1
|
Roos A, Schmitt LI, Hansmann C, Hezel S, Salmanian S, Hentschel A, Meyer N, Marina AD, Kölbel H, Kleinschnitz C, Schara-Schmidt U, Leo M, Hagenacker T. Alteration of LARGE1 abundance in patients and a mouse model of 5q-associated spinal muscular atrophy. Acta Neuropathol 2024; 147:53. [PMID: 38470509 PMCID: PMC10933199 DOI: 10.1007/s00401-024-02709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by recessive pathogenic variants affecting the survival of motor neuron (SMN1) gene (localized on 5q). In consequence, cells lack expression of the corresponding protein. This pathophysiological condition is clinically associated with motor neuron (MN) degeneration leading to severe muscular atrophy. Additionally, vulnerability of other cellular populations and tissues including skeletal muscle has been demonstrated. Although the therapeutic options for SMA have considerably changed, treatment responses may differ thus underlining the persistent need for validated biomarkers. To address this need and to identify novel marker proteins for SMA, we performed unbiased proteomic profiling on cerebrospinal fluid derived (CSF) from genetically proven SMA type 1-3 cases and afterwards performed ELISA studies on CSF and serum samples to validate the potential of a novel biomarker candidates in both body fluids. To further decipher the pathophysiological impact of this biomarker, immunofluorescence studies were carried out on spinal cord and skeletal muscle derived from a 5q-SMA mouse model. Proteomics revealed increase of LARGE1 in CSF derived from adult patients showing a clinical response upon treatment with nusinersen. Moreover, LARGE1 levels were validated in CSF samples of further SMA patients (type 1-3) by ELISA. These studies also unveiled a distinguishment between groups in improvement of motor skills: adult patients do present with lowered level per se at baseline visit while no elevation upon treatment in the pediatric cohort can be observed. ELISA-based studies of serum samples showed no changes in the pediatric cohort but unraveled elevated level in adult patients responding to future intervention with nusinersen, while non-responders did not show a significant increase. Additional immunofluorescence studies of LARGE1 in MN and skeletal muscle of a SMA type 3 mouse model revealed an increase of LARGE1 during disease progression. Our combined data unraveled LARGE1 as a protein dysregulated in serum and CSF of SMA-patients (and in MN and skeletal muscle of SMA mice) holding the potential to serve as a disease marker for SMA and enabling to differentiate between patients responding and non-responding to therapy with nusinersen.
Collapse
Affiliation(s)
- Andreas Roos
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Linda-Isabell Schmitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Christina Hansmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Stefanie Hezel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Schahin Salmanian
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany, Otto-Hahn-Strasse 6B, 44227, Dortmund, Germany
| | - Nancy Meyer
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
2
|
Ovsepian SV, O'Leary VB, Martinez S. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates. Brain Struct Funct 2024; 229:1-14. [PMID: 37999738 PMCID: PMC10827929 DOI: 10.1007/s00429-023-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article, we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability of the disease to identify targets for clinical interventions.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, Avda. Ramon y Cajal, 03550, San Juan de Alicante, Spain.
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
3
|
Bremer J, Meinhardt A, Katona I, Senderek J, Kämmerer‐Gassler EK, Roos A, Ferbert A, Schröder JM, Nikolin S, Nolte K, Sellhaus B, Popzhelyazkova K, Tacke F, Schara‐Schmidt U, Neuen‐Jacob E, de Groote CC, de Jonghe P, Timmerman V, Baets J, Weis J. Myelin protein zero mutation-related hereditary neuropathies: Neuropathological insight from a new nerve biopsy cohort. Brain Pathol 2024; 34:e13200. [PMID: 37581289 PMCID: PMC10711263 DOI: 10.1111/bpa.13200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.
Collapse
Affiliation(s)
- Juliane Bremer
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Axel Meinhardt
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Istvan Katona
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Jan Senderek
- Friedrich Baur Institute at the Department of NeurologyUniversity Hospital, LMU MunichMunichGermany
| | | | - Andreas Roos
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
- Department of NeuropaediatricsUniversity of EssenEssenGermany
| | | | | | - Stefan Nikolin
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Kay Nolte
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Bernd Sellhaus
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin BerlinCampus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)BerlinGermany
| | | | - Eva Neuen‐Jacob
- Department of NeuropathologyUniversity Hospital, Heinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Chantal Ceuterick de Groote
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
| | - Peter de Jonghe
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
- Department of NeurologyUniversity Hospital AntwerpAntwerpBelgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
- Peripheral Neuropathy Research Group, Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
- Department of NeurologyUniversity Hospital AntwerpAntwerpBelgium
| | - Joachim Weis
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| |
Collapse
|
4
|
Gonzalo-Gobernado R, Moreno-Martínez L, González P, Dopazo XM, Calvo AC, Pidal-Ladrón de Guevara I, Seisdedos E, Díaz-Muñoz R, Mellström B, Osta R, Naranjo JR. Repaglinide Induces ATF6 Processing and Neuroprotection in Transgenic SOD1G93A Mice. Int J Mol Sci 2023; 24:15783. [PMID: 37958767 PMCID: PMC10648964 DOI: 10.3390/ijms242115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The interaction of the activating transcription factor 6 (ATF6), a key effector of the unfolded protein response (UPR) in the endoplasmic reticulum, with the neuronal calcium sensor Downstream Regulatory Element Antagonist Modulator (DREAM) is a potential therapeutic target in neurodegeneration. Modulation of the ATF6-DREAM interaction with repaglinide (RP) induced neuroprotection in a model of Huntington's disease. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no cure, characterized by the progressive loss of motoneurons resulting in muscle denervation, atrophy, paralysis, and death. The aim of this work was to investigate the potential therapeutic significance of DREAM as a target for intervention in ALS. We found that the expression of the DREAM protein was reduced in the spinal cord of SOD1G93A mice compared to wild-type littermates. RP treatment improved motor strength and reduced the expression of the ALS progression marker collagen type XIXα1 (Col19α1 mRNA) in the quadriceps muscle in SOD1G93A mice. Moreover, treated SOD1G93A mice showed reduced motoneuron loss and glial activation and increased ATF6 processing in the spinal cord. These results indicate that the modulation of the DREAM-ATF6 interaction ameliorates ALS symptoms in SOD1G93A mice.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Laura Moreno-Martínez
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Paz González
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Xose Manuel Dopazo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Ana Cristina Calvo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Isabel Pidal-Ladrón de Guevara
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Elisa Seisdedos
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Rodrigo Díaz-Muñoz
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Britt Mellström
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Rosario Osta
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - José Ramón Naranjo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| |
Collapse
|
5
|
De Lorenzo F, Lüningschrör P, Nam J, Beckett L, Pilotto F, Galli E, Lindholm P, Rüdt von Collenberg C, Mungwa ST, Jablonka S, Kauder J, Thau-Habermann N, Petri S, Lindholm D, Saxena S, Sendtner M, Saarma M, Voutilainen MH. CDNF rescues motor neurons in models of amyotrophic lateral sclerosis by targeting endoplasmic reticulum stress. Brain 2023; 146:3783-3799. [PMID: 36928391 PMCID: PMC10473573 DOI: 10.1093/brain/awad087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Francesca De Lorenzo
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Jinhan Nam
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Liam Beckett
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Federica Pilotto
- Department of Neurology, Inselspital University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Emilia Galli
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | - Simon Tii Mungwa
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Julia Kauder
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, FIN-00014 Helsinki, Finland
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
6
|
Xue X, Wu X, Liu L, Liu L, Zhu F. ERVW-1 Activates ATF6-Mediated Unfolded Protein Response by Decreasing GANAB in Recent-Onset Schizophrenia. Viruses 2023; 15:1298. [PMID: 37376599 PMCID: PMC10304270 DOI: 10.3390/v15061298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Schizophrenia, a mental disorder, afflicts 1% of the worldwide population. The dysregulation of homeostasis in the endoplasmic reticulum (ER) has been implicated in schizophrenia. Moreover, recent studies indicate that ER stress and the unfolded protein response (UPR) are linked to this mental disorder. Our previous research has verified that endogenous retrovirus group W member 1 envelope (ERVW-1), a risk factor for schizophrenia, is elevated in individuals with schizophrenia. Nevertheless, no literature is available regarding the underlying relationship between ER stress and ERVW-1 in schizophrenia. The aim of our research was to investigate the molecular mechanism connecting ER stress and ERVW-1 in schizophrenia. Here, we employed Gene Differential Expression Analysis to predict differentially expressed genes (DEGs) in the human prefrontal cortex of schizophrenic patients and identified aberrant expression of UPR-related genes. Subsequent research indicated that the UPR gene called XBP1 had a positive correlation with ATF6, BCL-2, and ERVW-1 in individuals with schizophrenia using Spearman correlation analysis. Furthermore, results from the enzyme-linked immunosorbent assay (ELISA) suggested increased serum protein levels of ATF6 and XBP1 in schizophrenic patients compared with healthy controls, exhibiting a strong correlation with ERVW-1 using median analysis and Mann-Whitney U analysis. However, serum GANAB levels were decreased in schizophrenic patients compared with controls and showed a significant negative correlation with ERVW-1, ATF6, and XBP1 in schizophrenic patients. Interestingly, in vitro experiments verified that ERVW-1 indeed increased ATF6 and XBP1 expression while decreasing GANAB expression. Additionally, the confocal microscope experiment suggested that ERVW-1 could impact the shape of the ER, leading to ER stress. GANAB was found to participate in ER stress regulated by ERVW-1. In conclusion, ERVW-1 induced ER stress by suppressing GANAB expression, thereby upregulating the expression of ATF6 and XBP1 and ultimately contributing to the development of schizophrenia.
