. CIDP without autoantibody. CIDP with autoantibodies should be considered as an independent disease entity, not a subtype of CIDP due to many differences. They possibly should be classified as CIDP-like chronic nodo-paranodopathy, which can better characterize these disorders, help diagnose and make the most effective therapeutic decisions.
Collapse
Affiliation(s)
- Lisha Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhen Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
36
|
Abstract
The site of action potential initiation in sensory neurons remains poorly understood. In this issue of Neuron, Goldstein et al. (2019) identified the location of the sodium-dependent spike initiation zone (Nav-SIZ) in nociceptive neurons, showing its plasticity under inflammatory conditions.
Collapse
Affiliation(s)
- Sharon R Ha
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
37
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
38
|
Liu CH, Stevens SR, Teliska LH, Stankewich M, Mohler PJ, Hund TJ, Rasband MN. Nodal β spectrins are required to maintain Na + channel clustering and axon integrity. eLife 2020; 9:52378. [PMID: 32052742 PMCID: PMC7018506 DOI: 10.7554/elife.52378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Clustered ion channels at nodes of Ranvier are critical for fast action potential propagation in myelinated axons. Axon-glia interactions converge on ankyrin and spectrin cytoskeletal proteins to cluster nodal Na+ channels during development. However, how nodal ion channel clusters are maintained is poorly understood. Here, we generated mice lacking nodal spectrins in peripheral sensory neurons to uncouple their nodal functions from their axon initial segment functions. We demonstrate a hierarchy of nodal spectrins, where β4 spectrin is the primary spectrin and β1 spectrin can substitute; each is sufficient for proper node organization. Remarkably, mice lacking nodal β spectrins have normal nodal Na+ channel clustering during development, but progressively lose Na+ channels with increasing age. Loss of nodal spectrins is accompanied by an axon injury response and axon deformation. Thus, nodal spectrins are required to maintain nodal Na+ channel clusters and the structural integrity of axons.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States
| | - Thomas J Hund
- Biomedical Engineering, The Ohio State University, Columbus, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
39
|
Mechanisms and Alterations of Cardiac Ion Channels Leading to Disease: Role of Ankyrin-B in Cardiac Function. Biomolecules 2020; 10:biom10020211. [PMID: 32023981 PMCID: PMC7072516 DOI: 10.3390/biom10020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Ankyrin-B (encoded by ANK2), originally identified as a key cytoskeletal-associated protein in the brain, is highly expressed in the heart and plays critical roles in cardiac physiology and cell biology. In the heart, ankyrin-B plays key roles in the targeting and localization of key ion channels and transporters, structural proteins, and signaling molecules. The role of ankyrin-B in normal cardiac function is illustrated in animal models lacking ankyrin-B expression, which display significant electrical and structural phenotypes and life-threatening arrhythmias. Further, ankyrin-B dysfunction has been associated with cardiac phenotypes in humans (now referred to as “ankyrin-B syndrome”) including sinus node dysfunction, heart rate variability, atrial fibrillation, conduction block, arrhythmogenic cardiomyopathy, structural remodeling, and sudden cardiac death. Here, we review the diverse roles of ankyrin-B in the vertebrate heart with a significant focus on ankyrin-B-linked cell- and molecular-pathways and disease.
Collapse
|
40
|
Eshed-Eisenbach Y, Peles E. The clustering of voltage-gated sodium channels in various excitable membranes. Dev Neurobiol 2020; 81:427-437. [PMID: 31859465 DOI: 10.1002/dneu.22728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023]
Abstract
In excitable membranes, the clustering of voltage-gated sodium channels (VGSC) serves to enhance excitability at critical sites. The two most profoundly studied sites of channel clustering are the axon initial segment, where action potentials are generated and the node of Ranvier, where action potentials propagate along myelinated axons. The clustering of VGSC is found, however, in other highly excitable sites such as axonal terminals, postsynaptic membranes of dendrites and muscle fibers, and pre-myelinated axons. In this review, different examples of axonal as well as non-axonal clustering of VGSC are discussed and the underlying mechanisms are compared. Whether the clustering of channels is intrinsically or extrinsically induced, it depends on the submembranous actin-based cytoskeleton that organizes these highly specialized membrane microdomains through specific adaptor proteins.
