1
|
Vargas Gonzalez E, Yang Z, Dodet P, Leu-Semenescu S, Londner C, Patout M, Straus C, Similowski T, Grabli D, Vidailhet M, Arnulf I. Increased sighing during sleep as a marker of multiple system atrophy. NPJ Parkinsons Dis 2024; 10:176. [PMID: 39285169 PMCID: PMC11405711 DOI: 10.1038/s41531-024-00765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Parkinson's disease (PD) and multiple system atrophy (MSA) can be preceded by isolated REM sleep behavior disorder (iRBD). As excessive sighing during wakefulness is a red flag for MSA in individuals with parkinsonism, we measured sighing during slow wave sleep (N3) and REM sleep as potential biomarkers in 73 participants with MSA, 111 with iRBD, 257 with PD, and 115 controls. The number of sighs/hour of N3 (index) was higher in the MSA group than in the other groups. Sighs were rarer in REM sleep than in N3 sleep. A sigh index greater than 3.4/h of N3 was 95% sensitive in discriminating participants with MSA from controls, and a sigh index greater than 0.8 sigh/h of REM sleep was 87% specific in discriminating participants with MSA from controls. MSA participants with (vs. without) sigh were younger, had a lower apnea-hypopnea index (but no more stridor), and had no other difference in motor, autonomic, cognitive, and sensory symptoms. The sigh index could be used for screening for MSA in the millions of middle-aged persons who receive polysomnography for other purposes. Whether sighing in iRBD predicts preferential conversion towards MSA should be measured in a longitudinal study.
Collapse
Affiliation(s)
- Estefania Vargas Gonzalez
- Sorbonne University, Paris, France
- Bioserenity, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France
| | - Zhongmei Yang
- University-Town Hospital of Chongqing Medical University, Department of Neurology, Chongqing, China
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
| | - Pauline Dodet
- Sorbonne University, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
| | - Smaranda Leu-Semenescu
- Sorbonne University, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
| | - Cécile Londner
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maxime Patout
- Sorbonne University, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Christian Straus
- Sorbonne University, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP. Sorbonne Université, Site Pitié-Salpêtrière, Service d'Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée, Département, Paris, France
| | - Thomas Similowski
- Sorbonne University, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département, Paris, France
| | - David Grabli
- Sorbonne University, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Marie Vidailhet
- Sorbonne University, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Isabelle Arnulf
- Sorbonne University, Paris, France.
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France.
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France.
| |
Collapse
|
2
|
Demery-Poulos C, Moore SC, Levitt ES, Anand JP, Traynor JR. Xylazine Exacerbates Fentanyl-Induced Respiratory Depression and Bradycardia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608310. [PMID: 39229079 PMCID: PMC11370410 DOI: 10.1101/2024.08.16.608310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fatal opioid overdoses in the United States have nearly tripled during the past decade, with greater than 92% involving a synthetic opioid like fentanyl. Fentanyl potently activates the μ-opioid receptor to induce both analgesia and respiratory depression. The danger of illicit fentanyl has recently been exacerbated by adulteration with xylazine, an α2-adrenergic receptor agonist typically used as a veterinary anesthetic. In 2023, over a 1,000% increase in xylazine-positive overdoses was reported in some regions of the U.S. Xylazine has been shown to potentiate the lethality of fentanyl in mice, yet a mechanistic underpinning for this effect has not been defined. Herein, we evaluate fentanyl, xylazine, and their combination in whole-body plethysmography (to measure respiration) and pulse oximetry (to measure blood oxygen saturation and heart rate) in male and female CD-1 mice. We show that xylazine decreases breathing rate more than fentanyl by increasing the expiration time. In contrast, fentanyl primarily reduces breathing by inhibiting inspiration, and xylazine exacerbates these effects. Fentanyl but not xylazine decreased blood oxygen saturation, and when combined, xylazine did not change the maximum level of fentanyl-induced hypoxia. Xylazine also reduced heart rate more than fentanyl. Finally, loss in blood oxygen saturation correlated with the frequency of fentanyl-induced apneas, but not breathing rate. Together, these findings provide insight into how the addition of xylazine to illicit fentanyl may increase the risk of overdose.
Collapse
Affiliation(s)
- Catherine Demery-Poulos
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sierra C Moore
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Erica S Levitt
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jessica P Anand
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John R Traynor
- Edward F. Domino Research Center, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Javaheri S, Randerath WJ, Safwan Badr M, Javaheri S. Medication-induced central sleep apnea: a unifying concept. Sleep 2024; 47:zsae038. [PMID: 38334297 DOI: 10.1093/sleep/zsae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Medication-induced central sleep apnea (CSA) is one of the eight categories of causes of CSA but in the absence of awareness and careful history may be misclassified as primary CSA. While opioids are a well-known cause of respiratory depression and CSA, non-opioid medications including sodium oxybate, baclofen, valproic acid, gabapentin, and ticagrelor are less well-recognized. Opioids-induced respiratory depression and CSA are mediated primarily by µ-opioid receptors, which are abundant in the pontomedullary centers involved in breathing. The non-opioid medications, sodium oxybate, baclofen, valproic acid, and gabapentin, act upon brainstem gamma-aminobutyric acid (GABA) receptors, which co-colonize with µ-opioid receptors and mediate CSA. The pattern of ataxic breathing associated with these medications is like that induced by opioids on polysomnogram. Finally, ticagrelor also causes periodic breathing and CSA by increasing central chemosensitivity and ventilatory response to carbon dioxide. Given the potential consequences of CSA and the association between some of these medications with mortality, it is critical to recognize these adverse drug reactions, particularly because discontinuation of the offending agents has been shown to eliminate CSA.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, OH, USA
- Adjunct Professor of Medicine, Division of Cardiology, The Ohio State University, Columbus, Ohio, USA
- Emeritus Professor of Medicine, Division of Pulmonary and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Winfried J Randerath
- Professor and Head Physician, Institute of Pneumology, University of Cologne, Bethanien Hospital, Solingen, Germany
| | - M Safwan Badr
- Professor and Chair, Department of Internal Medicine, Wayne State University School of Medicine Detroit, Staff Physician, John D. Dingell VA Medical Center, MI, USA
| | - Sogol Javaheri
- Assistant Professor of Sleep Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Matteoli G, Alvente S, Bastianini S, Berteotti C, Ciani E, Cinelli E, Lo Martire V, Medici G, Mello T, Miglioranza E, Silvani A, Mutolo D, Zoccoli G. Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5. J Sleep Res 2024:e14295. [PMID: 39049436 DOI: 10.1111/jsr.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.
Collapse
Affiliation(s)
- Gabriele Matteoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elenia Cinelli
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elena Miglioranza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Dhingra RR, Furuya WI, Yoong YK, Dutschmann M. The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus. Respir Physiol Neurobiol 2024; 320:104202. [PMID: 38049044 DOI: 10.1016/j.resp.2023.104202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABAA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) nerve activities for 15-20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6-8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by - 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.
Collapse
Affiliation(s)
- Rishi R Dhingra
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia; Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Werner I Furuya
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Yi Kee Yoong
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Mathias Dutschmann
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia; Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Vafadari B, Oku Y, Tacke C, Harb A, Hülsmann S. In-vivo optogenetic identification and electrophysiology of glycinergic neurons in pre-Bötzinger complex of mice. Respir Physiol Neurobiol 2024; 320:104188. [PMID: 37939866 DOI: 10.1016/j.resp.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Breathing requires distinct patterns of neuronal activity in the brainstem. The most critical part of the neuronal network responsible for respiratory rhythm generation is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a transgenic mouse line that allows expression of Channelrhodopsin 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.
