1
|
Sulpizio V, Teghil A, Pitzalis S, Boccia M. Common and specific activations supporting optic flow processing and navigation as revealed by a meta-analysis of neuroimaging studies. Brain Struct Funct 2024; 229:1021-1045. [PMID: 38592557 PMCID: PMC11147901 DOI: 10.1007/s00429-024-02790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Optic flow provides useful information in service of spatial navigation. However, whether brain networks supporting these two functions overlap is still unclear. Here we used Activation Likelihood Estimation (ALE) to assess the correspondence between brain correlates of optic flow processing and spatial navigation and their specific neural activations. Since computational and connectivity evidence suggests that visual input from optic flow provides information mainly during egocentric navigation, we further tested the correspondence between brain correlates of optic flow processing and that of both egocentric and allocentric navigation. Optic flow processing shared activation with egocentric (but not allocentric) navigation in the anterior precuneus, suggesting its role in providing information about self-motion, as derived from the analysis of optic flow, in service of egocentric navigation. We further documented that optic flow perception and navigation are partially segregated into two functional and anatomical networks, i.e., the dorsal and the ventromedial networks. Present results point to a dynamic interplay between the dorsal and ventral visual pathways aimed at coordinating visually guided navigation in the environment.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Humanities, Education and Social Sciences, University of Molise, Campobasso, Italy
| | - Alice Teghil
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, Sapienza University, Rome, Italy.
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| |
Collapse
|
2
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
3
|
Teng CL, Cong L, Wang W, Cheng S, Wu M, Dang WT, Jia M, Ma J, Xu J, Hu WD. Disrupted properties of functional brain networks in major depressive disorder during emotional face recognition: an EEG study via graph theory analysis. Front Hum Neurosci 2024; 18:1338765. [PMID: 38415279 PMCID: PMC10897049 DOI: 10.3389/fnhum.2024.1338765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Previous neuroimaging studies have revealed abnormal brain networks in patients with major depressive disorder (MDD) in emotional processing. While any cognitive task consists of a series of stages, little is yet known about the topology of functional brain networks in MDD for these stages during emotional face recognition. To address this problem, electroencephalography (EEG)-based functional brain networks of MDD patients at different stages of facial information processing were investigated in this study. First, EEG signals were collected from 16 patients with MDD and 18 age-, gender-, and education-matched normal subjects when performing an emotional face recognition task. Second, the global field power (GFP) method was employed to divide group-averaged event-related potentials into different stages. Third, using the phase transfer entropy (PTE) approach, the brain networks of MDD patients and normal individuals were constructed for each stage in negative and positive face processing, respectively. Finally, we compared the topological properties of brain networks of each stage between the two groups using graph theory approaches. The results showed that the analyzed three stages of emotional face processing corresponded to specific neurophysiological phases, namely, visual perception, face recognition, and emotional decision-making. It was also demonstrated that depressed patients showed abnormally decreased characteristic path length at the visual perception stage of negative face recognition and normalized characteristic path length in the stage of emotional decision-making during positive face processing compared to healthy subjects. Furthermore, while both the MDD and normal groups' brain networks were found to exhibit small-world network characteristics, the brain network of patients with depression tended to be randomized. Moreover, for patients with MDD, the centro-parietal region may lose its status as a hub in the process of facial expression identification. Together, our findings suggested that altered emotional function in MDD patients might be associated with disruptions in the topological organization of functional brain networks during emotional face recognition, which further deepened our understanding of the emotion processing dysfunction underlying MDD.
Collapse
Affiliation(s)
- Chao-Lin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei-Tao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Dong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Lei VLC, Leong TI, Leong CT, Liu L, Choi CU, Sereno MI, Li D, Huang R. Phase-encoded fMRI tracks down brainstorms of natural language processing with subsecond precision. Hum Brain Mapp 2024; 45:e26617. [PMID: 38339788 PMCID: PMC10858339 DOI: 10.1002/hbm.26617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/04/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Natural language processing unfolds information overtime as spatially separated, multimodal, and interconnected neural processes. Existing noninvasive subtraction-based neuroimaging techniques cannot simultaneously achieve the spatial and temporal resolutions required to visualize ongoing information flows across the whole brain. Here we have developed rapid phase-encoded designs to fully exploit the temporal information latent in functional magnetic resonance imaging data, as well as overcoming scanner noise and head-motion challenges during overt language tasks. We captured real-time information flows as coherent hemodynamic waves traveling over the cortical surface during listening, reading aloud, reciting, and oral cross-language interpreting tasks. We were able to observe the timing, location, direction, and surge of traveling waves in all language tasks, which were visualized as "brainstorms" on brain "weather" maps. The paths of hemodynamic traveling waves provide direct evidence for dual-stream models of the visual and auditory systems as well as logistics models for crossmodal and cross-language processing. Specifically, we have tracked down the step-by-step processing of written or spoken sentences first being received and processed by the visual or auditory streams, carried across language and domain-general cognitive regions, and finally delivered as overt speeches monitored through the auditory cortex, which gives a complete picture of information flows across the brain during natural language functioning. PRACTITIONER POINTS: Phase-encoded fMRI enables simultaneous imaging of high spatial and temporal resolution, capturing continuous spatiotemporal dynamics of the entire brain during real-time overt natural language tasks. Spatiotemporal traveling wave patterns provide direct evidence for constructing comprehensive and explicit models of human information processing. This study unlocks the potential of applying rapid phase-encoded fMRI to indirectly track the underlying neural information flows of sequential sensory, motor, and high-order cognitive processes.
Collapse
Affiliation(s)
- Victoria Lai Cheng Lei
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Arts and HumanitiesUniversity of MacauTaipaChina
| | - Teng Ieng Leong
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Arts and HumanitiesUniversity of MacauTaipaChina
| | - Cheok Teng Leong
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Science and TechnologyUniversity of MacauTaipaChina
| | - Lili Liu
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Science and TechnologyUniversity of MacauTaipaChina
| | - Chi Un Choi
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
| | - Martin I. Sereno
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Defeng Li
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Arts and HumanitiesUniversity of MacauTaipaChina
| | - Ruey‐Song Huang
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaChina
- Faculty of Science and TechnologyUniversity of MacauTaipaChina
| |
Collapse
|
5
|
Fang W, Liu Y, Wang L. Multisensory Integration in Body Representation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:77-89. [PMID: 38270854 DOI: 10.1007/978-981-99-7611-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To be aware of and to move one's body, the brain must maintain a coherent representation of the body. While the body and the brain are connected by dense ascending and descending sensory and motor pathways, representation of the body is not hardwired. This is demonstrated by the well-known rubber hand illusion in which a visible fake hand is erroneously felt as one's own hand when it is stroked in synchrony with the viewer's unseen actual hand. Thus, body representation in the brain is not mere maps of tactile and proprioceptive inputs, but a construct resulting from the interpretation and integration of inputs across sensory modalities.
Collapse
Affiliation(s)
- Wen Fang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yuqi Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Sulpizio V, von Gal A, Galati G, Fattori P, Galletti C, Pitzalis S. Neural sensitivity to translational self- and object-motion velocities. Hum Brain Mapp 2024; 45:e26571. [PMID: 38224544 PMCID: PMC10785198 DOI: 10.1002/hbm.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
The ability to detect and assess world-relative object-motion is a critical computation performed by the visual system. This computation, however, is greatly complicated by the observer's movements, which generate a global pattern of motion on the observer's retina. How the visual system implements this computation is poorly understood. Since we are potentially able to detect a moving object if its motion differs in velocity (or direction) from the expected optic flow generated by our own motion, here we manipulated the relative motion velocity between the observer and the object within a stationary scene as a strategy to test how the brain accomplishes object-motion detection. Specifically, we tested the neural sensitivity of brain regions that are known to respond to egomotion-compatible visual motion (i.e., egomotion areas: cingulate sulcus visual area, posterior cingulate sulcus area, posterior insular cortex [PIC], V6+, V3A, IPSmot/VIP, and MT+) to a combination of different velocities of visually induced translational self- and object-motion within a virtual scene while participants were instructed to detect object-motion. To this aim, we combined individual surface-based brain mapping, task-evoked activity by functional magnetic resonance imaging, and parametric and representational similarity analyses. We found that all the egomotion regions (except area PIC) responded to all the possible combinations of self- and object-motion and were modulated by the self-motion velocity. Interestingly, we found that, among all the egomotion areas, only MT+, V6+, and V3A were further modulated by object-motion velocities, hence reflecting their possible role in discriminating between distinct velocities of self- and object-motion. We suggest that these egomotion regions may be involved in the complex computation required for detecting scene-relative object-motion during self-motion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and NeuroimagingSanta Lucia Foundation (IRCCS Fondazione Santa Lucia)RomeItaly
- Department of PsychologySapienza UniversityRomeItaly
| | | | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and NeuroimagingSanta Lucia Foundation (IRCCS Fondazione Santa Lucia)RomeItaly
- Department of PsychologySapienza UniversityRomeItaly
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Claudio Galletti
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and NeuroimagingSanta Lucia Foundation (IRCCS Fondazione Santa Lucia)RomeItaly
- Department of Movement, Human and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| |
Collapse
|
7
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Gülbetekin E, Bayraktar S, Kantar D, Varlık Özsoy E, Er MN, Altun E, Fidanci A. Does Tactile Stimulation of the Face Affect the Processing of Other Faces? Neural and Behavioural Effects of Facial Touch. Soc Neurosci 2023; 18:297-311. [PMID: 37559568 DOI: 10.1080/17470919.2023.2245126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The integration of vision and touch is proposed as a critical factor for processing one's own body and the bodies of others in the brain. We hypothesize that tactile stimulation on an individual's face may change the ability to process the faces of other, but not the processing of other visual images. We aimed to determine if facial touch increased the activity of the mirror system and face recognition memory of the observer. Therefore, mu suppression was measured to compare the effect of facial touch in performing two visual tasks. The participants observed faces and non-face visual images under two sets of conditions. In the first condition, a robotic finger touched the participant's cheek while in the second condition, no touch occurred. Upon each observational task, the participants were given in a recognition test. Behavioral results indicated that facial touch improved recognition performance for faces, but not for non-face visual images. Tactile stimulation increased mu suppression in both occipital and central electrodes during face processing; however, the suppression did not significantly change during non-face visual processing. Our findings support the concept that the brain uses a self-body representation, as a reference to understand the mental states or behaviors of others.
