1
|
Elbaz MA, Demers M, Kleinfeld D, Ethier C, Deschênes M. Interchangeable Role of Motor Cortex and Reafference for the Stable Execution of an Orofacial Action. J Neurosci 2023; 43:5521-5536. [PMID: 37400255 PMCID: PMC10376937 DOI: 10.1523/jneurosci.2089-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Animals interact with their environment through mechanically active, mobile sensors. The efficient use of these sensory organs implies the ability to track their position; otherwise, perceptual stability or prehension would be profoundly impeded. The nervous system may keep track of the position of a sensorimotor organ via two complementary feedback mechanisms-peripheral reafference (external, sensory feedback) and efference copy (internal feedback). Yet, the potential contributions of these mechanisms remain largely unexplored. By training male rats to place one of their vibrissae within a predetermined angular range without contact, a task that depends on knowledge of vibrissa position relative to their face, we found that peripheral reafference is not required. The presence of motor cortex is not required either, except in the absence of peripheral reafference to maintain motor stability. Finally, the red nucleus, which receives descending inputs from motor cortex and cerebellum and projects to facial motoneurons, is critically involved in the execution of the vibrissa positioning task. All told, our results point toward the existence of an internal model that requires either peripheral reafference or motor cortex to optimally drive voluntary motion.SIGNIFICANCE STATEMENT How does an animal know where a mechanically active, mobile sensor lies relative to its body? We address this basic question in sensorimotor integration using the motion of the vibrissae in rats. We show that rats can learn to reliably position their vibrissae in the absence of sensory feedback or in the absence of motor cortex. Yet, when both sensory feedback and motor cortex are absent, motor precision is degraded. This suggests the existence of an internal model able to operate in closed- and open-loop modes, requiring either motor cortex or sensory feedback to maintain motor stability.
Collapse
Affiliation(s)
- Michaël A Elbaz
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Maxime Demers
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - David Kleinfeld
- Departments of Physics
- Neurobiology, University of California, San Diego, La Jolla, California 92093
| | - Christian Ethier
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Martin Deschênes
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| |
Collapse
|
2
|
Dhawan SS, Yedavalli V, Massoud TF. Atavistic and vestigial anatomical structures in the head, neck, and spine: an overview. Anat Sci Int 2023:10.1007/s12565-022-00701-7. [PMID: 36680662 DOI: 10.1007/s12565-022-00701-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023]
Abstract
Organisms may retain nonfunctional anatomical features as a consequence of evolutionary natural selection. Resultant atavistic and vestigial anatomical structures have long been a source of perplexity. Atavism is when an ancestral trait reappears after loss through an evolutionary change in previous generations, whereas vestigial structures are remnants that are largely or entirely functionless relative to their original roles. While physicians are cognizant of their existence, atavistic and vestigial structures are rarely emphasized in anatomical curricula and can, therefore, be puzzling when discovered incidentally. In addition, the literature is replete with examples of the terms atavistic and vestigial being used interchangeably without careful distinction between them. We provide an overview of important atavistic and vestigial structures in the head, neck, and spine that can serve as a reference for anatomists and clinical neuroscientists. We review the literature on atavistic and vestigial anatomical structures of the head, neck, and spine that may be encountered in clinical practice. We define atavistic and vestigial structures and employ these definitions consistently when classifying anatomical structures. Pertinent anatomical structures are numerous and include human tails, plica semilunaris, the vomeronasal organ, levator claviculae, and external ear muscles, to name a few. Atavistic and vestigial structures are found throughout the head, neck, and spine. Some, such as human tails and branchial cysts may be clinically symptomatic. Literature reports indicate that their prevalence varies across populations. Knowledge of atavistic and vestigial anatomical structures can inform diagnoses, prevent misrecognition of variation for pathology, and guide clinical interventions.
Collapse
Affiliation(s)
- Siddhant Suri Dhawan
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, and Stanford Initiative for Multimodality Neuro-Imaging in Translational Anatomy Research (SIMITAR), Department of Radiology, Stanford University School of Medicine, Stanford, USA. .,Center for Academic Medicine, Radiology MC: 5659; 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Chakrabarti S, Nambiar J, Schwarz C. Adaptive Whisking in Mice. Front Syst Neurosci 2022; 15:813311. [PMID: 35153684 PMCID: PMC8829423 DOI: 10.3389/fnsys.2021.813311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Rodents generate rhythmic whisking movements to explore their environment. Whisking trajectories, for one, appear as a fixed pattern of whisk cycles at 5–10 Hz driven by a brain stem central pattern generator. In contrast, whisking behavior is thought to be versatile and adaptable to behavioral goals. To begin to systematically investigate such behavioral adaptation, we established a whisking task, in which mice altered the trajectories of whisking in a goal-oriented fashion to gain rewards. Mice were trained to set the whisker to a defined starting position and generate a protraction movement across a virtual target (no touch-related tactile feedback). By ramping up target distance based on reward history, we observed that mice are able to generate highly specific whisking patterns suited to keep reward probability constant. On a sensorimotor level, the behavioral adaptation was realized by adjusting whisker kinematics: more distant locations were targeted using higher velocities (i.e., pointing to longer force generation), rather than by generating higher acceleration (i.e., pointing to stronger forces). We tested the suitability of the paradigm of tracking subtle alteration in whisking motor commands using small lesions in the rhythmic whisking subfield (RW) of the whisking-related primary motor cortex. Small contralateral RW lesions generated the deterioration of whisking kinematics with a latency of 12 days post-lesion, a change that was readily discriminated from changes in the behavioral adaptation by the paradigm.