Collapse
Affiliation(s)
- Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| | | | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (X.X.); (X.W.); (L.L.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Yamoah A, Tripathi P, Guo H, Scheve L, Walter P, Johnen S, Müller F, Weis J, Goswami A. Early Alterations of RNA Binding Protein (RBP) Homeostasis and ER Stress-Mediated Autophagy Contributes to Progressive Retinal Degeneration in the rd10 Mouse Model of Retinitis Pigmentosa (RP). Cells 2023; 12:cells12071094. [PMID: 37048167 PMCID: PMC10092976 DOI: 10.3390/cells12071094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
The retinal degeneration 10 (rd10) mouse model is widely used to study retinitis pigmentosa (RP) pathomechanisms. It offers a rather unique opportunity to study trans-neuronal degeneration because the cell populations in question are separated anatomically and the mutated Pde6b gene is selectively expressed in rod photoreceptors. We hypothesized that RNA binding protein (RBP) aggregation and abnormal autophagy might serve as early pathogenic events, damaging non-photoreceptor retinal cell types that are not primarily targeted by the Pde6b gene defect. We used a combination of immunohistochemistry (DAB, immunofluorescence), electron microscopy (EM), subcellular fractionation, and Western blot analysis on the retinal preparations obtained from both rd10 and wild-type mice. We found early, robust increases in levels of the protective endoplasmic reticulum (ER) calcium (Ca2+) buffering chaperone Sigma receptor 1 (SigR1) together with other ER-Ca2+ buffering proteins in both photoreceptors and non-photoreceptor neuronal cells before any noticeable photoreceptor degeneration. In line with this, we found markedly altered expression of the autophagy proteins p62 and LC3, together with abnormal ER widening and large autophagic vacuoles as detected by EM. Interestingly, these changes were accompanied by early, prominent cytoplasmic and nuclear aggregation of the key RBPs including pTDP-43 and FET family RBPs and stress granule formation. We conclude that progressive neurodegeneration in the rd10 mouse retina is associated with early disturbances of proteostasis and autophagy, along with abnormal cytoplasmic RBP aggregation.
Collapse
Affiliation(s)
- Alfred Yamoah
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- EURON-European Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Priyanka Tripathi
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- EURON-European Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Haihong Guo
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Leonie Scheve
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Frank Müller
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
9
|
PolyGA targets the ER stress-adaptive response by impairing GRP75 function at the MAM in C9ORF72-ALS/FTD. Acta Neuropathol 2022; 144:939-966. [PMID: 36121477 PMCID: PMC9547809 DOI: 10.1007/s00401-022-02494-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
ER stress signaling is linked to the pathophysiological and clinical disease manifestations in amyotrophic lateral sclerosis (ALS). Here, we have investigated ER stress-induced adaptive mechanisms in C9ORF72-ALS/FTD, focusing on uncovering early endogenous neuroprotective mechanisms and the crosstalk between pathological and adaptive responses in disease onset and progression. We provide evidence for the early onset of ER stress-mediated adaptive response in C9ORF72 patient-derived motoneurons (MNs), reflected by the elevated increase in GRP75 expression. These transiently increased GRP75 levels enhance ER-mitochondrial association, boosting mitochondrial function and sustaining cellular bioenergetics during the initial stage of disease, thereby counteracting early mitochondrial deficits. In C9orf72 rodent neurons, an abrupt reduction in GRP75 expression coincided with the onset of UPR, mitochondrial dysfunction and the emergence of PolyGA aggregates, which co-localize with GRP75. Similarly, the overexpression of PolyGA in WT cortical neurons or C9ORF72 patient-derived MNs led to the sequestration of GRP75 within PolyGA inclusions, resulting in mitochondrial calcium (Ca2+) uptake impairments. Corroborating these findings, we found that PolyGA aggregate-bearing human post-mortem C9ORF72 hippocampal dentate gyrus neurons not only display reduced expression of GRP75 but also exhibit GRP75 sequestration within inclusions. Sustaining high GRP75 expression in spinal C9orf72 rodent MNs specifically prevented ER stress, normalized mitochondrial function, abrogated PolyGA accumulation in spinal MNs, and ameliorated ALS-associated behavioral phenotype. Taken together, our results are in line with the notion that neurons in C9ORF72-ALS/FTD are particularly susceptible to ER-mitochondrial dysfunction and that GRP75 serves as a critical endogenous neuroprotective factor. This neuroprotective pathway, is eventually targeted by PolyGA, leading to GRP75 sequestration, and its subsequent loss of function at the MAM, compromising mitochondrial function and promoting disease onset.
Collapse
|
10
|
Hawkinson TR, Clarke HA, Young LEA, Conroy LR, Markussen KH, Kerch KM, Johnson LA, Nelson PT, Wang C, Allison DB, Gentry MS, Sun RC. In situ spatial glycomic imaging of mouse and human Alzheimer's disease brains. Alzheimers Dement 2022; 18:1721-1735. [PMID: 34908231 PMCID: PMC9198106 DOI: 10.1002/alz.12523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 01/28/2023]
Abstract
N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.
Collapse
Affiliation(s)
- Tara R. Hawkinson
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Harrison A. Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kayla M. Kerch
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lance A. Johnson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T. Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ramon C. Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Preusse C, Marteau T, Fischer N, Hentschel A, Sickmann A, Lang S, Schneider U, Schara-Schmidt U, Meyer N, Ruck T, Dengler NF, Prudlo J, Dudesek A, Görl N, Allenbach Y, Benveniste O, Goebel HH, Dittmayer C, Stenzel W, Roos A. Endoplasmic reticulum-stress and unfolded protein response-activation in immune-mediated necrotizing myopathy. Brain Pathol 2022; 32:e13084. [PMID: 35703068 DOI: 10.1111/bpa.13084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from immune-mediated necrotizing myopathies (IMNM) harbor, the pathognomonic myositis-specific auto-antibodies anti-SRP54 or -HMGCR, while about one third of them do not. Activation of chaperone-assisted autophagy was described as being part of the molecular etiology of IMNM. Endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR)-stress accompanied by activation of the unfolded protein response (UPR) often precedes activation of the protein clearance machinery and represents a cellular defense mechanism toward restoration of proteostasis. Here, we show that ER/SR-stress may be part of the molecular etiology of IMNM. To address this assumption, ER/SR-stress related key players covering the three known branches (PERK-mediated, IRE1-mediated, and ATF6-mediated) were investigated on both, the transcript and the protein levels utilizing 39 muscle biopsy specimens derived from IMNM-patients. Our results demonstrate an activation of all three UPR-branches in IMNM, which most likely precedes the activation of the protein clearance machinery. In detail, we identified increased phosphorylation of PERK and eIF2a along with increased expression and protein abundance of ATF4, all well-documented characteristics for the activation of the UPR. Further, we identified increased general XBP1-level, and elevated XBP1 protein levels. Additionally, our transcript studies revealed an increased ATF6-expression, which was confirmed by immunostaining studies indicating a myonuclear translocation of the cleaved ATF6-form toward the forced transcription of UPR-related chaperones. In accordance with that, our data demonstrate an increase of downstream factors including ER/SR co-chaperones and chaperones (e.g., SIL1) indicating an UPR-activation on a broader level with no significant differences between seropositive and seronegative patients. Taken together, one might assume that UPR-activation within muscle fibers might not only serve to restore protein homeostasis, but also enhance sarcolemmal presentation of proteins crucial for attracting immune cells. Since modulation of ER-stress and UPR via application of chemical chaperones became a promising therapeutic treatment approach, our findings might represent the starting point for new interventional concepts.
Collapse
Affiliation(s)
- Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Theodore Marteau
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Norina Fischer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Udo Schneider
- Department of Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Schara-Schmidt
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Nancy Meyer
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Prudlo
- Department of Neurology, Rostock University Medical Center, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany.,Department of Neurology, University of Rostock, Rostock, Germany
| | - Ales Dudesek
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Norman Görl
- Department of Internal Medicine, Klinikum Südstadt Rostock, Rostock, Germany
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, University Hospital Mainz, Mainz, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, University Children's Hospital, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
François-Moutal L, Scott DD, Ambrose AJ, Zerio CJ, Rodriguez-Sanchez M, Dissanayake K, May DG, Carlson JM, Barbieri E, Moutal A, Roux KJ, Shorter J, Khanna R, Barmada SJ, McGurk L, Khanna M. Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology. Sci Rep 2022; 12:8140. [PMID: 35581326 PMCID: PMC9114370 DOI: 10.1038/s41598-022-12191-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - David Donald Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Andrew J Ambrose
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher J Zerio
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Kumara Dissanayake
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob M Carlson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Edward Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - James Shorter
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leeanne McGurk
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA. .,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA. .,Department of Molecular Pathobiology, NYU, New York, NY, USA. .,Department of Molecular Pathobiology, College of Dentistry, NYU, 433 1st Ave, New York, NY, 10010, USA.