Collapse
Affiliation(s)
- Evrim Gülbetekin
- Department of Psychology, Faculty of Letters, Akdeniz University, Antalya, Turkey
| | - Seda Bayraktar
- Department of Psychology, Faculty of Letters, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ece Varlık Özsoy
- Department of Psychology, Faculty of Letters, Akdeniz University, Antalya, Turkey
| | | | | | - Arda Fidanci
- Center for Cognitive Science, University of Minnesota, M'nneapol's, USA
| |
Collapse
|
9
|
Leech R, Vos De Wael R, Váša F, Xu T, Austin Benn R, Scholz R, Braga RM, Milham MP, Royer J, Bernhardt BC, Jones EJH, Jefferies E, Margulies DS, Smallwood J. Variation in spatial dependencies across the cortical mantle discriminates the functional behaviour of primary and association cortex. Nat Commun 2023; 14:5656. [PMID: 37704600 PMCID: PMC10499916 DOI: 10.1038/s41467-023-41334-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Recent theories of cortical organisation suggest features of function emerge from the spatial arrangement of brain regions. For example, association cortex is located furthest from systems involved in action and perception. Association cortex is also 'interdigitated' with adjacent regions having different patterns of functional connectivity. It is assumed that topographic properties, such as distance between regions, constrains their functions, however, we lack a formal description of how this occurs. Here we use variograms, a quantification of spatial autocorrelation, to profile how function changes with the distance between cortical regions. We find function changes with distance more gradually within sensory-motor cortex than association cortex. Importantly, systems within the same type of cortex (e.g., fronto-parietal and default mode networks) have similar profiles. Primary and association cortex, therefore, are differentiated by how function changes over space, emphasising the value of topographical features of a region when estimating its contribution to cognition and behaviour.
Collapse
Affiliation(s)
- Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK.
| | | | - František Váša
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | - R Austin Benn
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | | | - Rodrigo M Braga
- Neurology, Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | - Jessica Royer
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | | | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | | |
Collapse
|
10
|
Klautke J, Foster C, Medendorp WP, Heed T. Dynamic spatial coding in parietal cortex mediates tactile-motor transformation. Nat Commun 2023; 14:4532. [PMID: 37500625 PMCID: PMC10374589 DOI: 10.1038/s41467-023-39959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.
Collapse
Affiliation(s)
- Janina Klautke
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Celia Foster
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany.
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
- Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
11
|
Lei VLC, Leong TI, Leong CT, Liu L, Choi CU, Sereno MI, Li D, Huang RS. Phase-encoded fMRI tracks down brainstorms of natural language processing with sub-second precision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542546. [PMID: 37398177 PMCID: PMC10312422 DOI: 10.1101/2023.05.29.542546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The human language system interacts with cognitive and sensorimotor regions during natural language processing. However, where, when, and how these processes occur remain unclear. Existing noninvasive subtraction-based neuroimaging techniques cannot simultaneously achieve the spatial and temporal resolutions required to visualize ongoing information flows across the whole brain. Here we have developed phase-encoded designs to fully exploit the temporal information latent in functional magnetic resonance imaging (fMRI) data, as well as overcoming scanner noise and head-motion challenges during overt language tasks. We captured neural information flows as coherent waves traveling over the cortical surface during listening, reciting, and oral cross-language interpreting. The timing, location, direction, and surge of traveling waves, visualized as 'brainstorms' on brain 'weather' maps, reveal the functional and effective connectivity of the brain in action. These maps uncover the functional neuroanatomy of language perception and production and motivate the construction of finer-grained models of human information processing.
Collapse
Affiliation(s)
| | - Teng Ieng Leong
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Cheok Teng Leong
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Lili Liu
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chi Un Choi
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Martin I. Sereno
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Defeng Li
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruey-Song Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
12
|
Gao W, Lin Y, Shen J, Han J, Song X, Lu Y, Zhan H, Li Q, Ge H, Lin Z, Shi W, Drugowitsch J, Tang H, Chen X. Diverse effects of gaze direction on heading perception in humans. Cereb Cortex 2023:7024719. [PMID: 36734278 DOI: 10.1093/cercor/bhac541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023] Open
Abstract
Gaze change can misalign spatial reference frames encoding visual and vestibular signals in cortex, which may affect the heading discrimination. Here, by systematically manipulating the eye-in-head and head-on-body positions to change the gaze direction of subjects, the performance of heading discrimination was tested with visual, vestibular, and combined stimuli in a reaction-time task in which the reaction time is under the control of subjects. We found the gaze change induced substantial biases in perceived heading, increased the threshold of discrimination and reaction time of subjects in all stimulus conditions. For the visual stimulus, the gaze effects were induced by changing the eye-in-world position, and the perceived heading was biased in the opposite direction of gaze. In contrast, the vestibular gaze effects were induced by changing the eye-in-head position, and the perceived heading was biased in the same direction of gaze. Although the bias was reduced when the visual and vestibular stimuli were combined, integration of the 2 signals substantially deviated from predictions of an extended diffusion model that accumulates evidence optimally over time and across sensory modalities. These findings reveal diverse gaze effects on the heading discrimination and emphasize that the transformation of spatial reference frames may underlie the effects.
Collapse
Affiliation(s)
- Wei Gao
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Yipeng Lin
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Jiangrong Shen
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, China
| | - Jianing Han
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, China
| | - Xiaoxiao Song
- Department of Liberal Arts, School of Art Administration and Education, China Academy of Art, 218 Nanshan Road, Shangcheng District, Hangzhou 310002, China
| | - Yukun Lu
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Huijia Zhan
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Qianbing Li
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Haoting Ge
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Wenlei Shi
- Center for the Study of the History of Chinese Language and Center for the Study of Language and Cognition, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Longwood Avenue 220, Boston, MA 02116, United States
| | - Huajin Tang
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, China
| | - Xiaodong Chen
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| |
Collapse
|
13
|
Jovanovic L, McGraw PV, Roach NW, Johnston A. The spatial properties of adaptation-induced distance compression. J Vis 2022; 22:7. [PMID: 36223110 PMCID: PMC9583746 DOI: 10.1167/jov.22.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure to a dynamic texture reduces the perceived separation between objects, altering the mapping between physical relations in the environment and their neural representations. Here we investigated the spatial tuning and spatial frame of reference of this aftereffect to understand the stage(s) of processing where adaptation-induced changes occur. In Experiment 1, we measured apparent separation at different positions relative to the adapted area, revealing a strong but tightly tuned compression effect. We next tested the spatial frame of reference of the effect, either by introducing a gaze shift between adaptation and test phase (Experiment 2) or by decoupling the spatial selectivity of adaptation in retinotopic and world-centered coordinates (Experiment 3). Results across the two experiments indicated that both retinotopic and world-centered adaptation effects can occur independently. Spatial attention to the location of the adaptor alone could not account for the world-centered transfer we observed, and retinotopic adaptation did not transfer to world-centered coordinates after a saccade (Experiment 4). Finally, we found that aftereffects in different reference frames have a similar, narrow spatial tuning profile (Experiment 5). Together, our results suggest that the neural representation of local separation resides early in the visual cortex, but it can also be modulated by activity in higher visual areas.