Collapse
|
4
|
Harrell ER, Renard A, Bathellier B. Fast cortical dynamics encode tactile grating orientation during active touch. SCIENCE ADVANCES 2021; 7:eabf7096. [PMID: 34516895 PMCID: PMC8442870 DOI: 10.1126/sciadv.abf7096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Touch-based object recognition relies on perception of compositional tactile features like roughness, shape, and surface orientation. However, besides roughness, it remains unclear how these different tactile features are encoded by neural activity that is linked with perception. Here, we establish a cortex-dependent perceptual task in which mice discriminate tactile gratings on the basis of orientation using only their whiskers. Multielectrode recordings in the barrel cortex reveal weak orientation tuning in average firing rates (500-ms time scale) during grating exploration despite high levels of cortical activity. Just before decision, orientation information extracted from fast cortical dynamics (100-ms time scale) more closely resembles concurrent psychophysical measurements than single neuron orientation tuning curves. This temporal code conveys both stimulus and choice/action-related information, suggesting that fast cortical dynamics during exploration of a tactile object both reflect the physical stimulus and affect the decision.
Collapse
Affiliation(s)
- Evan R. Harrell
- Department for Integrative and Computational Neuroscience (ICN), Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS/University Paris Sud CNRS, Building 32/33, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
- Institut Pasteur, INSERM, Institut de l’Audition, 63 rue de Charenton, F-75012 Paris, France
- Corresponding author. (E.R.H.); (B.B.)
| | - Anthony Renard
- Department for Integrative and Computational Neuroscience (ICN), Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS/University Paris Sud CNRS, Building 32/33, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
- Institut Pasteur, INSERM, Institut de l’Audition, 63 rue de Charenton, F-75012 Paris, France
| | - Brice Bathellier
- Department for Integrative and Computational Neuroscience (ICN), Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS/University Paris Sud CNRS, Building 32/33, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
- Institut Pasteur, INSERM, Institut de l’Audition, 63 rue de Charenton, F-75012 Paris, France
- Corresponding author. (E.R.H.); (B.B.)
| |
Collapse
|
5
|
Chen L, Daniels S, Kim Y, Chu HY. Cell Type-Specific Decrease of the Intrinsic Excitability of Motor Cortical Pyramidal Neurons in Parkinsonism. J Neurosci 2021; 41:5553-5565. [PMID: 34006589 PMCID: PMC8221604 DOI: 10.1523/jneurosci.2694-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
The hypokinetic motor symptoms of Parkinson's disease (PD) are closely linked with a decreased motor cortical output as a consequence of elevated basal ganglia inhibition. However, whether and how the loss of dopamine (DA) alters the cellular properties of motor cortical neurons in PD remains undefined. We induced parkinsonism in adult C57BL/6 mice of both sexes by injecting neurotoxin, 6-hydroxydopamine (6-OHDA), into the medial forebrain bundle. By using ex vivo patch-clamp recording and retrograde tracing approach, we found that the intrinsic excitability of pyramidal tract neurons (PTNs) in the primary motor cortical (M1) layer (L)5b was greatly decreased in parkinsonism; but the intratelencephalic neurons (ITNs) were not affected. The cell type-specific intrinsic adaptations were associated with a depolarized threshold and broadened width of action potentials (APs) in PTNs. Moreover, the loss of midbrain dopaminergic neurons impaired the capability of M1 PTNs to sustain high-frequency firing, which could underlie their abnormal pattern of activity in the parkinsonian state. We also showed that the decreased excitability in parkinsonism was caused by an impaired function of both persistent sodium channels and the large conductance, Ca2+-activated K+ channels. Acute activation of dopaminergic receptors failed to rescue the impaired intrinsic excitability of M1 PTNs in parkinsonian mice. Altogether, our data demonstrated a cell type-specific decrease of the excitability of M1 pyramidal neurons in parkinsonism. Thus, intrinsic adaptations in the motor cortex provide novel insight in our understanding of the pathophysiology of motor deficits in PD.SIGNIFICANCE STATEMENT The degeneration of midbrain dopaminergic neurons in Parkinson's disease (PD) remodels the connectivity and function of cortico-basal ganglia-thalamocortical network. However, whether and how dopaminergic degeneration and the associated basal ganglia dysfunction alter motor cortical circuitry remain undefined. We found that pyramidal neurons in the layer (L)5b of the primary motor cortex (M1) exhibit distinct adaptations in response to the loss of midbrain dopaminergic neurons, depending on their long-range projections. Besides the decreased thalamocortical synaptic excitation as proposed by the classical model of Parkinson's pathophysiology, these results, for the first time, show novel cellular and molecular mechanisms underlying the abnormal motor cortical output in parkinsonism.
