1
|
Lan WH, He H, Bayley H, Qing Y. Location of Phosphorylation Sites within Long Polypeptide Chains by Binder-Assisted Nanopore Detection. J Am Chem Soc 2024; 146:24265-24270. [PMID: 38986019 PMCID: PMC11378271 DOI: 10.1021/jacs.4c03912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The detection and mapping of protein phosphorylation sites are essential for understanding the mechanisms of various cellular processes and for identifying targets for drug development. The study of biopolymers at the single-molecule level has been revolutionized by nanopore technology. In this study, we detect protein phosphorylation within long polypeptides (>700 amino acids), after the attachment of binders that interact with phosphate monoesters; electro-osmosis is used to drive the tagged chains through engineered protein nanopores. By monitoring the ionic current carried by a nanopore, phosphorylation sites are located within individual polypeptide chains, providing a valuable step toward nanopore proteomics.
Collapse
Affiliation(s)
- Wei-Hsuan Lan
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Hanxiao He
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yujia Qing
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
2
|
Yamazaki H, Mabuchi T, Kaito K, Matsuda K, Kato H, Uemura S. Photothermally Heated Asymmetric Thin Nanopores Suggest the Influence of Temperature on the Intermediate Conformational State of Cytochrome c in an Electric Field. NANO LETTERS 2024; 24:10219-10227. [PMID: 39133007 DOI: 10.1021/acs.nanolett.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanopore sensing is a label-free single-molecule technique that enables the study of the dynamical structural properties of proteins. Here, we detect the translocation of cytochrome c (Cyt c) through an asymmetric thin nanopore with photothermal heating to evaluate the influence of temperature on Cyt c conformation during its translocation in an electric field. Before Cyt c translocates through an asymmetric thin SiNx nanopore, ∼1 ms trapping events occur due to electric field-induced denaturation. These trapping events were corroborated by a control analysis with a transmission electron microscopy-drilled pore and denaturant buffer. Cyt c translocation events exhibited markedly greater broad current blockade when the pores were photothermally heated. Collectively, our molecular dynamics simulation predicted that an increased temperature facilitates denaturation of the α-helical structure of Cyt c, resulting in greater blockade current during Cyt c trapping. Our photothermal heating method can be used to study the influence of temperature on protein conformation at the single-molecule level in a label-free manner.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Mabuchi
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kouta Kaito
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kyosuke Matsuda
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Hiromu Kato
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Sauciuc A, Morozzo Della Rocca B, Tadema MJ, Chinappi M, Maglia G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat Biotechnol 2024; 42:1275-1281. [PMID: 37723268 DOI: 10.1038/s41587-023-01954-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Nanopores have recently been used to identify and fingerprint proteins. However, because proteins, unlike DNA, do not have a uniform charge, the electrophoretic force cannot in general be used to translocate or linearize them. Here we show that the introduction of sets of charges in the lumen of the CytK nanopore spaced by ~1 nm creates an electroosmotic flow that induces the unidirectional transport of unstructured natural polypeptides against a strong electrophoretic force. Molecular dynamics simulations indicate that this electroosmotic-dominated force has a strength of ~20 pN at -100 mV, which is similar to the electric force on single-stranded DNA. Unfolded polypeptides produce current signatures as they traverse the nanopore, which may be used to identify proteins. This approach can be used to translocate and stretch proteins for enzymatic and non-enzymatic protein identification and sequencing.