Collapse
Affiliation(s)
| | - Paul V McGraw
- School of Psychology, University of Nottingham, Nottingham, UK.,
| | - Neil W Roach
- School of Psychology, University of Nottingham, Nottingham, UK.,
| | - Alan Johnston
- School of Psychology, University of Nottingham, Nottingham, UK.,
| |
Collapse
|
14
|
Sulpizio V, Strappini F, Fattori P, Galati G, Galletti C, Pecchinenda A, Pitzalis S. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion. Brain Struct Funct 2022; 227:2573-2592. [PMID: 35963915 DOI: 10.1007/s00429-022-02549-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', 00194, Rome, Italy.
| |
Collapse
|
15
|
Egomotion-related visual areas respond to goal-directed movements. Brain Struct Funct 2022; 227:2313-2328. [PMID: 35763171 DOI: 10.1007/s00429-022-02523-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.
Collapse
|
16
|
Valenzo D, Ciria A, Schillaci G, Lara B. Grounding Context in Embodied Cognitive Robotics. Front Neurorobot 2022; 16:843108. [PMID: 35812785 PMCID: PMC9262126 DOI: 10.3389/fnbot.2022.843108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Biological agents are context-dependent systems that exhibit behavioral flexibility. The internal and external information agents process, their actions, and emotions are all grounded in the context within which they are situated. However, in the field of cognitive robotics, the concept of context is far from being clear with most studies making little to no reference to it. The aim of this paper is to provide an interpretation of the notion of context and its core elements based on different studies in natural agents, and how these core contextual elements have been modeled in cognitive robotics, to introduce a new hypothesis about the interactions between these contextual elements. Here, global context is categorized as agent-related, environmental, and task-related context. The interaction of their core elements, allows agents to first select self-relevant tasks depending on their current needs, or for learning and mastering their environment through exploration. Second, to perform a task and continuously monitor its performance. Third, to abandon a task in case its execution is not going as expected. Here, the monitoring of prediction error, the difference between sensorimotor predictions and incoming sensory information, is at the core of behavioral flexibility during situated action cycles. Additionally, monitoring prediction error dynamics and its comparison with the expected reduction rate should indicate the agent its overall performance on executing the task. Sensitivity to performance evokes emotions that function as the driving element for autonomous behavior which, at the same time, depends on the processing of the interacting core elements. Taking all these into account, an interactionist model of contexts and their core elements is proposed. The model is embodied, affective, and situated, by means of the processing of the agent-related and environmental core contextual elements. Additionally, it is grounded in the processing of the task-related context and the associated situated action cycles during task execution. Finally, the model proposed here aims to guide how artificial agents should process the core contextual elements of the agent-related and environmental context to give rise to the task-related context, allowing agents to autonomously select a task, its planning, execution, and monitoring for behavioral flexibility.
Collapse
Affiliation(s)
- Diana Valenzo
- Laboratorio de Robótica Cognitiva, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alejandra Ciria
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Bruno Lara
- Laboratorio de Robótica Cognitiva, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
17
|
Bono D, Belyk M, Longo MR, Dick F. Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates. Neurosci Biobehav Rev 2022; 139:104730. [PMID: 35691470 DOI: 10.1016/j.neubiorev.2022.104730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The English idiom "on the tip of my tongue" commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation.
Collapse
Affiliation(s)
- Davide Bono
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK.
| | - Michel Belyk
- Department of Speech, Hearing, and Phonetic Sciences, UCL Division of Psychology and Language Sciences, 2 Wakefield Street, London WC1N 1PJ, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK
| | - Frederic Dick
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK; Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK.
| |
Collapse
|
18
|
Zapetis SL, Nasiriavanaki Z, Luther L, Holt DJ. Neural Correlates of Variation in Personal Space and Social Functioning in Schizophrenia and Healthy Individuals. Schizophr Bull 2022; 48:1075-1084. [PMID: 35661903 PMCID: PMC9434426 DOI: 10.1093/schbul/sbac052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Changes in the regulation of interpersonal distance, or "personal space" (PS), have been repeatedly observed in schizophrenia and, in some studies, linked to negative symptoms. However, the neurobiological basis of these impairments is poorly understood. METHODS Personal space measurements, functional connectivity of a brain network sensitive to intrusions into PS, and symptoms of social withdrawal and anhedonia were assessed, and associations among these outcomes measured, in 33 individuals with a psychotic disorder (primarily schizophrenia [SCZ]) and 36 control subjects (CON). RESULTS Personal space size was significantly higher (P = .002) and PS permeability (reflecting the capacity to tolerate intrusions into PS) was significantly lower (P = .021) in the SCZ relative to the CON group, and both measures were significantly correlated with social anhedonia and withdrawal in the full sample (all P < .007). Moreover, functional connectivity between the PS and default mode (DM) networks was significantly correlated with the permeability, but not the size, of PS in the full sample and in the SCZ and CON groups separately, and with social withdrawal in the SCZ group. Lastly, the association between PS-DM network connectivity and social withdrawal in the SCZ group was fully mediated by PS permeability. DISCUSSION Neural and behavioral aspects of PS regulation are linked to social motivation in both healthy individuals and those with psychotic disorders, suggesting that measurements of PS could serve as transdiagnostic markers of social functioning.
Collapse
Affiliation(s)
- Sarah L Zapetis
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Zahra Nasiriavanaki
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Lauren Luther
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Daphne J Holt
- To whom correspondence should be addressed; 149 13th Street, Charlestown, MA 02129, USA; tel: 617-726-7618, fax: 617-726-4076, e-mail:
| |
Collapse
|
19
|
Sereno MI, Sood MR, Huang RS. Topological Maps and Brain Computations From Low to High. Front Syst Neurosci 2022; 16:787737. [PMID: 35747394 PMCID: PMC9210993 DOI: 10.3389/fnsys.2022.787737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
We first briefly summarize data from microelectrode studies on visual maps in non-human primates and other mammals, and characterize differences among the features of the approximately topological maps in the three main sensory modalities. We then explore the almost 50% of human neocortex that contains straightforward topological visual, auditory, and somatomotor maps by presenting a new parcellation as well as a movie atlas of cortical area maps on the FreeSurfer average surface, fsaverage. Third, we review data on moveable map phenomena as well as a recent study showing that cortical activity during sensorimotor actions may involve spatially locally coherent traveling wave and bump activity. Finally, by analogy with remapping phenomena and sensorimotor activity, we speculate briefly on the testable possibility that coherent localized spatial activity patterns might be able to ‘escape’ from topologically mapped cortex during ‘serial assembly of content’ operations such as scene and language comprehension, to form composite ‘molecular’ patterns that can move across some cortical areas and possibly return to topologically mapped cortex to generate motor output there.
Collapse
Affiliation(s)
- Martin I. Sereno
- Department of Psychology, San Diego State University, San Diego, CA, United States
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
- *Correspondence: Martin I. Sereno,
| | - Mariam Reeny Sood
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ruey-Song Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macao SAR, China
| |
Collapse
|
20
|
Direction-selective modulation of visual motion rivalry by collocated tactile motion. Atten Percept Psychophys 2022; 84:899-914. [PMID: 35194773 PMCID: PMC9001558 DOI: 10.3758/s13414-022-02453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/03/2022]
Abstract
Early models of multisensory integration posited that cross-modal signals only converged in higher-order association cortices and that vision automatically dominates. However, recent studies have challenged this view. In this study, the significance of the alignment of motion axes and spatial alignment across visual and tactile stimuli, as well as the effect of hand visibility on visuo-tactile interactions were examined. Using binocular rivalry, opposed motions were presented to each eye and participants were required to track the perceived visual direction. A tactile motion that was either a leftward or rightward sweep across the fingerpad was intermittently presented. Results showed that tactile effects on visual percepts were dependent on the alignment of motion axes: rivalry between up/down visual motions was not modulated at all by left/right tactile motion. On the other hand, visual percepts could be altered by tactile motion signals when both modalities shared a common axis of motion: a tactile stimulus could maintain the dominance duration of a congruent visual stimulus and shorten its suppression period. The effects were also conditional on the spatial alignment of the visual and tactile stimuli, being eliminated when the tactile device was displaced 15 cm away to the right of the visual stimulus. In contrast, visibility of the hand touching the tactile stimulus facilitated congruent switches relative to a visual-only baseline but did not present a significant advantage overall. In sum, these results show a low-level sensory interaction that is conditional on visual and tactile stimuli sharing a common motion axis and location in space.