Collapse
Affiliation(s)
- Behnam Vafadari
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, Nishinomiya, Japan
| | - Charlotte Tacke
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Ali Harb
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Swen Hülsmann
- Department of Anesthesiology, University Medical Center, Georg-August University, Göttingen, Germany.
| |
Collapse
|
7
|
Vafadari B, Tacke C, Harb A, Grützner AA, Hülsmann S. Increase of breathing rate mediated by unilateral optogenetic inactivation of inhibitory neurons in the preBötzinger Complex in vivo. Respir Physiol Neurobiol 2023; 311:104032. [PMID: 36758781 DOI: 10.1016/j.resp.2023.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Brainstem neural circuits located in the preBötzinger complex (preBötC) and Bötzinger complex (BötC) play a critical role in the control of breathing. In this study, glycinergic preBötC and BötC neurons were inactivated with optogenetics in vivo using mice with Cre inducible expression of eNpHR3.0-EYFP. Unilateral inhibition of glycinergic neurons in the preBötC, and to a lower extend also in the BötC, led to a higher respiratory rate. It can be concluded that functional inactivation of inhibitory neurons leads to a disinhibition of preBötC excitatory neurons and thus an increase in the respiratory drive of the network.
Collapse
Affiliation(s)
- Behnam Vafadari
- Department of Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany.
| | - Charlotte Tacke
- Department of Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ali Harb
- Department of Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Anja-Annett Grützner
- Department of Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Swen Hülsmann
- Department of Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany.
| |
Collapse
|
8
|
Bateman JT, Saunders SE, Levitt ES. Understanding and countering opioid-induced respiratory depression. Br J Pharmacol 2023; 180:813-828. [PMID: 34089181 PMCID: PMC8997313 DOI: 10.1111/bph.15580] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory depression is the proximal cause of death in opioid overdose, yet the mechanisms underlying this potentially fatal outcome are not well understood. The goal of this review is to provide a comprehensive understanding of the pharmacological mechanisms of opioid-induced respiratory depression, which could lead to improved therapeutic options to counter opioid overdose, as well as other detrimental effects of opioids on breathing. The development of tolerance in the respiratory system is also discussed, as are differences in the degree of respiratory depression caused by various opioid agonists. Finally, potential future therapeutic agents aimed at reversing or avoiding opioid-induced respiratory depression through non-opioid receptor targets are in development and could provide certain advantages over naloxone. By providing an overview of mechanisms and effects of opioids in the respiratory network, this review will benefit future research on countering opioid-induced respiratory depression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Jordan T Bateman
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Sandy E Saunders
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Erica S Levitt
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Javaheri S, Badr MS. Central sleep apnea: pathophysiologic classification. Sleep 2023; 46:zsac113. [PMID: 35551411 PMCID: PMC9995798 DOI: 10.1093/sleep/zsac113] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Central sleep apnea is not a single disorder; it can present as an isolated disorder or as a part of other clinical syndromes. In some conditions, such as heart failure, central apneic events are due to transient inhibition of ventilatory motor output during sleep, owing to the overlapping influences of sleep and hypocapnia. Specifically, the sleep state is associated with removal of wakefulness drive to breathe; thus, rendering ventilatory motor output dependent on the metabolic ventilatory control system, principally PaCO2. Accordingly, central apnea occurs when PaCO2 is reduced below the "apneic threshold". Our understanding of the pathophysiology of central sleep apnea has evolved appreciably over the past decade; accordingly, in disorders such as heart failure, central apnea is viewed as a form of breathing instability, manifesting as recurrent cycles of apnea/hypopnea, alternating with hyperpnea. In other words, ventilatory control operates as a negative-feedback closed-loop system to maintain homeostasis of blood gas tensions within a relatively narrow physiologic range, principally PaCO2. Therefore, many authors have adopted the engineering concept of "loop gain" (LG) as a measure of ventilatory instability and susceptibility to central apnea. Increased LG promotes breathing instabilities in a number of medical disorders. In some other conditions, such as with use of opioids, central apnea occurs due to inhibition of rhythm generation within the brainstem. This review will address the pathogenesis, pathophysiologic classification, and the multitude of clinical conditions that are associated with central apnea, and highlight areas of uncertainty.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, OH, USA
- Division of Pulmonary Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
- Division of Cardiology, Department of Medicine, Ohio State University, Columbus, OH, USA
| | - M Safwan Badr
- Department of Internal Medicine, Liborio Tranchida, MD, Endowed Professor of Medicine, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA
| |
Collapse
|
10
|
Arthurs JW, Bowen AJ, Palmiter RD, Baertsch NA. Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control. Nat Commun 2023; 14:963. [PMID: 36810601 PMCID: PMC9944916 DOI: 10.1038/s41467-023-36603-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Breathing is regulated automatically by neural circuits in the medulla to maintain homeostasis, but breathing is also modified by behavior and emotion. Mice have rapid breathing patterns that are unique to the awake state and distinct from those driven by automatic reflexes. Activation of medullary neurons that control automatic breathing does not reproduce these rapid breathing patterns. By manipulating transcriptionally defined neurons in the parabrachial nucleus, we identify a subset of neurons that express the Tac1, but not Calca, gene that exerts potent and precise conditional control of breathing in the awake, but not anesthetized, state via projections to the ventral intermediate reticular zone of the medulla. Activating these neurons drives breathing to frequencies that match the physiological maximum through mechanisms that differ from those that underlie the automatic control of breathing. We postulate that this circuit is important for the integration of breathing with state-dependent behaviors and emotions.
Collapse
Affiliation(s)
- Joseph W Arthurs
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Anna J Bowen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Pulmonary Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Ludwig K, Malatantis-Ewert S, Huppertz T, Bahr-Hamm K, Seifen C, Pordzik J, Matthias C, Simon P, Gouveris H. Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study. BIOLOGY 2023; 12:298. [PMID: 36829574 PMCID: PMC9953334 DOI: 10.3390/biology12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Patients with sleep-disordered breathing show a combination of different respiratory events (central, obstructive, mixed), with one type being predominant. We observed a reduced prevalence of central apneic events (CAEs) during REM sleep compared to NREM sleep in patients with predominant obstructive sleep apnea (OSA). The aim of this retrospective, exploratory study was to describe this finding and to suggest pathophysiological explanations. The polysomnography (PSG) data of 141 OSA patients were assessed for the prevalence of CAEs during REM and NREM sleep. On the basis of the apnea-hypopnea index (AHI), patients were divided into three OSA severity groups (mild: AHI < 15/h; moderate: AHI = 15-30/h; severe: AHI > 30/h). We compared the frequency of CAEs adjusted for the relative length of REM and NREM sleep time, and a significantly increased frequency of CAEs in NREM was found only in severely affected OSA patients. Given that the emergence of CAEs is strongly associated with the chemosensitivity of the brainstem nuclei regulating breathing mechanics in humans, a sleep-stage-dependent chemosensitivity is proposed. REM-sleep-associated neuronal circuits in humans may act protectively against the emergence of CAEs, possibly by reducing chemosensitivity. On the contrary, a significant increase in the chemosensitivity of the brainstem nuclei during NREM sleep is suggested.
Collapse
Affiliation(s)
- Katharina Ludwig
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sebastian Malatantis-Ewert
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Tilman Huppertz
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Katharina Bahr-Hamm
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Christopher Seifen
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Johannes Pordzik
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Christoph Matthias
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Perikles Simon
- Department of Sport Medicine, Rehabilitation and Disease Prevention, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Haralampos Gouveris
- Sleep Medicine Center, Department of Otorhinolaryngology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
12
|
Tu W, Zhang N. Neural underpinning of a respiration-associated resting-state fMRI network. eLife 2022; 11:e81555. [PMID: 36263940 PMCID: PMC9645809 DOI: 10.7554/elife.81555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Respiration can induce motion and CO2 fluctuation during resting-state fMRI (rsfMRI) scans, which will lead to non-neural artifacts in the rsfMRI signal. In the meantime, as a crucial physiologic process, respiration can directly drive neural activity change in the brain, and may thereby modulate the rsfMRI signal. Nonetheless, this potential neural component in the respiration-fMRI relationship is largely unexplored. To elucidate this issue, here we simultaneously recorded the electrophysiology, rsfMRI, and respiration signals in rats. Our data show that respiration is indeed associated with neural activity changes, evidenced by a phase-locking relationship between slow respiration variations and the gamma-band power of the electrophysiological signal recorded in the anterior cingulate cortex. Intriguingly, slow respiration variations are also linked to a characteristic rsfMRI network, which is mediated by gamma-band neural activity. In addition, this respiration-related brain network disappears when brain-wide neural activity is silenced at an isoelectrical state, while the respiration is maintained, further confirming the necessary role of neural activity in this network. Taken together, this study identifies a respiration-related brain network underpinned by neural activity, which represents a novel component in the respiration-rsfMRI relationship that is distinct from respiration-related rsfMRI artifacts. It opens a new avenue for investigating the interactions between respiration, neural activity, and resting-state brain networks in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Wenyu Tu
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Nanyin Zhang
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biomedical Engineering, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
13
|
Javaheri S, Cao M. Chronic Opioid Use and Sleep Disorders. Sleep Med Clin 2022; 17:433-444. [PMID: 36150805 DOI: 10.1016/j.jsmc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Opioid medications are considered a significant component in the multidisciplinary management of chronic pain. In the past two decades, the use of opioid medications has dramatically risen in part because of an increased awareness by health care providers to treat chronic pain more effectively. In addition, patients are encouraged to seek treatment. The release of a sentinel joint statement in 1997 by the American Academy of Pain Medicine and the American Pain Society in a national effort to increase awareness and support the treatment of chronic pain has undoubtedly contributed to the opioid crisis.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, 10535 Montgomery Road, Suite 200, Cincinnati, OH 45242, USA; Division of Medicine, The Ohio State University, 181 Taylor Avenue, Columbus, OH 43203, USA.