Collapse
Affiliation(s)
- Liqiang Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| | - Samuel Daniels
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| | - Yerim Kim
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
6
|
Nishimura Y, Ikegaya Y, Sasaki T. Concurrent recordings of hippocampal neuronal spikes and prefrontal synaptic inputs from an awake rat. STAR Protoc 2021; 2:100572. [PMID: 34151297 PMCID: PMC8192860 DOI: 10.1016/j.xpro.2021.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A major challenge in neuroscience is linking synapses to cognition and behavior. Here, we developed an experimental technique to concurrently conduct a whole-cell recording of a prefrontal neuron and a multiunit recording of hippocampal neurons from an awake rat. This protocol includes surgical steps to establish a cranial window and 3D printer-based devices to hold the rat. The data sets allow us to directly compare how subthreshold synaptic transmission is associated with suprathreshold spike patterns of neuronal ensembles. For complete details on the use and execution of this protocol, please refer to Nishimura et al. (2021). A surgical craniotomy is performed on the prefrontal cortex A microdrive is implanted on the hippocampus A patch-clamp recording is obtained from a prefrontal neuron Protocol allows simultaneous multiunit and whole-cell recordings
Collapse
Affiliation(s)
- Yuya Nishimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Ebbesen CL, Froemke RC. Body language signals for rodent social communication. Curr Opin Neurobiol 2021; 68:91-106. [PMID: 33582455 PMCID: PMC8243782 DOI: 10.1016/j.conb.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Integration of social cues to initiate adaptive emotional and behavioral responses is a fundamental aspect of animal and human behavior. In humans, social communication includes prominent nonverbal components, such as social touch, gestures and facial expressions. Comparative studies investigating the neural basis of social communication in rodents has historically been centered on olfactory signals and vocalizations, with relatively less focus on non-verbal social cues. Here, we outline two exciting research directions: First, we will review recent observations pointing to a role of social facial expressions in rodents. Second, we will review observations that point to a role of 'non-canonical' rodent body language: body posture signals beyond stereotyped displays in aggressive and sexual behavior. In both sections, we will outline how social neuroscience can build on recent advances in machine learning, robotics and micro-engineering to push these research directions forward towards a holistic systems neurobiology of rodent body language.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA; Howard Hughes Medical Institute Faculty Scholar, USA.
| |
Collapse
|
8
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
9
|
Treviño M, Medina-Coss Y León R. Distributed processing of side-choice biases. Brain Res 2020; 1749:147138. [PMID: 33002485 DOI: 10.1016/j.brainres.2020.147138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022]
Abstract
Psychophysics describes how variations in stimulus strength lead to changes in perceptual performance. Yet, the contribution of non-sensory information processing to perceptual decision making is still not fully understood. For instance, in two-alternative forced-choice tasks, observers can exhibit tendencies to choose more one alternative over another, with no apparent goal or function. Such choice biases are highly prevalent in mice and, in free-choice tasks, they are insensitive to changes in stimulus discriminability. Thus, a reasonable proposal is that these side-choice biases could derive from functional asymmetries in sensory processing, decision making, or both. Here, we explored how different circuits participate in the production of choice biases in adult mice. We found that the magnitude of the changes in biased choice behavior depended on the inactivated region. Indeed, contralateral, but not ipsilateral, inactivations of the primary visual and posterior parietal cortices reduced the probability of mice choosing their preferred side. In contrast, ipsilateral inactivations of the subtantia nigra pars reticulata and of the frontal orienting fields, reduced and increased the probabilities of mice choosing their preferred side, respectively. These results demonstrate that internal circuit processing contributes to side-choice behavior and illustrates how distinct brain regions could participate in producing normal to aberrant levels of choice variability.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Ricardo Medina-Coss Y León
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
10
|
Yuan RC, Bottjer SW. Multidimensional Tuning in Motor Cortical Neurons during Active Behavior. eNeuro 2020; 7:ENEURO.0109-20.2020. [PMID: 32661067 PMCID: PMC7396810 DOI: 10.1523/eneuro.0109-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
A region within songbird cortex, dorsal intermediate arcopallium (AId), is functionally analogous to motor cortex in mammals and has been implicated in song learning during development. Non-vocal factors such as visual and social cues are known to mediate song learning and performance, yet previous chronic-recording studies of regions important for song behavior have focused exclusively on neural activity in relation to song production. Thus, we have little understanding of the range of non-vocal information that single neurons may encode. We made chronic recordings in AId of freely behaving juvenile zebra finches and evaluated neural activity during diverse motor behaviors throughout entire recording sessions, including song production as well as hopping, pecking, preening, fluff-ups, beak interactions, scratching, and stretching. These movements are part of natural behavioral repertoires and are important components of both song learning and courtship behavior. A large population of AId neurons showed significant modulation of activity during singing. In addition, single neurons demonstrated heterogeneous response patterns during multiple movements (including excitation during one movement type and suppression during another), and some neurons showed differential activity depending on the context in which movements occurred. Moreover, we found evidence of neurons that did not respond during discrete movements but were nonetheless modulated during active behavioral states compared with quiescence. Our results suggest that AId neurons process both vocal and non-vocal information, highlighting the importance of considering the variety of multimodal factors that can contribute to vocal motor learning during development.