Collapse
|
21
|
de Borst AW, de Gelder B. Threat Detection in Nearby Space Mobilizes Human Ventral Premotor Cortex, Intraparietal Sulcus, and Amygdala. Brain Sci 2022; 12:brainsci12030391. [PMID: 35326349 PMCID: PMC8946485 DOI: 10.3390/brainsci12030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
In the monkey brain, the precentral gyrus and ventral intraparietal area are two interconnected brain regions that form a system for detecting and responding to events in nearby “peripersonal” space (PPS), with threat detection as one of its major functions. Behavioral studies point toward a similar defensive function of PPS in humans. Here, our aim was to find support for this hypothesis by investigating if homolog regions in the human brain respond more strongly to approaching threatening stimuli. During fMRI scanning, naturalistic social stimuli were presented in a 3D virtual environment. Our results showed that the ventral premotor cortex and intraparietal sulcus responded more strongly to threatening stimuli entering PPS. Moreover, we found evidence for the involvement of the amygdala and anterior insula in processing threats. We propose that the defensive function of PPS may be supported by a subcortical circuit that sends information about the relevance of the stimulus to the premotor cortex and intraparietal sulcus, where action preparation is facilitated when necessary.
Collapse
Affiliation(s)
- Aline W. de Borst
- Department of Biological and Neuropsychology, Faculty of Psychology and Human Movement, Hamburg University, Von-Melle-Park 11, 20146 Hamburg, Germany
- UCL Interaction Centre, University College London, 66-72 Gower St., London WC1E 6EA, UK
- Correspondence:
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands;
| |
Collapse
|
22
|
Rosenblum L, Grewe E, Churan J, Bremmer F. Influence of Tactile Flow on Visual Heading Perception. Multisens Res 2022; 35:291-308. [PMID: 35263712 DOI: 10.1163/22134808-bja10071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022]
Abstract
The integration of information from different sensory modalities is crucial for successful navigation through an environment. Among others, self-motion induces distinct optic flow patterns on the retina, vestibular signals and tactile flow, which contribute to determine traveled distance (path integration) or movement direction (heading). While the processing of combined visual-vestibular information is subject to a growing body of literature, the processing of visuo-tactile signals in the context of self-motion has received comparatively little attention. Here, we investigated whether visual heading perception is influenced by behaviorally irrelevant tactile flow. In the visual modality, we simulated an observer's self-motion across a horizontal ground plane (optic flow). Tactile self-motion stimuli were delivered by air flow from head-mounted nozzles (tactile flow). In blocks of trials, we presented only visual or tactile stimuli and subjects had to report their perceived heading. In another block of trials, tactile and visual stimuli were presented simultaneously, with the tactile flow within ±40° of the visual heading (bimodal condition). Here, importantly, participants had to report their perceived visual heading. Perceived self-motion direction in all conditions revealed a centripetal bias, i.e., heading directions were perceived as compressed toward straight ahead. In the bimodal condition, we found a small but systematic influence of task-irrelevant tactile flow on visually perceived headings as function of their directional offset. We conclude that tactile flow is more tightly linked to self-motion perception than previously thought.
Collapse
Affiliation(s)
- Lisa Rosenblum
- Department of Neurophysics, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8a, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany
| | - Elisa Grewe
- Department of Neurophysics, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8a, 35043 Marburg, Germany
| | - Jan Churan
- Department of Neurophysics, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8a, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany
| | - Frank Bremmer
- Department of Neurophysics, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8a, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35032 Marburg, Germany
| |
Collapse
|
23
|
Castaldi E, Turi M, Cicchini GM, Gassama S, Eger E. Reduced 2D form coherence and 3D structure from motion sensitivity in developmental dyscalculia. Neuropsychologia 2022; 166:108140. [PMID: 34990696 DOI: 10.1016/j.neuropsychologia.2021.108140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
Developmental dyscalculia (DD) is a specific learning disability affecting the development of numerical and arithmetical skills. The origin of DD is typically attributed to the suboptimal functioning of key regions within the dorsal visual stream (parietal cortex) which support numerical cognition. While DD individuals are often impaired in visual numerosity perception, the extent to which they also show a wider range of visual dysfunctions is poorly documented. In the current study we measured sensitivity to global motion (translational and flow), 2D static form (Glass patterns) and 3D structure from motion in adults with DD and control subjects. While sensitivity to global motion was comparable across groups, thresholds for static form and structure from motion were higher in the DD compared to the control group, irrespective of associated reading impairments. Glass pattern sensitivity predicted numerical abilities, and this relation could not be explained by recently reported differences in visual crowding. Since global form sensitivity has often been considered an index of ventral stream function, our findings could indicate a cortical dysfunction extending beyond the dorsal visual stream. Alternatively, they would fit with a role of parietal cortex in form perception under challenging conditions requiring multiple element integration.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Cognitive Neuroimaging Unit, INSERM, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| | - Marco Turi
- Fondazione Stella Maris Mediterraneo, Potenza, Italy
| | | | - Sahawanatou Gassama
- Paris Santé Réussite, Diagnostic Center for Learning Disabilities, Paris, France
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, INSERM, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Ta D, Tu Y, Lu ZL, Wang Y. Quantitative characterization of the human retinotopic map based on quasiconformal mapping. Med Image Anal 2022; 75:102230. [PMID: 34666194 PMCID: PMC8678293 DOI: 10.1016/j.media.2021.102230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/11/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
The retinotopic map depicts the cortical neurons' response to visual stimuli on the retina and has contributed significantly to our understanding of human visual system. Although recent advances in high field functional magnetic resonance imaging (fMRI) have made it possible to generate the in vivo retinotopic map with great detail, quantifying the map remains challenging. Existing quantification methods do not preserve surface topology and often introduce large geometric distortions to the map. In this study, we developed a new framework based on computational conformal geometry and quasiconformal Teichmüller theory to quantify the retinotopic map. Specifically, we introduced a general pipeline, consisting of cortical surface conformal parameterization, surface-spline-based cortical activation signal smoothing, and vertex-wise Beltrami coefficient-based map description. After correcting most of the violations of the topological conditions, the result was a "Beltrami coefficient map" (BCM) that rigorously and completely characterizes the retinotopic map by quantifying the local quasiconformal mapping distortion at each visual field location. The BCM provided topological and fully reconstructable retinotopic maps. We successfully applied the new framework to analyze the V1 retinotopic maps from the Human Connectome Project (n=181), the largest state of the art retinotopy dataset currently available. With unprecedented precision, we found that the V1 retinotopic map was quasiconformal and the local mapping distortions were similar across observers. The new framework can be applied to other visual areas and retinotopic maps of individuals with and without eye diseases, and improve our understanding of visual cortical organization in normal and clinical populations.
Collapse
Affiliation(s)
- Duyan Ta
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Yanshuai Tu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Zhong-Lin Lu
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China; Center for Neural Science and Department of Psychology, New York University, New York, NY, USA; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Groen IIA, Dekker TM, Knapen T, Silson EH. Visuospatial coding as ubiquitous scaffolding for human cognition. Trends Cogn Sci 2021; 26:81-96. [PMID: 34799253 DOI: 10.1016/j.tics.2021.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/28/2023]
Abstract
For more than 100 years we have known that the visual field is mapped onto the surface of visual cortex, imposing an inherently spatial reference frame on visual information processing. Recent studies highlight visuospatial coding not only throughout visual cortex, but also brain areas not typically considered visual. Such widespread access to visuospatial coding raises important questions about its role in wider cognitive functioning. Here, we synthesise these recent developments and propose that visuospatial coding scaffolds human cognition by providing a reference frame through which neural computations interface with environmental statistics and task demands via perception-action loops.
Collapse
Affiliation(s)
- Iris I A Groen
- Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Tessa M Dekker
- Institute of Ophthalmology, University College London, London, UK
| | - Tomas Knapen
- Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Spinoza Centre for NeuroImaging, Royal Dutch Academy of Sciences, Amsterdam, The Netherlands
| | - Edward H Silson
- Department of Psychology, School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
26
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
27
|
Bahadori M, Cesari P. Affective sounds entering the peripersonal space influence the whole-body action preparation. Neuropsychologia 2021; 159:107917. [PMID: 34153305 DOI: 10.1016/j.neuropsychologia.2021.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
The peripersonal space (PPS), the space surrounding us, is found to have enhanced multisensory-motor representation in the brain. In this study, we investigate how approaching sounds stopping at different distances within the peripersonal space, and carrying emotional content (positive, negative, and neutral), modulate the preparation of action as performing a Step. Premotor reaction times were measured by means of anticipatory forces and muscular activations to capture action preparation, the kinematics of stepping was considered for defining action performance, and for each stimulus, the individual perceived level of arousal and valence was evaluated. In general, we found a prompter premotor reaction for closer sounds compared to the farther ones and the fastest reactions detected for the neutral sound at each distance. We interpreted this time facilitation for neutral sound due to the large frequency spectrum of the stimuli and the absence of affective component and semantical content to decode. Interestingly, while at the close distance, none difference was found between positive and negative emotional stimuli, at the far distance faster reactions were present for negative compared to the positive sounds indicating that when arousal is less enhanced individuals are able to differentiate the emotional content of a sound. The kinematics observed after action initiation sustained the anticipatory results by showing that larger steps were performed when reacting to close compared to far sounds, being perceived as more arousing, and this happened particularly for neutral and negative sounds. Altogether, the results showed that action preparation is influenced by the vicinity and by the valence carried by looming auditory stimuli. For discriminating the stimuli valence, a certain distance, still within the PPS, is necessary; when instead stimuli are too close to the body valence discrimination is not performed.
