1
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Naruse H, Iseki C, Mitsui J, Miki J, Nagasawa H, Kurokawa K, Kobayashi R, Sato H, Goto J, Satake W, Ishiura H, Tsuji S, Ohta Y, Toda T. A novel TBK1 loss-of-function variant associated with ALS and parkinsonism phenotypes. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:791-794. [PMID: 38963079 DOI: 10.1080/21678421.2024.2374374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Loss-of-function (LoF) variants in the TANK binding kinase 1 (TBK1) gene are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. In this study, we present the first familial cases of ALS and parkinsonism associated with a novel TBK1 variant. We describe two siblings: one diagnosed with classical ALS and the other with a unique syndrome overlapping ALS and parkinsonism. Comprehensive clinical and imaging evaluations supported these diagnoses. Genetic analysis through whole-genome sequencing revealed a previously unknown heterozygous splice site variant in TBK1. Functional assessments demonstrated that this splice site variant leads to abnormal splicing and subsequent degradation of the mutated TBK1 allele by nonsense-mediated decay, confirming its pathogenic impact. Our findings suggest a broader involvement of TBK1 in neurodegenerative diseases and underscore the need for further research into TBK1's role, advocating for screening for TBK1 variants in similar familial cases.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chifumi Iseki
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Hikaru Nagasawa
- Department of Neurology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Katsuro Kurokawa
- Department of Neurology, Yamagata National Hospital, Yamagata, Japan
| | - Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Wataru Satake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan, and
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Neupane C, Sharma R, Gao FF, Pham TL, Kim YS, Yoon BE, Jo EK, Sohn KC, Hur GM, Cha GH, Min SS, Kim CS, Park JB. Role of the STING→IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function. J Neurosci 2024; 44:e1810232024. [PMID: 39227159 PMCID: PMC11466066 DOI: 10.1523/jneurosci.1810-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Targeting altered expression and/or activity of GABA (γ-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING→GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits.
Collapse
Affiliation(s)
- Chiranjivi Neupane
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ramesh Sharma
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Fei Fei Gao
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Thuy Linh Pham
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Eun-Kyeong Jo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Departments of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyung-Cheol Sohn
- Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gang Min Hur
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infectious Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sun Seek Min
- Department of Physiology, Eulji University School of Medicine, Daejeon 35233, Korea
| | - Cuk-Seong Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
| |
Collapse
|
4
|
Nijs M, Van Damme P. The genetics of amyotrophic lateral sclerosis. Curr Opin Neurol 2024; 37:560-569. [PMID: 38967083 PMCID: PMC11377058 DOI: 10.1097/wco.0000000000001294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) has a strong genetic basis, but the genetic landscape of ALS appears to be complex. The purpose of this article is to review recent developments in the genetics of ALS. RECENT FINDINGS Large-scale genetic studies have uncovered more than 40 genes contributing to ALS susceptibility. Both rare variants with variable effect size and more common variants with small effect size have been identified. The most common ALS genes are C9orf72 , SOD1 , TARDBP and FUS . Some of the causative genes of ALS are shared with frontotemporal dementia, confirming the molecular link between both diseases. Access to diagnostic gene testing for ALS has to improve, as effective gene silencing therapies for some genetic subtypes of ALS are emerging, but there is no consensus about which genes to test for. SUMMARY Our knowledge about the genetic basis of ALS has improved and the first effective gene silencing therapies for specific genetic subtypes of ALS are underway. These therapeutic advances underline the need for better access to gene testing for people with ALS. Further research is needed to further map the genetic heterogeneity of ALS and to establish the best strategy for gene testing in a clinical setting.
Collapse
Affiliation(s)
- Melissa Nijs
- Laboratory of Neurobiology, Department of Neuroscience, Leuven Brain Institute, University of Leuven (KU Leuven)
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neuroscience, Leuven Brain Institute, University of Leuven (KU Leuven)
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Xu T, Weng L, Zhang C, Xiao X, Yang Q, Zhu Y, Zhou Y, Liao X, Luo S, Wang J, Tang B, Jiao B, Shen L. Genetic spectrum features and diagnostic accuracy of four plasma biomarkers in 248 Chinese patients with frontotemporal dementia. Alzheimers Dement 2024; 20:7281-7295. [PMID: 39254359 PMCID: PMC11485083 DOI: 10.1002/alz.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is characterized by phenotypic and genetic heterogeneities. However, reports on the large Chinese FTD cohort are lacking. METHODS Two hundred forty-eight patients with FTD were enrolled. All patients and 2010 healthy controls underwent next generation sequencing. Plasma samples were analyzed for glial fibrillary acidic protein (GFAP), α-synuclein (α-syn), neurofilament light chain (NfL), and phosphorylated tau protein 181 (p-tau181). RESULTS Gene sequencing identified 48 pathogenic or likely pathogenic mutations in a total of 19.4% of patients with FTD (48/248). The most common mutation was the C9orf72 dynamic mutation (5.2%, 13/248). Significantly increased levels of GFAP, α-syn, NfL, and p-tau181 were detected in patients compared to controls (all p < 0.05). GFAP and α-syn presented better performance for diagnosing FTD. DISCUSSION We investigated the characteristics of phenotypic and genetic spectrum in a large Chinese FTD cohort, and highlighted the utility of plasma biomarkers for diagnosing FTD. HIGHLIGHTS This study used a frontotemporal dementia (FTD) cohort with a large sample size in Asia to update and reveal the clinical and genetic spectrum, and explore the relationship between multiple plasma biomarkers and FTD phenotypes as well as genotypes. We found for the first time that the C9orf72 dynamic mutation frequency ranks first among all mutations, which broke the previous impression that it was rare in Asian patients. Notably, it was the first time the C9orf72 G4C2 repeat expansion had been identified via whole-genome sequencing data, and this was verified using triplet repeat primed polymerase chain reaction (TP-PCR). We analyzed the diagnostic accuracy of four plasma biomarkers (glial fibrillary acidic protein [GFAP], α-synuclein [α-syn], neurofilament light chain [NfL], and phosphorylated tau protein 181 [p-tau181]) at the same time, especially for α-syn being included in the FTD cohort for the first time, and found GFAP and α-syn had the highest diagnostic accuracy for FTD and its varied subtypes.