Collapse
Affiliation(s)
- Adina Sauciuc
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Matthijs Jonathan Tadema
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Mehrafrooz B, Yu L, Pandey L, Siwy ZS, Wanunu M, Aksimentiev A. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS NANO 2024; 18:17521-17533. [PMID: 38832758 PMCID: PMC11233251 DOI: 10.1021/acsnano.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Laxmi Pandey
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S Siwy
- Department of Physics, University of California at Irvine, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Krishnan R S, Firzan Ca N, Mahendran KR. Functionally Active Synthetic α-Helical Pores. Acc Chem Res 2024; 57:1790-1802. [PMID: 38875523 DOI: 10.1021/acs.accounts.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
ConspectusTransmembrane pores are currently at the forefront of nanobiotechnology, nanopore chemistry, and synthetic chemical biology research. Over the past few decades, significant studies in protein engineering have paved the way for redesigning membrane protein pores tailored for specific applications in nanobiotechnology. Most previous efforts predominantly centered on natural β-barrel pores designed with atomic precision for nucleic acid sequencing and sensing of biomacromolecules, including protein fragments. The requirement for a more efficient single-molecule detection system has driven the development of synthetic nanopores. For example, engineering channels to conduct ions and biomolecules selectively could lead to sophisticated nanopore sensors. Also, there has been an increased interest in synthetic pores, which can be fabricated to provide more control in designing architecture and diameter for single-molecule sensing of complex biomacromolecules. There have been impressive advancements in developing synthetic DNA-based pores, although their application in nanopore technology is limited. This has prompted a significant shift toward building synthetic transmembrane α-helical pores, a relatively underexplored field offering novel opportunities. Recently, computational tools have been employed to design and construct α-helical barrels of defined structure and functionality.We focus on building synthetic α-helical pores using naturally occurring transmembrane motifs of membrane protein pores. Our laboratory has developed synthetic α-helical transmembrane pores based on the natural porin PorACj (Porin A derived from Corynebacterium jeikeium) that function as nanopore sensors for single-molecule sensing of cationic cyclodextrins and polypeptides. Our breakthrough lies in being the first to create a functional and large stable synthetic transmembrane pore composed of short synthetic α-helical peptides. The key highlight of our work is that these pores can be synthesized using easy chemical synthesis, which permits its easy modification to include a variety of functional groups to build charge-selective sophisticated pores. Additionally, we have demonstrated that stable functional pores can be constructed from D-amino acid peptides. The analysis of pores composed of D- and L-amino acids in the presence of protease showed that only the D pores are highly functional and stable. The structural models of these pores revealed distinct surface charge conformation and geometry. These new classes of synthetic α-helical pores are highly original systems of general interest due to their unique architecture, functionality, and potential applications in nanopore technology and chemical biology. We emphasize that these simplified transmembrane pores have the potential to be components of functional nanodevices and therapeutic tools. We also suggest that such designed peptides might be valuable as antimicrobial agents and can be targeted to cancer cells. This article will focus on the evolutions in assembling α-helical transmembrane pores and highlight their advantages, including structural and functional versatility.
Collapse
Affiliation(s)
- Smrithi Krishnan R
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India-695014
| | - Neilah Firzan Ca
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India-695014
- Manipal Academy of Higher Education, Manipal, Karnataka India-576104
| | - Kozhinjampara R Mahendran
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India-695014
| |
Collapse
|
6
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
7
|
Domingues TS, Coifman R, Haji-Akbari A. Estimating Position-Dependent and Anisotropic Diffusivity Tensors from Molecular Dynamics Trajectories: Existing Methods and Future Outlook. J Chem Theory Comput 2024; 20:4427-4455. [PMID: 38815171 DOI: 10.1021/acs.jctc.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Confinement can substantially alter the physicochemical properties of materials by breaking translational isotropy and rendering all physical properties position-dependent. Molecular dynamics (MD) simulations have proven instrumental in characterizing such spatial heterogeneities and probing the impact of confinement on materials' properties. For static properties, this is a straightforward task and can be achieved via simple spatial binning. Such an approach, however, cannot be readily applied to transport coefficients due to lack of natural extensions of autocorrelations used for their calculation in the bulk. The prime example of this challenge is diffusivity, which, in the bulk, can be readily estimated from the particles' mobility statistics, which satisfy the Fokker-Planck equation. Under confinement, however, such statistics will follow the Smoluchowski equation, which lacks a closed-form analytical solution. This brief review explores the rich history of estimating profiles of the diffusivity tensor from MD simulations and discusses various approximate methods and algorithms developed for this purpose. Besides discussing heuristic extensions of bulk methods, we overview more rigorous algorithms, including kernel-based methods, Bayesian approaches, and operator discretization techniques. Additionally, we outline methods based on applying biasing potentials or imposing constraints on tracer particles. Finally, we discuss approaches that estimate diffusivity from mean first passage time or committor probability profiles, a conceptual framework originally developed in the context of collective variable spaces describing rare events in computational chemistry and biology. In summary, this paper offers a concise survey of diverse approaches for estimating diffusivity from MD trajectories, highlighting challenges and opportunities in this area.
Collapse
Affiliation(s)
- Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Ronald Coifman
- Department of Mathematics, Yale University, New Haven, Connecticut 06520, United States
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
8
|
Guo L, Han Y, Yang H, Fu J, Li W, Xie R, Zhang Y, Wang K, Xia XH. Single-Molecule Discrimination of Saccharides Using Carbon Nitride Nanopores. NANO LETTERS 2024; 24:5639-5646. [PMID: 38668743 DOI: 10.1021/acs.nanolett.4c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Structural complexity brings a huge challenge to the analysis of sugar chains. As a single-molecule sensor, nanopores have the potential to provide fingerprint information on saccharides. Traditionally, direct single-molecule saccharide detection with nanopores is hampered by their small size and weak affinity. Here, a carbon nitride nanopore device is developed to discern two types of trisaccharide molecules (LeApN and SLeCpN) with minor structural differences. The resolution of LeApN and SLeCpN in the mixture reaches 0.98, which has never been achieved in solid-state nanopores so far. Monosaccharide (GlcNAcpN) and disaccharide (LacNAcpN) can also be discriminated using this system, indicating that the versatile carbon nitride nanopores possess a monosaccharide-level resolution. This study demonstrates that the carbon nitride nanopores have the potential for conducting structure analysis on single-molecule saccharides.