Collapse
Affiliation(s)
- Mehrdad Bahadori
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Verona, Italy
| | - Paola Cesari
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
28
|
Bogdanova OV, Bogdanov VB, Dureux A, Farnè A, Hadj-Bouziane F. The Peripersonal Space in a social world. Cortex 2021; 142:28-46. [PMID: 34174722 DOI: 10.1016/j.cortex.2021.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/27/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place. As our world is social in nature, recent evidence revealed the complex modulation of social factors onto PPS representation. In light of the growing interest in the field, in this review we take a close look at the experimental approaches undertaken to assess the impact of social factors onto PPS representation. Our social world also influences the personal space (PS), a concept stemming from social psychology, defined as the space we keep between us and others to avoid discomfort. Here we analytically compare PPS and PS with the aim of understanding if and how they relate to each other. At the behavioral level, the multiplicity of experimental methodologies, whether well-established or novel, lead to somewhat divergent results and interpretations. Beyond behavior, we review physiological and neural signatures of PPS representation to discuss how interoceptive signals could contribute to PPS representation, as well as how these internal signals could shape the neural responses of PPS representation. In particular, by merging exteroceptive information from the environment and internal signals that come from the body, PPS may promote an integrated representation of the self, as distinct from the environment and the others. We put forward that integrating internal and external signals in the brain for perception of proximal environmental stimuli may also provide us with a better understanding of the processes at play during social interactions. Adopting such an integrative stance may offer novel insights about PPS representation in a social world. Finally, we discuss possible links between PPS research and social cognition, a link that may contribute to the understanding of intentions and feelings of others around us and promote appropriate social interactions.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; INCIA, UMR 5287, CNRS, Université de Bordeaux, France.
| | - Volodymyr B Bogdanov
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Ecole Nationale des Travaux Publics de l'Etat, Laboratoire Génie Civil et Bâtiment, Vaulx-en-Velin, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France.
| |
Collapse
|
29
|
Pitzalis S, Hadj-Bouziane F, Dal Bò G, Guedj C, Strappini F, Meunier M, Farnè A, Fattori P, Galletti C. Optic flow selectivity in the macaque parieto-occipital sulcus. Brain Struct Funct 2021; 226:2911-2930. [PMID: 34043075 DOI: 10.1007/s00429-021-02293-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
In humans, several neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates higher-level motion areas, like V6 and the cingulate sulcus visual area (CSv). In macaque, there are few studies on the sensitivity of V6 and CSv to egomotion compatible optic flow. The only fMRI study on this issue revealed selectivity to egomotion compatible optic flow in macaque CSv but not in V6 (Cotterau et al. Cereb Cortex 27(1):330-343, 2017, but see Fan et al. J Neurosci. 35:16303-16314, 2015). Yet, it is unknown whether monkey visual motion areas MT + and V6 display any distinctive fMRI functional profile relative to the optic flow stimulation, as it is the case for the homologous human areas (Pitzalis et al., Cereb Cortex 20(2):411-424, 2010). Here, we described the sensitivity of the monkey brain to two motion stimuli (radial rings and flow fields) originally used in humans to functionally map the motion middle temporal area MT + (Tootell et al. J Neurosci 15: 3215-3230, 1995a; Nature 375:139-141, 1995b) and the motion medial parietal area V6 (Pitzalis et al. 2010), respectively. In both animals, we found regions responding only to optic flow or radial rings stimulation, and regions responding to both stimuli. A region in the parieto-occipital sulcus (likely including V6) was one of the most highly selective area for coherently moving fields of dots, further demonstrating the power of this type of stimulation to activate V6 in both humans and monkeys. We did not find any evidence that putative macaque CSv responds to Flow Fields.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy. .,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Giulia Dal Bò
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carole Guedj
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | | | - Martine Meunier
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Liu P, Chrysidou A, Doehler J, Hebart MN, Wolbers T, Kuehn E. The organizational principles of de-differentiated topographic maps in somatosensory cortex. eLife 2021; 10:e60090. [PMID: 34003108 PMCID: PMC8186903 DOI: 10.7554/elife.60090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Topographic maps are a fundamental feature of cortex architecture in the mammalian brain. One common theory is that the de-differentiation of topographic maps links to impairments in everyday behavior due to less precise functional map readouts. Here, we tested this theory by characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of younger and older adults by means of ultra-high resolution functional magnetic resonance imaging together with perceptual finger individuation and hand motor performance. Older adults' SI maps showed similar amplitude and size to younger adults' maps, but presented with less representational similarity between distant fingers. Larger population receptive field sizes in older adults' maps did not correlate with behavior, whereas reduced cortical distances between D2 and D3 related to worse finger individuation but better motor performance. Our data uncover the drawbacks of a simple de-differentiation model of topographic map function, and motivate the introduction of feature-based models of cortical reorganization.
Collapse
Affiliation(s)
- Peng Liu
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Anastasia Chrysidou
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Juliane Doehler
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| |
Collapse
|
31
|
Abstract
A universal signature of developmental dyslexia is literacy acquisition impairments. Besides, dyslexia may be related to deficits in selective spatial attention, in the sensitivity to global visual motion, speed processing, oculomotor coordination, and integration of auditory and visual information. Whether motion-sensitive brain areas of children with dyslexia can recognize different speeds of expanded optic flow and segregate the slow-speed from high-speed contrast of motion was a main question of the study. A combined event-related EEG experiment with optic flow visual stimulation and functional frequency-based graph approach (small-world propensity ϕ) were applied to research the responsiveness of areas, which are sensitive to motion, and also distinguish slow/fast -motion conditions on three groups of children: controls, untrained (pre-D) and trained dyslexics (post-D) with visual intervention programs. Lower ϕ at θ, α, γ1-frequencies (low-speed contrast) for controls than other groups represent that the networks rewire, expressed at β frequencies (both speed contrasts) in the post-D, whose network was most segregated. Functional connectivity nodes have not existed in pre-D at dorsal medial temporal area MT+/V5 (middle, superior temporal gyri), left-hemispheric middle occipital gyrus/visual V2, ventral occipitotemporal (fusiform gyrus/visual V4), ventral intraparietal (supramarginal, angular gyri), derived from θ-frequency network for both conditions. After visual training, compensatory mechanisms appeared to implicate/regain these brain areas in the left hemisphere through plasticity across extended brain networks. Specifically, for high-speed contrast, the nodes were observed in pre-D (θ-frequency) and post-D (β2-frequency) relative to controls in hyperactivity of the right dorsolateral prefrontal cortex, which might account for the attentional network and oculomotor control impairments in developmental dyslexia.
Collapse
|
32
|
Silson EH, Zeidman P, Knapen T, Baker CI. Representation of Contralateral Visual Space in the Human Hippocampus. J Neurosci 2021; 41:2382-2392. [PMID: 33500275 PMCID: PMC7984600 DOI: 10.1523/jneurosci.1990-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022] Open
Abstract
The initial encoding of visual information primarily from the contralateral visual field is a fundamental organizing principle of the primate visual system. Recently, the presence of such retinotopic sensitivity has been shown to extend well beyond early visual cortex to regions not historically considered retinotopically sensitive. In particular, human scene-selective regions in parahippocampal and medial parietal cortex exhibit prominent biases for the contralateral visual field. Here, we used fMRI to test the hypothesis that the human hippocampus, which is thought to be anatomically connected with these scene-selective regions, would also exhibit a biased representation of contralateral visual space. First, population receptive field (pRF) mapping with scene stimuli revealed strong biases for the contralateral visual field in bilateral hippocampus. Second, the distribution of retinotopic sensitivity suggested a more prominent representation in anterior medial portions of the hippocampus. Finally, the contralateral bias was confirmed in independent data taken from the Human Connectome Project (HCP) initiative. The presence of contralateral biases in the hippocampus, a structure considered by many as the apex of the visual hierarchy, highlights the truly pervasive influence of retinotopy. Moreover, this finding has important implications for understanding how visual information relates to the allocentric global spatial representations known to be encoded therein.SIGNIFICANCE STATEMENT Retinotopic encoding of visual information is an organizing principle of visual cortex. Recent work demonstrates this sensitivity in structures far beyond early visual cortex, including those anatomically connected to the hippocampus. Here, using population receptive field (pRF) modeling in two independent sets of data we demonstrate a consistent bias for the contralateral visual field in bilateral hippocampus. Such a bias highlights the truly pervasive influence of retinotopy, with important implications for understanding how the presence of retinotopy relates to more allocentric spatial representations.