| | - Michelle Cao
- Division of Pulmonary, Allergy, Critical Care Medicine, Stanford University School of Medicine, 300 Pasteur Drive, H3143, Stanford, CA 94305, USA; Division of Sleep Medicine, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA
| |
Collapse
|
14
|
Baldo BA. Current research in pathophysiology of opioid-induced respiratory depression, neonatal opioid withdrawal syndrome, and neonatal antidepressant exposure syndrome. Curr Res Toxicol 2022; 3:100078. [PMID: 35734228 PMCID: PMC9207297 DOI: 10.1016/j.crtox.2022.100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
Respiratory depression (RD) is the primary cause of death due to opioids. Opioids bind to mu (µ)-opioid receptors (MORs) encoded by the MOR gene Oprm1, widely expressed in the central and peripheral nervous systems including centers that modulate breathing. Respiratory centers are located throughout the brainstem. Experiments with Oprm1-deleted knockout (KO) mice undertaken to determine which sites are necessary for the induction of opioid-induced respiratory depression (OIRD) showed that the pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) contribute equally to OIRD but RD was not totally eliminated. Morphine showed a differential influence on preBötC and KF neurons - low doses attenuated RD following deletion of MORs from preBötC neurons and an increase in apneas after high doses whereas deletion of MORs from KF neurons but not the preBötC attenuated RD at both high and low doses. In other KO mice studies, morphine administration after deletion of Oprm1 from both the preBötC and the KF/PBN neurons, led to the conclusion that both respiratory centres contribute to OIRD but the preBötC predominates. MOR-mediated post-synaptic activation of GIRK potassium channels has been implicated as a cause of OIRD. A complementary mechanism in the preBötC involving KCNQ potassium channels independent of MOR signaling has been described. Recent experiments in rats showing that morphine depresses normal, but not gasping breathing, cast doubt on the belief that eupnea, sighs, and gasps, are under the control of preBötC neurons. Methadone, administered to alleviate symptoms of neonatal opioid withdrawal syndrome (NOWES), desensitized rats to OIRD. Protection lost between postnatal days 1 and 2 coincides with the preBötC becoming the dominant generator of respiratory rhythm. Neonatal antidepressant exposure syndrome (NADES) and serotonin toxicity (ST) show similarities including RD. Enzyme CYP2D6 involved in opioid detoxification is polymorphic. Individuals of different CYP2D6 genotype may show increased, decreased, or no enzyme activity, contributing to the variability of patient responses to different opioids and OIRD.
Collapse
Key Words
- AAV, adeno-associated virus
- CDC, Centers for Disease control and prevention
- CTAP, MOR agonist (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2)
- DAMGO, synthetic specific MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin
- DRG, dorsal respiratory group
- FDA, Food and Drug Administration
- GIRK, G protein-gated inwardly-rectifying potassium (K+)
- GPCR, G protein-coupled receptor
- KCNQ, voltage-gated potassium (Kv) channels in the KCNQ (Kv7) family
- KF, Kölliker-Fuse nucleus
- Kölliker-Fuse nucleus and opioid-induced respiratory depression
- MOR, mu opioid receptor
- NADES, neonatal antidepressant exposure syndrome
- NAS, neonatal abstinence syndrome
- NIH, National Institutes of Health
- NK-1R, neurokinin-1 receptor
- NOWES, neonatal opioid withdrawal syndrome
- Neonatal opioid withdrawal syndrome
- Neural mediation of opioid-induced respiratory depression
- OAD, opioid analgesic drug
- OIRD, opioid-induced respiratory depression
- PBL, lateral parabrachial
- PBN, parabrachial nucleus
- PRG, pontine respiratory group
- Pathophysiology of opioid-induced respiratory depression
- Pre-Bötzinger complex and opioid-induced respiratory depression
- RD, respiratory depression
- TACR1, tachykinin receptor 1
- VRG, ventral respiratory group
- preBötC, pre-Bötzinger complex
Collapse
Affiliation(s)
- Brian A. Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney and Department of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Mechanisms of opioid-induced respiratory depression. Arch Toxicol 2022; 96:2247-2260. [PMID: 35471232 DOI: 10.1007/s00204-022-03300-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
Opioid-induced respiratory depression (OIRD), the primary cause of opioid-induced death, is the neural depression of respiratory drive which, together with a decreased level of consciousness and obstructive sleep apnea, cause ventilatory insufficiency. Variability of responses to opioids and individual differences in physiological and neurological states (e.g., anesthesia, sleep-disordered breathing, concurrent drug administration) add to the risk. Multiple sites can independently exert a depressive effect on breathing, making it unclear which sites are necessary for the induction of OIRD. The generator of inspiratory rhythm is the preBötzinger complex (preBötC) in the ventrolateral medulla. Other important brainstem respiratory centres include the pontine Kölliker-Fuse and adjacent parabrachial nuclei (KF/PBN) in the dorsal lateral pons, and the dorsal respiratory group in the medulla. Deletion of μ opioid receptors from neurons showed that the preBötC and KF/PBN contribute to OIRD with the KF as a respiratory modulator and the preBötC as inspiratory rhythm generator. Glutamatergic neurons expressing NK-1R and somatostatin involved in the autonomic function of breathing, and modulatory signal pathways involving GIRK and KCNQ potassium channels, remain poorly understood. Reversal of OIRD has relied heavily on naloxone which also reverses analgesia but mismatches between the half-lives of naloxone and opioids can make it difficult to clinically safely avoid OIRD. Maternal opioid use, which is rising, increases apneas and destabilizes neonatal breathing but opioid effects on maternal and neonatal respiratory circuits in neonatal abstinence syndrome (NAS) are not well understood. Methadone, administered to alleviate symptoms of NAS in humans, desensitizes rats to RD.
Collapse
|
16
|
Smith JC. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:1-35. [PMID: 35965022 DOI: 10.1016/b978-0-323-91534-2.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breathing movements in mammals are driven by rhythmic neural activity automatically generated within spatially and functionally organized brainstem neural circuits comprising the respiratory central pattern generator (CPG). This chapter reviews up-to-date experimental information and theoretical studies of the cellular and circuit mechanisms of respiratory rhythm and pattern generation operating within critical components of this CPG in the lower brainstem. Over the past several decades, there have been substantial advances in delineating the spatial architecture of essential medullary regions and their regional cellular and circuit properties required to understand rhythm and pattern generation mechanisms. A fundamental concept is that the circuits in these regions have rhythm-generating capabilities at multiple cellular and circuit organization levels. The regional cellular properties, circuit organization, and control mechanisms allow flexible expression of neural activity patterns for a repertoire of respiratory behaviors under various physiologic conditions that are dictated by requirements for homeostatic regulation and behavioral integration. Many mechanistic insights have been provided by computational modeling studies driven by experimental results and have advanced understanding in the field. These conceptual and theoretical developments are discussed.