Collapse
Affiliation(s)
- Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Iijima T, Yoshimura T. A Perspective on the Role of Dynamic Alternative RNA Splicing in the Development, Specification, and Function of Axon Initial Segment. Front Mol Neurosci 2019; 12:295. [PMID: 31866821 PMCID: PMC6906172 DOI: 10.3389/fnmol.2019.00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is a powerful mechanism for molecular and functional diversification. In neurons, alternative splicing extensively controls various developmental steps as well as the plasticity and remodeling of neuronal activity in the adult brain. The axon initial segment (AIS) is the specialized compartment of proximal axons that initiates action potential (AP). At the AIS, the ion channels and cell adhesion molecules (CAMs) required for AP initiation are densely clustered via the scaffolding and cytoskeletal proteins. Notably, recent studies have elucidated that multiple AIS proteins are controlled by extensive alternative splicing in developing and adult brains. Here, we argue the potential role of dynamic regulation of alternative splicing in the development, specification, and functions of the AIS. In particular, we propose the novel concept that alternative splicing potentially modulates the structural and functional plasticity at the AIS.
Collapse
Affiliation(s)
- Takatoshi Iijima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Japan
| |
Collapse
|
42
|
Fledrich R, Kungl T, Nave KA, Stassart RM. Axo-glial interdependence in peripheral nerve development. Development 2019; 146:146/21/dev151704. [PMID: 31719044 DOI: 10.1242/dev.151704] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- Robert Fledrich
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany .,Department of Neuropathology, University Clinic Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
43
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
44
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics reveals novel differentiation proteins in neuroblastoma cells treated with 13-cis retinoic acid. J Proteomics 2019; 209:103491. [PMID: 31472280 DOI: 10.1016/j.jprot.2019.103491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Neuroblastoma, a cancer of the sympathetic nervous system, is the second most common pediatric cancer. A unique feature of neuroblastoma is remission in some patients due to spontaneous differentiation of metastatic tumors. 13-cis retinoic acid (13-cis RA) is currently used in the clinic to treat neuroblastoma due to its differentiation inducing effects. In this study, we used shotgun proteomics to identify proteins affected by 13-cis RA treatment in neuroblastoma SK-N-SH cells. Our results showed that 13-cis RA reduced proteins involved in extracellular matrix synthesis and organization and increased proteins involved in cell adhesion and neurofilament formation. These changes indicate that 13-cis RA induces tumor cell differentiation by decreasing extracellular matrix rigidity and increasing neurite overgrowth. Differentially-affected proteins identified in this study may be novel biomarkers of drug efficacy in the treatment of neuroblastoma. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of novel treatments. 13-cis retinoic acid is currently used in the clinic as a differentiation inducer. Here we have established a proteome map of SK-N-SH cells treated with 13-cis retinoic acid. Bioinformatic analysis revealed the involvement of development, differentiation, extracellular matrix assembly, collagen biosynthesis, and neurofilament bundle association. This proteome map provides information as to which proteins are important for differentiation and identifies networks that can be targeted by drugs to treat neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
45
|
Weber T, Stephan R, Moreno E, Pielage J. The Ankyrin Repeat Domain Controls Presynaptic Localization of Drosophila Ankyrin2 and Is Essential for Synaptic Stability. Front Cell Dev Biol 2019; 7:148. [PMID: 31475145 PMCID: PMC6703079 DOI: 10.3389/fcell.2019.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023] Open
Abstract