Collapse
Affiliation(s)
- Edward H Silson
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda 20892-1366, Maryland
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, London WC1N 3AR, United Kingdom
| | - Tomas Knapen
- Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1012 WX, The Netherlands
- Spinoza Centre for NeuroImaging, Royal Dutch Academy of Sciences 1012 WX, Amsterdam, The Netherlands
| | - Chris I Baker
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda 20892-1366, Maryland
| |
Collapse
|
33
|
Ganepola T, Lee Y, Alexander DC, Sereno MI, Nagy Z. Multiple b-values improve discrimination of cortical gray matter regions using diffusion MRI: an experimental validation with a data-driven approach. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:677-687. [PMID: 33709225 PMCID: PMC8421285 DOI: 10.1007/s10334-021-00914-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/14/2020] [Accepted: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Objective To investigate whether varied or repeated b-values provide better diffusion MRI data for discriminating cortical areas with a data-driven approach. Methods Data were acquired from three volunteers at 1.5T with b-values of 800, 1400, 2000 s/mm2 along 64 diffusion-encoding directions. The diffusion signal was sampled from gray matter in seven regions of interest (ROIs). Rotational invariants of the local diffusion profile were extracted as features that characterize local tissue properties. Random forest classification experiments assessed whether classification accuracy improved when data with multiple b-values were used over repeated acquisition of the same (1400 s/mm2) b-value to compare all possible pairs of the seven ROIs. Three data sets from the Human Connectome Project were subjected to similar processing and analysis pipelines in eight ROIs. Results Three different b-values showed an average improvement in correct classification rates of 5.6% and 4.6%, respectively, in the local and HCP data over repeated measurements of the same b-value. The improvement in correct classification rate reached as high as 16% for individual binary classification experiments between two ROIs. Often using only two of the available three b-values were adequate to make such an improvement in classification rates. Conclusion Acquisitions with varying b-values are more suitable for discriminating cortical areas.
Collapse
Affiliation(s)
- Tara Ganepola
- Department of Cognitive, Perceptual and Brain Sciences, University College London, London, UK.,Center for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Yoojin Lee
- Laboratory for Social and Neural Systems Research, University of Zurich, Rämistrasse 100, P.O. Box 149, Zurich, Switzerland.,Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel C Alexander
- Center for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Martin I Sereno
- Department of Cognitive, Perceptual and Brain Sciences, University College London, London, UK.,Department of Psychology and Neuroimaging Centre, SDSU, San Diego, USA
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research, University of Zurich, Rämistrasse 100, P.O. Box 149, Zurich, Switzerland. .,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.
| |
Collapse
|
34
|
Fanghella M, Era V, Candidi M. Interpersonal Motor Interactions Shape Multisensory Representations of the Peripersonal Space. Brain Sci 2021; 11:255. [PMID: 33669561 PMCID: PMC7922994 DOI: 10.3390/brainsci11020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
This perspective review focuses on the proposal that predictive multisensory integration occurring in one's peripersonal space (PPS) supports individuals' ability to efficiently interact with others, and that integrating sensorimotor signals from the interacting partners leads to the emergence of a shared representation of the PPS. To support this proposal, we first introduce the features of body and PPS representations that are relevant for interpersonal motor interactions. Then, we highlight the role of action planning and execution on the dynamic expansion of the PPS. We continue by presenting evidence of PPS modulations after tool use and review studies suggesting that PPS expansions may be accounted for by Bayesian sensory filtering through predictive coding. In the central section, we describe how this conceptual framework can be used to explain the mechanisms through which the PPS may be modulated by the actions of our interaction partner, in order to facilitate interpersonal coordination. Last, we discuss how this proposal may support recent evidence concerning PPS rigidity in Autism Spectrum Disorder (ASD) and its possible relationship with ASD individuals' difficulties during interpersonal coordination. Future studies will need to clarify the mechanisms and neural underpinning of these dynamic, interpersonal modulations of the PPS.
Collapse
Affiliation(s)
- Martina Fanghella
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, University of London, London EC1V 0HB, UK
| | - Vanessa Era
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
35
|
Zajac L, Killiany R. Activity Strength within Optic Flow-Sensitive Cortical Regions Is Associated with Visual Path Integration Accuracy in Aged Adults. Brain Sci 2021; 11:brainsci11020245. [PMID: 33669177 PMCID: PMC7919670 DOI: 10.3390/brainsci11020245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Spatial navigation is a cognitive skill fundamental to successful interaction with our environment, and aging is associated with weaknesses in this skill. Identifying mechanisms underlying individual differences in navigation ability in aged adults is important to understanding these age-related weaknesses. One understudied factor involved in spatial navigation is self-motion perception. Important to self-motion perception is optic flow–the global pattern of visual motion experienced while moving through our environment. A set of optic flow-sensitive (OF-sensitive) cortical regions was defined in a group of young (n = 29) and aged (n = 22) adults. Brain activity was measured in this set of OF-sensitive regions and control regions using functional magnetic resonance imaging while participants performed visual path integration (VPI) and turn counting (TC) tasks. Aged adults had stronger activity in RMT+ during both tasks compared to young adults. Stronger activity in the OF-sensitive regions LMT+ and RpVIP during VPI, not TC, was associated with greater VPI accuracy in aged adults. The activity strength in these two OF-sensitive regions measured during VPI explained 42% of the variance in VPI task performance in aged adults. The results of this study provide novel support for global motion processing as a mechanism underlying visual path integration in normal aging.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street (L 1004), Boston, MA 02118, USA;
- Center for Biomedical Imaging, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
- Correspondence:
| | - Ronald Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street (L 1004), Boston, MA 02118, USA;
- Center for Biomedical Imaging, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
36
|
Close facial emotions enhance physiological responses and facilitate perceptual discrimination. Cortex 2021; 138:40-58. [PMID: 33677327 DOI: 10.1016/j.cortex.2021.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/22/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Accumulating evidence indicates that the peripersonal space (PPS) constitutes a privileged area for efficient processing of proximal stimuli, allowing to flexibly adapt our behavior both to the physical and social environment. Whether and how behavioral and physiological signatures of PPS relate to each other in emotional contexts remains, though, elusive. Here, we addressed this question by having participants to discriminate male from female faces depicting different emotions (happiness, anger or neutral) and presented at different distances (50 cm-300 cm) while we measured the reaction time and accuracy of their responses, as well as pupillary diameter, heart rate and heart rate variability. Results showed facilitation of participants' performances (i.e., faster response time) when faces were presented close compared to far from the participants, even when controlling for retinal size across distances. These behavioral effects were accompanied by significant modulation of participants' physiological indexes when faces were presented in PPS. Interestingly, both PPS representation and physiological signals were affected by features of the seen faces such as the emotional valence, its sex and the participants' sex, revealing the profound impact of social context onto the autonomic state and behavior within PPS. Together, these findings suggest that both external and internal signals contribute in shaping PPS representation.
Collapse
|
37
|
Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 2021; 137:74-92. [PMID: 33607346 DOI: 10.1016/j.cortex.2020.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
38
|
Moraresku S, Vlcek K. The use of egocentric and allocentric reference frames in static and dynamic conditions in humans. Physiol Res 2020; 69:787-801. [PMID: 32901499 DOI: 10.33549/physiolres.934528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.
Collapse
Affiliation(s)
- S Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. ,
| | | |
Collapse
|
39
|
Saadon-Grosman N, Arzy S, Loewenstein Y. Hierarchical cortical gradients in somatosensory processing. Neuroimage 2020; 222:117257. [PMID: 32822812 DOI: 10.1016/j.neuroimage.2020.117257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Sensory information is processed in the visual cortex in distinct streams of different anatomical and functional properties. A comparable organizational principle has also been proposed to underlie auditory processing. This raises the question of whether a similar principle characterize the somatosensory domain. One property of a cortical stream is a hierarchical organization of the neuronal response properties along an anatomically distinct pathway. Indeed, several hierarchies between specific somatosensory cortical regions have been identified, primarily using electrophysiology, in non-human primates. However, it has been unclear how these local hierarchies are organized throughout the cortex. Here we used phase-encoded bilateral full-body light touch stimulation in healthy humans under functional MRI to study the large-scale organization of hierarchies in the somatosensory domain. We quantified two measures of hierarchy of BOLD responses, selectivity and laterality. We measured how selectivity and laterality change as we move away from the central sulcus within four gross anatomically-distinct regions. We found that both selectivity and laterality decrease in three directions: parietal, posteriorly along the parietal lobe, frontal, anteriorly along the frontal lobe and medial, inferiorly-anteriorly along the medial wall. The decline of selectivity and laterality along these directions provides evidence for hierarchical gradients. In view of the anatomical segregation of these three directions, the multiplicity of body representations in each region and the hierarchical gradients in our findings, we propose that as in the visual and auditory domains, these directions are streams of somatosensory information processing.