Collapse
Affiliation(s)
- Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
17
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
The lamprey respiratory network: Some evolutionary aspects. Respir Physiol Neurobiol 2021; 294:103766. [PMID: 34329767 DOI: 10.1016/j.resp.2021.103766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/25/2023]
Abstract
Breathing is a complex behaviour that involves rhythm generating networks. In this review, we examine the main characteristics of respiratory rhythm generation in vertebrates and, in particular, we describe the main results of our studies on the role of neural mechanisms involved in the neuromodulation of the lamprey respiration. The lamprey respiratory rhythm generator is located in the paratrigeminal respiratory group (pTRG) and shows similarities with the mammalian preBötzinger complex. In fact, within the pTRG a major role is played by glutamate, but also GABA and glycine display important contributions. In addition, neuromodulatory influences are exerted by opioids, substance P, acetylcholine and serotonin. Both structures respond to exogenous ATP with a biphasic response and astrocytes there located strongly contribute to the modulation of the respiratory pattern. The results emphasize that some important characteristics of the respiratory rhythm generating network are, to a great extent, maintained throughout evolution.
Collapse
|
19
|
Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021; 293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The preBötzinger complex (preBötC) is a medullary area essential for normal breathing and widely recognized as necessary and sufficient to generate the inspiratory phase of respiration. It has been studied mainly in rodents. Here we report the main results of our studies revealing the characteristics of the rabbit preBötC identified by means of neuronal recordings, D,L-homocysteic acid microinjections and histological controls. A crucial role in the respiratory rhythmogenesis within this neural substrate is played by excitatory amino acids, but also GABA and glycine display important contributions. Increases in respiratory frequency are induced by microinjections of neurokinins, somatostatin as well by serotonin (5-HT) through an action on 5-HT1A and 5-HT3 receptors or the disinhibition of a GABAergic circuit. Respiratory depression is observed in response to microinjections of the μ-opioid receptor agonist DAMGO. Our results show similarities and differences with the rodent preBötC and emphasize the importance of comparative studies on the mechanisms underlying respiratory rhythmogenesis in different animal species.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy.
| |
Collapse
|
20
|
Ni YN, Yang H, Thomas RJ. The role of acetazolamide in sleep apnea at sea level: a systematic review and meta-analysis. J Clin Sleep Med 2021; 17:1295-1304. [PMID: 33538687 DOI: 10.5664/jcsm.9116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
STUDY OBJECTIVES The recognition of specific endotypes as drivers of sleep apnea suggests the need of therapies targeting individual mechanisms. Acetazolamide is known to stabilize respiration at high altitude but benefits at sea level are less well understood. METHODS All controlled studies of acetazolamide in obstructive sleep apnea and/or central sleep apnea (CSA) were evaluated. The primary outcome was the apnea-hypopnea index. RESULTS Fifteen trials with a total of 256 patients were pooled in our systematic review. Acetazolamide reduced the overall apnea-hypopnea index (mean difference [MD] -15.82, 95% CI: -21.91 to -9.74, P < .00001) in central sleep apnea (MD -22.60, 95% CI: -29.11 to -16.09, P < .00001), but not in obstructive sleep apnea (MD -10.29, 95% CI: -33.34 to 12.77, P = .38). Acetazolamide reduced the respiratory related arousal index (MD -0.82, 95% CI: -1.56 to -0.08, P = .03), improved partial arterial of oxygen (MD 11.62, 95% CI: 9.13-14.11, P < .00001), mean oxygen saturation (MD 1.78, 95% CI: 0.53-3.04, P = .005), total sleep time (MD 25.74, 95% CI: 4.10-47.38, P = .02), N2 sleep (MD 3.34, 95% CI: 0.12-6.56, P = .04) and sleep efficiency (MD 4.83, 95% CI: 0.53-9.13, P = .03). CONCLUSIONS Acetazolamide improves the apnea-hypopnea index and several sleep metrics in central sleep apnea. The drug may be of clinical benefit in patients with high loop gain apnea of various etiologies and patterns. The existence of high heterogeneity is an important limitation in applicability of our analysis. SYSTEMATIC REVIEW REGISTRATION Registry: PROSPERO; Name: The effect of acetazolamide in patients with sleep apnea at sea level: a systematic review and meta analysis; URL: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020163316; Identifier: CRD42020163316.
Collapse
Affiliation(s)
- Yue-Nan Ni
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, China
| | - Huan Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, China
| | - Robert Joseph Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
21
|
Doufas AG, Weingarten TN. Pharmacologically Induced Ventilatory Depression in the Postoperative Patient: A Sleep-Wake State-Dependent Perspective. Anesth Analg 2021; 132:1274-1286. [PMID: 33857969 DOI: 10.1213/ane.0000000000005370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pharmacologically induced ventilatory depression (PIVD) is a common postoperative complication with a spectrum of severity ranging from mild hypoventilation to severe ventilatory depression, potentially leading to anoxic brain injury and death. Recent studies, using continuous monitoring technologies, have revealed alarming rates of previously undetected severe episodes of postoperative ventilatory depression, rendering the recognition of such episodes by the standard intermittent assessment practice, quite problematic. This imprecise description of the epidemiologic landscape of PIVD has thus stymied efforts to understand better its pathophysiology and quantify relevant risk factors for this postoperative complication. The residual effects of various perianesthetic agents on ventilatory control, as well as the multiple interactions of these drugs with patient-related factors and phenotypes, make postoperative recovery of ventilation after surgery and anesthesia a highly complex physiological event. The sleep-wake, state-dependent variation in the control of ventilation seems to play a central role in the mechanisms potentially enhancing the risk for PIVD. Herein, we discuss emerging evidence regarding the epidemiology, risk factors, and potential mechanisms of PIVD.
Collapse
Affiliation(s)
- Anthony G Doufas
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Toby N Weingarten
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Pavšič K, Pretnar-Oblak J, Bajrović FF, Dolenc-Grošelj L. Breathing patterns in relation to sleep stages in acute unilateral lateral medullary infarction: An exploratory study. Respir Physiol Neurobiol 2021; 285:103592. [DOI: 10.1016/j.resp.2020.103592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
|
23
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
24
|
Schnerwitzki D, Hayn C, Perner B, Englert C. Wt1 Positive dB4 Neurons in the Hindbrain Are Crucial for Respiration. Front Neurosci 2020; 14:529487. [PMID: 33328840 PMCID: PMC7734174 DOI: 10.3389/fnins.2020.529487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
Central pattern generator (CPG) networks coordinate the generation of rhythmic activity such as locomotion and respiration. Their development is driven by various transcription factors, one of which is the Wilms tumor protein (Wt1). It is present in dI6 neurons of the mouse spinal cord, and involved in the coordination of locomotion. Here we report about the presence of Wt1 in neurons of the caudoventral medulla oblongata and their impact on respiration. By employing immunohistofluorescence staining, we were able to characterize these Wt1 positive (+) cells as dB4 neurons. The temporal occurrence of Wt1 suggests a role for this transcription factor in the differentiation of dB4 neurons during embryonic and postnatal development. Conditional knockout of Wt1 in these cells caused an altered population size of V0 neurons already in the developing hindbrain, leading to a decline in the respiration rate in the adults. Thereby, we confirmed and extended the previously proposed similarity between dB4 neurons in the hindbrain and dI6 neurons of the spinal cord, in terms of development and function. Ablation of Wt1+ dB4 neurons resulted in the death of neonates due to the inability to initiate respiration, suggesting a vital role for Wt1+ dB4 neurons in breathing. These results expand the role of Wt1 in the CNS and show that, in addition to its function in differentiation of dI6 neurons, it also contributes to the development of dB4 neurons in the hindbrain that are critically involved in the regulation of respiration.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Christian Hayn
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Birgit Perner
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Core Facility Imaging, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Christoph Englert
- Molecular Genetics Laboratory, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
25
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Activation of μ-opioid receptors differentially affects the preBötzinger Complex and neighbouring regions of the respiratory network in the adult rabbit. Respir Physiol Neurobiol 2020; 280:103482. [DOI: 10.1016/j.resp.2020.103482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022]
|
26
|
Biancardi V, Saini J, Pageni A, Prashaad M. H, Funk GD, Pagliardini S. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. J Comp Neurol 2020; 529:853-884. [DOI: 10.1002/cne.24984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Vivian Biancardi
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Jashan Saini
- Department of Physiology University of Alberta Edmonton Canada
| | - Anileen Pageni
- Department of Physiology University of Alberta Edmonton Canada
| | | | - Gregory D. Funk
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| | - Silvia Pagliardini
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| |
Collapse
|
27
|
Pisanski A, Ding X, Koch NA, Pagliardini S. Chemogenetic modulation of the parafacial respiratory group influences the recruitment of abdominal activity during REM sleep. Sleep 2020; 43:5634373. [PMID: 31747042 DOI: 10.1093/sleep/zsz283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Current theories on respiratory control postulate that the respiratory rhythm is generated by oscillatory networks in the medulla: preBötzinger complex (preBötC) is the master oscillator responsible for generating inspiration, while parafacial respiratory group (pFRG) drives active expiration through recruitment of expiratory abdominal (ABD) muscle activity. Research addressing the role of pFRG in ventilation and rhythm generation across sleep states is limited. We recently reported the occurrence of ABD recruitment occurring despite the induction of muscle paralysis during REM sleep. This ABD recruitment was associated with increased tidal volume and regularization of the respiratory period in rats. As pFRG generates active expiration through the engagement of ABD muscles, we hypothesized that the expiratory oscillator is also responsible for the ABD recruitment observed during REM sleep. To test this hypothesis, we inhibited and activated pFRG using chemogenetics (i.e. designer receptors exclusively activated by designer drugs) while recording EEG and respiratory muscle EMG activities across sleep-wake cycles in male Sprague-Dawley rats. Our results suggest that inhibition of pFRG reduced the number of REM events expressing ABD recruitment, in addition to the intensity and prevalence of these events. Conversely, activation of pFRG resulted in an increase in the number of REM events in which ABD recruitment was observed, as well as the intensity and prevalence of ABD recruitment. Interestingly, modulation of pFRG activity did not affect ABD recruitment during NREM sleep or wakefulness. These results suggest that the occurrence of ABD recruitment during sleep is dependent on pFRG activity and is state dependent.