| |
Collapse
|
13
|
Deneubourg C, Ramm M, Smith LJ, Baron O, Singh K, Byrne SC, Duchen MR, Gautel M, Eskelinen EL, Fanto M, Jungbluth H. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy 2022; 18:496-517. [PMID: 34130600 PMCID: PMC9037555 DOI: 10.1080/15548627.2021.1943177] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Primary dysfunction of autophagy due to Mendelian defects affecting core components of the autophagy machinery or closely related proteins have recently emerged as an important cause of genetic disease. This novel group of human disorders may present throughout life and comprises severe early-onset neurodevelopmental and more common adult-onset neurodegenerative disorders. Early-onset (or congenital) disorders of autophagy often share a recognizable "clinical signature," including variable combinations of neurological, neuromuscular and multisystem manifestations. Structural CNS abnormalities, cerebellar involvement, spasticity and peripheral nerve pathology are prominent neurological features, indicating a specific vulnerability of certain neuronal populations to autophagic disturbance. A typically biphasic disease course of late-onset neurodegeneration occurring on the background of a neurodevelopmental disorder further supports a role of autophagy in both neuronal development and maintenance. Additionally, an associated myopathy has been characterized in several conditions. The differential diagnosis comprises a wide range of other multisystem disorders, including mitochondrial, glycogen and lysosomal storage disorders, as well as ciliopathies, glycosylation and vesicular trafficking defects. The clinical overlap between the congenital disorders of autophagy and these conditions reflects the multiple roles of the proteins and/or emerging molecular connections between the pathways implicated and suggests an exciting area for future research. Therapy development for congenital disorders of autophagy is still in its infancy but may result in the identification of molecules that target autophagy more specifically than currently available compounds. The close connection with adult-onset neurodegenerative disorders highlights the relevance of research into rare early-onset neurodevelopmental conditions for much more common, age-related human diseases.Abbreviations: AC: anterior commissure; AD: Alzheimer disease; ALR: autophagic lysosomal reformation; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ASD: autism spectrum disorder; ATG: autophagy related; BIN1: bridging integrator 1; BPAN: beta-propeller protein associated neurodegeneration; CC: corpus callosum; CHMP2B: charged multivesicular body protein 2B; CHS: Chediak-Higashi syndrome; CMA: chaperone-mediated autophagy; CMT: Charcot-Marie-Tooth disease; CNM: centronuclear myopathy; CNS: central nervous system; DNM2: dynamin 2; DPR: dipeptide repeat protein; DVL3: disheveled segment polarity protein 3; EPG5: ectopic P-granules autophagy protein 5 homolog; ER: endoplasmic reticulum; ESCRT: homotypic fusion and protein sorting complex; FIG4: FIG4 phosphoinositide 5-phosphatase; FTD: frontotemporal dementia; GBA: glucocerebrosidase; GD: Gaucher disease; GRN: progranulin; GSD: glycogen storage disorder; HC: hippocampal commissure; HD: Huntington disease; HOPS: homotypic fusion and protein sorting complex; HSPP: hereditary spastic paraparesis; LAMP2A: lysosomal associated membrane protein 2A; MEAX: X-linked myopathy with excessive autophagy; mHTT: mutant huntingtin; MSS: Marinesco-Sjoegren syndrome; MTM1: myotubularin 1; MTOR: mechanistic target of rapamycin kinase; NBIA: neurodegeneration with brain iron accumulation; NCL: neuronal ceroid lipofuscinosis; NPC1: Niemann-Pick disease type 1; PD: Parkinson disease; PtdIns3P: phosphatidylinositol-3-phosphate; RAB3GAP1: RAB3 GTPase activating protein catalytic subunit 1; RAB3GAP2: RAB3 GTPase activating non-catalytic protein subunit 2; RB1: RB1-inducible coiled-coil protein 1; RHEB: ras homolog, mTORC1 binding; SCAR20: SNX14-related ataxia; SENDA: static encephalopathy of childhood with neurodegeneration in adulthood; SNX14: sorting nexin 14; SPG11: SPG11 vesicle trafficking associated, spatacsin; SQSTM1: sequestosome 1; TBC1D20: TBC1 domain family member 20; TECPR2: tectonin beta-propeller repeat containing 2; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; UBQLN2: ubiquilin 2; VCP: valosin-containing protein; VMA21: vacuolar ATPase assembly factor VMA21; WDFY3/ALFY: WD repeat and FYVE domain containing protein 3; WDR45: WD repeat domain 45; WDR47: WD repeat domain 47; WMS: Warburg Micro syndrome; XLMTM: X-linked myotubular myopathy; ZFYVE26: zinc finger FYVE-type containing 26.
Collapse
Affiliation(s)
- Celine Deneubourg
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Mauricio Ramm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Luke J. Smith
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Olga Baron
- Wolfson Centre for Age-Related Diseases, King’s College London, London, UK
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Susan C. Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Potenza F, Cufaro MC, Di Biase L, Panella V, Di Campli A, Ruggieri AG, Dufrusine B, Restelli E, Pietrangelo L, Protasi F, Pieragostino D, De Laurenzi V, Federici L, Chiesa R, Sallese M. Proteomic Analysis of Marinesco-Sjogren Syndrome Fibroblasts Indicates Pro-Survival Metabolic Adaptation to SIL1 Loss. Int J Mol Sci 2021; 22:12449. [PMID: 34830330 PMCID: PMC8620507 DOI: 10.3390/ijms222212449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Marinesco-Sjogren syndrome (MSS) is a rare multisystem pediatric disorder, caused by loss-of-function mutations in the gene encoding the endoplasmic reticulum cochaperone SIL1. SIL1 acts as a nucleotide exchange factor for BiP, which plays a central role in secretory protein folding. SIL1 mutant cells have reduced BiP-assisted protein folding, cannot fulfil their protein needs, and experience chronic activation of the unfolded protein response (UPR). Maladaptive UPR may explain the cerebellar and skeletal muscle degeneration responsible for the ataxia and muscle weakness typical of MSS. However, the cause of other more variable, clinical manifestations, such as mild to severe mental retardation, hypogonadism, short stature, and skeletal deformities, is less clear. To gain insights into the pathogenic mechanisms and/or adaptive responses to SIL1 loss, we carried out cell biological and proteomic investigations in skin fibroblasts derived from a young patient carrying the SIL1 R111X mutation. Despite fibroblasts not being overtly affected in MSS, we found morphological and biochemical changes indicative of UPR activation and altered cell metabolism. All the cell machineries involved in RNA splicing and translation were strongly downregulated, while protein degradation via lysosome-based structures was boosted, consistent with an attempt of the cell to reduce the workload of the endoplasmic reticulum and dispose of misfolded proteins. Cell metabolism was extensively affected as we observed a reduction in lipid synthesis, an increase in beta oxidation, and an enhancement of the tricarboxylic acid cycle, with upregulation of eight of its enzymes. Finally, the catabolic pathways of various amino acids, including valine, leucine, isoleucine, tryptophan, lysine, aspartate, and phenylalanine, were enhanced, while the biosynthetic pathways of arginine, serine, glycine, and cysteine were reduced. These results indicate that, in addition to UPR activation and increased protein degradation, MSS fibroblasts have profound metabolic alterations, which may help them cope with the absence of SIL1.
Collapse
Affiliation(s)
- Francesca Potenza
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Linda Di Biase
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| | - Valeria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Antonella Di Campli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), 80131 Napoli, Italy
| | - Anna Giulia Ruggieri
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.R.); (R.C.)
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (E.R.); (R.C.)
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.D.B.); (A.G.R.); (B.D.); (D.P.); (V.D.L.); (L.F.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (A.D.C.); (L.P.); (F.P.)
| |
Collapse
|
15
|
Pathomechanisms of ALS8: altered autophagy and defective RNA binding protein (RBP) homeostasis due to the VAPB P56S mutation. Cell Death Dis 2021; 12:466. [PMID: 33972508 PMCID: PMC8110809 DOI: 10.1038/s41419-021-03710-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
Mutations in RNA binding proteins (RBPs) and in genes regulating autophagy are frequent causes of familial amyotrophic lateral sclerosis (fALS). The P56S mutation in vesicle-associated membrane protein-associated protein B (VAPB) leads to fALS (ALS8) and spinal muscular atrophy (SMA). While VAPB is primarily involved in the unfolded protein response (UPR), vesicular trafficking and in initial steps of the autophagy pathway, the effect of mutant P56S-VAPB on autophagy regulation in connection with RBP homeostasis has not been explored yet. Examining the muscle biopsy of our index ALS8 patient of European origin revealed globular accumulations of VAPB aggregates co-localised with autophagy markers LC3 and p62 in partially atrophic and atrophic muscle fibres. In line with this skin fibroblasts obtained from the same patient showed accumulation of P56S-VAPB aggregates together with LC3 and p62. Detailed investigations of autophagic flux in cell culture models revealed that P56S-VAPB alters both initial and late steps of the autophagy pathway. Accordingly, electron microscopy complemented with live cell imaging highlighted the impaired fusion of accumulated autophagosomes with lysosomes in cells expressing P56S-VAPB. Consistent with these observations, neuropathological studies of brain and spinal cord of P56S-VAPB transgenic mice revealed signs of neurodegeneration associated with altered protein quality control and defective autophagy. Autophagy and RBP homeostasis are interdependent, as demonstrated by the cytoplasmic mis-localisation of several RBPs including pTDP-43, FUS, Matrin 3 which often sequestered with P56S-VAPB aggregates both in cell culture and in the muscle biopsy of the ALS8 patient. Further confirming the notion that aggregation of the RBPs proceeds through the stress granule (SG) pathway, we found persistent G3BP- and TIAR1-positive SGs in P56S-VAPB expressing cells as well as in the ALS8 patient muscle biopsy. We conclude that P56S-VAPB-ALS8 involves a cohesive pathomechanism of aberrant RBP homeostasis together with dysfunctional autophagy.