Collapse
Affiliation(s)
- Rachel C Yuan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
11
|
Uygur-Kucukseymen E, Castelo-Branco L, Pacheco-Barrios K, Luna-Cuadros MA, Cardenas-Rojas A, Giannoni-Luza S, Zeng H, Gianlorenco AC, Gnoatto-Medeiros M, Shaikh ES, Caumo W, Fregni F. Decreased neural inhibitory state in fibromyalgia pain: A cross-sectional study. Neurophysiol Clin 2020; 50:279-288. [PMID: 32654884 DOI: 10.1016/j.neucli.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Chronic pain is one of the most common and challenging symptoms in fibromyalgia (FM). Currently, self-reported pain is the main criterion used by clinicians assessing patients with pain. However, it is subjective, and multiple factors can affect pain levels. In this study, we investigated the neural correlates of FM pain using conditioned pain modulation (CPM), electroencephalography (EEG), and transcranial magnetic stimulation (TMS). METHODS In this cross-sectional neurophysiological analysis of a randomized, double-blind controlled trial, 36 patients with fibromyalgia were included. We analyzed CPM, EEG variables and TMS measures and their correlation with pain levels as measured by a visual analog scale. Univariate and multivariate linear regression analyses were performed to identify the predictors of pain severity. RESULTS We found: (1) no association between pain levels and CPM; (2) an association between reduced alpha and beta power over the central region in resting-EEG and higher pain levels; (3) an association between smaller event-related desynchronization (ERD) responses in theta and delta bands over the central region and higher pain levels; (4) an association between smaller ERD responses in theta and delta bands and smaller intracortical inhibition and higher intracortical facilitation ratios; (5) an association between smaller ERD responses in delta band and reduced CPM. CONCLUSIONS Our results do not support CPM as a biomarker for pain intensity in FM. However, our specific EEG findings showing the relationship between pain, CPM and TMS measures suggest that FM leads to a disruption of inhibitory neural modulators and thus support CPM as a likely predictive marker of disrupted pain modulation system. These neurophysiological markers need to be further explored in potential future trials as to find novel targets for the treatment of FM.
Collapse
Affiliation(s)
- Elif Uygur-Kucukseymen
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Luis Castelo-Branco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Maria Alejandra Luna-Cuadros
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Stefano Giannoni-Luza
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Huiyan Zeng
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA; Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Anna Carolyna Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA; Department of Physical Therapy, Federal University of Sao Carlos, Brazil
| | - Marina Gnoatto-Medeiros
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Emad Salman Shaikh
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA
| | - Wolnei Caumo
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96-13th Street, Charlestown, Boston, MA, USA.
| |
Collapse
|
12
|
Functional Localization of an Attenuating Filter within Cortex for a Selective Detection Task in Mice. J Neurosci 2020; 40:5443-5454. [PMID: 32487695 DOI: 10.1523/jneurosci.2993-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
An essential feature of goal-directed behavior is the ability to selectively respond to the diverse stimuli in one's environment. However, the neural mechanisms that enable us to respond to target stimuli while ignoring distractor stimuli are poorly understood. To study this sensory selection process, we trained male and female mice in a selective detection task in which mice learn to respond to rapid stimuli in the target whisker field and ignore identical stimuli in the opposite, distractor whisker field. In expert mice, we used widefield Ca2+ imaging to analyze target-related and distractor-related neural responses throughout dorsal cortex. For target stimuli, we observed strong signal activation in primary somatosensory cortex (S1) and frontal cortices, including both the whisker region of primary motor cortex (wMC) and anterior lateral motor cortex (ALM). For distractor stimuli, we observed strong signal activation in S1, with minimal propagation to frontal cortex. Our data support only modest subcortical filtering, with robust, step-like attenuation in distractor processing between mono-synaptically coupled regions of S1 and wMC. This study establishes a highly robust model system for studying the neural mechanisms of sensory selection and places important constraints on its implementation.SIGNIFICANCE STATEMENT Responding to task-relevant stimuli while ignoring task-irrelevant stimuli is critical for goal-directed behavior. However, the neural mechanisms involved in this selection process are poorly understood. We trained mice in a detection task with both target and distractor stimuli. During expert performance, we measured neural activity throughout cortex using widefield imaging. We observed responses to target stimuli in multiple sensory and motor cortical regions. In contrast, responses to distractor stimuli were abruptly suppressed beyond sensory cortex. Our findings localize the sites of attenuation when successfully ignoring a distractor stimulus and provide essential foundations for further revealing the neural mechanism of sensory selection and distractor suppression.
Collapse
|
13
|
Ebbesen CL, Bobrov E, Rao RP, Brecht M. Highly structured, partner-sex- and subject-sex-dependent cortical responses during social facial touch. Nat Commun 2019; 10:4634. [PMID: 31604919 PMCID: PMC6789031 DOI: 10.1038/s41467-019-12511-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Touch is a fundamental aspect of social, parental and sexual behavior. In contrast to our detailed knowledge about cortical processing of non-social touch, we still know little about how social touch impacts cortical circuits. We investigated neural activity across five frontal, motor and sensory cortical areas in rats engaging in naturalistic social facial touch. Information about social touch and the sex of the interaction partner (a biologically significant feature) is a major determinant of cortical activity. 25.3% of units were modulated during social touch and 8.3% of units displayed ‘sex-touch’ responses (responded differently, depending on the sex of the interaction partner). Single-unit responses were part of a structured, partner-sex- and, in some cases, subject-sex-dependent population response. Spiking neural network simulations indicate that a change in inhibitory drive might underlie these population dynamics. Our observations suggest that socio-sexual characteristics of touch (subject and partner sex) widely modulate cortical activity and need to be investigated with cellular resolution. Touch is an important sensory modality during social encounters. Here the authors report that during naturalistic social encounters in rats, the cortical activity in widespread areas at the level of single neurons is modulated by sociosexual characteristics such as the subject and partner sex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Neuroscience Institute, New York University, New York, NY, 10016, USA. .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| | - Evgeny Bobrov
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Rajnish P Rao
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
14
|
Tudela R, Muñoz-Moreno E, Sala-Llonch R, López-Gil X, Soria G. Resting State Networks in the TgF344-AD Rat Model of Alzheimer's Disease Are Altered From Early Stages. Front Aging Neurosci 2019; 11:213. [PMID: 31440158 PMCID: PMC6694297 DOI: 10.3389/fnagi.2019.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A better and non-invasive characterization of the preclinical phases of Alzheimer's disease (AD) is important to advance its diagnosis and obtain more effective benefits from potential treatments. The TgF344-AD rat model has been well characterized and shows molecular, behavioral and brain connectivity alterations that resemble the silent period of the pathology. Our aim was to longitudinally investigate functional brain connectivity in established resting-state networks (RSNs) obtained by independent component analysis (ICA) in a cohort of TgF344-AD and control rats every 3 months, from 5 to 18 months of age, to cover different stages of the disease. Before each acquisition, working memory performance was evaluated by the delayed non match-to-sample (DNMS) task. Differences in the temporal evolution were observed between groups in the amplitude and shape of the somatosensorial and sensorimotor networks but not in the whole default mode network (DMN). Subsequent high dimensional ICA analysis showed early alterations in the anterior DMN subnetwork activity of TgF344-AD rats compared to controls. Performance of DNMS task was positively correlated with somatosensorial network at 5 months of age in the wild-type (WT) animals but not in the Tg-F344 rats. At different time points, DMN showed negative correlation with cognitive performance in the control group while in the transgenic group the correlation was positive. In addition, behavioral differences observed at 5 months of age correlated with alterations in the posterior DMN subnetwork. We have demonstrated that functional connectivity using ICA represents a useful biomarker also in animal models of AD such as the TgF344AD rats, as it allows the identification of alterations associated with the progression of the disease, detecting differences in specific networks even at very early stages.