Collapse
Affiliation(s)
- Annette Pisanski
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuqing Ding
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Nils A Koch
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Maric V, Ramanathan D, Mishra J. Respiratory regulation & interactions with neuro-cognitive circuitry. Neurosci Biobehav Rev 2020; 112:95-106. [PMID: 32027875 PMCID: PMC10092293 DOI: 10.1016/j.neubiorev.2020.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
Abstract
It is increasingly being recognized that active control of breathing - a key aspect of ancient Vedic meditative practices, can relieve stress and anxiety and improve cognition. However, the underlying mechanisms of respiratory modulation of neurophysiology are just beginning to be elucidated. Research shows that brainstem circuits involved in the motor control of respiration receive input from and can directly modulate activity in subcortical circuits, affecting emotion and arousal. Meanwhile, brain regions involved in the sensory aspects of respiration, such as the olfactory bulb, are like-wise linked with wide-spread brain oscillations; and perturbing olfactory bulb activity can significantly affect both mood and cognition. Thus, via both motor and sensory pathways, there are clear mechanisms by which brain activity is entrained to the respiratory cycle. Here, we review evidence gathered across multiple species demonstrating the links between respiration, entrainment of brain activity and functional relevance for affecting mood and cognition. We also discuss further linkages with cardiac rhythms, and the potential translational implications for biorhythm monitoring and regulation in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vojislav Maric
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Varga AG, Reid BT, Kieffer BL, Levitt ES. Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice. J Physiol 2020; 598:189-205. [PMID: 31589332 PMCID: PMC6938533 DOI: 10.1113/jp278612] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS The main cause of death from opioid overdose is respiratory depression due to the activation of µ-opioid receptors (MORs). We conditionally deleted MORs from neurons in two key areas of the brainstem respiratory circuitry (the Kölliker-Fuse nucleus (KF) and pre-Bötzinger complex (preBötC)) to determine their role in opioid-induced respiratory disturbances in adult, awake mice. Deletion of MORs from KF neurons attenuated respiratory rate depression at all doses of morphine. Deletion of MORs from preBötC neurons attenuated rate depression at the low dose, but had no effect on rate following high doses of morphine. Instead, high doses of morphine increased the occurrence of apnoeas. The results indicate that opioids affect distributed key areas of the respiratory network in a dose-dependent manner and countering the respiratory effects of high dose opioids via the KF may be an effective approach to combat overdose. ABSTRACT The primary cause of death from opioid overdose is respiratory failure. High doses of opioids cause severe rate depression and increased risk of fatal apnoea, which correlate with increasing irregularities in breathing pattern. µ-Opioid receptors (MORs) are widely distributed throughout the brainstem respiratory network, but the mechanisms underlying respiratory depression are poorly understood. The medullary pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) are considered critical for inducing opioid-related respiratory disturbances. We used a conditional knockout approach to investigate the roles and relative contribution of MORs in KF and preBötC neurons in opioid-induced respiratory depression in awake adult mice. The results revealed dose-dependent and region-specific opioid effects on the control of both respiratory rate and pattern. Respiratory depression induced by an anti-nociceptive dose of morphine was significantly attenuated following deletion of MORs from either the KF or the preBötC, suggesting cumulative network effects on respiratory rate control at low opioid doses. Deletion of MORs from KF neurons also relieved rate depression at near-maximal respiratory depressant doses of morphine. Meanwhile, deletion of MORs from the preBötC had no effect on rate following administration of high doses of morphine. Instead, a severe ataxic breathing pattern emerged with many apnoeas. We conclude that opioids affect distributed areas of the respiratory network and opioid-induced respiratory depression cannot be attributed to only one area in isolation. However, countering the effects of near maximal respiratory depressant doses of opioids in the KF may be a powerful approach to combat opioid overdose.
Collapse
Affiliation(s)
- Adrienn G. Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, FL 32610
| | - Brandon T. Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| | | | - Erica S. Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, FL 32610
| |
Collapse
|
30
|
Apnea Associated with Brainstem Seizures in Cacna1a S218L Mice Is Caused by Medullary Spreading Depolarization. J Neurosci 2019; 39:9633-9644. [PMID: 31628185 DOI: 10.1523/jneurosci.1713-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Seizure-related apnea is common and can be lethal. Its mechanisms however remain unclear and preventive strategies are lacking. We postulate that brainstem spreading depolarization (SD), previously associated with lethal seizures in animal models, initiates apnea upon invasion of brainstem respiratory centers. To study this, we assessed effects of brainstem seizures on brainstem function and respiration in male and female mice carrying a homozygous S218L missense mutation that leads to gain-of-function of voltage-gated CaV2.1 Ca2+ channels and high risk for fatal seizures. Recordings of brainstem DC potential and neuronal activity, cardiorespiratory activity and local tissue oxygen were performed in freely behaving animals. Brainstem SD occurred during all spontaneous fatal seizures and, unexpectedly, during a subset of nonfatal seizures. Seizure-related SDs in the ventrolateral medulla correlated with respiratory suppression. Seizures induced by stimulation of the inferior colliculus could evoke SD that spread in a rostrocaudal direction, preceding local tissue hypoxia and apnea, indicating that invasion of SD into medullary respiratory centers initiated apnea and hypoxia rather than vice versa Fatal outcome was prevented by timely resuscitation. Moreover, NMDA receptor antagonists MK-801 and memantine prevented seizure-related SD and apnea, which supports brainstem SD as a prerequisite for brainstem seizure-related apnea in this animal model and has translational value for developing strategies that prevent fatal ictal apnea.SIGNIFICANCE STATEMENT Apnea during and following seizures is common, but also likely implicated in sudden unexpected death in epilepsy (SUDEP). This underlines the need to understand mechanisms for potentially lethal seizure-related apnea. In the present work we show, in freely behaving SUDEP-prone transgenic mice, that apnea is induced when spontaneous brainstem seizure-related spreading depolarization (SD) reaches respiratory nuclei in the ventrolateral medulla. We show that brainstem seizure-related medullary SD is followed by local hypoxia and recovers during nonfatal seizures, but not during fatal events. NMDA receptor antagonists prevented medullary SD and apnea, which may be of translational value.