Collapse
Affiliation(s)
- Noam Saadon-Grosman
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel.
| | - Shahar Arzy
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
| | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 919040 Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University, 919040 Jerusalem, Israel; Department of Cognitive Sciences, The Hebrew University, 919040 Jerusalem, Israel; The Federmann Center for the Study of Rationality, The Hebrew University, 919040 Jerusalem, Israel
| |
Collapse
|
40
|
Castaldi E, Vignaud A, Eger E. Mapping subcomponents of numerical cognition in relation to functional and anatomical landmarks of human parietal cortex. Neuroimage 2020; 221:117210. [DOI: 10.1016/j.neuroimage.2020.117210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 01/26/2023] Open
|
41
|
Inubushi T, Ito M, Mori Y, Futatsubashi M, Sato K, Ito S, Yokokura M, Shinke T, Kameno Y, Kakimoto A, Kanno T, Okada H, Ouchi Y, Yoshikawa E. Neural correlates of head restraint: Unsolicited neuronal activation and dopamine release. Neuroimage 2020; 224:117434. [PMID: 33039616 DOI: 10.1016/j.neuroimage.2020.117434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/01/2020] [Accepted: 10/03/2020] [Indexed: 11/29/2022] Open
Abstract
To minimize motion-related distortion of reconstructed images, conventional positron emission tomography (PET) measurements of the brain inevitably require a firm and tight head restraint. While such a restraint is now a routine procedure in brain imaging, the physiological and psychological consequences resulting from the restraint have not been elucidated. To address this problem, we developed a restraint-free brain PET system and conducted PET scans under both restrained and non-restrained conditions. We examined whether head restraint during PET scans could alter brain activities such as regional cerebral blood flow (rCBF) and dopamine release along with psychological stress related to head restraint. Under both conditions, 20 healthy male participants underwent [15O]H2O and [11C]Raclopride PET scans during working memory tasks with the same PET system. Before, during, and after each PET scan, we measured physiological and psychological stress responses, including the State-Trait Anxiety Inventory (STAI) scores. Analysis of the [15O]H2O-PET data revealed higher rCBF in regions such as the parahippocampus in the restrained condition. We found the binding potential (BPND) of [11C]Raclopride in the putamen was significantly reduced in the restrained condition, which reflects an increase in dopamine release. Moreover, the restraint-induced change in BPND was correlated with a shift in the state anxiety score of the STAI, indicating that less anxiety accompanied smaller dopamine release. These results suggest that the stress from head restraint could cause unsolicited responses in brain physiology and emotional states. The restraint-free imaging system may thus be a key enabling technology for the natural depiction of the mind.
Collapse
Affiliation(s)
- Tomoo Inubushi
- Central Research Laboratory, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan
| | - Masanori Ito
- Global Strategic Challenge Center, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan
| | - Yutaro Mori
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masami Futatsubashi
- Global Strategic Challenge Center, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan
| | - Kengo Sato
- Central Research Laboratory, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan
| | - Shigeru Ito
- Global Strategic Challenge Center, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan
| | - Masamichi Yokokura
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Tomomi Shinke
- Global Strategic Challenge Center, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Akihiro Kakimoto
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan; Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Shizuoka 434-0041, Japan
| | - Toshihiko Kanno
- Department of Radiological Sciences, Morinomiya University of Medical Sciences, Osaka 559-8611, Japan
| | - Hiroyuki Okada
- Global Strategic Challenge Center, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan; Department of Radiological Sciences, Morinomiya University of Medical Sciences, Osaka 559-8611, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan; Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Shizuoka 434-0041, Japan.
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics KK, Shizuoka 434-8601, Japan; Department of Biofunctional Imaging, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
42
|
Schizotypy and individual differences in peripersonal space plasticity. Neuropsychologia 2020; 147:107579. [PMID: 32758552 DOI: 10.1016/j.neuropsychologia.2020.107579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
The space surrounding our body, defined as peripersonal space (PPS), is dynamically shaped by our motor experiences. For instance, PPS extends after using a tool to reach far objects. Several studies have demonstrated how PPS size varies across people, depending on different individual characteristics, including schizotypy. Coherently, narrower PPS boundaries have been reported among high schizotypal individuals and schizophrenia patients. However, little is known about the relationship between PPS plasticity and personality traits like schizotypy. To this purpose, the present study has investigated the individual PPS plasticity, after two different motor trainings, along the schizotypal continuum. Specifically, PPS plasticity was tested after using a tool (Experiment 1) and after the mere observation of another person using the same tool (Experiment 2). Indeed, previous evidence has shown that tool-use observation influences visual distance judgments, extending the representation of PPS. To date, however, there is no study investigating whether observation of tools action could also affect multisensory PPS tasks. Experiment 1 has shown that PPS boundaries extended after using the tool; on the other hand, Experiment 2 has revealed the absence of PPS expansion. Moreover, greater PPS expansion emerged in the relatively-low schizotypal group than in the relatively-high one, regardless of the type of motor training performed. The absence of PPS modulation after the observation task is discussed in relation to recent findings showing that intentional action and/or the goal of the action represent potentially crucial elements to trigger PPS plasticity. Finally, these new results extend previous evidence underlining a potential general functional alteration of PPS with the increase of schizotypal level.
Collapse
|
43
|
Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S. A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Struct Funct 2020; 225:2091-2110. [PMID: 32647918 PMCID: PMC7473967 DOI: 10.1007/s00429-020-02112-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Neuroimaging studies have revealed two separate classes of category-selective regions specialized in optic flow (egomotion-compatible) processing and in scene/place perception. Despite the importance of both optic flow and scene/place recognition to estimate changes in position and orientation within the environment during self-motion, the possible functional link between egomotion- and scene-selective regions has not yet been established. Here we reanalyzed functional magnetic resonance images from a large sample of participants performing two well-known “localizer” fMRI experiments, consisting in passive viewing of navigationally relevant stimuli such as buildings and places (scene/place stimulus) and coherently moving fields of dots simulating the visual stimulation during self-motion (flow fields). After interrogating the egomotion-selective areas with respect to the scene/place stimulus and the scene-selective areas with respect to flow fields, we found that the egomotion-selective areas V6+ and pIPS/V3A responded bilaterally more to scenes/places compared to faces, and all the scene-selective areas (parahippocampal place area or PPA, retrosplenial complex or RSC, and occipital place area or OPA) responded more to egomotion-compatible optic flow compared to random motion. The conjunction analysis between scene/place and flow field stimuli revealed that the most important focus of common activation was found in the dorsolateral parieto-occipital cortex, spanning the scene-selective OPA and the egomotion-selective pIPS/V3A. Individual inspection of the relative locations of these two regions revealed a partial overlap and a similar response profile to an independent low-level visual motion stimulus, suggesting that OPA and pIPS/V3A may be part of a unique motion-selective complex specialized in encoding both egomotion- and scene-relevant information, likely for the control of navigation in a structured environment.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy. .,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| |
Collapse
|
44
|
Versace V, Campostrini S, Sebastianelli L, Saltuari L, Valls-Solé J, Kofler M. Threat vs control: Potentiation of the trigeminal blink reflex by threat proximity is overruled by self-stimulation. Psychophysiology 2020; 57:e13626. [PMID: 32573801 DOI: 10.1111/psyp.13626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 11/27/2022]
Abstract
The magnitude of the defensive blink reflex is modulated by continuous assessment of its protective value. Here, we studied whether the trigeminal blink reflex (TBR) is modulated by a potentially offensive object close to the face, and, if so, whether self-stimulation or observation of the act of stimulus triggering counteracts such modulation. In all, 26 healthy volunteers participated in various experimental conditions. At baseline, an experimenter triggered supraorbital nerve stimuli remotely, unseen by the participants; in experimental conditions, the experimenter held a stimulation probe close to the participant's face but triggered the stimuli either remotely, "surprising" participants (S1 ), or directly on the probe, observed by participants (S2 ). In other conditions, participants triggered stimuli themselves on the probe held next to their body (S3 ) or held in front of their face (S4 ). The latter condition was repeated similarly, but pressing the button only randomly generated electrical stimuli (S5, "Russian roulette"). The size of the R2 component of the TBR (TBR-R2) was the main outcome measure. Compared to baseline, TBR-R2 area was significantly larger in S1 when the "threatening" probe was close to the face and the participant had no control over stimulation. Conversely, TBR-R2 was suppressed when participants either saw the action of triggering, thus being aware (S2 ), or had full initiative over stimulation (S3 , S4 ). Random self-generated stimuli (S5 ) inhibited TBR-R2, but to a lesser extent than S3 and S4. Perceived threat close to the face facilitates TBR-R2, but knowledge about impending stimulation or self-agency overrules this effect.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing, Vipiteno/Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing, Vipiteno/Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno/Sterzing, Vipiteno/Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy
| | - Leopold Saltuari
- Research Unit for Neurorehabilitation of South Tyrol, Bolzano/Bozen, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), Facultat de Medicina, University of Barcelona, Barcelona, Spain
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
45
|
Field DT, Biagi N, Inman LA. The role of the ventral intraparietal area (VIP/pVIP) in the perception of object-motion and self-motion. Neuroimage 2020; 213:116679. [DOI: 10.1016/j.neuroimage.2020.116679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/15/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022] Open
|
46
|
Manfron L, Legrain V, Filbrich L. Seeing or not Seeing Where Your Hands Are. The Influence of Visual Feedback About Hand Position on the Interaction Between Nociceptive and Visual Stimuli. Multisens Res 2020; 33:457-478. [PMID: 31648189 DOI: 10.1163/22134808-20191448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/26/2019] [Indexed: 11/19/2022]
Abstract
Examining the mechanisms underlying crossmodal interaction between nociceptive and visual stimuli is crucial to understand how humans handle potential bodily threats in their environment. It has recently been shown that nociceptive stimuli can affect the perception of visual stimuli, provided that they occur close together in external space. The present study addresses the question whether these crossmodal interactions between nociceptive and visual stimuli are mediated by the visually perceived proximity between the visual stimuli and the limb on which nociceptive stimuli are applied, by manipulating the presence vs. absence of visual feedback about the position of the stimulated limb. Participants performed temporal order judgments on pairs of visual stimuli, shortly preceded by nociceptive stimuli, either applied on one hand or both hands simultaneously. The hands were placed near the visual stimuli and could either be seen directly, seen through a glass barrier, or hidden from sight with a wooden board. Unilateral nociceptive stimuli induced spatial biases to the advantage of visual stimuli presented near the stimulated hand, which were greater in the conditions in which the hands were seen than in the condition in which vision was prevented. Spatial biases were not modulated by the presence of the glass barrier, minimizing the possibility that the differential effect between the vision and no-vision conditions is solely due to the presence of the barrier between the hands and the visual stimuli. These findings highlight the importance of visual feedback for determining spatial mapping between nociceptive and visual stimuli for crossmodal interaction.