Collapse
Affiliation(s)
- Raúl Tudela
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Group of Biomedical Imaging, University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Experimental 7T MRI Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Sala-Llonch
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Xavier López-Gil
- Experimental 7T MRI Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Guadalupe Soria
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Group of Biomedical Imaging, University of Barcelona, Barcelona, Spain
- Experimental 7T MRI Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
15
|
Lee CR, Yonk AJ, Wiskerke J, Paradiso KG, Tepper JM, Margolis DJ. Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior. Curr Biol 2019; 29:1313-1323.e5. [PMID: 30982651 DOI: 10.1016/j.cub.2019.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
The striatum is the main input nucleus of the basal ganglia and is a key site of sensorimotor integration. While the striatum receives extensive excitatory afferents from the cerebral cortex, the influence of different cortical areas on striatal circuitry and behavior is unknown. Here, we find that corticostriatal inputs from whisker-related primary somatosensory (S1) and motor (M1) cortex differentially innervate projection neurons and interneurons in the dorsal striatum and exert opposing effects on sensory-guided behavior. Optogenetic stimulation of S1-corticostriatal afferents in ex vivo recordings produced larger postsynaptic potentials in striatal parvalbumin (PV)-expressing interneurons than D1- or D2-expressing spiny projection neurons (SPNs), an effect not observed for M1-corticostriatal afferents. Critically, in vivo optogenetic stimulation of S1-corticostriatal afferents produced task-specific behavioral inhibition, which was bidirectionally modulated by striatal PV interneurons. Optogenetic stimulation of M1 afferents produced the opposite behavioral effect. Thus, our results suggest opposing roles for sensory and motor cortex in behavioral choice via distinct influences on striatal circuitry.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Joost Wiskerke
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Kenneth G Paradiso
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2019; 12:64. [PMID: 30670952 PMCID: PMC6331430 DOI: 10.3389/fnsys.2018.00064] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons process information on a background of spontaneous, ongoing activity with distinct spatiotemporal profiles defining different cortical states. During wakefulness, cortical states alter constantly in relation to behavioral context, attentional level or general motor activity. In this review article, we will discuss our current understanding of cortical states in awake rodents, how they are controlled, their impact on sensory processing, and highlight areas for future research. A common observation in awake rodents is the rapid change in spontaneous cortical activity from high-amplitude, low-frequency (LF) fluctuations, when animals are quiet, to faster and smaller fluctuations when animals are active. This transition is typically thought of as a change in global brain state but recent work has shown variation in cortical states across regions, indicating the presence of a fine spatial scale control system. In sensory areas, the cortical state change is mediated by at least two convergent inputs, one from the thalamus and the other from cholinergic inputs in the basal forebrain. Cortical states have a major impact on the balance of activity between specific subtypes of neurons, on the synchronization between nearby neurons, as well as the functional coupling between distant cortical areas. This reorganization of the activity of cortical networks strongly affects sensory processing. Thus cortical states provide a dynamic control system for the moment-by-moment regulation of cortical processing.