Collapse
Affiliation(s)
- Linru Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yida Han
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jie Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Xie
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem 2024; 16:314-334. [PMID: 38448507 DOI: 10.1038/s41557-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/14/2023] [Indexed: 03/08/2024]
Abstract
Sequencing of nucleic acids with nanopores has emerged as a powerful tool offering rapid readout, high accuracy, low cost and portability. This label-free method for sequencing at the single-molecule level is an achievement on its own. However, nanopores also show promise for the technologically even more challenging sequencing of polypeptides, something that could considerably benefit biological discovery, clinical diagnostics and homeland security, as current techniques lack portability and speed. Here we survey the biochemical innovations underpinning commercial and academic nanopore DNA/RNA sequencing techniques, and explore how these advances can fuel developments in future protein sequencing with nanopores.
Collapse
Affiliation(s)
- Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
10
|
Liu J, Aksimentiev A. Molecular Determinants of Current Blockade Produced by Peptide Transport Through a Nanopore. ACS NANOSCIENCE AU 2024; 4:21-29. [PMID: 38406313 PMCID: PMC10885333 DOI: 10.1021/acsnanoscienceau.3c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 02/27/2024]
Abstract
The nanopore sensing method holds the promise of delivering a single molecule technology for identification of biological proteins, direct detection of post-translational modifications, and perhaps de novo determination of a protein's amino acid sequence. The key quantity measured in such nanopore sensing experiments is the magnitude of the ionic current passing through a nanopore blocked by a polypeptide chain. Establishing a relationship between the amino acid sequence of a peptide fragment confined within a nanopore and the blockade current flowing through the nanopore remains a major challenge for realizing the nanopore protein sequencing. Using the results of all-atom molecular dynamics simulations, here we compare nanopore sequencing of DNA with nanopore sequencing of proteins. We then delineate the factors affecting the blockade current modulation by the peptide sequence, showing that the current can be determined by (i) the steric footprint of an amino acid, (ii) its interactions with the pore wall, (iii) the local stretching of a polypeptide chain, and (iv) the local enhancement of the ion concentration at the nanopore constriction. We conclude with a brief discussion of the prospects for purely computational prediction of the blockade currents.
Collapse
Affiliation(s)
- Jingqian Liu
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Tan F, Wang J, Yan R, Zhao N. Forced and spontaneous translocation dynamics of a semiflexible active polymer in two dimensions. SOFT MATTER 2024; 20:1120-1132. [PMID: 38224190 DOI: 10.1039/d3sm01409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Polymer translocation is a fundamental topic in non-equilibrium physics and is crucially important to many biological processes in life. In the present work, we adopt two-dimensional Langevin dynamics simulations to study the forced and spontaneous translocation dynamics of an active filament. The influence of polymer stiffness on the underlying dynamics is explicitly analyzed. For the forced translocation, the results show a robust stiffness-induced inhibition, and the translocation time exhibits a dual-exponent scaling relationship with the bending modulus. Tension propagation (TP) is also examined, where we find prominent modifications in terms of both activity and stiffness. For spontaneous translocation into a pure solvent, the translocation time is almost independent of the polymer stiffness. However, when the polymer is translocated into a porous medium, an intriguing non-monotonic alteration of translocation time with increasing chain stiffness is demonstrated. The semiflexible chain is beneficial for translocation while the rigid chain is not conducive. Stiffness regulation on the diffusion dynamics of the polymer in porous media shows a consistent scenario. The interplay of activity, stiffness, and porous crowding provides a new mechanism for understanding the non-trivial translocation dynamics of an active filament in complex environments.
Collapse
Affiliation(s)
- Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Jingli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
12
|
O'Donohue M, Ghimire ML, Lee S, Kim MJ. Real-time monitoring of Ti(IV) metal ion binding of transferrin using a solid-state nanopore. J Chem Phys 2024; 160:044906. [PMID: 38275192 DOI: 10.1063/5.0185590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Transferrin, a central player in iron transport, has been recognized not only for its role in binding iron but also for its interaction with other metals, including titanium. This study employs solid-state nanopores to investigate the binding of titanium ions [Ti(IV)] to transferrin in a single-molecule and label-free manner. We demonstrate the novel application of solid-state nanopores for single-molecule discrimination between apo-transferrin (metal-free) and Ti(IV)-transferrin. Despite their similar sizes, Ti(IV)-transferrin exhibits a reduced current drop, attributed to differences in translocation times and filter characteristics. Single-molecule analysis reveals Ti(IV)-transferrin's enhanced stability and faster translocations due to its distinct conformational flexibility compared to apo-transferrin. Furthermore, our study showcases solid-state nanopores as real-time monitors of biochemical reactions, tracking the gradual conversion of apo-transferrin to Ti(IV)-transferrin upon the addition of titanium citrate. This work offers insights into Ti(IV) binding to transferrin, promising applications for single-molecule analysis and expanding our comprehension of metal-protein interactions at the molecular level.