Collapse
|
31
|
Patodia S, Somani A, O'Hare M, Venkateswaran R, Liu J, Michalak Z, Ellis M, Scheffer IE, Diehl B, Sisodiya SM, Thom M. The ventrolateral medulla and medullary raphe in sudden unexpected death in epilepsy. Brain 2019; 141:1719-1733. [PMID: 29608654 PMCID: PMC5972615 DOI: 10.1093/brain/awy078] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/01/2018] [Indexed: 11/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with epilepsy. One hypothesis proposes that sudden death is mediated by post-ictal central respiratory depression, which could relate to underlying pathology in key respiratory nuclei and/or their neuromodulators. Our aim was to investigate neuronal populations in the ventrolateral medulla (which includes the putative human pre-Bötzinger complex) and the medullary raphe. Forty brainstems were studied comprising four groups: 14 SUDEP, six epilepsy controls, seven Dravet syndrome cases and 13 non-epilepsy controls. Serial sections through the medulla (from obex 1 to 10 mm) were stained for Nissl, somatostatin, neurokinin 1 receptor (for pre-Bötzinger complex neurons) and galanin, tryptophan hydroxylase and serotonin transporter (neuromodulatory systems). Using stereology total neuronal number and densities, with respect to obex level, were measured. Whole slide scanning image analysis was used to quantify immunolabelling indices as well as co-localization between markers. Significant findings included reduction in somatostatin neurons and neurokinin 1 receptor labelling in the ventrolateral medulla in sudden death in epilepsy compared to controls (P < 0.05). Galanin and tryptophan hydroxylase labelling was also reduced in sudden death cases and more significantly in the ventrolateral medulla region than the raphe (P < 0.005 and P < 0.05). With serotonin transporter, reduction in labelling in cases of sudden death in epilepsy was noted only in the raphe (P ≤ 0.01); however, co-localization with tryptophan hydroxylase was significantly reduced in the ventrolateral medulla. Epilepsy controls and cases with Dravet syndrome showed less significant alterations with differences from non-epilepsy controls noted only for somatostatin in the ventrolateral medulla (P < 0.05). Variations in labelling with respect to obex level were noted of potential relevance to the rostro-caudal organization of respiratory nuclear groups, including tryptophan hydroxylase, where the greatest statistical difference noted between all epilepsy cases and controls was at obex 9-10 mm (P = 0.034), the putative level of the pre-Bötzinger complex. Furthermore, there was evidence for variation with duration of epilepsy for somatostatin and neurokinin 1 receptor. Our findings suggest alteration to neuronal populations in the medulla in SUDEP with evidence for greater reduction in neuromodulatory neuropeptidergic and mono-aminergic systems, including for galanin, and serotonin. Other nuclei need to be investigated to evaluate if this is part of more widespread brainstem pathology. Our findings could be a result of previous seizures and may represent a pathological risk factor for SUDEP through impaired respiratory homeostasis during a seizure.
Collapse
Affiliation(s)
- Smriti Patodia
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Alyma Somani
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Megan O'Hare
- Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ranjana Venkateswaran
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joan Liu
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Department of Biomedical Sciences, University of Westminster London W1W 6UW, UK
| | - Zuzanna Michalak
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matthew Ellis
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine (Neurology), University of Melbourne, Victoria 3052, Australia
| | - Beate Diehl
- Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sanjay M Sisodiya
- Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Maria Thom
- Departments of Neuropathology, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK.,Clinical and Experimental Epilepsy and Chalfont Centre for Epilepsy, UCL, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
32
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Abstract
Purpose The purpose of this review is to discuss the pathogenesis, clinical manifestations, diagnosis and treatment, including areas of controversy and uncertainty. Recent Findings Central apnea may be due to hypoventilation or to hypocapnia following hyperventilation. The occurrence of central apnea initiates a cascade of events that perpetuates breathing instability, recurrent central apnea and upper airway narrowing. In fact, breathing instability and upper airway narrowing are key elements of central and obstructive apnea. Clinically, central apnea is noted in association with obstructive sleep apnea, heart failure, atrial fibrillation, cerebrovascular accidents tetraplegia, and chronic opioid use.Management strategy for central apnea aim to eliminate abnormal respiratory events, stabilize sleep and alleviate the underlying clinical condition. Positive pressure therapy (PAP) remains a standard therapy for central as well as obstructive apnea. Other treatment options include adaptive-servo ventilation (ASV), supplemental oxygen, phrenic nerve stimulation, and pharmacologic therapy. However, ASV is contraindicated in patients with central sleep apnea who had heart failure with reduced ejection fraction, owing to increased mortality in this population. Summary There are several therapeutic options for central apnea. Randomized controlled studies are needed to ascertain the long-term effectiveness of individual, or combination, treatment modalities in different types of central apnea.
Collapse
Affiliation(s)
- M Safwan Badr
- Department of Internal Medicine, Division of pulmonary, critical; care and sleep medicine
| | | | | |
Collapse
|
34
|
Thoby-Brisson M. Neural mechanisms for sigh generation during prenatal development. J Neurophysiol 2018; 120:1162-1172. [PMID: 29897860 DOI: 10.1152/jn.00314.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory network of the preBötzinger complex (preBötC), which controls inspiratory behavior, can in normal conditions simultaneously produce two types of inspiration-related rhythmic activities: the eupneic rhythm composed of monophasic, low-amplitude, and relatively high-frequency bursts, interspersed with sigh rhythmic activity, composed of biphasic, high-amplitude, and lower frequency bursts. By combining electrophysiological recordings from transverse brainstem slices with computational modeling, new advances in the mechanisms underlying sigh production have been obtained during prenatal development. The present review summarizes recent findings that establish when sigh rhythmogenesis starts to be produced during embryonic development as well as the cellular, membrane, and synaptic properties required for its expression. Together, the results demonstrate that although generated by the same network, the eupnea and sigh rhythms have different developmental onset times and rely on distinct network properties. Because sighs (also known as augmented breaths) are important in maintaining lung function (by reopening collapsed alveoli), gaining insight into their underlying neural mechanisms at early developmental stages is likely to help in the treatment of prematurely born babies often suffering from breathing deficiencies.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux , Bordeaux , France
| |
Collapse
|
35
|
Bright FM, Vink R, Byard RW. The potential role of substance P in brainstem homeostatic control in the pathogenesis of sudden infant death syndrome (SIDS). Neuropeptides 2018; 70:1-8. [PMID: 29908886 DOI: 10.1016/j.npep.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Victims of sudden infant death syndrome (SIDS) are believed to have an underlying dysfunction in medullary homeostatic control that impairs critical responses to life threatening challenges such as hypoxia, hypercarbia and asphyxia, often during a sleep period. This failure is thought to result from abnormalities in a network of neural pathways in the medulla oblongata that control respiration, chemosensitivity, autonomic function and arousal. Studies have mainly focused on the role of serotonin, 5-hydroxytyptamine (5HT), although the neuropeptide substance P (SP) has also been shown to play an integral role in the modulation of medullary homeostatic function, often in conjunction with 5-HT. Actions of SP include regulation of respiratory rhythm generation, integration of cardiovascular control, modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may, therefore, also play a significant role in homeostatic dysfunction of the neurotransmitter network in SIDS. This review focuses on the pathways within the medulla involving SP and its tachykinin NK1 receptor, their potential relationship with the medullary 5-HT system, and possible involvement in the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Fiona M Bright
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Roger W Byard
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia
| |
Collapse
|
36
|
Nguyen DAT, Boswell-Ruys CL, McBain RA, Eckert DJ, Gandevia SC, Butler JE, Hudson AL. Inspiratory pre-motor potentials during quiet breathing in ageing and chronic obstructive pulmonary disease. J Physiol 2018; 596:6173-6189. [PMID: 29971827 DOI: 10.1113/jp275764] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS A cortical contribution to breathing, as indicated by a Bereitschaftspotential (BP) in averaged electroencephalographic signals, occurs in healthy individuals when external inspiratory loads are applied. Chronic obstructive pulmonary disease (COPD) is a condition where changes in the lung, chest wall and respiratory muscles produce an internal inspiratory load. These changes also occur in normal ageing, although to a lesser extent. In the present study, we determined whether BPs are present during quiet breathing and breathing with an external inspiratory load in COPD compared to age-matched and young healthy controls. We demonstrated that increased age, rather than COPD, is associated with a cortical contribution to quiet breathing. A cortical contribution to inspiratory loading is associated with more severe dyspnoea (i.e. the sensation of breathlessness). We propose that cortical mechanisms may be engaged to defend ventilation in ageing with dyspnoea as a consequence. ABSTRACT A cortical contribution to breathing is determined by the presence of a Bereitschaftspotential, a low amplitude negativity in the averaged electroencephalographic (EEG) signal, which begins ∼1 s before inspiration. It occurs in healthy individuals when external inspiratory loads to breathing are applied. In chronic obstructive pulmonary disease (COPD), changes in the lung, chest wall and respiratory muscles produce an internal inspiratory load. We hypothesized that there would be a cortical contribution to quiet breathing in COPD and that a cortical contribution to breathing with an inspiratory load would be linked to dyspnoea, a major symptom of COPD. EEG activity was analysed in 14 participants with COPD (aged 57-84 years), 16 healthy age-matched (57-87 years) and 15 young (18-26 years) controls during quiet breathing and inspiratory loading. The presence of Bereitschaftspotentials, from ensemble averages of EEG epochs at Cz and FCz, were assessed by blinded assessors. Dyspnoea was rated using the Borg scale. The incidence of a cortical contribution to quiet breathing was significantly greater in participants with COPD (6/14) compared to the young (0/15) (P = 0.004) but not the age-matched controls (6/16) (P = 0.765). A cortical contribution to inspiratory loading was associated with higher Borg ratings (P = 0.007), with no effect of group (P = 0.242). The data show that increased age, rather than COPD, is associated with a cortical contribution to quiet breathing. A cortical contribution to inspiratory loading is associated with more severe dyspnoea. We propose that cortical mechanisms may be engaged to defend ventilation with dyspnoea as a consequence.