Collapse
Affiliation(s)
- James F. A. Poulet
- Neural Circuits and Behaviour, Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, University Lyon 1, Lyon, France
| |
Collapse
|
17
|
Treviño M, Fregoso E, Sahagún C, Lezama E. An Automated Water Task to Test Visual Discrimination Performance, Adaptive Strategies and Stereotyped Choices in Freely Moving Mice. Front Behav Neurosci 2018; 12:251. [PMID: 30467467 PMCID: PMC6235986 DOI: 10.3389/fnbeh.2018.00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
We describe an automated training/testing system for adult mice that allows reliable quantification of visual discrimination capacities, adaptive swimming strategies, and stereotyped choices with minimal human intervention. The experimental apparatus consists of a hexagonal swimming pool with an internal decision zone leading to three interior arms with two software-controlled platforms inside of each arm. Each experimental trial consists in projecting a "positive" conditioned discriminative stimulus (SD) in one randomly chosen arm, whereas the other two arms project non-reinforced stimuli (the delta stimuli, SΔ). By employing a classical behavioral training schedule, the mice learn to swim toward the arm that displays the SD, because it predicts the presence of two elevated platforms located symmetrically to the left and right side of the projecting monitor. Separate behavioral components for discriminative and stereotyped choice behavior can be identified through this geometric arrangement. In addition, the projection in real-time of either static or dynamic visual stimuli allows the usage of training programs contingent on current behavioral performance. We validated the system by characterizing the visual acuity and contrast sensitivities in a group of trained mice. By employing pharmacological manipulations, we found that the mice required an intact functioning of the primary visual cortex (V1) to solve the hexagonal pool. Overall, the automated training system constitutes a reliable, rapid, and inexpensive method to quantify visual capacities of mice. It can be used to characterize visual and non-visual factors of choice behavior. It can also be combined with manipulations of visual experience and pharmacological micro-infusions to investigate integrated brain function and learning processes in adult mice over consecutive days.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | | |
Collapse
|
18
|
Ebbesen CL, Insanally MN, Kopec CD, Murakami M, Saiki A, Erlich JC. More than Just a "Motor": Recent Surprises from the Frontal Cortex. J Neurosci 2018; 38:9402-9413. [PMID: 30381432 PMCID: PMC6209835 DOI: 10.1523/jneurosci.1671-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Motor and premotor cortices are crucial for the control of movements. However, we still know little about how these areas contribute to higher-order motor control, such as deciding which movements to make and when to make them. Here we focus on rodent studies and review recent findings, which suggest that-in addition to motor control-neurons in motor cortices play a role in sensory integration, behavioral strategizing, working memory, and decision-making. We suggest that these seemingly disparate functions may subserve an evolutionarily conserved role in sensorimotor cognition and that further study of rodent motor cortices could make a major contribution to our understanding of the evolution and function of the mammalian frontal cortex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016,
- Center for Neural Science, New York University, New York, New York 10003
| | - Michele N Insanally
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- Center for Neural Science, New York University, New York, New York 10003
| | - Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Masayoshi Murakami
- Department of Neurophysiology, Division of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Akiko Saiki
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Jeffrey C Erlich
- New York University Shanghai, Shanghai, China 200122
- NYU-ECNU Institute for Brain and Cognitive Science at NYU Shanghai, Shanghai, China 200062, and
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China 200062
| |
Collapse
|
19
|
de Haan R, Lim J, van der Burg SA, Pieneman AW, Nigade V, Mansvelder HD, de Kock CPJ. Neural Representation of Motor Output, Context and Behavioral Adaptation in Rat Medial Prefrontal Cortex During Learned Behavior. Front Neural Circuits 2018; 12:75. [PMID: 30327591 PMCID: PMC6174330 DOI: 10.3389/fncir.2018.00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Selecting behavioral outputs in a dynamic environment is the outcome of integrating multiple information streams and weighing possible action outcomes with their value. Integration depends on the medial prefrontal cortex (mPFC), but how mPFC neurons encode information necessary for appropriate behavioral adaptation is poorly understood. To identify spiking patterns of mPFC during learned behavior, we extracellularly recorded neuronal action potential firing in the mPFC of rats performing a whisker-based "Go"/"No-go" object localization task. First, we identify three functional groups of neurons, which show different degrees of spiking modulation during task performance. One group increased spiking activity during correct "Go" behavior (positively modulated), the second group decreased spiking (negatively modulated) and one group did not change spiking. Second, the relative change in spiking was context-dependent and largest when motor output had contextual value. Third, the negatively modulated population spiked more when rats updated behavior following an error compared to trials without integration of error information. Finally, insufficient spiking in the positively modulated population predicted erroneous behavior under dynamic "No-go" conditions. Thus, mPFC neuronal populations with opposite spike modulation characteristics differentially encode context and behavioral updating and enable flexible integration of error corrections in future actions.
Collapse
Affiliation(s)
- Roel de Haan
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Judith Lim
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Sven A van der Burg
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Anton W Pieneman
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Vinod Nigade
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Estebanez L, Hoffmann D, Voigt BC, Poulet JFA. Parvalbumin-Expressing GABAergic Neurons in Primary Motor Cortex Signal Reaching. Cell Rep 2018; 20:308-318. [PMID: 28700934 PMCID: PMC5522533 DOI: 10.1016/j.celrep.2017.06.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
The control of targeted reaching is thought to be shaped by distinct subtypes of local GABAergic inhibitory neurons in primary forelimb motor cortex (M1). However, little is known about their action potential firing dynamics during reaching. To address this, we recorded the activity of parvalbumin-expressing (PV+) GABAergic neurons identified from a larger population of fast-spiking units and putative excitatory regular-spiking units in layer 5 of the mouse forelimb M1 during an M1-dependent, sensory-triggered reaching task. PV+ neurons showed short latency responses to the acoustic cue and vibrotactile trigger stimulus and an increase in firing at reaching onset that scaled with the amplitude of reaching. Unexpectedly, PV+ neurons fired before regular-spiking units at reach onset and showed high overall firing rates during both sensory-triggered and spontaneous reaches. Our data suggest that increasing M1 PV+ neuron firing rates may play a role in the initiation of voluntary reaching. Extracellular recordings from layer 5 M1 PV+ neurons during sensory-triggered reaching Task-related sensory- and motor-evoked responses in forelimb M1 neurons PV+ neuron firing rates are positively correlated with reaching amplitude PV+ neurons are activated before regular-spiking units at reaching onset
Collapse
Affiliation(s)
- Luc Estebanez
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Diana Hoffmann
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Birgit C Voigt
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - James F A Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
21
|
Auffret M, Ravano VL, Rossi GMC, Hankov N, Petersen MFA, Petersen CCH. Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice. Neuroscience 2018; 368:199-213. [PMID: 28412497 PMCID: PMC5798595 DOI: 10.1016/j.neuroscience.2017.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus.