Collapse
Affiliation(s)
- Matthew O'Donohue
- Applied Science Program, Southern Methodist University, Dallas, Texas 75205, USA
| | - Madhav L Ghimire
- Department of Mechanical Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, Texas 75205, USA
| | - Sangyoup Lee
- Bionic Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min Jun Kim
- Applied Science Program, Southern Methodist University, Dallas, Texas 75205, USA
- Department of Mechanical Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, Texas 75205, USA
| |
Collapse
|
13
|
Zhang Y, Yi Y, Li Z, Zhou K, Liu L, Wu HC. Peptide sequencing based on host-guest interaction-assisted nanopore sensing. Nat Methods 2024; 21:102-109. [PMID: 37957431 DOI: 10.1038/s41592-023-02095-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Direct protein sequencing technologies with improved sensitivity and throughput are still needed. Here, we propose an alternative method for peptide sequencing based on enzymatic cleavage and host-guest interaction-assisted nanopore sensing. We serendipitously discovered that the identity of any proteinogenic amino acid in a particular position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Building upon this, we further present a proof-of-concept demonstration of peptide sequencing by sequentially cleaving off amino acids from C terminus of a peptide with carboxypeptidases, and then determining their identities and sequence with a peptide probe in nanopore. With future optimization, our results point to a different way of nanopore-based protein sequencing.
Collapse
Affiliation(s)
- Yun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Acharjee MC, Ledden B, Thomas B, He X, Messina T, Giurleo J, Talaga D, Li J. Aggregation and Oligomerization Characterization of ß-Lactoglobulin Protein Using a Solid-State Nanopore Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 24:81. [PMID: 38202943 PMCID: PMC10781269 DOI: 10.3390/s24010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Protein aggregation is linked to many chronic and devastating neurodegenerative human diseases and is strongly associated with aging. This work demonstrates that protein aggregation and oligomerization can be evaluated by a solid-state nanopore method at the single molecule level. A silicon nitride nanopore sensor was used to characterize both the amyloidogenic and native-state oligomerization of a model protein ß-lactoglobulin variant A (βLGa). The findings from the nanopore measurements are validated against atomic force microscopy (AFM) and dynamic light scattering (DLS) data, comparing βLGa aggregation from the same samples at various stages. By calibrating with linear and circular dsDNA, this study estimates the amyloid fibrils' length and diameter, the quantity of the βLGa aggregates, and their distribution. The nanopore results align with the DLS and AFM data and offer additional insight at the level of individual protein molecular assemblies. As a further demonstration of the nanopore technique, βLGa self-association and aggregation at pH 4.6 as a function of temperature were measured at high (2 M KCl) and low (0.1 M KCl) ionic strength. This research highlights the advantages and limitations of using solid-state nanopore methods for analyzing protein aggregation.