Collapse
Affiliation(s)
- Louise Manfron
- 1Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,2Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valéry Legrain
- 1Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,2Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lieve Filbrich
- 1Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,2Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
47
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
48
|
Bernasconi F, Noel JP, Park HD, Faivre N, Seeck M, Spinelli L, Schaller K, Blanke O, Serino A. Audio-Tactile and Peripersonal Space Processing Around the Trunk in Human Parietal and Temporal Cortex: An Intracranial EEG Study. Cereb Cortex 2019; 28:3385-3397. [PMID: 30010843 PMCID: PMC6095214 DOI: 10.1093/cercor/bhy156] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/14/2018] [Indexed: 12/04/2022] Open
Abstract
Interactions with the environment happen within one’s peripersonal space (PPS)—the space surrounding the body. Studies in monkeys and humans have highlighted a multisensory distributed cortical network representing the PPS. However, knowledge about the temporal dynamics of PPS processing around the trunk is lacking. Here, we recorded intracranial electroencephalography (iEEG) in humans while administering tactile stimulation (T), approaching auditory stimuli (A), and the 2 combined (AT). To map PPS, tactile stimulation was delivered when the sound was far, intermediate, or close to the body. The 19% of the electrodes showed AT multisensory integration. Among those, 30% showed a PPS effect, a modulation of the response as a function of the distance between the sound and body. AT multisensory integration and PPS effects had similar spatiotemporal characteristics, with an early response (~50 ms) in the insular cortex, and later responses (~200 ms) in precentral and postcentral gyri. Superior temporal cortex showed a different response pattern with AT multisensory integration at ~100 ms without a PPS effect. These results, represent the first iEEG delineation of PPS processing in humans and show that PPS and multisensory integration happen at similar neural sites and time periods, suggesting that PPS representation is based on a spatial modulation of multisensory integration.
Collapse
Affiliation(s)
- Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Geneva, Switzerland.,Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jean-Paul Noel
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Geneva, Switzerland.,Neuroscience Graduate Program, Vanderbilt University, Nashville, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA
| | - Hyeong Dong Park
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Geneva, Switzerland.,Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Nathan Faivre
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Geneva, Switzerland.,Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Centre d'Economie de la Sorbonne, CNRS UMR 8174, Paris, France
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Laurent Spinelli
- Presurgical Epilepsy Evaluation Unit, Neurology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, Geneva University Hospital (HUG), 4 Rue Gabrielle-Perret-Gentil, Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Geneva, Switzerland.,Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Centre d'Economie de la Sorbonne, CNRS UMR 8174, Paris, France
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Geneva, Switzerland.,Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,MySpace Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Pitzalis S, Serra C, Sulpizio V, Committeri G, de Pasquale F, Fattori P, Galletti C, Sepe R, Galati G. Neural bases of self- and object-motion in a naturalistic vision. Hum Brain Mapp 2019; 41:1084-1111. [PMID: 31713304 PMCID: PMC7267932 DOI: 10.1002/hbm.24862] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
To plan movements toward objects our brain must recognize whether retinal displacement is due to self-motion and/or to object-motion. Here, we aimed to test whether motion areas are able to segregate these types of motion. We combined an event-related functional magnetic resonance imaging experiment, brain mapping techniques, and wide-field stimulation to study the responsivity of motion-sensitive areas to pure and combined self- and object-motion conditions during virtual movies of a train running within a realistic landscape. We observed a selective response in MT to the pure object-motion condition, and in medial (PEc, pCi, CSv, and CMA) and lateral (PIC and LOR) areas to the pure self-motion condition. Some other regions (like V6) responded more to complex visual stimulation where both object- and self-motion were present. Among all, we found that some motion regions (V3A, LOR, MT, V6, and IPSmot) could extract object-motion information from the overall motion, recognizing the real movement of the train even when the images remain still (on the screen), or moved, because of self-movements. We propose that these motion areas might be good candidates for the "flow parsing mechanism," that is the capability to extract object-motion information from retinal motion signals by subtracting out the optic flow components.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgia Committeri
- Laboratory of Neuropsychology and Cognitive Neuroscience, Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio, Chieti, Italy
| | - Francesco de Pasquale
- Laboratory of Neuropsychology and Cognitive Neuroscience, Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio, Chieti, Italy.,Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rosamaria Sepe
- Laboratory of Neuropsychology and Cognitive Neuroscience, Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio, Chieti, Italy
| | - Gaspare Galati
- Cognitive and Motor Rehabilitation Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
50
|
A Whole-Body Sensory-Motor Gradient is Revealed in the Medial Wall of the Parietal Lobe. J Neurosci 2019; 39:7882-7892. [PMID: 31405923 DOI: 10.1523/jneurosci.0727-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
In 1954, Penfield and Jasper's findings based on electric stimulation of epileptic patients led them to hypothesize that a sensory representation of the body should be found in the precuneus. They termed this representation the "supplementary sensory" area and emphasized that the exact form of this homunculus could not be specified on the basis of their results. In the decades that followed, their prediction was neglected. The precuneus was found to be involved in numerous motor, cognitive and visual processes, but no work was done on its somatotopic organization. Here, we used a periodic experimental design in which 16 human subjects (eight women) moved 20 body parts to investigate the possible body part topography of the precuneus. We found an anterior-to-posterior, dorsal-to-ventral, toes-to-tongue gradient in a mirror orientation to the SMA. When inspecting body-part-specific functional connectivity, we found differential connectivity patterns for the different body parts to the primary and secondary motor areas and parietal and visual areas, and a shared connectivity to the extrastriate body area, another topographically organized area. We suggest that a whole-body gradient can be found in the precuneus and is connected to multiple brain areas with different connectivity for different body parts. Its exact role and relations to the other known functions of the precuneus such as self-processing, motor imagery, reaching, visuomotor and other body-mind functions should be investigated.SIGNIFICANCE STATEMENT Using fMRI, as well as sensitive spectral analysis, we found a new homunculus in the precuneus: an anterior-to-posterior, dorsal-to-ventral, toes-to-tongue somatotopic gradient in a mirror orientation to the SMA. When inspecting body-part-specific functional connectivity, we found differential connectivity patterns for the different body parts to the primary and secondary motor areas, parietal and visual areas, and a shared connectivity to the extrastriate body area, another topographically organized area. We suggest that a whole-body gradient can be found in the precuneus and is connected to multiple brain areas in a body-part-specific manner.
Collapse
|