Collapse
|
16
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
17
|
Hetz C. Adapting the proteostasis capacity to sustain brain healthspan. Cell 2021; 184:1545-1560. [PMID: 33691137 DOI: 10.1016/j.cell.2021.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Sustaining neuronal proteostasis during the course of our life is a central aspect required for brain function. The dynamic nature of synaptic composition and abundance is a requisite to drive cognitive and motor processes involving a tight control of many aspects of protein biosynthesis and degradation. Through the concerted action of specialized stress sensors, the proteostasis network monitors and limits the accumulation of damaged, misfolded, or aggregated proteins. These stress pathways signal to the cytosol and nucleus to reprogram gene expression, enabling adaptive programs to recover cell function. During aging, the activity of the proteostasis network declines, which may increase the risk of accumulating abnormal protein aggregates, a hallmark of most neurodegenerative diseases. Here, I discuss emerging concepts illustrating the functional significance of adaptive signaling pathways to normal brain physiology and their contribution to age-related disorders. Pharmacological and gene therapy strategies to intervene and boost proteostasis are expected to extend brain healthspan and ameliorate disease states.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
18
|
Ichhaporia VP, Hendershot LM. Role of the HSP70 Co-Chaperone SIL1 in Health and Disease. Int J Mol Sci 2021; 22:ijms22041564. [PMID: 33557244 PMCID: PMC7913895 DOI: 10.3390/ijms22041564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/04/2022] Open
Abstract
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.
Collapse
|
19
|
Medinas DB, Hazari Y, Hetz C. Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:239-278. [PMID: 34050870 DOI: 10.1007/978-3-030-67696-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Younis Hazari
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
20
|
Hoffman TE, Hanneman WH, Moreno JA. Network Simulations Reveal Molecular Signatures of Vulnerability to Age-Dependent Stress and Tau Accumulation. Front Mol Biosci 2020; 7:590045. [PMID: 33195439 PMCID: PMC7606936 DOI: 10.3389/fmolb.2020.590045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia and one of the most common causes of death worldwide. As an age-dependent multifactorial disease, the causative triggers of AD are rooted in spontaneous declines in cellular function and metabolic capacity with increases in protein stressors such as the tau protein. This multitude of age-related processes that cause neurons to change from healthy states to ones vulnerable to the damage seen in AD are difficult to simultaneously investigate and even more difficult to quantify. Here we aimed to diminish these gaps in our understanding of neuronal vulnerability in AD development by using simulation methods to theoretically quantify an array of cellular stress responses and signaling molecules. This temporally-descriptive molecular signature was produced using a novel multimethod simulation approach pioneered by our laboratory for biological research; this methodology combines hierarchical agent-based processes and continuous equation-based modeling in the same interface, all while maintaining intrinsic distributions that emulate natural biological stochasticity. The molecular signature was validated for a normal organismal aging trajectory using experimental longitudinal data from Caenorhabditis elegans and rodent studies. In addition, we have further predicted this aging molecular signature for cells impacted by the pathogenic tau protein, giving rise to distinct stress response conditions needed for cytoprotective aging. Interestingly, our simulation experiments showed that oxidative stress signaling (via daf-16 and skn-1 activities) does not substantially protect cells from all the early stressors of aging, but that it is essential in preventing a late-life degenerative cellular phenotype. Together, our simulation experiments aid in elucidating neurodegenerative triggers in the onset of AD for different genetic conditions. The long-term goal of this work is to provide more detailed diagnostic and prognostic tools for AD development and progression, and to provide more comprehensive preventative measures for this disease.
Collapse
Affiliation(s)
- Timothy E Hoffman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - William H Hanneman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
21
|
Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B 2020; 10:1347-1359. [PMID: 32963936 PMCID: PMC7488363 DOI: 10.1016/j.apsb.2020.01.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is rapidly emerging as a powerful therapeutic strategy for a wide range of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Some early clinical trials have failed to achieve satisfactory therapeutic effects. Efforts to enhance effectiveness are now concentrating on three major fields: identification of new vectors, novel therapeutic targets, and reliable of delivery routes for transgenes. These approaches are being assessed closely in preclinical and clinical trials, which may ultimately provide powerful treatments for patients. Here, we discuss advances and challenges of gene therapy for neurodegenerative disorders, highlighting promising technologies, targets, and future prospects.
Collapse
Key Words
- AADC, aromatic-l-amino-acid
- AAVs, adeno-associated viruses
- AD, Alzheimer's disease
- ARSA, arylsulfatase A
- ASOs, antisense oligonucleotides
- ASPA, aspartoacylase
- Adeno-associated viruses
- Adv, adenovirus
- BBB, blood–brain barrier
- BCSFB, blood–cerebrospinal fluid barrier
- BRB, blood–retina barrier
- Bip, glucose regulated protein 78
- CHOP, CCAAT/enhancer binding homologous protein
- CLN6, ceroidlipofuscinosis neuronal protein 6
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Central nervous system
- Delivery routes
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- GAA, lysosomal acid α-glucosidase
- GAD, glutamic acid decarboxylase
- GDNF, glial derived neurotrophic factor
- Gene therapy
- HD, Huntington's disease
- HSPGs, heparin sulfate proteoglycans
- HTT, mutant huntingtin
- IDS, iduronate 2-sulfatase
- LVs, retrovirus/lentivirus
- Lamp2a, lysosomal-associated membrane protein 2a
- NGF, nerve growth factor
- Neurodegenerative disorders
- PD, Parkinson's disease
- PGRN, Progranulin
- PINK1, putative kinase 1
- PTEN, phosphatase and tensin homolog
- RGCs, retinal ganglion cells
- RNAi, RNA interference
- RPE, retinal pigmented epithelial
- SGSH, lysosomal heparan-N-sulfamidase gene
- SMN, survival motor neuron
- SOD, superoxide dismutase
- SUMF, sulfatase-modifying factor
- TFEB, transcription factor EB
- TPP1, tripeptidyl peptidase 1
- TREM2, triggering receptor expressed on myeloid cells 2
- UPR, unfolded protein response
- ZFPs, zinc finger proteins
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| |
Collapse
|
22
|
Chiesa R, Sallese M. Review: Protein misfolding diseases – the rare case of Marinesco‐Sjögren syndrome. Neuropathol Appl Neurobiol 2020; 46:323-343. [DOI: 10.1111/nan.12588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- R. Chiesa
- Department of Neuroscience Istituto di Ricerche Farmacologiche Mario Negri IRCCS MilanItaly
| | - M. Sallese
- Department of Medical, Oral and Biotechnological Sciences University "G. d'Annunzio" Chieti Italy
- CeSI‐MeT Center for Research on Ageing and Translational Medicine University "G. d'Annunzio" Chieti Italy
| |
Collapse
|
23
|
The Timing and Extent of Motor Neuron Vulnerability in ALS Correlates with Accumulation of Misfolded SOD1 Protein in the Cortex and in the Spinal Cord. Cells 2020; 9:cells9020502. [PMID: 32098365 PMCID: PMC7072754 DOI: 10.3390/cells9020502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the cellular and molecular basis of selective vulnerability has been challenging, especially for motor neuron diseases. Developing drugs that improve the health of neurons that display selective vulnerability relies on in vivo cell-based models and quantitative readout measures that translate to patient outcome. We initially developed and characterized UCHL1-eGFP mice, in which motor neurons are labeled with eGFP that is stable and long-lasting. By crossing UCHL1-eGFP to amyotrophic lateral sclerosis (ALS) disease models, we generated ALS mouse models with fluorescently labeled motor neurons. Their examination over time began to reveal the cellular basis of selective vulnerability even within the related motor neuron pools. Accumulation of misfolded SOD1 protein both in the corticospinal and spinal motor neurons over time correlated with the timing and extent of degeneration. This further proved simultaneous degeneration of both upper and lower motor neurons, and the requirement to consider both upper and lower motor neuron populations in drug discovery efforts. Demonstration of the direct correlation between misfolded SOD1 accumulation and motor neuron degeneration in both cortex and spinal cord is important for building cell-based assays in vivo. Our report sets the stage for shifting focus from mice to diseased neurons for drug discovery efforts, especially for motor neuron diseases.
Collapse
|
24
|
Yamoah A, Tripathi P, Sechi A, Köhler C, Guo H, Chandrasekar A, Nolte KW, Wruck CJ, Katona I, Anink J, Troost D, Aronica E, Steinbusch H, Weis J, Goswami A. Aggregates of RNA Binding Proteins and ER Chaperones Linked to Exosomes in Granulovacuolar Degeneration of the Alzheimer's Disease Brain. J Alzheimers Dis 2020; 75:139-156. [PMID: 32250292 DOI: 10.3233/jad-190722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Granulovacuolar degeneration (GVD) occurs in Alzheimer's disease (AD) brain due to compromised autophagy. Endoplasmic reticulum (ER) function and RNA binding protein (RBP) homeostasis regulate autophagy. We observed that the ER chaperones Glucose - regulated protein, 78 KDa (GRP78/BiP), Sigma receptor 1 (SigR1), and Vesicle-associated membrane protein associated protein B (VAPB) were elevated in many AD patients' subicular neurons. However, those neurons which were affected by GVD showed lower chaperone levels, and there was only minor co-localization of chaperones with GVD bodies (GVBs), suggesting that neurons lacking sufficient chaperone-mediated proteostasis enter the GVD pathway. Consistent with this notion, granular, incipient pTau aggregates in human AD and pR5 tau transgenic mouse neurons were regularly co-localized with increased chaperone immunoreactivity, whereas neurons with mature neurofibrillary tangles lacked both the chaperone buildup and significant GVD. On the other hand, APP/PS1 (APPswe/PSEN1dE9) transgenic mouse hippocampal neurons that are devoid of pTau accumulation displayed only few GVBs-like vesicles, which were still accompanied by prominent chaperone buildup. Identifying a potential trigger for GVD, we found cytoplasmic accumulations of RBPs including Matrin 3 and FUS as well as stress granules in GVBs of AD patient and pR5 mouse neurons. Interestingly, we observed that GVBs containing aggregated pTau and pTDP-43 were consistently co-localized with the exosomal marker Flotillin 1 in both AD and pR5 mice. In contrast, intraneuronal 82E1-immunoreactive amyloid-β in human AD and APP/PS1 mice only rarely co-localized with Flotillin 1-positive exosomal vesicles. We conclude that altered chaperone-mediated ER protein homeostasis and impaired autophagy manifesting in GVD are linked to both pTau and RBP accumulation and that some GVBs might be targeted to exocytosis.