The structural integrity of synaptic connections critically depends on the interaction between synaptic cell adhesion molecules (CAMs) and the underlying actin and microtubule cytoskeleton. This interaction is mediated by giant Ankyrins, that act as specialized adaptors to establish and maintain axonal and synaptic compartments. In Drosophila, two giant isoforms of Ankyrin2 (Ank2) control synapse stability and organization at the larval neuromuscular junction (NMJ). Both Ank2-L and Ank2-XL are highly abundant in motoneuron axons and within the presynaptic terminal, where they control synaptic CAMs distribution and organization of microtubules. Here, we address the role of the conserved N-terminal ankyrin repeat domain (ARD) for subcellular localization and function of these giant Ankyrins in vivo. We used a P[acman] based rescue approach to generate deletions of ARD subdomains, that contain putative binding sites of interacting transmembrane proteins. We show that specific subdomains control synaptic but not axonal localization of Ank2-L. These domains contain binding sites to L1-family member CAMs, and we demonstrate that these regions are necessary for the organization of synaptic CAMs and for the control of synaptic stability. In contrast, presynaptic Ank2-XL localization only partially depends on the ARD but strictly requires the presynaptic presence of Ank2-L demonstrating a critical co-dependence of the two isoforms at the NMJ. Ank2-XL dependent control of microtubule organization correlates with presynaptic abundance of the protein and is thus only partially affected by ARD deletions. Together, our data provides novel insights into the synaptic targeting of giant Ankyrins with relevance for the control of synaptic plasticity and maintenance.
Collapse
Affiliation(s)
- Tobias Weber
- Department of Zoology and Neurobiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Raiko Stephan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
46
|
Griggs RB, Yermakov LM, Drouet DE, Nguyen DVM, Susuki K. Methylglyoxal Disrupts Paranodal Axoglial Junctions via Calpain Activation. ASN Neuro 2019; 10:1759091418766175. [PMID: 29673258 PMCID: PMC5944142 DOI: 10.1177/1759091418766175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.
Collapse
Affiliation(s)
- Ryan B Griggs
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Leonid M Yermakov
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Domenica E Drouet
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Duc V M Nguyen
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Keiichiro Susuki
- 1 Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
47
|
Deletion of Class II ADP-Ribosylation Factors in Mice Causes Tremor by the Nav1.6 Loss in Cerebellar Purkinje Cell Axon Initial Segments. J Neurosci 2019; 39:6339-6353. [PMID: 31201232 DOI: 10.1523/jneurosci.2002-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.
Collapse
|
48
|
Liu CH, Rasband MN. Axonal Spectrins: Nanoscale Organization, Functional Domains and Spectrinopathies. Front Cell Neurosci 2019; 13:234. [PMID: 31191255 PMCID: PMC6546920 DOI: 10.3389/fncel.2019.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Spectrin cytoskeletons are found in all metazoan cells, and their physical interactions between actin and ankyrins establish a meshwork that provides cellular structural integrity. With advanced super-resolution microscopy, the intricate spatial organization and associated functional properties of these cytoskeletons can now be analyzed with unprecedented clarity. Long neuronal processes like peripheral sensory and motor axons may be subject to intense mechanical forces including bending, stretching, and torsion. The spectrin-based cytoskeleton is essential to protect axons against these mechanical stresses. Additionally, spectrins are critical for the assembly and maintenance of axonal excitable domains including the axon initial segment and the nodes of Ranvier (NoR). These sites facilitate rapid and efficient action potential initiation and propagation in the nervous system. Recent studies revealed that pathogenic spectrin variants and diseases that protealyze and breakdown spectrins are associated with congenital neurological disorders and nervous system injury. Here, we review recent studies of spectrins in the nervous system and focus on their functions in axonal health and disease.