Collapse
Affiliation(s)
- Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Veronica L Ravano
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Giulia M C Rossi
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Nicolas Hankov
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Merissa F A Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
22
|
Abstract
The motor cortex is a large frontal structure in the cerebral cortex of eutherian mammals. A vast array of evidence implicates the motor cortex in the volitional control of motor output, but how does the motor cortex exert this 'control'? Historically, ideas regarding motor cortex function have been shaped by the discovery of cortical 'motor maps' - that is, ordered representations of stimulation-evoked movements in anaesthetized animals. Volitional control, however, entails the initiation of movements and the ability to suppress undesired movements. In this article, we highlight classic and recent findings that emphasize that motor cortex neurons have a role in both processes.
Collapse
|
23
|
Ni J, Chen JL. Long-range cortical dynamics: a perspective from the mouse sensorimotor whisker system. Eur J Neurosci 2017; 46:2315-2324. [PMID: 28921729 DOI: 10.1111/ejn.13698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
Abstract
In the mammalian neocortex, the capacity to dynamically route and coordinate the exchange of information between areas is a critical feature of cognitive function, enabling processes such as higher-level sensory processing and sensorimotor integration. Despite the importance attributed to long-range connections between cortical areas, their exact operations and role in cortical function remain an open question. In recent years, progress has been made in understanding long-range cortical circuits through work focused on the mouse sensorimotor whisker system. In this review, we examine recent studies dissecting long-range circuits involved in whisker sensorimotor processing as an entry point for understanding the rules that govern long-range cortical circuit function.
Collapse
Affiliation(s)
- Jianguang Ni
- Department of Biology, Boston University, Boston, MA, 02215, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jerry L Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
24
|
Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections. J Neurosci 2017; 37:10904-10916. [PMID: 28972128 DOI: 10.1523/jneurosci.1188-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements.SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population.
Collapse
|
25
|
3D reconstruction and standardization of the rat facial nucleus for precise mapping of vibrissal motor networks. Neuroscience 2017; 368:171-186. [PMID: 28958919 PMCID: PMC5798596 DOI: 10.1016/j.neuroscience.2017.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/21/2017] [Accepted: 09/17/2017] [Indexed: 12/16/2022]
Abstract
The rodent facial nucleus (FN) comprises motoneurons (MNs) that control the facial musculature. In the lateral part of the FN, populations of vibrissal motoneurons (vMNs) innervate two groups of muscles that generate movements of the whiskers. Vibrissal MNs thus represent the terminal point of the neuronal networks that generate rhythmic whisking during exploratory behaviors and that modify whisker movements based on sensory-motor feedback during tactile-based perception. Here, we combined retrograde tracer injections into whisker-specific muscles, with large-scale immunohistochemistry and digital reconstructions to generate an average model of the rat FN. The model incorporates measurements of the FN geometry, its cellular organization and a whisker row-specific map formed by vMNs. Furthermore, the model provides a digital 3D reference frame that allows registering structural data - obtained across scales and animals - into a common coordinate system with a precision of ∼60 µm. We illustrate the registration method by injecting replication competent rabies virus into the muscle of a single whisker. Retrograde transport of the virus to vMNs enabled reconstruction of their dendrites. Subsequent trans-synaptic transport enabled mapping the presynaptic neurons of the reconstructed vMNs. Registration of these data to the FN reference frame provides a first account of the morphological and synaptic input variability within a population of vMNs that innervate the same muscle.
Collapse
|
26
|
Helmchen F, Gilad A, Chen JL. Neocortical dynamics during whisker-based sensory discrimination in head-restrained mice. Neuroscience 2017; 368:57-69. [PMID: 28919043 DOI: 10.1016/j.neuroscience.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
A fundamental task frequently encountered by brains is to rapidly and reliably discriminate between sensory stimuli of the same modality, be it distinct auditory sounds, odors, visual patterns, or tactile textures. A key mammalian brain structure involved in discrimination behavior is the neocortex. Sensory processing not only involves the respective primary sensory area, which is crucial for perceptual detection, but additionally relies on cortico-cortical communication among several regions including higher-order sensory areas as well as frontal cortical areas. It remains elusive how these regions exchange information to process neural representations of distinct stimuli to bring about a decision and initiate appropriate behavioral responses. Likewise, it is poorly understood how these neural computations are conjured during task learning. In this review, we discuss recent studies investigating cortical dynamics during discrimination behaviors that utilize head-fixed behavioral tasks in combination with in vivo electrophysiology, two-photon calcium imaging, and cell-type-specific targeting. We particularly focus on information flow in distinct cortico-cortical pathways when mice use their whiskers to discriminate between different objects or different locations. Within the primary and secondary somatosensory cortices (S1 and S2, respectively) as well as vibrissae motor cortex (M1), intermingled functional representations of touch, whisking, and licking were found, which partially re-organized during discrimination learning. These findings provide first glimpses of cortico-cortical communication but emphasize that for understanding the complete process of discrimination it will be crucial to elucidate the details of how neural processing is coordinated across brain-wide neuronal networks including the S1-S2-M1 triangle and cortical areas beyond.