Collapse
Affiliation(s)
- Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
- EURON - European Graduate School of Neuroscience
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
- EURON - European Graduate School of Neuroscience
| | - Antonio Sechi
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Christoph Köhler
- Center for Anatomy, Department II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Haihong Guo
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Akila Chandrasekar
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Kay Wilhelm Nolte
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Christoph Jan Wruck
- Institute of Anatomy and Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Jasper Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dirk Troost
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Harry Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- EURON - European Graduate School of Neuroscience
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
25
|
Functional Role of SIL1 in Neurodevelopment and Learning. Neural Plast 2019; 2019:9653024. [PMID: 31531014 PMCID: PMC6720716 DOI: 10.1155/2019/9653024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background Sil1 is the causative gene of Marinesco-Sjӧgren Syndrome (MSS). The mutated Sil1 generates shortened SIL1 protein which will form aggregation and be degraded rapidly. Mental retardation is a major symptom of MSS which suggests a role of SIL1 in the development of the central nervous system, but how SIL1 functions remains unclear. Objectives The aim of this study is to explore the role of SIL1 in regulating cerebral development and its underlying molecular mechanism. Methods The basic expression pattern of SIL1 in tissues and cultured cortical neurons is measured by immunostaining and Western blot. The expression of SIL1 is reduced in vitro and in vivo through RNA interference delivered by a lentivirus. The expression of NMDA receptor subunits and the function of the Reelin signaling pathway are then examined by surface biotinylation and Western blot subsequently. Finally, the spatial learning of young mice was assessed by the Barnes maze task. Results SIL1 deficiency caused a diminished expression of both Reelin receptors and therefore impaired the Reelin signaling pathway. It then inhibited the developmental expression of GluN2A and impaired the spatial learning of 5-week-old mice. Conclusions These results suggested that SIL1 is required for the development of the central nervous system which is associated with its role in Reelin signaling.
Collapse
|
26
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Valdez G. Effects of disease-afflicted and aging neurons on the musculoskeletal system. Bone 2019; 122:31-37. [PMID: 30695738 PMCID: PMC6444351 DOI: 10.1016/j.bone.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/09/2023]
Abstract
The musculoskeletal system includes skeletal muscles, bones and innervating axons from neurons in the central and peripheral nervous systems. Together, they form the largest structure in the body. They also initiate and coordinate locomotion, provide structural stability, and contribute to metabolism and homeostasis. Because of these functions, much effort has been devoted to ascertaining the impact of acute and chronic stress, such as disease, injury and aging, on the musculoskeletal system. This review will examine the role of the nervous system in the deleterious changes that accrue in skeletal muscles and bones during the progression of neurologic diseases and with advancing age.
Collapse
Affiliation(s)
- Gregorio Valdez
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
28
|
Phan V, Cox D, Cipriani S, Spendiff S, Buchkremer S, O'Connor E, Horvath R, Goebel HH, Hathazi D, Lochmüller H, Straka T, Rudolf R, Weis J, Roos A. SIL1 deficiency causes degenerative changes of peripheral nerves and neuromuscular junctions in fish, mice and human. Neurobiol Dis 2018; 124:218-229. [PMID: 30468864 DOI: 10.1016/j.nbd.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Accepted: 11/19/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Marinesco-Sjögren Syndrome (MSS) is a rare neuromuscular condition caused by recessive mutations in the SIL1 gene resulting in the absence of functional SIL1 protein, a co-chaperone for the major ER chaperone, BiP. As BiP is decisive for proper protein processing, loss of SIL1 results in the accumulation of misshaped proteins. This accumulation likely damages and destroys cells in vulnerable tissues, leading to congenital cataracts, cerebellar ataxia, vacuolar myopathy and other MSS phenotypes. Whether the peripheral nervous system (PNS) is affected in MSS has not been conclusively shown. METHODS To study PNS vulnerability in MSS, intramuscular nerves fibres from MSS patients and from SIL1-deficient mice (woozy) as well as sciatic nerves and neuromuscular junctions (NMJ) from these mice have been investigated via transmission electron microscopic and immunofluorescence studies accompanied by transcript studies and unbiased proteomic profiling. In addition, PNS and NMJ integrity were analyzed via immunofluorescence studies in an MSS-zebrafish model which has been generated for that purpose. RESULTS Electron microscopy revealed morphological changes indicative of impaired autophagy and mitochondrial maintenance in distal axons and in Schwann cells. Moreover, changes of the morphology of NMJs as well as of transcripts encoding proteins important for NMJ function were detected in woozy mice. These findings were in line with a grossly abnormal structure of NMJs in SIL1-deficient zebrafish embryos. Proteome profiling of sciatic nerve specimens from woozy mice revealed altered levels of proteins implicated in neuronal maintenance suggesting the activation of compensatory mechanisms. CONCLUSION Taken together, our combined data expand the spectrum of tissues affected by SIL1-loss and suggest that impaired neuromuscular transmission might be part of MSS pathophysiology.
Collapse
Affiliation(s)
- Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany.
| | - Dan Cox
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Silvia Cipriani
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; Department of Neuromotor and Biomedical Sciences, Pathology Unit, University of Bologna, Bologna, Italy.
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.
| | - Stephan Buchkremer
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Emily O'Connor
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. emily.o'
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
| | | | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany; Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany; Pediatric Neurology, University Childrens Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany.
| |
Collapse
|
29
|
Capone V, Clemente E, Restelli E, Di Campli A, Sperduti S, Ornaghi F, Pietrangelo L, Protasi F, Chiesa R, Sallese M. PERK inhibition attenuates the abnormalities of the secretory pathway and the increased apoptotic rate induced by SIL1 knockdown in HeLa cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3164-3180. [DOI: 10.1016/j.bbadis.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
|
30
|
Mei-Ling Liu J, Fair SR, Kaya B, Zuniga JN, Mostafa HR, Alves MJ, Stephens JA, Jones M, Aslan MT, Czeisler C, Otero JJ. Development of a Novel FIJI-Based Method to Investigate Neuronal Circuitry in Neonatal Mice. Dev Neurobiol 2018; 78:1146-1167. [PMID: 30136762 DOI: 10.1002/dneu.22636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
The emergence of systems neuroscience tools requires parallel generation of objective analytical workflows for experimental neuropathology. We developed an objective analytical workflow that we used to determine how specific autonomic neural lineages change during postnatal development. While a wealth of knowledge exists regarding postnatal alterations in respiratory neural function, how these neural circuits change and develop in the weeks following birth remains less clear. In this study, we developed our workflow by combining genetic mouse modeling and quantitative immunofluorescent confocal microscopy and used this to examine the postnatal development of neural circuits derived from the transcription factors NKX2.2 and OLIG3 into three medullary respiratory nuclei. Our automated FIJI-based image analysis workflow rapidly and objectively quantified synaptic puncta in user-defined anatomic regions. Using our objective workflow, we found that the density and estimated total number of Nkx2.2-derived afferents into the pre-Bötzinger Complex significantly decreased with postnatal age during the first three weeks of postnatal life. These data indicate that Nkx2.2-derived structures differentially influence pre-Bötzinger Complex respiratory oscillations at different stages of postnatal development.
Collapse
Affiliation(s)
- Jillian Mei-Ling Liu
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Summer Rose Fair
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Behiye Kaya
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jessica Nabile Zuniga
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Hasnaa Rashad Mostafa
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Michele Joana Alves
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Julie A Stephens
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mikayla Jones
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - M Tahir Aslan
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine Czeisler
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
31
|
Martínez G, Khatiwada S, Costa-Mattioli M, Hetz C. ER Proteostasis Control of Neuronal Physiology and Synaptic Function. Trends Neurosci 2018; 41:610-624. [PMID: 29945734 PMCID: PMC7268632 DOI: 10.1016/j.tins.2018.05.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Neuronal proteostasis is maintained by the dynamic integration of different processes that regulate the synthesis, folding, quality control, and localization of proteins. The endoplasmic reticulum (ER) serves as a fundamental pillar of the proteostasis network, and is emerging as a key compartment to sustain normal brain function. The unfolded protein response (UPR), the main mechanism that copes with ER stress, plays a central role in the quality control of many ion channels and receptors, in addition to crosstalk with signaling pathways that regulate connectivity, synapse formation, and neuronal plasticity. We provide here an overview of recent advances in the involvement of the UPR in maintaining neuronal proteostasis, and discuss its emerging role in brain development, neuronal physiology, and behavior, as well as the implications for neurodegenerative diseases involving cognitive decline.
Collapse
Affiliation(s)
- Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Sanjeev Khatiwada
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Montibeller L, de Belleroche J. Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are characterised by differential activation of ER stress pathways: focus on UPR target genes. Cell Stress Chaperones 2018; 23:897-912. [PMID: 29725981 PMCID: PMC6111088 DOI: 10.1007/s12192-018-0897-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 12/11/2022] Open
Abstract
The endoplasmic reticulum (ER) plays an important role in maintenance of proteostasis through the unfolded protein response (UPR), which is strongly activated in most neurodegenerative disorders. UPR signalling pathways mediated by IRE1α and ATF6 play a crucial role in the maintenance of ER homeostasis through the transactivation of an array of transcription factors. When activated, these transcription factors induce the expression of genes involved in protein folding and degradation with pro-survival effects. However, the specific contribution of these transcription factors to different neurodegenerative diseases remains poorly defined. Here, we characterised 44 target genes strongly influenced by XBP1 and ATF6 and quantified the expression of a subset of genes in the human post-mortem spinal cord from amyotrophic lateral sclerosis (ALS) cases and in the frontal and temporal cortex from frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) cases and controls. We found that IRE1α-XBP1 and ATF6 pathways were strongly activated both in ALS and AD. In ALS, XBP1 and ATF6 activation was confirmed by a substantial increase in the expression of both known and novel target genes involved particularly in co-chaperone activity and ER-associated degradation (ERAD) such as DNAJB9, SEL1L and OS9. In AD cases, a distinct pattern emerged, where targets involved in protein folding were more prominent, such as CANX, PDIA3 and PDIA6. These results reveal that both overlapping and disease-specific patterns of IRE1α-XBP1 and ATF6 target genes are activated in AD and ALS, which may be relevant to the development of new therapeutic strategies. Graphical abstract The endoplasmic reticulum (ER) plays an important role in maintenance of proteostasis through the unfolded protein response (UPR). Two major UPR signalling pathways are mediated by IRE1α and ATF6. Here, we demonstrate that these pathways activate differential gene sets in human post-mortem tissues derived from amyotrophic lateral sclerosis (ALS) compared to Alzheimer's disease (AD) cases. Our results identify IRE1α and ATF6 specific targets that can have major implications in the development of new therapeutic strategies and potential biomarkers.