Collapse
Affiliation(s)
- Tianyan Xu
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Ling Weng
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Cong Zhang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Xuewen Xiao
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Qijie Yang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Yuan Zhu
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
| | - Yafang Zhou
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Department of GeriatricsXiangya Hospital, Central South UniversityChangshaChina
| | - Xinxin Liao
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Department of GeriatricsXiangya Hospital, Central South UniversityChangshaChina
| | - Shilin Luo
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Junling Wang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Brain Research CenterCentral South UniversityChangshaChina
- FuRong LaboratoryCentral South UniversityChangshaChina
| | - Bin Jiao
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Lu Shen
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Brain Research CenterCentral South UniversityChangshaChina
- FuRong LaboratoryCentral South UniversityChangshaChina
| |
Collapse
|
6
|
Fang SY, Tsai PC, Jih KY, Hsu FC, Liao YC, Yang CC, Lee YC. TBK1 p.Y153Qfs*9 variant may be associated with young-onset, rapidly progressive amyotrophic lateral sclerosis through a haploinsufficiency mechanism. J Chin Med Assoc 2024; 87:920-926. [PMID: 39118204 DOI: 10.1097/jcma.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND TBK1 variants have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia spectrum disorder. The current study elucidated the clinical and molecular genetic features of a novel TBK1 variant identified in a patient with young-onset, rapidly progressive ALS. METHODS The coding regions of TBK1 , SOD1 , TARDBP , and FUS were genetically analyzed using Sanger sequencing. Repeat-primed polymerase chain reaction (PCR) was used to survey the GGGGCC repeat in C9ORF72 . The study participant underwent a comprehensive clinical evaluation. The functional effects of the TBK1 variant were analyzed through in vitro transfection studies. RESULTS We identified a novel frameshift truncating TBK1 variant, c.456_457delGT (p.Y153Qfs*9), in a man with ALS. The disease initially manifested as right hand weakness at the age of 39 years but progressed rapidly, with the revised ALS Functional Rating Scale score declining at an average monthly rate of 1.92 points in the first year after diagnosis. The patient had no cognitive dysfunction. However, Technetium-99m single photon emission tomography indicated hypoperfusion in his bilateral superior and middle frontal cortices. In vitro studies revealed that the p.Y153Qfs*9 variant resulted in a truncated TBK1 protein product, reduced TBK1 protein expression, loss of kinase function, reduced interaction with optineurin, and impaired dimerization. CONCLUSION The heterozygous TBK1 p.Y153Qfs*9 variant may be associated with young-onset, rapidly progressive ALS through a haploinsufficiency mechanism.
Collapse
Affiliation(s)
- Shih-Yu Fang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Department of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fang-Chi Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| |
Collapse
|
7
|
Ng ASL, Tan AH, Tan YJ, Lim JL, Lian MM, Dy Closas AM, Ahmad-Annuar A, Viswanathan S, Chia YK, Foo JN, Lim WK, Tan EK, Lim SY. Identification of Genetic Variants in Progressive Supranuclear Palsy in Southeast Asia. Mov Disord 2024; 39:1829-1842. [PMID: 39149795 DOI: 10.1002/mds.29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is largely a sporadic disease with few reported familial cases. Genome-wide association studies (GWAS) in sporadic PSP in Caucasian populations have identified MAPT as the most commonly associated genetic risk locus with the strongest effect size. At present there are limited data on genetic factors associated with PSP in Asian populations. OBJECTIVES Our goal was to investigate the genetic factors associated with PSP in Southeast Asian PSP patients. METHODS Next-generation sequencing (whole-exome, whole-genome and targeted sequencing) was performed in two Asian cohorts, comprising 177 PSP patients. RESULTS We identified 17 pathogenic or likely pathogenic variants in 16 PSP patients (9%), eight of which were novel. The most common relevant genetic variants identified were in MAPT, GBA1, OPTN, SYNJ1, and SQSTM1. Other variants detected were in TBK1, PRNP, and ABCA7-genes that have been implicated in other neurodegenerative diseases. Eighteen patients had a positive family history, of whom two carried pathogenic MAPT variants, and one carried a likely pathogenic GBA1 variant. None of the patients had expanded repeats in C9orf72. Furthermore, we found 16 different variants of uncertain significance in 21 PSP patients in PSEN2, ABCA7, SMPD1, MAPT, ATP13A2, OPTN, SQSTM1, CYLD, and BSN. CONCLUSIONS The genetic findings in our PSP cohorts appear to be somewhat distinct from those in Western populations, and also suggest an overlap of the genetic architecture between PSP and other neurodegenerative diseases. Further functional studies and validation in independent Asian cohorts will be useful for improving our understanding of PSP genetics and guiding genetic screening strategies in these populations. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alfand Marl Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Metro Davao Medical and Research Center, Davao Doctors Hospital, Davao City, Philippines
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weng Khong Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
9
|
Zelina P, de Ruiter AA, Kolsteeg C, van Ginneken I, Vos HR, Supiot LF, Burgering BMT, Meye FJ, Veldink JH, van den Berg LH, Pasterkamp RJ. ALS-associated C21ORF2 variant disrupts DNA damage repair, mitochondrial metabolism, neuronal excitability and NEK1 levels in human motor neurons. Acta Neuropathol Commun 2024; 12:144. [PMID: 39227882 PMCID: PMC11373222 DOI: 10.1186/s40478-024-01852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.