Collapse
Affiliation(s)
- Mitu C. Acharjee
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brad Ledden
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brian Thomas
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Xianglan He
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
| | - Troy Messina
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Department of Physics, Berea College, Berea, KY 40404, USA
| | - Jason Giurleo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - David Talaga
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Department of Chemistry, Sokol Institute, Montclair State University, Montclair, NJ 07043, USA
| | - Jiali Li
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
15
|
Mehrafrooz B, Yu L, Siwy Z, Wanunu M, Aksimentiev A. Electro-Osmotic Flow Generation via a Sticky Ion Action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571673. [PMID: 38168277 PMCID: PMC10760089 DOI: 10.1101/2023.12.14.571673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Remarkably, guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Zuzanna Siwy
- Department of Physics, University of California at Irvine, Irvine, CA 92697, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
16
|
Yin B, Tang P, Wang L, Xie W, Chen X, Wang Y, Weng T, Tian R, Zhou S, Wang Z, Wang D. An aptamer-assisted nanopore strategy with a salt gradient for direct protein sensing. J Mater Chem B 2023; 11:11064-11072. [PMID: 37966856 DOI: 10.1039/d3tb01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Nanopore sensing is at the forefront of the technological revolution of the protein research field and has been widely used in molecular diagnosis and molecular dynamics, as well as for various sequencing applications. However, direct protein sensing with biological nanopores is still challenging owing to the large molecular size. Here, we propose an aptamer-assisted nanopore strategy for direct protein sensing and demonstrate its proof-of-concept utilities by experiments with SARS-Cov-2 nucleocapsid protein (NP), the most abundantly expressed viral protein, that is widely used in clinical diagnosis for COVID-19. NP binds with an oligonucleotide-tailed aptamer to form a protein-DNA complex which induces a discriminative two-level pattern of current blockades. We reveal the potential molecular interaction mechanism for the characteristic blockades and identify the salt gradient condition as the dominant factor of the phenomenon. Furthermore, we achieve a high sensitivity of 10 pM for NP detection within one hour and make a preliminary exploration on clinical diagnosis. This work promises a new platform for rapid and label-free protein detection.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Peng Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Xiaohan Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Rong Tian
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Shuo Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| |
Collapse
|
17
|
Martin-Baniandres P, Lan WH, Board S, Romero-Ruiz M, Garcia-Manyes S, Qing Y, Bayley H. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. NATURE NANOTECHNOLOGY 2023; 18:1335-1340. [PMID: 37500774 PMCID: PMC10656283 DOI: 10.1038/s41565-023-01462-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023]
Abstract
Means to analyse cellular proteins and their millions of variants at the single-molecule level would uncover substantial information previously unknown to biology. Nanopore technology, which underpins long-read DNA and RNA sequencing, holds potential for full-length proteoform identification. We use electro-osmosis in an engineered charge-selective nanopore for the non-enzymatic capture, unfolding and translocation of individual polypeptides of more than 1,200 residues. Unlabelled thioredoxin polyproteins undergo transport through the nanopore, with directional co-translocational unfolding occurring unit by unit from either the C or N terminus. Chaotropic reagents at non-denaturing concentrations accelerate the analysis. By monitoring the ionic current flowing through the nanopore, we locate post-translational modifications deep within the polypeptide chains, laying the groundwork for compiling inventories of the proteoforms in cells and tissues.
Collapse
Affiliation(s)
| | - Wei-Hsuan Lan
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Stephanie Board
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Qiao Y, Hu JJ, Hu Y, Duan C, Jiang W, Ma Q, Hong Y, Huang WH, Xia F, Lou X. Detection of Unfolded Cellular Proteins Using Nanochannel Arrays with Probe-Functionalized Outer Surfaces. Angew Chem Int Ed Engl 2023; 62:e202309671. [PMID: 37672359 DOI: 10.1002/anie.202309671] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes. The detection principle relies on the specific binding between the maleimide groups in outer-surface probes and the protein cysteine thiols that induce changes in the ionic current and fluorescence intensity responses of the nanochannel array. By taking advantage of this mechanism, the platform has the ability to differentiate folded and unfolded state of proteins based on the exposure of a single cysteine thiol group. The integration of these two signals enhances the reliability and sensitivity of the identification of unfolded protein states and enables the distinction between normal cells and Huntington's disease mutant cells. This study provides an effective approach for the precise analysis of proteins with distinct conformations and holds promise for facilitating the diagnoses of protein conformation-related diseases.
Collapse
Affiliation(s)
- Yujuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Wenlian Jiang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Wei Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
19
|
Tan F, Yan R, Zhao C, Zhao N. Translocation Dynamics of an Active Filament through a Long-Length Scale Channel. J Phys Chem B 2023; 127:8603-8615. [PMID: 37782905 DOI: 10.1021/acs.jpcb.3c04250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Active filament translocation through a confined space is crucial for diverse biological processes. By using Langevin dynamics simulations, we investigate the translocation dynamics of an axially self-propelled chain through a channel. First, results show a suggestive reciprocal scaling of translocation time versus active force. Second, in the case of a long channel, we demonstrate a very intriguing nonmonotonic change of translocation time with increasing channel width. The driving force shows a similar trend, providing a consistent picture to understand the unexpected channel width effect. In particular, in a moderately broad channel, the disordered chain conformation results in a loss of driving force and thus inhibits translocation dynamics. Chain adsorption might occur in a wide channel, which accounts for a facilitated translocation. Lastly, we connect the translocation process to tension propagation (TP). A modified TP picture is proposed to interpret the waiting time distribution. Our work highlights the new phenomenology owing to the crucial interplay of activity and spacial confinement, which drives the translocation dynamics, going beyond the traditional entropic barrier scenario.