Collapse
Affiliation(s)
- L Montibeller
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - J de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
33
|
Misawa H, Morisaki Y. [Motor neuron heterogeneity and selective vulnerability in ALS]. Nihon Yakurigaku Zasshi 2018; 152:64-69. [PMID: 30101862 DOI: 10.1254/fpj.152.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Different and selective vulnerability among motor neuron subtypes are a fundamental, but unexplained, feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) motor neurons are the most vulnerable, and fast fatigue-resistant/slow (FR/S) motor neurons are relatively resistant. We identified that osteopontin (OPN) can serve as a marker of FR/S motor neurons, whereas matrix metalloproteinase-9 (MMP9) is expressed by FF motor neurons in mice. In SOD1G93A ALS model mice, as the disease progressed, OPN was secreted and accumulated as granular deposits in the extracellular matrix. We also detected OPN/MMP9 co-expressed motor neurons around the disease onset. These double positive motor neurons showed the expression of αvβ3 integrin (OPN receptor) and up-regulation of ER stress markers. We discovered that the double positive motor neurons are remodeled FR/S motor neurons, which compensated for FF motor neuron degeneration (the first wave of degeneration). Genetic ablation of OPN delayed the onset of disease, but later accelerated disease progression. This reflects two modes of OPN involvement in the pathogenesis of ALS: cell-autonomous and non-cell-autonomous effects on motor neuron vulnerability. Our study suggests that OPN expressed in FR/S motor neurons is involved in the second wave of motor neuron degeneration in ALS, and an OPN-αvβ3 integrin-MMP9 axis could be a potentially useful therapeutic target for ALS.
Collapse
Affiliation(s)
- Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University
| | - Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University
| |
Collapse
|
34
|
Xu H, Xu S, Zhang R, Xin T, Pang Q. SIL1 functions as an oncogene in glioma by AKT/mTOR signaling pathway. Onco Targets Ther 2018; 11:3775-3783. [PMID: 29997438 PMCID: PMC6033116 DOI: 10.2147/ott.s167552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose SIL1 is a ubiquitous protein localized to the endoplasmic reticulum and functions as a cochaperone of BiP. Previous studies have shown that function loss of SIL1 is often associated with neurological diseases, such as Marinesco-Sjögren Syndrome. However, no studies have investigated the function of SIL1 in tumors. In this study we aim to reveal functions of SIL1 and the underlying mechanisms in glioma. Materials and methods First, by searching on Gene Expression Profiling Interactive Analysis, we examined SIL1 expression and prognostic value in glioblastoma multiforme (GBM) and brain lower grade glioma (LGG). Immunohistochemical analysis (IHC) was also performed to determine the endogenic SIL1 level. Cell counting kit-8 (CCK8) and clone formation assays were used to detect cell proliferation of U251 cells. Cell migration was detected by transwell assay and cell cycle and apoptosis were detected by flow cytometry. Western blot was performed to determine protein expression. Results We found that the expression of SIL1 was increased by approximately 1.5-fold in GBM and 1.3-fold in LGG compared with normal controls (P<0.05) and negatively correlated with patients’ survival. IHC revealed that SIL1 expression was significantly higher in glioma tissues than that in paracancerous tissues (P<0.05). Glioma patients with high SIL1 expression accounted for 65.79% (25/38) of total samples and SIL1 expression significantly increased in grade IV glioma compared to grades I–III (P=0.026). Suppression of SIL1 expression led to significant inhibition of U251 cell proliferation. Transwell assay showed that cell migration of U251 was significantly inhibited by siSIL transfection, with an inhibitory rate reaching 69%. Flow cytometry detection showed that siSIL1 could induce apoptosis of U251 cells and upregulated the expression of the pro-apoptotic protein Bax and Caspase3-P17. However, siSIL1 transfection had no effect on the cell cycle. Mechanism studies demonstrated that siSIL1 transfection led to inactivation of AKT/mTOR signaling pathway, including decreased phosphorylation of AKT and mTOR without affecting protein expression, as well as decreased expression of the downstream effector p70S6K. Conclusion Downregulation of SIL1 inhibited the progression of glioma by suppressing the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China, ;
| | - Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China, ;
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China, ;
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China, ;
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China, ;
| |
Collapse
|
35
|
Ichhaporia VP, Kim J, Kavdia K, Vogel P, Horner L, Frase S, Hendershot LM. SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. Dis Model Mech 2018; 11:dmm.033043. [PMID: 29666155 PMCID: PMC5992605 DOI: 10.1242/dmm.033043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023] Open
Abstract
Mutations in SIL1, a cofactor for the endoplasmic reticulum (ER)-localized Hsp70 chaperone, BiP, cause Marinesco-Sjögren syndrome (MSS), an autosomal recessive disorder. Using a mouse model, we characterized molecular aspects of the progressive myopathy associated with MSS. Proteomic profiling of quadriceps at the onset of myopathy revealed that SIL1 deficiency affected multiple pathways critical to muscle physiology. We observed an increase in ER chaperones prior to the onset of muscle weakness, which was complemented by upregulation of multiple components of cellular protein degradation pathways. These responses were inadequate to maintain normal expression of secretory pathway proteins, including insulin and IGF-1 receptors. There was a paradoxical enhancement of downstream PI3K-AKT-mTOR signaling and glucose uptake in SIL1-disrupted skeletal muscles, all of which were insufficient to maintain skeletal muscle mass. Together, these data reveal a disruption in ER homeostasis upon SIL1 loss, which is countered by multiple compensatory responses that are ultimately unsuccessful, leading to trans-organellar proteostasis collapse and myopathy. Editor's choice: This study provides molecular insights into the progressive myopathy and cellular compensatory responses attempted upon loss of SIL1, a component of the endoplasmic-reticulum-resident Hsp70 protein-folding machinery.
Collapse
Affiliation(s)
- Viraj P Ichhaporia
- Dept of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Dept of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jieun Kim
- Small Animal Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kanisha Kavdia
- Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Dept of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda Horner
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharon Frase
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Dept of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA .,Dept of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
36
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
37
|
Valenzuela V, Jackson KL, Sardi SP, Hetz C. Gene Therapy Strategies to Restore ER Proteostasis in Disease. Mol Ther 2018; 26:1404-1413. [PMID: 29728295 DOI: 10.1016/j.ymthe.2018.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Proteostasis alterations are proposed as a transversal hallmark of several pathological conditions, including metabolic disorders, mechanical injury, cardiac malfunction, neurodegeneration, and cancer. Strategies to improve proteostasis aim to reduce the accumulation of specific disease-related misfolded proteins or bolster the endogenous mechanisms to fold and degrade abnormal proteins. Endoplasmic reticulum (ER) stress is a common pathological signature of a variety of diseases, which engages the unfolded protein response (UPR) as a cellular reaction to mitigate ER stress. Pharmacological modulation of the UPR is challenging considering the physiological importance of the pathway in various organs. However, local targeting of ER stress responses in the affected tissue using gene therapy is emerging as a possible solution to overcome side effects. The delivery of ER chaperones or active UPR components using adeno-associated virus (AAV) has demonstrated outstanding beneficial effects in several disease models (e.g., neurodegenerative conditions, eye disorders, and metabolic diseases). Here, we discuss current efforts to design and optimize gene therapy strategies to improve ER proteostasis in different disease contexts.
Collapse
Affiliation(s)
- Vicente Valenzuela
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Kasey L Jackson
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA 01701, USA
| | - Sergio P Sardi
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA 01701, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Buchkremer S, González Coraspe JA, Weis J, Roos A. Sil1-Mutant Mice Elucidate Chaperone Function in Neurological Disorders. J Neuromuscul Dis 2018; 3:169-181. [PMID: 27854219 PMCID: PMC5271578 DOI: 10.3233/jnd-160152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chaperone dysfunction leading to the build-up of misfolded proteins could frequently be linked to clinical manifestations also affecting the nervous system and the skeletal muscle. In addition, increase in chaperone function is beneficial to antagonize protein aggregation and thus represents a promising target for therapeutic concepts for many genetic and acquired chaperonopathies. However, little is known on the precise molecular mechanisms defining the cell and tissue abnormalities in the case of impaired chaperone function as well as on underlying effects in the case of compensatory up-regulation of chaperones. This scarcity of knowledge often arises from a lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. Here, we introduce the Sil1-mutant woozy mouse as a suitable model to investigate molecular and cellular mechanisms of impaired ER-chaperone function affecting the integrity of nervous system and skeletal muscle. The overlapping clinical findings in man and mouse indicate that woozy is a good copy of a human phenotype called Marinesco-Sjögren syndrome. We confirm the presence of ER-stress and expand the biochemical knowledge of altered nuclear envelope in muscle, a hallmark of SIL1-disease. In addition, our data suggest that impaired excitation-contraction coupling might be part of the SIL1-pathophysiology. Our results moreover indicate that divergent expression of pro- and anti-survival proteins is decisive for Purkinje cell survival. By summarizing the current knowledge of woozy, we focus on the suitability of this animal model to study neuroprotective co-chaperone function and to investigate the involvement of co-chaperones in the predisposition of other disorders such as diabetic neuropathy.