Collapse
Affiliation(s)
- Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Anna Aster de Ruiter
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christy Kolsteeg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Ilona van Ginneken
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Laura F Supiot
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Talaia G, Bentley-DeSousa A, Ferguson SM. Lysosomal TBK1 responds to amino acid availability to relieve Rab7-dependent mTORC1 inhibition. EMBO J 2024; 43:3948-3967. [PMID: 39103493 PMCID: PMC11405869 DOI: 10.1038/s44318-024-00180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
Collapse
Affiliation(s)
- Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Amanda Bentley-DeSousa
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
11
|
Pain O, Jones A, Al Khleifat A, Agarwal D, Hramyka D, Karoui H, Kubica J, Llewellyn DJ, Ranson JM, Yao Z, Iacoangeli A, Al-Chalabi A. Harnessing transcriptomic signals for amyotrophic lateral sclerosis to identify novel drugs and enhance risk prediction. Heliyon 2024; 10:e35342. [PMID: 39170265 PMCID: PMC11336650 DOI: 10.1016/j.heliyon.2024.e35342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. This study integrates common genetic association results from the latest ALS genome-wide association study (GWAS) summary statistics with functional genomic annotations with the aim of providing mechanistic insights into ALS risk loci, inferring drug repurposing opportunities, and enhancing prediction of ALS risk and clinical characteristics. Methods Genes associated with ALS were identified using GWAS summary statistic methodology including SuSiE SNP-based fine-mapping, and transcriptome- and proteome-wide association study (TWAS/PWAS) analyses. Using several approaches, gene associations were integrated with the DrugTargetor drug-gene interaction database to identify drugs that could be repurposed for the treatment of ALS. Furthermore, ALS gene associations from TWAS were combined with observed blood expression in two external ALS case-control datasets to calculate polytranscriptomic scores and evaluate their utility for prediction of ALS risk and clinical characteristics, including site of onset, age at onset, and survival. Results SNP-based fine-mapping, TWAS and PWAS identified 118 genes associated with ALS, with TWAS and PWAS providing novel mechanistic insights. Drug repurposing analyses identified six drugs significantly enriched for interactions with ALS associated genes, though directionality could not be determined. Additionally, drug class enrichment analysis showed gene signatures linked to calcium channel blockers may reduce ALS risk, whereas antiepileptic drugs may increase ALS risk. Across the two observed expression target samples, ALS polytranscriptomic scores significantly predicted ALS risk (R 2 = 5.1 %; p-value = 3.2 × 10-27) and clinical characteristics. Conclusions Functionally-informed analyses of ALS GWAS summary statistics identified novel mechanistic insights into ALS aetiology, highlighted several therapeutic research avenues, and enabled statistically significant prediction of ALS risk.
Collapse
Affiliation(s)
- Oliver Pain
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ashley Jones
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Devika Agarwal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Dzmitry Hramyka
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hajer Karoui
- Multiple Sclerosis and Parkinson's Tissue Bank, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jędrzej Kubica
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, University of Warsaw, Poland
- Laboratory of Theory of Biopolimers, Faculty of Chemistry, University of Warsaw, Poland
| | - David J. Llewellyn
- University of Exeter Medical School, Exeter, United Kingdom
- Alan Turing Institute, London, United Kingdom
| | | | - Zhi Yao
- LifeArc, Stevenage, United Kingdom
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
13
|
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 2024; 42:1199-1217. [PMID: 39075148 DOI: 10.1038/s41587-024-02320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
15
|
Domoto-Reilly K, Distad BJ, Miller DE, Lin YH, Ivanick D, Warren AS, Jayadev S, Latimer CS. Clinicopathologic Characterization of 2 Individuals With TBK1 Variants-1 Novel Splice Variant, 2 Proteinopathies: A Case Series. Neurol Genet 2024; 10:e200173. [PMID: 39055961 PMCID: PMC11270891 DOI: 10.1212/nxg.0000000000200173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
Objectives Here, we report detailed clinicopathologic evaluation of 2 individuals with pathogenic variants in TBK1, including one novel likely pathogenic splice variant. We describe the striking diversity of clinical phenotypes among family members and also the brain and spinal cord neuropathology associated with these 2 distinct TBK1 variants. Methods Two individuals with pathogenic variants in TBK1 and their families were clinically characterized, and the probands subsequently underwent extensive postmortem neuropathologic examination of their brains and spinal cords. Results Multiple affected individuals within a single family were found to carry a previously unreported c.358+3A>G variant, predicted to alter splicing. Detailed histopathologic evaluation of our 2 TBK1 variant carriers demonstrated distinct TDP-43 pathologic subtypes, but shared argyrophilic grain disease (AGD) tau pathology. Discussion Although all pathogenic TBK1 variants are associated with TDP-43 pathology, the clinical and histologic features can be highly variable. Within one family, we describe distinct neurologic presentations which we propose are all caused by a novel c.358+3A>G variant. AGD is typically associated with older age, but it has been described as a copathologic finding in other TBK1 variant carriers and may be a common feature in FTLD-TDP due to TBK1.
Collapse
Affiliation(s)
- Kimiko Domoto-Reilly
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| | - B Jane Distad
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| | - Danny E Miller
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| | - Yi-Han Lin
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| | - David Ivanick
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| | - Andrew S Warren
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| | - Suman Jayadev
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| | - Caitlin S Latimer
- From the Department of Neurology (K.D.-R., B.J.D., Y.L., S.J.); Department of Laboratory Medicine and Pathology (D.E.M.); Department of Pediatrics (D.E.M.); Brotman Baty Institute for Precision Medicine (D.E.M.), University of Washington, Seattle, WA; Department of Neurology (D.I.), Swedish Medical Center, Seattle, WA; College of Osteopathic Medicine (A.S.W.), Pacific Northwest University of Health Sciences, Yakima, WA; Department of Laboratory Medicine and Pathology (S.J., C.S.L.); and Department of Medical Genetics (S.J.), University of Washington
| |
Collapse
|
16
|
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Bai J, Shahzad S, Nedumaran J, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier P, Ward M, Todd P, Barmada SJ. TDP43 autoregulation gives rise to shortened isoforms that are tightly controlled by both transcriptional and post-translational mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601776. [PMID: 39005384 PMCID: PMC11244999 DOI: 10.1101/2024.07.02.601776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, highly prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a byproduct of TDP43 autoregulation and cleared by nonsense mediated RNA decay (NMD). The sTDP43-encoding transcripts that escape NMD can lead to toxicity but are rapidly degraded post-translationally. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration in vitro and in vivo via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and provide insight into the consequences of aberrant sTDP43 accumulation in disease.