Collapse
Affiliation(s)
- David A T Nguyen
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia.,Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rachel A McBain
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia.,Prince of Wales Hospital, Sydney, NSW, Australia
| | - Danny J Eckert
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia.,Prince of Wales Hospital, Sydney, NSW, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| | - Anna L Hudson
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Abstract
Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.
Collapse
Affiliation(s)
- Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women's and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Analysis of generic coupling between EEG activity and P ETCO 2 in free breathing and breath-hold tasks using Maximal Information Coefficient (MIC). Sci Rep 2018. [PMID: 29540714 PMCID: PMC5851981 DOI: 10.1038/s41598-018-22573-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain activations related to the control of breathing are not completely known. The respiratory system is a non-linear system. However, the relationship between neural and respiratory dynamics is usually estimated through linear correlation measures, completely neglecting possible underlying nonlinear interactions. This study evaluate the linear and nonlinear coupling between electroencephalographic (EEG) signal and variations in carbon dioxide (CO2) signal related to different breathing task. During a free breathing and a voluntary breath hold tasks, the coupling between EEG power in nine different brain regions in delta (1–3 Hz) and alpha (8–13 Hz) bands and end-tidal CO2 (PET CO2) was evaluated. Specifically, the generic associations (i.e. linear and nonlinear correlations) and a “pure” nonlinear correlations were evaluated using the maximum information coefficient (MIC) and MIC-ρ2 between the two signals, respectively (where ρ2 represents the Pearson’s correlation coefficient). Our results show that in delta band, MIC indexes discriminate the two tasks in several regions, while in alpha band the same behaviour is observed for MIC-ρ2, suggesting a generic coupling between delta EEG power and PETCO2 and a pure nonlinear interaction between alpha EEG power and PETCO2. Moreover, higher indexes values were found for breath hold task respect to free breathing.
Collapse
|
39
|
Abstract
Chronic use of opioids negatively affects sleep on 2 levels: sleep architecture and breathing. Patients suffer from a variety of daytime sequelae. There may be a bidirectional relationship between poor sleep quality, sleep-disordered breathing, and daytime function. Opioids are a potential cause of incident depression. The best therapeutic option is withdrawal of opioids, which proves difficult. Positive airway pressure devices are considered first-line treatment for sleep-related breathing disorders. New generation positive pressure servo ventilators are increasingly popular as a treatment option for opioid-induced sleep-disordered breathing. Treatments to improve sleep quality, sleep-related breathing disorders, and quality of life in patients who use opioids chronically are discussed.
Collapse
Affiliation(s)
- Michelle Cao
- Division of Sleep Medicine, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA
| | - Shahrokh Javaheri
- Bethesda North Hospital, University of Cincinnati College of Medicine, 10535 Montgomery Road, Suite 200, Cincinnati, OH 45242, USA; Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, 181 Taylor Avenue, Columbus, OH 43203, USA.
| |
Collapse
|
40
|
Fogarty MJ, Mantilla CB, Sieck GC. Breathing: Motor Control of Diaphragm Muscle. Physiology (Bethesda) 2018; 33:113-126. [PMID: 29412056 PMCID: PMC5899234 DOI: 10.1152/physiol.00002.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
41
|
Stojanovska V, Miller SL, Hooper SB, Polglase GR. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for Neurochemical Development and Altered Functions by Inflammation and Prostaglandins. Front Cell Neurosci 2018; 12:26. [PMID: 29449803 PMCID: PMC5799271 DOI: 10.3389/fncel.2018.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
Preterm birth is a major cause for neonatal morbidity and mortality, and is frequently associated with adverse neurological outcomes. The transition from intrauterine to extrauterine life at birth is particularly challenging for preterm infants. The main physiological driver for extrauterine transition is the establishment of spontaneous breathing. However, preterm infants have difficulty clearing lung liquid, have insufficient surfactant levels, and underdeveloped lungs. Further, preterm infants have an underdeveloped brainstem, resulting in reduced respiratory drive. These factors facilitate the increased requirement for respiratory support. A principal cause of preterm birth is intrauterine infection/inflammation (chorioamnionitis), and infants with chorioamnionitis have an increased risk and severity of neurological damage, but also demonstrate impaired autoresuscitation capacity and prevalent apnoeic episodes. The brainstem contains vital respiratory centers which provide the neural drive for breathing, but the impact of preterm birth and/or chorioamnionitis on this brain region is not well understood. The aim of this review is to provide an overview of the role and function of the brainstem respiratory centers, and to highlight the proposed mechanisms of how preterm birth and chorioamnionitis may affect central respiratory functions.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Bright FM, Byard RW, Vink R, Paterson DS. Normative distribution of substance P and its tachykinin neurokinin-1 receptor in the medullary serotonergic network of the human infant during postnatal development. Brain Res Bull 2018; 137:319-328. [PMID: 29331576 DOI: 10.1016/j.brainresbull.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Substance P (SP) and its tachykinin NK1 receptor (NK1R) function within key medullary nuclei to regulate cardiorespiratory and autonomic control. We examined the normative distribution of SP and NK1R in the serotonergic (5-Hydroxytryptamine, [5-HT]) network of the human infant medulla during postnatal development, to provide a baseline to facilitate future analysis of the SP/NK1R system and its interaction with 5-HT within pediatric brainstem disorders in early life. [125I] labelled Bolton Hunter SP (BH-SP) tissue receptor autoradiography (n = 15), single label immunohistochemistry (IHC) and double label immunofluorescence (IF) (n = 10) were used to characterize the normative distribution profile of SP and NK1R in the 5-HT network of the human infant medulla during postnatal development. Tissue receptor autoradiography revealed extensive distribution of SP and NK1R in nuclei intimately related to cardiorespiratory function and autonomic control, with significant co-distribution and co-localization with 5-HT in the medullary network in the normal human infant during development. A trend for NK1R binding to decrease with age was observed with significantly higher binding in premature and male infants. We provide further evidence to suggest a significant role for SP/NK1R in the early postnatal period in the modulation of medullary cardiorespiratory and autonomic control in conjunction with medullary 5-HT mediated pathways and provide a baseline for future analysis of the potential consequences of abnormalities in these brainstem neurotransmitter networks during development.