Collapse
Affiliation(s)
- Cheng-Hsin Liu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew Neil Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
49
|
Saifetiarova J, Bhat MA. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res 2018; 97:313-331. [PMID: 30447021 DOI: 10.1002/jnr.24352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022]
Abstract
The cerebellar cortex receives neural information from other brain regions to allow fine motor coordination and motor learning. The primary output neurons from the cerebellum are the Purkinje neurons that transmit inhibitory responses to deep cerebellar nuclei through their myelinated axons. Altered morphological organization and electrical properties of the Purkinje axons lead to detrimental changes in locomotor activity often leading to cerebellar ataxias. Two cytoskeletal scaffolding proteins Band 4.1B (4.1B) and Whirlin (Whrn) have been previously shown to play independent roles in axonal domain organization and maintenance in myelinated axons in the spinal cord and sciatic nerves. Immunoblot analysis had indicated cerebellar expression for both 4.1B and Whrn; however, their subcellular localization and cerebellum-specific functions have not been characterized. Using 4.1B and Whrn single and double mutant animals, we show that both proteins are expressed in common cellular compartments of the cerebellum and play cooperative roles in preservation of the integrity of Purkinje neuron myelinated axons. We demonstrate that both 4.1B and Whrn are required for the maintenance of axonal ultrastructure and health. Loss of 4.1B and Whrn leads to axonal transport defects manifested by formation of swellings containing cytoskeletal components, membranous organelles, and vesicles. Moreover, ablation of both proteins progressively affects cerebellar function with impairment in locomotor performance detected by altered gait parameters. Together, our data indicate that 4.1B and Whrn are required for maintaining proper axonal cytoskeletal organization and axonal domains, which is necessary for cerebellum-controlled fine motor coordination.
Collapse
Affiliation(s)
- Julia Saifetiarova
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
50
|
Dash B, Han C, Waxman SG, Dib-Hajj SD. Nonmuscle myosin II isoforms interact with sodium channel alpha subunits. Mol Pain 2018; 14:1744806918788638. [PMID: 29956586 PMCID: PMC6052497 DOI: 10.1177/1744806918788638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sodium channels play pivotal roles in health and diseases due to their ability to control cellular excitability. The pore-forming α-subunits (sodium channel alpha subunits) of the voltage-sensitive channels (i.e., Nav1.1–1.9) and the nonvoltage-dependent channel (i.e., Nax) share a common structural motif and selectivity for sodium ions. We hypothesized that the actin-based nonmuscle myosin II motor proteins, nonmuscle myosin heavy chain-IIA/myh9, and nonmuscle myosin heavy chain-IIB/myh10 might interact with sodium channel alpha subunits to play an important role in their transport, trafficking, and/or function. Immunochemical and electrophysiological assays were conducted using rodent nervous (brain and dorsal root ganglia) tissues and ND7/23 cells coexpressing Nav subunits and recombinant myosins. Immunoprecipitation of myh9 and myh10 from rodent brain tissues led to the coimmunoprecipitation of Nax, Nav1.2, and Nav1.3 subunits, but not Nav1.1 and Nav1.6 subunits, expressed there. Similarly, immunoprecipitation of myh9 and myh10 from rodent dorsal root ganglia tissues led to the coimmunoprecipitation of Nav1.7 and Nav1.8 subunits, but not Nav1.9 subunits, expressed there. The functional implication of one of these interactions was assessed by coexpressing myh10 along with Nav1.8 subunits in ND7/23 cells. Myh10 overexpression led to three-fold increase (P < 0.01) in the current density of Nav1.8 channels expressed in ND7/23 cells. Myh10 coexpression also hyperpolarized voltage-dependent activation and steady-state fast inactivation of Nav1.8 channels. In addition, coexpression of myh10 reduced (P < 0.01) the offset of fast inactivation and the amplitude of the ramp currents of Nav1.8 channels. These results indicate that nonmuscle myosin heavy chain-IIs interact with sodium channel alpha subunits subunits in an isoform-dependent manner and influence their functional properties.
Collapse
Affiliation(s)
- Bhagirathi Dash
- 1 Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,2 Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Chongyang Han
- 1 Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,2 Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- 1 Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,2 Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- 1 Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,2 Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA.,3 Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|