Collapse
Affiliation(s)
- Megan M. Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Kaitlin Weskamp
- Chemistry Department, Nebraska Wesleyan University, Lincoln, NE
| | - Nicolás B. Gómez
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - M. Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA
| | | | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Neuropathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Jen Bai
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Juno Nedumaran
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Clare Wieland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Corey Stewart
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Sydney Willey
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Nikolas Grotewold
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jonathon McBride
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - John J. Moran
- Atlanta Pediatric Research Alliance, Emory University, Atlanta, GA
| | | | - Michael Lucas
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Peter Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | | | - Peter Todd
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| | - Sami J. Barmada
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Pottier C, Küçükali F, Baker M, Batzler A, Jenkins GD, van Blitterswijk M, Vicente CT, De Coster W, Wynants S, Van de Walle P, Ross OA, Murray ME, Faura J, Haggarty SJ, van Rooij JG, Mol MO, Hsiung GYR, Graff C, Öijerstedt L, Neumann M, Asmann Y, McDonnell SK, Baheti S, Josephs KA, Whitwell JL, Bieniek KF, Forsberg L, Heuer H, Lago AL, Geier EG, Yokoyama JS, Oddi AP, Flanagan M, Mao Q, Hodges JR, Kwok JB, Domoto-Reilly K, Synofzik M, Wilke C, Onyike C, Dickerson BC, Evers BM, Dugger BN, Munoz DG, Keith J, Zinman L, Rogaeva E, Suh E, Gefen T, Geula C, Weintraub S, Diehl-Schmid J, Farlow MR, Edbauer D, Woodruff BK, Caselli RJ, Donker Kaat LL, Huey ED, Reiman EM, Mead S, King A, Roeber S, Nana AL, Ertekin-Taner N, Knopman DS, Petersen RC, Petrucelli L, Uitti RJ, Wszolek ZK, Ramos EM, Grinberg LT, Gorno Tempini ML, Rosen HJ, Spina S, Piguet O, Grossman M, Trojanowski JQ, Keene DC, Lee-Way J, Prudlo J, Geschwind DH, Rissman RA, Cruchaga C, Ghetti B, Halliday GM, Beach TG, Serrano GE, Arzberger T, Herms J, Boxer AL, Honig LS, Vonsattel JP, Lopez OL, Kofler J, White CL, Gearing M, Glass J, Rohrer JD, Irwin DJ, Lee EB, Van Deerlin V, Castellani R, Mesulam MM, Tartaglia MC, Finger EC, Troakes C, Al-Sarraj S, Miller BL, Seelaar H, Graff-Radford NR, Boeve BF, Mackenzie IR, van Swieten JC, Seeley WW, Sleegers K, Dickson DW, Biernacka JM, Rademakers R. Deciphering Distinct Genetic Risk Factors for FTLD-TDP Pathological Subtypes via Whole-Genome Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309088. [PMID: 38978643 PMCID: PMC11230325 DOI: 10.1101/2024.06.24.24309088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.
Collapse
|
19
|
Nan H, Kim YJ, Chu M, Li D, Li J, Jiang D, Wu Y, Ohtsuka T, Wu L. Genetic and clinical landscape of Chinese frontotemporal dementia: dominance of TBK1 and OPTN mutations. Alzheimers Res Ther 2024; 16:127. [PMID: 38872230 PMCID: PMC11170894 DOI: 10.1186/s13195-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Our study aims to evaluate the genetic and phenotypic spectrum of Frontotemporal dementia (FTD) gene variant carriers in Chinese populations, investigate mutation frequencies, and assess the functional properties of TBK1 and OPTN variants. METHODS Clinically diagnosed FTD patients underwent genetic analysis through exome sequencing, repeat-primed polymerase chain reaction, and Sanger sequencing. TBK1 and OPTN variants were biologically characterized in vitro using immunofluorescence, immunoprecipitation, and immunoblotting analysis. The frequencies of genes implicated in FTD in China were analyzed through a literature review and meta-analysis. RESULTS Of the 261 Chinese FTD patients, 61 (23.4%) carried potential causative variants in FTD-related genes, including MAPT (n = 17), TBK1 (n = 7), OPTN (n = 6), GRN (n = 6), ANXA11 (n = 4), CHMP2B (n = 3), C9orf72 GGGGCC repeats (n = 2), CYLD (n = 2), PRNP (n = 2), SQSTM1 (n = 2), TARDBP (n = 2), VCP (n = 1), CCNF (n = 1), CHCHD10 (n = 1), SIGMAR1 (n = 1), CHCHD2 (n = 1), FUS (n = 1), TMEM106B (n = 1), and UBQLN2 (n = 1). 29 variants can be considered novel, including the MAPT p.D54N, p.E342K, p.R221P, p.T263I, TBK1 p.E696G, p.I37T, p.E232Q, p.S398F, p.T78A, p.Q150P, p.W259fs, OPTN p.R144G, p.F475V, GRN p.V473fs, p.C307fs, p.R101fs, CHMP2B p.K6N, p.R186Q, ANXA11 p.Q155*, CYLD p.T157I, SQSTM1 p.S403A, UBQLN2 p.P509H, CCNF p.S160N, CHCHD10 p.A8T, SIGMAR1 p.S117L, CHCHD2 p.P53fs, FUS p.S235G & p.S236G, and TMEM106B p.L144V variants. Patients with TBK1 and OPTN variants presented with heterogeneous clinical phenotypes. Functional analysis demonstrated that TBK1 I37T and E232Q mutants showed decreased autophosphorylation, and the OPTN phosphorylation was reduced by the TBK1 I37T mutant. The OPTN-TBK1 complex formation was enhanced by the TBK1 E696G mutant, while OPTN R144G and F475V mutants exhibited reduced recruitment to autophagosomes compared to the wild-type. The overall frequency of TBK1 and OPTN in Chinese FTD patients was 2.0% and 0.3%, respectively. CONCLUSIONS Our study demonstrates the extensive genetic and phenotypic heterogeneity of Chinese FTD patients. TBK1 mutations are the second most frequent cause of clinical FTD after MAPT in the Chinese.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yeon-Jeong Kim
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Dan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jieying Li
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yiming Wu
- The Experimental High School Attached to Beijing Normal University, Beijing, 100032, China
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
20
|
Zhong S, Zhou Q, Yang J, Zhang Z, Zhang X, Liu J, Chang X, Wang H. Relationship between the cGAS-STING and NF-κB pathways-role in neurotoxicity. Biomed Pharmacother 2024; 175:116698. [PMID: 38713946 DOI: 10.1016/j.biopha.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1β, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.