Collapse
Affiliation(s)
- Fiona M Bright
- Harvard University Medical School, Boston, MA, USA; School of Medicine, University of Adelaide SA, Australia; Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Roger W Byard
- School of Medicine, University of Adelaide SA, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - David S Paterson
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Chowdhuri S, Javaheri S. Sleep Disordered Breathing Caused by Chronic Opioid Use. Sleep Med Clin 2017; 12:573-586. [DOI: 10.1016/j.jsmc.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Aboussouan LS, Mireles-Cabodevila E. Sleep in Amyotrophic Lateral Sclerosis. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0094-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
da Silva GSF, Sabino JPJ, Rajani V, Alvares TS, Pagliardini S, Branco LGS, Funk GD. Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide. Front Physiol 2017; 8:452. [PMID: 28713283 PMCID: PMC5492353 DOI: 10.3389/fphys.2017.00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Hydrogen Sulfide (H2S) is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group) and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation) are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-β-synthase (CBS) in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo) and hypoxic conditions (in vivo). Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1-1.0 mM) to rhythmic brainstem spinal cord (BSSC) and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only) caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min) increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.
Collapse
Affiliation(s)
- Glauber S. F. da Silva
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
- Department of Morphology and Animal Physiology, Sao Paulo State UniversityJaboticabal, Brazil
| | - João P. J. Sabino
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
- Department of Biophysics and Physiology, Federal University of PiauiTeresina, Brazil
| | - Vishaal Rajani
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | - Tucaauê S. Alvares
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | - Luiz G. S. Branco
- Department of Physiology, Faculty of Dentistry of Ribeirao Preto, University of Sao PauloRibeirao Preto, Brazil
| | - Gregory D. Funk
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
46
|
Kaczyńska K, Jampolska M, Szereda-Przestaszewska M. The role of vagal pathway and NK1 and NK2 receptors in cardiovascular and respiratory effects of neurokinin A. Clin Exp Pharmacol Physiol 2017; 43:818-24. [PMID: 27199181 DOI: 10.1111/1440-1681.12594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/06/2016] [Accepted: 05/15/2016] [Indexed: 11/29/2022]
Abstract
Neurokinin A (NKA) is a peptide neurotransmitter that participates in the regulation of breathing and the cardiovascular system. The purpose of the current study was to determine the cardiorespiratory pattern exerted by the systemic injection of NKA, to look at the contribution of neurokinin NK1 and NK2 receptors, and to establish the engagement of the vagal pathway in mediation of these responses. The effects of intravenous injections of NKA (50 μg/kg) were studied in anaesthetized, spontaneously breathing rats in the following experimental schemes: in neurally intact rats; and vagotomized at either midcervical or supranodosal level. Intravenous injections of NKA in the intact rats evoked sudden and short-lived increase in the respiratory rate concomitant with drop in tidal volume, followed by a prolonged depression, coupled with continuous augmentation of the tidal volume. Respiratory alterations were accompanied by transient tachycardia and prolonged hypotension. Midcervical vagotomy eliminated respiratory rate response and augmentation of tidal volume. Section of supranodosal vagi abrogated all respiratory reactions. NK2 receptor blockade abolished respiratory changes without affecting cardiovascular effects, whereas NK1 receptor blockade significantly reduced hypotension and increase in heart rate with no impact on the respiratory system. These results indicate that NKA induced changes in the breathing resulting from an excitation of the NK2 receptors on the vagal endings. A fall in blood pressure triggered by NKA occurs outside of the vagus nerve and is probably mediated via its direct action on vascular smooth muscles supplied with NK1 receptors.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Jampolska
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
47
|
Jouett NP, Smith ML, Watenpaugh DE, Siddiqui M, Ahmad M, Siddiqui F. Rapid-eye-movement sleep-predominant central sleep apnea relieved by positive airway pressure: a case report. Physiol Rep 2017; 5:5/9/e13254. [PMID: 28483860 PMCID: PMC5430122 DOI: 10.14814/phy2.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/24/2022] Open
Abstract
Central Sleep Apnea (CSA) is characterized by intermittent apneas and hypopneas during sleep that result from absent central respiratory drive. CSA occurs almost exclusively during non‐rapid‐eye‐movement (NREM) sleep due to enhanced neuronal ventilatory drive during REM sleep that makes central apneas highly unlikely to form. A 45‐year‐old obese African American female presented with co‐existing Obstructive Sleep Apnea (OSA) and CSA, not in the form of mixed or complex sleep apnea. Peculiarly, her CSA occurred only during rapid‐eye‐movement (REM) sleep, which is exceedingly rare. The patient's CSA was resolved when appropriate positive airway pressure (PAP) was prescribed. Our patient remains stable and has reported significant benefit from PAP usage. We offer possible neuro‐physiological mechanisms herein, including enhanced loop gain and/or malfunction or malformation of the pre‐Botzinger nucleus or other neurological process, that could explain the unique findings of this case.
Collapse
Affiliation(s)
- Noah P. Jouett
- Institute for Cardiovascular and Metabolic Disease; University of North Texas Health Science Center; Fort Worth Texas
| | - Michael L. Smith
- Institute for Cardiovascular and Metabolic Disease; University of North Texas Health Science Center; Fort Worth Texas
| | | | - Maryam Siddiqui
- Department of Family Medicine; University of North Texas Health Science Center; Fort Worth Texas
| | - Maleeha Ahmad
- Department of Family Medicine; University of North Texas Health Science Center; Fort Worth Texas
| | - Farrukh Siddiqui
- Department of Family Medicine; University of North Texas Health Science Center; Fort Worth Texas
| |
Collapse
|
48
|
Yeh SY, Huang WH, Wang W, Ward CS, Chao ES, Wu Z, Tang B, Tang J, Sun JJ, Esther van der Heijden M, Gray PA, Xue M, Ray RS, Ren D, Zoghbi HY. Respiratory Network Stability and Modulatory Response to Substance P Require Nalcn. Neuron 2017; 94:294-303.e4. [PMID: 28392070 DOI: 10.1016/j.neuron.2017.03.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/26/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
Abstract
Respiration is a rhythmic activity as well as one that requires responsiveness to internal and external circumstances; both the rhythm and neuromodulatory responses of breathing are controlled by brainstem neurons in the preBötzinger complex (preBötC) and the retrotrapezoid nucleus (RTN), but the specific ion channels essential to these activities remain to be identified. Because deficiency of sodium leak channel, non-selective (Nalcn) causes lethal apnea in humans and mice, we investigated Nalcn function in these neuronal groups. We found that one-third of mice lacking Nalcn in excitatory preBötC neurons died soon after birth; surviving mice developed apneas in adulthood. Interestingly, in both preBötC and RTN neurons, the Nalcn current influences the resting membrane potential, contributes to maintenance of stable network activity, and mediates modulatory responses to the neuropeptide substance P. These findings reveal Nalcn's specific role in both rhythmic stability and responsiveness to neuropeptides within the respiratory network.
Collapse
Affiliation(s)
- Szu-Ying Yeh
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei-Hsiang Huang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher S Ward
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA; The Cain Foundation Laboratories at Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhenyu Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bin Tang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianrong Tang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meike Esther van der Heijden
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mingshan Xue
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA; The Cain Foundation Laboratories at Texas Children's Hospital, Houston, TX 77030, USA
| | - Russell S Ray
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Howell BN, Newman DS. Dysfunction of central control of breathing in amyotrophic lateral sclerosis. Muscle Nerve 2017; 56:197-201. [DOI: 10.1002/mus.25564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Bradley N. Howell
- Department of Neurology; Henry Ford Hospital; 2799 W Grand Boulevard, CFP 460 Detroit Michigan USA
| | - Daniel S. Newman
- Department of Neurology; Henry Ford Hospital; 2799 W Grand Boulevard, CFP 460 Detroit Michigan USA
| |
Collapse
|
50
|
Catecholaminergic neurons in synaptic connections with pre-Bötzinger complex neurons in the rostral ventrolateral medulla in normoxic and daily acute intermittent hypoxic rats. Exp Neurol 2017; 287:165-175. [DOI: 10.1016/j.expneurol.2016.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/12/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
|