Collapse
Affiliation(s)
- Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland.
| | - Ariel Gilad
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland
| | - Jerry L Chen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland
| |
Collapse
|
27
|
Miri A, Warriner CL, Seely JS, Elsayed GF, Cunningham JP, Churchland MM, Jessell TM. Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex. Neuron 2017; 95:683-696.e11. [PMID: 28735748 PMCID: PMC5593145 DOI: 10.1016/j.neuron.2017.06.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Abstract
Blocking motor cortical output with lesions or pharmacological inactivation has identified movements that require motor cortex. Yet, when and how motor cortex influences muscle activity during movement execution remains unresolved. We addressed this ambiguity using measurement and perturbation of motor cortical activity together with electromyography in mice during two forelimb movements that differ in their requirement for cortical involvement. Rapid optogenetic silencing and electrical stimulation indicated that short-latency pathways linking motor cortex with spinal motor neurons are selectively activated during one behavior. Analysis of motor cortical activity revealed a dramatic change between behaviors in the coordination of firing patterns across neurons that could account for this differential influence. Thus, our results suggest that changes in motor cortical output patterns enable a behaviorally selective engagement of short-latency effector pathways. The model of motor cortical influence implied by our findings helps reconcile previous observations on the function of motor cortex.
Collapse
Affiliation(s)
- Andrew Miri
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Claire L Warriner
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Jeffrey S Seely
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, USA; David Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Gamaleldin F Elsayed
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, USA
| | - John P Cunningham
- Department of Statistics, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; David Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Thomas M Jessell
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| |
Collapse
|
28
|
Peters AJ, Lee J, Hedrick NG, O’Neil K, Komiyama T. Reorganization of corticospinal output during motor learning. Nat Neurosci 2017; 20:1133-1141. [PMID: 28671694 PMCID: PMC5656286 DOI: 10.1038/nn.4596] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/30/2017] [Indexed: 02/08/2023]
Abstract
Motor learning is accompanied by widespread changes within the motor cortex, but it is unknown whether these changes are ultimately funneled through a stable corticospinal output channel or whether the corticospinal output itself is plastic. We investigated the consistency of the relationship between corticospinal neuron activity and movement through in vivo two-photon calcium imaging in mice learning a lever-press task. Corticospinal neurons exhibited heterogeneous correlations with movement, with the majority of movement-modulated neurons decreasing activity during movement. Individual cells changed their activity across days, which led to changed associations between corticospinal activity and movement. Unlike previous observations in layer 2/3, activity accompanying learned movements did not become more consistent with learning; instead, the activity of dissimilar movements became more decorrelated. These results indicate that the relationship between corticospinal activity and movement is dynamic and that the types of activity and plasticity are different from and possibly complementary to those in layer 2/3.
Collapse
Affiliation(s)
- Andrew J. Peters
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun Lee
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan G. Hedrick
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Keelin O’Neil
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Barthas F, Kwan AC. Secondary Motor Cortex: Where 'Sensory' Meets 'Motor' in the Rodent Frontal Cortex. Trends Neurosci 2017; 40:181-193. [PMID: 28012708 PMCID: PMC5339050 DOI: 10.1016/j.tins.2016.11.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
Abstract
In rodents, the medial aspect of the secondary motor cortex (M2) is known by other names, including medial agranular cortex (AGm), medial precentral cortex (PrCm), and frontal orienting field (FOF). As a subdivision of the medial prefrontal cortex (mPFC), M2 can be defined by a distinct set of afferent and efferent connections, microstimulation responses, and lesion outcomes. However, the behavioral role of M2 remains mysterious. Here, we focus on evidence from rodent studies, highlighting recent findings of early and context-dependent choice-related activity in M2 during voluntary behavior. Based on the current understanding, we suggest that a major function for M2 is to flexibly map antecedent signals such as sensory cues to motor actions, thereby enabling adaptive choice behavior.
Collapse
Affiliation(s)
- Florent Barthas
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
30
|
Affiliation(s)
- Jinho Kim
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, USA
| | - S Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Sreenivasan V, Esmaeili V, Kiritani T, Galan K, Crochet S, Petersen CCH. Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron 2016; 92:1368-1382. [PMID: 28009277 PMCID: PMC5196025 DOI: 10.1016/j.neuron.2016.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022]
Abstract
Frontal cortex plays a central role in the control of voluntary movements, which are typically guided by sensory input. Here, we investigate the function of mouse whisker primary motor cortex (wM1), a frontal region defined by dense innervation from whisker primary somatosensory cortex (wS1). Optogenetic stimulation of wM1 evokes rhythmic whisker protraction (whisking), whereas optogenetic inactivation of wM1 suppresses initiation of whisking. Whole-cell membrane potential recordings and silicon probe recordings of action potentials reveal layer-specific neuronal activity in wM1 at movement initiation, and encoding of fast and slow parameters of movements during whisking. Interestingly, optogenetic inactivation of wS1 caused hyperpolarization and reduced firing in wM1, together with reduced whisking. Optogenetic stimulation of wS1 drove activity in wM1 with complex dynamics, as well as evoking long-latency, wM1-dependent whisking. Our results advance understanding of a well-defined frontal region and point to an important role for sensory input in controlling motor cortex.
Collapse
Affiliation(s)
- Varun Sreenivasan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Vahid Esmaeili
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Taro Kiritani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Katia Galan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|