Collapse
Affiliation(s)
- Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
21
|
Miranda A, Shirley CA, Jenkins RW. Emerging roles of TBK1 in cancer immunobiology. Trends Cancer 2024; 10:531-540. [PMID: 38519366 PMCID: PMC11168882 DOI: 10.1016/j.trecan.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a versatile serine/threonine protein kinase with established roles in innate immunity, metabolism, autophagy, cell death, and inflammation. While best known for its role in regulating innate immunity, TBK1 has emerged as a cancer cell-intrinsic immune evasion gene by virtue of its role in modulating cellular responses to inflammatory signals emanating from the immune system. Beyond its effect on cancer cells, TBK1 appears to regulate lymphoid and myeloid cells in the tumor immune microenvironment. In this review, we detail recent advances in our understanding of the tumor-intrinsic and -extrinsic roles and regulation of TBK1 in tumor immunity.
Collapse
Affiliation(s)
- Alex Miranda
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carl A Shirley
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell W Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Brenner D, Sieverding K, Srinidhi J, Zellner S, Secker C, Yilmaz R, Dyckow J, Amr S, Ponomarenko A, Tunaboylu E, Douahem Y, Schlag JS, Rodríguez Martínez L, Kislinger G, Niemann C, Nalbach K, Ruf WP, Uhl J, Hollenbeck J, Schirmer L, Catanese A, Lobsiger CS, Danzer KM, Yilmazer-Hanke D, Münch C, Koch P, Freischmidt A, Fetting M, Behrends C, Parlato R, Weishaupt JH. A TBK1 variant causes autophagolysosomal and motoneuron pathology without neuroinflammation in mice. J Exp Med 2024; 221:e20221190. [PMID: 38517332 PMCID: PMC10959724 DOI: 10.1084/jem.20221190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.
Collapse
Affiliation(s)
- David Brenner
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Jahnavi Srinidhi
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Susanne Zellner
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rüstem Yilmaz
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Julia Dyckow
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Shady Amr
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna Ponomarenko
- Department of Neurology, University of Ulm, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Esra Tunaboylu
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Yasmin Douahem
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Joana S. Schlag
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucía Rodríguez Martínez
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Georg Kislinger
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cornelia Niemann
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Karsten Nalbach
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | | | - Jonathan Uhl
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Johanna Hollenbeck
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Lucas Schirmer
- Division of Neuroimmunology, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christian S. Lobsiger
- Institut du Cerveau—Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm, Centre National de la Recherche Scientifique, Assistance Publique–Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Karin M. Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurology, Clinical Neuroanatomy Unit, University of Ulm, Ulm, Germany
| | - Christian Münch
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Philipp Koch
- University of Heidelberg/Medical Faculty Mannheim, Central Institute of Mental Health, Mannheim, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | | | - Martina Fetting
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
- Electron Microscopy Hub, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Christian Behrends
- Medical Faculty, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University München, Munich, Germany
| | - Rosanna Parlato
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|
23
|
Li Z, Li J, Li Z, Song Y, Wang Y, Wang C, Yuan L, Xiao W, Wang J. Zebrafish mylipb attenuates antiviral innate immunity through two synergistic mechanisms targeting transcription factor irf3. PLoS Pathog 2024; 20:e1012227. [PMID: 38739631 PMCID: PMC11115282 DOI: 10.1371/journal.ppat.1012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Le Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
24
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
25
|
Teo EJ, Petautschnig S, Hellerstedt J, Grace SA, Savage JS, Fafiani B, Smith PD, Jhamb A, Haydon T, Dixon B. Cerebrovascular Responses in a Patient with Lundberg B Waves Following Subarachnoid Haemorrhage Assessed with a Novel Non-Invasive Brain Pulse Monitor: A Case Report. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2024; 17:73-87. [PMID: 38404631 PMCID: PMC10886819 DOI: 10.2147/mder.s452938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Subarachnoid haemorrhage (SAH) can trigger a range of poorly understood cerebrovascular responses that may play a role in delayed cerebral ischemia. The brain pulse monitor is a novel non-invasive device that detects a brain photoplethysmography signal that provides information on intracranial pressure (ICP), compliance, blood flow and tissue oxygen saturation. We monitored the cerebrovascular responses in a patient with Lundberg B waves following a SAH. The patient presented with a Fischer grade 4 SAH that required urgent left posterior communicating artery aneurysm coiling and ventricular drain insertion. On hospital day 4 oscillations or spikes on the invasive ICP were noted, consistent with Lundberg B waves. Brain pulse monitoring demonstrated concurrent pulse waveform features consistent with reduced brain compliance and raised ICP over both brain hemispheres. Oxygen levels also demonstrated slow oscillations correlated with the ICP spikes. Brief infrequent episodes of reduced and absent brain pulses were also noted over the right hemisphere. Our findings suggest that the brain pulse monitor holds promise for early detection of delayed cerebral ischemia and could offer insights into the vascular mechanisms at play.
Collapse
Affiliation(s)
- Elliot John Teo
- Cyban Pty Ltd, Melbourne, Victoria, Australia
- Department of Critical Care Medicine, St Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Sigrid Petautschnig
- Cyban Pty Ltd, Melbourne, Victoria, Australia
- Department of Critical Care Medicine, St Vincent’s Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | - Paul Daniel Smith
- Department of Neurosurgery, St Vincent’s Hospital, Melbourne, Victoria, Australia
- University of Melbourne Medical School, Melbourne, VIC, Australia
| | - Ashu Jhamb
- Department of Medical Imaging, St Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Timothy Haydon
- Department of Critical Care Medicine, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Critical Care, the University of Melbourne, Melbourne, VIC, Australia
| | - Barry Dixon
- Cyban Pty Ltd, Melbourne, Victoria, Australia
- Department of Medical Imaging, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Critical Care, the University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
26
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
27
|
Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FSG. Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024; 13:248. [PMID: 38334639 PMCID: PMC10854804 DOI: 10.3390/cells13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcelo Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filomena S. G. Silva
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Mitotag Lda, Biocant Park, 3060-197 Cantanhede, Portugal
| |
Collapse
|
28
|
Liu S, Xu P. Advancements in tyrosine kinase-mediated regulation of innate nucleic acid sensing. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:35-46. [PMID: 38426691 PMCID: PMC10945499 DOI: 10.3724/zdxbyxb-2023-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Innate nucleic acid sensing is a ubiquitous and highly conserved immunological process, which is pivotal for monitoring and responding to pathogenic invasion and cellular damage, and central to host defense, autoimmunity, cell fate determination and tumorigenesis. Tyrosine phosphorylation, a major type of post-translational modification, plays a critical regulatory role in innate immune sensing pathway. Core members of nucleic acid sensing signaling pathway, such as cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), stimulator of interferon genes (STING), and TANK binding kinase 1 (TBK1), are all subject to activity regulation triggered by tyrosine phosphorylation, thereby affecting the host antiviral defense and anti-tumor immunity under physiological or pathological conditions. This review summarizes the recent advances in research on tyrosine kinases and tyrosine phosphorylation in regulation of nucleic acid sensing. The function and potential applications of targeting tyrosine phosphorylation in anti-tumor immunity is disussed to provide insights for understanding and expanding new anti-tumor strategies.