Collapse
Affiliation(s)
- Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
21
|
Samineni L, Acharya B, Behera H, Oh H, Kumar M, Chowdhury R. Protein engineering of pores for separation, sensing, and sequencing. Cell Syst 2023; 14:676-691. [PMID: 37591205 DOI: 10.1016/j.cels.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Proteins are critical to cellular function and survival. They are complex molecules with precise structures and chemistries, which allow them to serve diverse functions for maintaining overall cell homeostasis. Since the discovery of the first enzyme in 1833, a gamut of advanced experimental and computational tools has been developed and deployed for understanding protein structure and function. Recent studies have demonstrated the ability to redesign/alter natural proteins for applications in industrial processes of interest and to make customized, novel synthetic proteins in the laboratory through protein engineering. We comprehensively review the successes in engineering pore-forming proteins and correlate the amino acid-level biochemistry of different pore modification strategies to the intended applications limited to nucleotide/peptide sequencing, single-molecule sensing, and precise molecular separations.
Collapse
Affiliation(s)
- Laxmicharan Samineni
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Bibek Acharya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
22
|
Yu L, Kang X, Li F, Mehrafrooz B, Makhamreh A, Fallahi A, Foster JC, Aksimentiev A, Chen M, Wanunu M. Unidirectional single-file transport of full-length proteins through a nanopore. Nat Biotechnol 2023; 41:1130-1139. [PMID: 36624148 PMCID: PMC10329728 DOI: 10.1038/s41587-022-01598-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/02/2022] [Indexed: 01/10/2023]
Abstract
The electrical current blockade of a peptide or protein threading through a nanopore can be used as a fingerprint of the molecule in biosensor applications. However, threading of full-length proteins has only been achieved using enzymatic unfolding and translocation. Here we describe an enzyme-free approach for unidirectional, slow transport of full-length proteins through nanopores. We show that the combination of a chemically resistant biological nanopore, α-hemolysin (narrowest part is ~1.4 nm in diameter), and a high concentration guanidinium chloride buffer enables unidirectional, single-file protein transport propelled by an electroosmotic effect. We show that the mean protein translocation velocity depends linearly on the applied voltage and translocation times depend linearly on length, resembling the translocation dynamics of ssDNA. Using a supervised machine-learning classifier, we demonstrate that single-translocation events contain sufficient information to distinguish their threading orientation and identity with accuracies larger than 90%. Capture rates of protein are increased substantially when either a genetically encoded charged peptide tail or a DNA tag is added to a protein.
Collapse
Affiliation(s)
- Luning Yu
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Xinqi Kang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Fanjun Li
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Behzad Mehrafrooz
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ali Fallahi
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Joshua C Foster
- Molecular and Cellular Biology Program, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Program, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
23
|
Valenzuela-Gómez F, Arechaga I, Cabezón E. Nanopore sensing reveals a preferential pathway for the co-translocational unfolding of a conjugative relaxase-DNA complex. Nucleic Acids Res 2023; 51:6857-6869. [PMID: 37264907 PMCID: PMC10359608 DOI: 10.1093/nar/gkad492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Bacterial conjugation is the main mechanism for the dissemination of antibiotic resistance genes. A single DNA strand of the conjugative plasmid is transferred across bacterial membranes covalently bound to a large multi-domain protein, named relaxase, which must be unfolded to traverse the secretion channel. Two tyrosine residues of the relaxase (Y18 and Y26 in relaxase TrwC) play an important role in the processing of conjugative DNA. We have used nanopore technology to uncover the unfolding states that take place during translocation of the relaxase-DNA complex. We observed that the relaxase unfolding pathway depends on the tyrosine residue involved in conjugative DNA binding. Transfer of the nucleoprotein complex is faster when DNA is bound to residue Y18. This is the first time in which a protein-DNA complex that is naturally translocated through bacterial membranes has been analyzed by nanopore sensing, opening new horizons to apply this technology to study protein secretion.
Collapse
Affiliation(s)
- Fernando Valenzuela-Gómez
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| | - Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| |
Collapse
|
24
|
Hong H, Wei J, Lei X, Chen H, Sarro PM, Zhang G, Liu Z. Study on the controllability of the fabrication of single-crystal silicon nanopores/nanoslits with a fast-stop ionic current-monitored TSWE method. MICROSYSTEMS & NANOENGINEERING 2023; 9:63. [PMID: 37206700 PMCID: PMC10188523 DOI: 10.1038/s41378-023-00532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023]
Abstract
The application of single-crystal silicon (SCS) nanopore structures in single-molecule-based analytical devices is an emerging approach for the separation and analysis of nanoparticles. The key challenge is to fabricate individual SCS nanopores with precise sizes in a controllable and reproducible way. This paper introduces a fast-stop ionic current-monitored three-step wet etching (TSWE) method for the controllable fabrication of SCS nanopores. Since the nanopore size has a quantitative relationship with the corresponding ionic current, it can be regulated by controlling the ionic current. Thanks to the precise current-monitored and self-stop system, an array of nanoslits with a feature size of only 3 nm was obtained, which is the smallest size ever reported using the TSWE method. Furthermore, by selecting different current jump ratios, individual nanopores of specific sizes were controllably prepared, and the smallest deviation from the theoretical value was 1.4 nm. DNA translocation measurement results revealed that the prepared SCS nanopores possessed the excellent potential to be applied in DNA sequencing.