Collapse
Affiliation(s)
- Stephan Buchkremer
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Roos
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany.,Leibniz-Institut für Analytische Wissenschaften ISAS e.V., Dortmund, Germany.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis 2018; 9:333. [PMID: 29491369 PMCID: PMC5832431 DOI: 10.1038/s41419-017-0125-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
Recent progress in the understanding of neurodegenerative diseases revealed that multiple molecular mechanisms contribute to pathological changes in neurons. A large fraction of these alterations can be linked to dysfunction in the endoplasmic reticulum (ER) and mitochondria, affecting metabolism and secretion of lipids and proteins, calcium homeostasis, and energy production. Remarkably, these organelles are interacting with each other at specialized domains on the ER called mitochondria-associated membranes (MAMs). These membrane structures rely on the interaction of several complexes of proteins localized either at the mitochondria or at the ER interface and serve as an exchange platform of calcium, metabolites, and lipids, which are critical for the function of both organelles. In addition, recent evidence indicates that MAMs also play a role in the control of mitochondria dynamics and autophagy. MAMs thus start to emerge as a key element connecting many changes observed in neurodegenerative diseases. This review will focus on the role of MAMs in amyotrophic lateral sclerosis (ALS) and hereditary motor and sensory neuropathy, two neurodegenerative diseases particularly affecting neurons with long projecting axons. We will discuss how defects in MAM signaling may impair neuronal calcium homeostasis, mitochondrial dynamics, ER function, and autophagy, leading eventually to axonal degeneration. The possible impact of MAM dysfunction in glial cells, which may affect the capacity to support neurons and/or axons, will also be described. Finally, the possible role of MAMs as an interesting target for development of therapeutic interventions aiming at delaying or preventing neurodegeneration will be highlighted.
Collapse
|
40
|
Dreser A, Vollrath JT, Sechi A, Johann S, Roos A, Yamoah A, Katona I, Bohlega S, Wiemuth D, Tian Y, Schmidt A, Vervoorts J, Dohmen M, Beyer C, Anink J, Aronica E, Troost D, Weis J, Goswami A. The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ 2017; 24:1655-1671. [PMID: 28622300 PMCID: PMC5596426 DOI: 10.1038/cdd.2017.88] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the selective degeneration of motor neurons (MNs) and their target muscles. Misfolded proteins which often form intracellular aggregates are a pathological hallmark of ALS. Disruption of the functional interplay between protein degradation (ubiquitin proteasome system and autophagy) and RNA-binding protein homeostasis has recently been suggested as an integrated model that merges several ALS-associated proteins into a common pathophysiological pathway. The E102Q mutation in one such candidate gene, the endoplasmic reticulum (ER) chaperone Sigma receptor-1 (SigR1), has been reported to cause juvenile ALS. Although loss of SigR1 protein contributes to neurodegeneration in several ways, the molecular mechanisms underlying E102Q-SigR1-mediated neurodegeneration are still unclear. In the present study, we showed that the E102Q-SigR1 protein rapidly aggregates and accumulates in the ER and associated compartments in transfected cells, leading to structural alterations of the ER, nuclear envelope and mitochondria and to subsequent defects in proteasomal degradation and calcium homeostasis. ER defects and proteotoxic stress generated by E102Q-SigR1 aggregates further induce autophagy impairment, accumulation of stress granules and cytoplasmic aggregation of the ALS-linked RNA-binding proteins (RBPs) matrin-3, FUS, and TDP-43. Similar ultrastructural abnormalities as well as altered protein degradation and misregulated RBP homeostasis were observed in primary lymphoblastoid cells (PLCs) derived from E102Q-SigR1 fALS patients. Consistent with these findings, lumbar α-MNs of both sALS as well as fALS patients showed cytoplasmic matrin-3 aggregates which were not co-localized with pTDP-43 aggregates. Taken together, our results support the notion that E102Q-SigR1-mediated ALS pathogenesis comprises a synergistic mechanism of both toxic gain and loss of function involving a vicious circle of altered ER function, impaired protein homeostasis and defective RBPs.
Collapse
Affiliation(s)
- Alice Dreser
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Jan Tilmann Vollrath
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Antonio Sechi
- Institute of Biomedical Engineering, Deparment of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University Medical School, Aachen, Germany
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Saeed Bohlega
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University Medical School, Aachen Germany
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University Medical School, Aachen Germany
| | - Axel Schmidt
- Institute of Physiology, RWTH Aachen University Medical School, Aachen Germany
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Marc Dohmen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University Medical School, Aachen, Germany
| | - Jasper Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Troost
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
41
|
Martínez G, Duran‐Aniotz C, Cabral‐Miranda F, Vivar JP, Hetz C. Endoplasmic reticulum proteostasis impairment in aging. Aging Cell 2017; 16:615-623. [PMID: 28436203 PMCID: PMC5506418 DOI: 10.1111/acel.12599] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Perturbed neuronal proteostasis is a salient feature shared by both aging and protein misfolding disorders. The proteostasis network controls the health of the proteome by integrating pathways involved in protein synthesis, folding, trafficking, secretion, and their degradation. A reduction in the buffering capacity of the proteostasis network during aging may increase the risk to undergo neurodegeneration by enhancing the accumulation of misfolded proteins. As almost one-third of the proteome is synthetized at the endoplasmic reticulum (ER), maintenance of its proper function is fundamental to sustain neuronal function. In fact, ER stress is a common feature of most neurodegenerative diseases. The unfolded protein response (UPR) operates as central player to maintain ER homeostasis or the induction of cell death of chronically damaged cells. Here, we discuss recent evidence placing ER stress as a driver of brain aging, and the emerging impact of neuronal UPR in controlling global proteostasis at the whole organismal level. Finally, we discuss possible therapeutic interventions to improve proteostasis and prevent pathological brain aging.
Collapse
Affiliation(s)
- Gabriela Martínez
- Center for Geroscience, Brain Health and MetabolismSantiagoChile
- Biomedical Neuroscience InstituteFaculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular BiologyInstitute of Biomedical SciencesUniversity of ChileSantiagoChile
- Center for Integrative BiologyUniversidad MayorSantiagoChile
| | - Claudia Duran‐Aniotz
- Center for Geroscience, Brain Health and MetabolismSantiagoChile
- Biomedical Neuroscience InstituteFaculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular BiologyInstitute of Biomedical SciencesUniversity of ChileSantiagoChile
| | - Felipe Cabral‐Miranda
- Center for Geroscience, Brain Health and MetabolismSantiagoChile
- Biomedical Neuroscience InstituteFaculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular BiologyInstitute of Biomedical SciencesUniversity of ChileSantiagoChile
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
| | - Juan P. Vivar
- Center for Geroscience, Brain Health and MetabolismSantiagoChile
- Biomedical Neuroscience InstituteFaculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular BiologyInstitute of Biomedical SciencesUniversity of ChileSantiagoChile
| | - Claudio Hetz
- Center for Geroscience, Brain Health and MetabolismSantiagoChile
- Biomedical Neuroscience InstituteFaculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular BiologyInstitute of Biomedical SciencesUniversity of ChileSantiagoChile
- Buck Institute for Research on AgingNovatoCA94945USA
- Department of Immunology and Infectious diseasesHarvard School of Public HealthBostonMA02115USA
| |
Collapse
|
42
|
Kollipara L, Buchkremer S, Coraspe JAG, Hathazi D, Senderek J, Weis J, Zahedi RP, Roos A. In-depth phenotyping of lymphoblastoid cells suggests selective cellular vulnerability in Marinesco-Sjögren syndrome. Oncotarget 2017; 8:68493-68516. [PMID: 28978133 PMCID: PMC5620273 DOI: 10.18632/oncotarget.19663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/28/2017] [Indexed: 12/18/2022] Open
Abstract
SIL1 is a ubiquitous protein of the Endoplasmic Reticulum (ER) acting as a co-chaperone for the ER-resident chaperone, BiP. Recessive mutations of the corresponding gene lead to vulnerability of skeletal muscle and central nervous system in man (Marinesco-Sjögren syndrome; MSS) and mouse. However, it is still unclear how loss of ubiquitous SIL1 leads to selective vulnerability of the nervous system and skeletal muscle whereas other cells and organs are protected from clinical manifestations. In this study we aimed to disentangle proteins participating in selective vulnerability of SIL1-deficient cells and tissues: morphological examination of MSS patient-derived lymphoblastoid cells revealed altered organelle structures (ER, nucleus and mitochondria) thus showing subclinical vulnerability. To correlate structural perturbations with biochemical changes and to identify proteins potentially preventing phenotypical manifestation, proteomic studies have been carried out. Results of proteomic profiling are in line with the morphological findings and show affection of nuclear, mitochondrial and cytoskeletal proteins as well as of such responsible for cellular viability. Moreover, expression patterns of proteins known to be involved in neuromuscular disorders or in development and function of the nervous system were altered. Paradigmatic findings were confirmed by immunohistochemistry of splenic lymphocytes and the cerebellum of SIL1-deficient mice. Ataxin-10, identified with increased abundance in our proteome profile, is necessary for the neuronal survival but also controls muscle fiber apoptosis, thus declaring this protein as a plausible candidate for selective tissue vulnerability. Our combined results provide first insights into the molecular causes of selective cell and tissue vulnerability defining the MSS phenotype.