Collapse
Affiliation(s)
- Shengduo Liu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Chen L, Zhang S, Liu S, Gao S. Amyotrophic Lateral Sclerosis Mechanism: Insights from the Caenorhabditis elegans Models. Cells 2024; 13:99. [PMID: 38201303 PMCID: PMC10778397 DOI: 10.3390/cells13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative condition characterized by the progressive degeneration of motor neurons. Despite extensive research in various model animals, the cellular signal mechanisms of ALS remain elusive, impeding the development of efficacious treatments. Among these models, a well-characterized and diminutive organism, Caenorhabditis elegans (C. elegans), has emerged as a potent tool for investigating the molecular and cellular dimensions of ALS pathogenesis. This review summarizes the contributions of C. elegans models to our comprehension of ALS, emphasizing pivotal findings pertaining to genetics, protein aggregation, cellular pathways, and potential therapeutic strategies. We analyze both the merits and constraints of the C. elegans system in the realm of ALS research and point towards future investigations that could bridge the chasm between C. elegans foundational discoveries and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.C.); (S.Z.); (S.L.)
| |
Collapse
|
30
|
Wong CH, Rahat A, Chang HC. Fused in sarcoma regulates glutamate signaling and oxidative stress response. Free Radic Biol Med 2024; 210:172-182. [PMID: 38007141 PMCID: PMC10872661 DOI: 10.1016/j.freeradbiomed.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor GLR-1. We found that fust-1 ALS mutations act as loss-of-function in SOD-1 and VGLUT/EAT-4 phenotypes, whereas the fust-1 ALS mutations act as gain-of-function in redox homeostasis and the microbe-induced oxidative stress response. We hypothesized that FUST-1 is a link between glutamate signaling and SOD-1. Our results may provide new insights into the human ALS alleles and their roles in pathological mechanisms that lead to ALS.
Collapse
Affiliation(s)
- Chiong-Hee Wong
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, 104217, Taiwan
| | - Abu Rahat
- Integrative Neuroscience Program, SUNY Binghamton, Vestal, NY, 13850, USA
| | - Howard C Chang
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|
31
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Ling Y, Crotti A. Emerging Microglial Therapies and Targets in Clinical Trial. ADVANCES IN NEUROBIOLOGY 2024; 37:623-637. [PMID: 39207717 DOI: 10.1007/978-3-031-55529-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.
Collapse
Affiliation(s)
- Yan Ling
- Neuroscience Translational Medicine, Takeda Pharmaceutical Co. Ltd., Tokyo, Japan
| | | |
Collapse
|
33
|
Bhat MA, Dhaneshwar S. Neurodegenerative Diseases: New Hopes and Perspectives. Curr Mol Med 2024; 24:1004-1032. [PMID: 37691199 DOI: 10.2174/1566524023666230907093451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and Friedrich ataxia are all incurable neurodegenerative diseases defined by the continuous progressive loss of distinct neuronal subtypes. Despite their rising prevalence among the world's ageing population, fewer advances have been made in the concurrent massive efforts to develop newer drugs. Recently, there has been a shift in research focus towards the discovery of new therapeutic agents for neurodegenerative diseases. In this review, we have summarized the recently developed therapies and their status in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Aadil Bhat
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, UP, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Talaia G, Bentley-DeSousa A, Ferguson SM. Lysosomal TBK1 Responds to Amino Acid Availability to Relieve Rab7-Dependent mTORC1 Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571979. [PMID: 38168426 PMCID: PMC10760094 DOI: 10.1101/2023.12.16.571979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. At lysosomes, this TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
Collapse
Affiliation(s)
- Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Amanda Bentley-DeSousa
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Shawn M. Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
35
|
Vacchiano V, Palombo F, Ormanbekova D, Fiorini C, Fiorentino A, Caporali L, Mastrangelo A, Valentino ML, Capellari S, Liguori R, Carelli V. The genetic puzzle of a SOD1-patient with ocular ptosis and a motor neuron disease: a case report. Front Genet 2023; 14:1322067. [PMID: 38152653 PMCID: PMC10751346 DOI: 10.3389/fgene.2023.1322067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a complex genetic architecture, showing monogenic, oligogenic, and polygenic inheritance. In this study, we describe the case of a 71 years-old man diagnosed with ALS with atypical clinical features consisting in progressive ocular ptosis and sensorineural deafness. Genetic analyses revealed two heterozygous variants, in the SOD1 (OMIM*147450) and the TBK1 (OMIM*604834) genes respectively, and furthermore mitochondrial DNA (mtDNA) sequencing identified the homoplasmic m.14484T>C variant usually associated with Leber's Hereditary Optic Neuropathy (LHON). We discuss how all these variants may synergically impinge on mitochondrial function, possibly contributing to the pathogenic mechanisms which might ultimately lead to the neurodegenerative process, shaping the clinical ALS phenotype enriched by adjunctive clinical features.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessia Fiorentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
36
|
Todd TW, Shao W, Zhang YJ, Petrucelli L. The endolysosomal pathway and ALS/FTD. Trends Neurosci 2023; 46:1025-1041. [PMID: 37827960 PMCID: PMC10841821 DOI: 10.1016/j.tins.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
37
|