Collapse
Affiliation(s)
- Hao Hong
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| | - Xin Lei
- School of Chemistry, Beihang University, 100084 Beijing, China
| | - Haiyun Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, 100084 Beijing, China
| | - Pasqualina M. Sarro
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Guoqi Zhang
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
25
|
Zhang X, Galenkamp NS, van der Heide NJ, Moreno J, Maglia G, Kjems J. Specific Detection of Proteins by a Nanobody-Functionalized Nanopore Sensor. ACS NANO 2023; 17:9167-9177. [PMID: 37127291 PMCID: PMC10184537 DOI: 10.1021/acsnano.2c12733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanopores are label-free single-molecule analytical tools that show great potential for stochastic sensing of proteins. Here, we described a ClyA nanopore functionalized with different nanobodies through a 5-6 nm DNA linker at its periphery. Ty1, 2Rs15d, 2Rb17c, and nb22 nanobodies were employed to specifically recognize the large protein SARS-CoV-2 Spike, a medium-sized HER2 receptor, and the small protein murine urokinase-type plasminogen activator (muPA), respectively. The pores modified with Ty1, 2Rs15d, and 2Rb17c were capable of stochastic sensing of Spike protein and HER2 receptor, respectively, following a model where unbound nanobodies, facilitated by a DNA linker, move inside the nanopore and provoke reversible blockade events, whereas engagement with the large- and medium-sized proteins outside of the pore leads to a reduced dynamic movement of the nanobodies and an increased current through the open pore. Exploiting the multivalent interaction between trimeric Spike protein and multimerized Ty1 nanobodies enabled the detection of picomolar concentrations of Spike protein. In comparison, detection of the smaller muPA proteins follows a different model where muPA, complexing with the nb22, moves into the pore, generating larger blockage signals. Importantly, the components in blood did not affect the sensing performance of the nanobody-functionalized nanopore, which endows the pore with great potential for clinical detection of protein biomarkers.
Collapse
Affiliation(s)
- Xialin Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | | | - Julián Moreno
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
26
|
Yu RJ, Li Q, Liu SC, Ma H, Ying YL, Long YT. Simultaneous observation of the spatial and temporal dynamics of single enzymatic catalysis using a solid-state nanopore. NANOSCALE 2023; 15:7261-7266. [PMID: 37038732 DOI: 10.1039/d2nr06361a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We developed a bipolar SiNx nanopore for the observation of single-molecule heterogeneous enzymatic dynamics. Single glucose oxidase was immobilized inside the nanopore and its electrocatalytic behaviour was real-time monitored via continuous recording of ionic flux amplification. The temporal heterogeneity in enzymatic properties and its spatial dynamic orientations were observed simultaneously, and these two properties were found to be closely correlated. We anticipate that this method offers new perspectives on the correlation of protein structure and function at the single-molecule level.
Collapse
Affiliation(s)
- Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qiao Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shao-Chuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
27
|
Lu LW, Wang ZH, Shi AC, Lu YY, An LJ. Polymer Translocation. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
28
|
Ahmad M, Ha JH, Mayse LA, Presti MF, Wolfe AJ, Moody KJ, Loh SN, Movileanu L. A generalizable nanopore sensor for highly specific protein detection at single-molecule precision. Nat Commun 2023; 14:1374. [PMID: 36941245 PMCID: PMC10027671 DOI: 10.1038/s41467-023-36944-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Protein detection has wide-ranging implications in molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific interfaces for detecting proteins without the steric hindrance of the pore interior. Here, we formulate a class of sensing elements made of a programmable antibody-mimetic binder fused to a monomeric protein nanopore. This way, such a modular design significantly expands the utility of nanopore sensors to numerous proteins while preserving their architecture, specificity, and sensitivity. We prove the power of this approach by developing and validating nanopore sensors for protein analytes that drastically vary in size, charge, and structural complexity. These analytes produce unique electrical signatures that depend on their identity and quantity and the binder-analyte assembly at the nanopore tip. The outcomes of this work could impact biomedical diagnostics by providing a fundamental basis for biomarker detection in biofluids.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Lauren A Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY, 13244, USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Aaron J Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY, 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Kelsey J Moody
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY, 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA.
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY, 13244, USA.