Collapse
Affiliation(s)
- Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, University Hospital Aachen, RWTH Aachen, 5274 Aachen, Germany
| | | | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany
| | - Jan Senderek
- Friedrich-Baur-Institute, Medical Faculty, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Joachim Weis
- Institute of Neuropathology, University Hospital Aachen, RWTH Aachen, 5274 Aachen, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V., 44227 Dortmund, Germany.,Institute of Neuropathology, University Hospital Aachen, RWTH Aachen, 5274 Aachen, Germany.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
43
|
Muscle Fibers Secrete FGFBP1 to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS. J Neurosci 2017; 37:70-82. [PMID: 28053031 DOI: 10.1523/jneurosci.2992-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/13/2023] Open
Abstract
The identity of muscle secreted factors critical for the development and maintenance of neuromuscular junctions (NMJs) remains largely unknown. Here, we show that muscle fibers secrete and concentrate the fibroblast growth factor binding protein 1 (FGFBP1) at NMJs. Although FGFBP1 expression increases during development, its expression decreases before NMJ degeneration during aging and in SOD1G93A mice, a mouse model for amyotrophic lateral sclerosis (ALS). Based on these findings, we examined the impact of deleting FGFBP1 on NMJs. In the absence of FGFBP1, NMJs exhibit structural abnormalities in developing and middle age mice. Deletion of FGFBP1 from SOD1G93A mice also accelerates NMJ degeneration and death. Based on these findings, we sought to identify the mechanism responsible for decreased FGFBP1 in stressed skeletal muscles. We show that FGFBP1 expression is inhibited by increased accumulation of the transforming growth factor-β1 (TGF-β1) in skeletal muscles and at their NMJs. These findings suggest that targeting the FGFBP1 and TGF-β1 signaling axis holds promise for slowing age- and disease-related degeneration of NMJs. SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is critical for all voluntary movement. Its malformation during development and degeneration in adulthood impairs motor function. Therefore, it is important to identify factors that function to maintain the structural integrity of NMJs. We show that muscle fibers secrete and concentrate the fibroblast growth factor binding protein 1 (FGFBP1) at NMJs. However, FGFBP1 expression decreases in skeletal muscles during aging and before NMJ degeneration in SOD1G93A mice, a mouse model for amyotrophic lateral sclerosis. We show that transforming growth factor-β1 is responsible for the decreased levels of FGFBP1. Importantly, we demonstrate critical roles for FGFBP1 at NMJs in developing, aging and SOD1G93A mice.
Collapse
|
44
|
Abstract
The clinical manifestation of neurodegenerative diseases is initiated by the selective alteration in the functionality of distinct neuronal populations. The pathology of many neurodegenerative diseases includes accumulation of misfolded proteins in the brain. In physiological conditions, the proteostasis network maintains normal protein folding, trafficking and degradation; alterations in this network - particularly disturbances to the function of endoplasmic reticulum (ER) - are thought to contribute to abnormal protein aggregation. ER stress triggers a signalling reaction known as the unfolded protein response (UPR), which induces adaptive programmes that improve protein folding and promote quality control mechanisms and degradative pathways or can activate apoptosis when damage is irreversible. In this Review, we discuss the latest advances in defining the functional contribution of ER stress to brain diseases, including novel evidence that relates the UPR to synaptic function, which has implications for cognition and memory. A complex concept is emerging wherein the consequences of ER stress can differ drastically depending on the disease context and the UPR signalling pathway that is altered. Strategies to target specific components of the UPR using small molecules and gene therapy are in development, and promise interesting avenues for future interventions to delay or stop neurodegeneration.
Collapse
|
45
|
Medinas DB, González JV, Falcon P, Hetz C. Fine-Tuning ER Stress Signal Transducers to Treat Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:216. [PMID: 28725179 PMCID: PMC5496948 DOI: 10.3389/fnmol.2017.00216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motoneurons and paralysis. The mechanisms underlying neuronal degeneration in ALS are starting to be elucidated, highlighting disturbances in motoneuron proteostasis. Endoplasmic reticulum (ER) stress has emerged as an early pathogenic event underlying motoneuron vulnerability and denervation in ALS. Maintenance of ER proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER-located kinase and endoribonuclease that operates as a major ER stress transducer, mediating the establishment of adaptive and pro-apoptotic programs. Here we discuss current evidence supporting the role of ER stress in motoneuron demise in ALS and build the rational to target IRE1 to ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Danilo B Medinas
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Jose V González
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Paulina Falcon
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile.,Buck Institute for Research on AgingNovato, CA, United States.,Department of Immunology and Infectious Diseases, Harvard School of Public HealthBoston, MA, United States
| |
Collapse
|
46
|
Ditsworth D, Maldonado M, McAlonis-Downes M, Sun S, Seelman A, Drenner K, Arnold E, Ling SC, Pizzo D, Ravits J, Cleveland DW, Da Cruz S. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:907-922. [PMID: 28357566 PMCID: PMC5427168 DOI: 10.1007/s00401-017-1698-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.
Collapse
|
47
|
|
48
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
49
|
Tracking Effects of SIL1 Increase: Taking a Closer Look Beyond the Consequences of Elevated Expression Level. Mol Neurobiol 2017; 55:2524-2546. [PMID: 28401474 DOI: 10.1007/s12035-017-0494-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
SIL1 acts as a co-chaperone for the major ER-resident chaperone BiP and thus plays a role in many BiP-dependent cellular functions such as protein-folding control and unfolded protein response. Whereas the increase of BiP upon cellular stress conditions is a well-known phenomenon, elevation of SIL1 under stress conditions was thus far solely studied in yeast, and different studies indicated an adverse effect of SIL1 increase. This is seemingly in contrast with the beneficial effect of SIL1 increase in surviving neurons in neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we addressed these controversial findings. Applying cell biological, morphological and biochemical methods, we demonstrated that SIL1 increases in various mammalian cells and neuronal tissues upon cellular stress. Investigation of heterozygous SIL1 mutant cells and tissues supported this finding. Moreover, SIL1 protein was found to be stabilized during ER stress. Increased SIL1 initiates ER stress in a concentration-dependent manner which agrees with the described adverse SIL1 effect. However, our results also suggest that protective levels are achieved by the secretion of excessive SIL1 and GRP170 and that moderately increased SIL1 also ameliorates cellular fitness under stress conditions. Our immunoprecipitation results indicate that SIL1 might act in a BiP-independent manner. Proteomic studies showed that SIL1 elevation alters the expression of proteins including crucial players in neurodegeneration, especially in Alzheimer's disease. This finding agrees with our observation of increased SIL1 immunoreactivity in surviving neurons of Alzheimer's disease autopsy cases and supports the assumption that SIL1 plays a protective role in neurodegenerative disorders.
Collapse
|
50
|
Filareti M, Luotti S, Pasetto L, Pignataro M, Paolella K, Messina P, Pupillo E, Filosto M, Lunetta C, Mandrioli J, Fuda G, Calvo A, Chiò A, Corbo M, Bendotti C, Beghi E, Bonetto V. Decreased Levels of Foldase and Chaperone Proteins Are Associated with an Early-Onset Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:99. [PMID: 28428745 PMCID: PMC5382314 DOI: 10.3389/fnmol.2017.00099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive upper and lower motor neuron degeneration. One of the peculiar clinical characteristics of ALS is the wide distribution in age of onset, which is probably caused by different combinations of intrinsic and exogenous factors. We investigated whether these modifying factors are converging into common pathogenic pathways leading either to an early or a late disease onset. This would imply the identification of phenotypic biomarkers, that can distinguish the two populations of ALS patients, and of relevant pathways to consider in a therapeutic intervention. Toward this aim a differential proteomic analysis was performed in peripheral blood mononuclear cells (PBMC) from a group of 16 ALS patients with an age of onset ≤55 years and a group of 16 ALS patients with an age of onset ≥75 years, and matched healthy controls. We identified 43 differentially expressed proteins in the two groups of patients. Gene ontology analysis revealed that there was a significant enrichment in annotations associated with protein folding and response to stress. We next validated a selected number of proteins belonging to this functional group in 85 patients and 83 age- and sex-matched healthy controls using immunoassays. The results of the validation study confirmed that there was a decreased level of peptidyl-prolyl cis-trans isomerase A (also known as cyclophilin A), heat shock protein HSP 90-alpha, 78 kDa glucose-regulated protein (also known as BiP) and protein deglycase DJ-1 in PBMC of ALS patients with an early onset. Similar results were obtained in PBMC and spinal cord from two SOD1G93A mouse models with an early and late disease onset. This study suggests that a different ability to upregulate proteins involved in proteostasis, such as foldase and chaperone proteins, may be at the basis of a different susceptibility to ALS, putting forward the development of therapeutic approaches aiming at boosting the protein quality control system.
Collapse
Affiliation(s)
- Melania Filareti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy.,Department of Neurorehabilitation Sciences, Casa Cura PoliclinicoMilan, Italy
| | - Silvia Luotti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Laura Pasetto
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Mauro Pignataro
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Katia Paolella
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Paolo Messina
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Elisabetta Pupillo
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST Spedali Civili and University of BresciaBrescia, Italy
| | | | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliero Universitaria di Modena, Ospedale Civile S. Agostino-EstenseModena, Italy
| | - Giuseppe Fuda
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Andrea Calvo
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Adriano Chiò
- ALS Center, Department of Neuroscience Rita Levi Montalcini, University of TorinoTorino, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura PoliclinicoMilan, Italy
| | - Caterina Bendotti
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Ettore Beghi
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| | - Valentina Bonetto
- Istituto Di Ricerche Farmacologiche Mario Negri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS)Milan, Italy
| |
Collapse
|