Rizzuti M, Sali L, Melzi V, Scarcella S, Costamagna G, Ottoboni L, Quetti L, Brambilla L, Papadimitriou D, Verde F, Ratti A, Ticozzi N, Comi GP, Corti S, Gagliardi D. Genomic and transcriptomic advances in amyotrophic lateral sclerosis. Ageing Res Rev 2023; 92:102126. [PMID: 37972860 DOI: 10.1016/j.arr.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. ALS shows substantial clinical and molecular heterogeneity. In vitro and in vivo models coupled with multiomic techniques have provided important contributions to unraveling the pathomechanisms underlying ALS. To date, despite promising results and accumulating knowledge, an effective treatment is still lacking. Here, we provide an overview of the literature on the use of genomics, epigenomics, transcriptomics and microRNAs to deeply investigate the molecular mechanisms developing and sustaining ALS. We report the most relevant genes implicated in ALS pathogenesis, discussing the use of different high-throughput sequencing techniques and the role of epigenomic modifications. Furthermore, we present transcriptomic studies discussing the most recent advances, from microarrays to bulk and single-cell RNA sequencing. Finally, we discuss the use of microRNAs as potential biomarkers and promising tools for molecular intervention. The integration of data from multiple omic approaches may provide new insights into pathogenic pathways in ALS by shedding light on diagnostic and prognostic biomarkers, helping to stratify patients into clinically relevant subgroups, revealing novel therapeutic targets and supporting the development of new effective therapies.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Costamagna
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
38
|
Lin Y, Yang J, Yang Q, Zeng S, Zhang J, Zhu Y, Tong Y, Li L, Tan W, Chen D, Sun Q. PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling. Nat Commun 2023; 14:7567. [PMID: 37989995 PMCID: PMC10663505 DOI: 10.1038/s41467-023-43419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key kinase in regulating antiviral innate immune responses. While the oligomerization of TBK1 is critical for its full activation, the molecular mechanism of how TBK1 forms oligomers remains unclear. Here, we show that protein tyrosine kinase 2 beta (PTK2B) acts as a TBK1-interacting protein and regulates TBK1 oligomerization. Functional assays reveal that PTK2B depletion reduces antiviral signaling in mouse embryonic fibroblasts, macrophages and dendritic cells, and genetic experiments show that Ptk2b-deficient mice are more susceptible to viral infection than control mice. Mechanistically, we demonstrate that PTK2B directly phosphorylates residue Tyr591 of TBK1, which increases TBK1 oligomerization and activation. In addition, we find that PTK2B also interacts with the stimulator of interferon genes (STING) and can promote its oligomerization in a kinase-independent manner. Collectively, PTK2B enhances the oligomerization of TBK1 and STING via different mechanisms, subsequently regulating STING-TBK1 activation to ensure efficient antiviral innate immune responses.
Collapse
Affiliation(s)
- Yongfang Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qili Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sha Zeng
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Yuxin Tong
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Weiqi Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China.
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
39
|
Watanabe S, Murata Y, Oka Y, Oiwa K, Horiuchi M, Iguchi Y, Komine O, Sobue A, Katsuno M, Ogi T, Yamanaka K. Mitochondria-associated membrane collapse impairs TBK1-mediated proteostatic stress response in ALS. Proc Natl Acad Sci U S A 2023; 120:e2315347120. [PMID: 37967220 PMCID: PMC10666035 DOI: 10.1073/pnas.2315347120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
The organelle contact site of the endoplasmic reticulum and mitochondria, known as the mitochondria-associated membrane (MAM), is a multifunctional microdomain in cellular homeostasis. We previously reported that MAM disruption is a common pathological feature in amyotrophic lateral sclerosis (ALS); however, the precise role of MAM in ALS was uncovered. Here, we show that the MAM is essential for TANK-binding kinase 1 (TBK1) activation under proteostatic stress conditions. A MAM-specific E3 ubiquitin ligase, autocrine motility factor receptor, ubiquitinated nascent proteins to activate TBK1 at the MAM, which results in ribosomal protein degradation. MAM or TBK1 deficiency under proteostatic stress conditions resulted in increased cellular vulnerability in vitro and motor impairment in vivo. Thus, MAM disruption exacerbates proteostatic stress via TBK1 inactivation in ALS. Our study has revealed a proteostatic mechanism mediated by the MAM-TBK1 axis, highlighting the physiological importance of the organelle contact sites.
Collapse
Affiliation(s)
- Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yuri Murata
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kotaro Oiwa
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mai Horiuchi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
40
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
41
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
42
|
Corcia P, Vourc'h P, Bernard E, Cassereau J, Codron P, Fleury MC, Guy N, Mouzat K, Pradat PF, Soriani MH, Couratier P. French National Protocol for genetic of amyotrophic lateral sclerosis. Rev Neurol (Paris) 2023; 179:1020-1029. [PMID: 37735015 DOI: 10.1016/j.neurol.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/23/2023]
Abstract
Relationships between genes and amyotrophic lateral sclerosis (ALS) have been widely accepted since the first studies highlighting pathogenic mutations in the SOD1 gene 30years ago. Over the last three decades, scientific literature has clearly highlighted the central role played by genetic factors in the disease, in both clinics and pathophysiology, as well as in therapeutics. This implies that health professionals who care for patients with ALS are increasingly faced with patients and relatives eager to have answers to questions related to the role of genetic factors in the occurrence of the disease and the risk for their relatives to develop ALS. In order to address these public health issues, the French ALS network FILSLAN proposed to the Haute Autorité de santé (HAS) the drafting of a French National Protocol (PNDS) on ALS genetics. This PNDS was developed according to the "method for developing a national diagnosis and care protocol for rare diseases" published by the HAS in 2012 (methodological guide for PNDS available on the HAS website: http://www.has-sante.fr/). This document aims to provide the most recent data on the role of genes in ALS and to detail the implications for diagnosis and care.
Collapse
Affiliation(s)
- P Corcia
- CRMR SLA, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Tours, France.
| | - P Vourc'h
- UMR 1253 iBrain, Tours, France; Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| | | | | | - P Codron
- CRMR SLA, CHU d'Angers, Angers, France
| | - M-C Fleury
- CRC SLA, CHU de Strasbourg, Strasbourg, France
| | - N Guy
- CRC SLA, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - K Mouzat
- Laboratoire de biochimie et biologie moléculaire, CHU de Nîmes, Nîmes, France
| | - P-F Pradat
- CRMR SLA, CHU Pitié-Salpêtrière, Paris, France
| | | | | |
Collapse
|
43
|
Zhao B, Jiang Q, Lin J, Wei Q, Li C, Hou Y, Cao B, Zhang L, Ou R, Liu K, Yang T, Xiao Y, Shang H. TBK1 variants in Chinese patients with amyotrophic lateral sclerosis: Genetic analysis and clinical features. Eur J Neurol 2023; 30:3079-3089. [PMID: 37422901 DOI: 10.1111/ene.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/09/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Haploinsufficiency of TANK-binding kinase 1 (TBK1) loss-of-function (LoF) variants has been shown to be pathogenic in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the genetic spectrum of TBK1 and clinical features of ALS patients with TBK1 variants remain largely unknown in Asians. METHODS Genetic analysis was performed on 2011 Chinese ALS patients. Software was used to predict the deleteriousness of missense variants in TBK1. In addition, PubMed, Embase and Web of Science were searched for related literature. RESULTS Twenty-six TBK1 variants were identified in 33 of 2011 ALS patients, including six novel LoF variants (0.3%) and 20 rare missense variants, 12 of which were predicted to be deleterious (0.6%). In addition to TBK1 variants, 11 patients had other ALS-related gene variants. Forty-two previous studies found that the frequency of TBK1 variants was 1.81% in ALS/FTD patients. The frequency of TBK1 LoF variants in ALS was 0.5% (Asians 0.4%; Caucasian 0.6%) and that of missense variants was 0.8% (Asians 1.0%; Caucasian 0.8%). ALS patients with TBK1 LoF variants affecting the kinase domain had a significantly younger age of onset than patients carrying LoF variants affecting the coiled coil domains CCD1 and CCD2. FTD has a frequency of 10% in Caucasian ALS patients with TBK1 LoF variants, which was not found in our cohort. CONCLUSION Our study expanded the genotypic spectrum of ALS patients with TBK1 variants and found that the clinical manifestations of TBK1 carriers are diverse.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
45
|
Li Z, Wang X, Wang X, Yi X, Wong YK, Wu J, Xie F, Hu D, Wang Q, Wang J, Zhong T. Research progress on the role of extracellular vesicles in neurodegenerative diseases. Transl Neurodegener 2023; 12:43. [PMID: 37697342 PMCID: PMC10494410 DOI: 10.1186/s40035-023-00375-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, affect millions of people worldwide. Tremendous efforts have been put into disease-related research, but few breakthroughs have been made in diagnostic and therapeutic approaches. Extracellular vesicles (EVs) are heterogeneous cell-derived membrane structures that arise from the endosomal system or are directly separated from the plasma membrane. EVs contain many biomolecules, including proteins, nucleic acids, and lipids, which can be transferred between different cells, tissues, or organs, thereby regulating cross-organ communication between cells during normal and pathological processes. Recently, EVs have been shown to participate in various aspects of neurodegenerative diseases. Abnormal secretion and levels of EVs are closely related to the pathogenesis of neurodegenerative diseases and contribute to disease progression. Numerous studies have proposed EVs as therapeutic targets or biomarkers for neurodegenerative diseases. In this review, we summarize and discuss the advanced research progress on EVs in the pathological processes of several neurodegenerative diseases. Moreover, we outline the latest research on the roles of EVs in neurodegenerative diseases and their therapeutic potential for the diseases.
Collapse
Affiliation(s)
- Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yin Kwan Wong
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Fangfang Xie
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Die Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qi Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Jigang Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
46
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
47
|
Bodin A, Greibill L, Gouju J, Letournel F, Pozzi S, Julien JP, Renaud L, Bohl D, Millecamps S, Verny C, Cassereau J, Lenaers G, Chevrollier A, Tassin AM, Codron P. Transactive response DNA-binding protein 43 is enriched at the centrosome in human cells. Brain 2023; 146:3624-3633. [PMID: 37410912 PMCID: PMC10473568 DOI: 10.1093/brain/awad228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.
Collapse
Affiliation(s)
- Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Logan Greibill
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Julien Gouju
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Franck Letournel
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Laurence Renaud
- Département de Neurosciences, Université de Montréal, Montréal, Qc H3C 3J7, Canada
- Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Julien Cassereau
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| |
Collapse
|
48
|
Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, Traynor BJ. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24:642-658. [PMID: 37024676 PMCID: PMC10611979 DOI: 10.1038/s41576-023-00592-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Elia R Lopez
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
49
|
Fox AR, Fingert JH. Familial normal tension glaucoma genetics. Prog Retin Eye Res 2023; 96:101191. [PMID: 37353142 DOI: 10.1016/j.preteyeres.2023.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Glaucoma is defined by characteristic optic nerve damage and corresponding visual field defects and is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is a strong risk factor for developing glaucoma. However, glaucoma can occur at any IOP. Normal tension glaucoma (NTG) arises with IOPs that are within what has been defined as a normal range, i.e., 21 mm Hg or less, which may present challenges in its diagnosis and management. Identifying inheritance patterns and genetic mutations in families with NTG has helped elucidate mechanisms of NTG, however the pathophysiology is complex and not fully understood. Approximately 2% of NTG cases are caused primarily by mutations in single genes, optineurin (OPTN), TANK binding kinase 1 (TKB1), or myocilin (MYOC). Herein, we review pedigree studies of NTG and autosomal dominant NTG caused by OPTN, TBK1, and MYOC mutations. We review identified mutations and resulting clinical features of OPTN-associated and TBK1-associated NTG, including long-term follow up of these patients with NTG. In addition, we report a new four-generation pedigree of NTG caused by a Glu50Lys OPTN mutation, including six family members with a mean follow up of 17 years. Common features of OPTN -associated NTG due to Glu50Lys mutation included early onset of disease with an IOP <21 mm Hg, marked optic disc cupping, and progressive visual field loss which appeared to stabilize once an IOP of less than 10 mm Hg was achieved. Lastly, we review risk factor genes which have been identified to contribute to the complex inheritance of NTG.
Collapse
Affiliation(s)
- Austin R Fox
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
50
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|