- The BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
29
|
Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z, Tu J. Nanopore sensors for single molecular protein detection: Research progress based on computer simulations. IET Nanobiotechnol 2023; 17:257-268. [PMID: 36924083 DOI: 10.1049/nbt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As biological macromolecules, proteins are involved in important cellular functions ranging from DNA replication and biosynthesis to metabolic signalling and environmental sensing. Protein sequencing can help understand the relationship between protein function and structure, and provide key information for disease diagnosis and new drug design. Nanopore sensors are a novel technology to achieve the goal of label-free and high-throughput protein sequencing. In recent years, nanopore-based biosensors have been widely used in the detection and analysis of biomolecules such as DNA, RNA, and proteins. At the same time, computer simulations can describe the transport of proteins through nanopores at the atomic level. This paper reviews the applications of nanopore sensors in protein sequencing over the past decade and the solutions to key problems from a computer simulation perspective, with the aim of pointing the way to the future of nanopore protein sequencing.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Mittal S, Manna S, Pathak B. Machine Learning Prediction of the Transmission Function for Protein Sequencing with Graphene Nanoslit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51645-51655. [PMID: 36374991 DOI: 10.1021/acsami.2c13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein sequencing has rapidly changed the landscape of healthcare and life science by accelerating the growth of diagnostics and personalized medicines for a variety of fatal diseases. Next-generation nanopore/nanoslit sequencing is promising to achieve single-molecule resolution with chromosome-size-long readability. However, due to inherent complexity, high-throughput sequencing of all 20 amino acids demands different approaches. Aiming to accelerate the detection of amino acids, a general machine learning (ML) method has been developed for quick and accurate prediction of the transmission function for amino acid sequencing. Among the utilized ML models, the XGBoost regression model is found to be the most effective algorithm for fast prediction of the transmission function with a very low test root-mean-square error (RMSE ∼0.05). In addition, using the random forest ML classification technique, we are able to classify the neutral amino acids with a prediction accuracy of 100%. Therefore, our approach is an initiative for the prediction of the transmission function through ML and can provide a platform for the quick identification of amino acids with high accuracy.
Collapse
Affiliation(s)
- Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| | - Souvik Manna
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| |
Collapse
|
31
|
Fiasconaro A, Díez-Señorans G, Falo F. End-pulled polymer translocation through a many-body flexible pore. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Threading single proteins through pores to compare their energy landscapes. Proc Natl Acad Sci U S A 2022; 119:e2202779119. [PMID: 36122213 PMCID: PMC9522335 DOI: 10.1073/pnas.2202779119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Protein function correlates with its structural dynamics. While theoretical approaches to studying protein energy landscapes are well developed, experimental methods that enable probing these landscapes of proteins remain challenging. We used solid-state nanopores to study the translocation behavior of three mutants of a helix bundle protein and quantified the number of energetically accessible conformational states for each mutant. We found that a slower-folding mutant with access to more conformational states translocates faster than a faster-folding mutant with a smaller number of accessible states, suggesting that ease of folding and ease of translocation are at odds in this case. Translocation of proteins is correlated with structural fluctuations that access conformational states higher in free energy than the folded state. We use electric fields at the solid-state nanopore to control the relative free energy and occupancy of different protein conformational states at the single-molecule level. The change in occupancy of different protein conformations as a function of electric field gives rise to shifts in the measured distributions of ionic current blockades and residence times. We probe the statistics of the ionic current blockades and residence times for three mutants of the λ-repressor family in order to determine the number of accessible conformational states of each mutant and evaluate the ruggedness of their free energy landscapes. Translocation becomes faster at higher electric fields when additional flexible conformations are available for threading through the pore. At the same time, folding rates are not correlated with ease of translocation; a slow-folding mutant with a low-lying intermediate state translocates faster than a faster-folding two-state mutant. Such behavior allows us to distinguish among protein mutants by selecting for the degree of current blockade and residence time at the pore. Based on these findings, we present a simple free energy model that explains the complementary relationship between folding equilibrium constants and translocation rates.
Collapse
|
33
|
Ge Y, Cui M, Zhang Q, Wang Y, Xi D. Aerolysin nanopore-based identification of proteinogenic amino acids using a bipolar peptide probe. NANOSCALE ADVANCES 2022; 4:3883-3891. [PMID: 36133334 PMCID: PMC9470019 DOI: 10.1039/d2na00190j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Nanopore technology has attracted extensive attention due to its rapid, highly sensitive, and label-free performance. In this study, we aimed to identify proteinogenic amino acids using a wild-type aerolysin nanopore. Specifically, bipolar peptide probes were synthesised by linking four aspartic acid residues to the N-terminal and five arginine residues to the C-terminal of individual amino acids. With the help of the bipolar peptide carrier, 9 proteinogenic amino acids were reliably recognised based on current blockade and dwell time using an aerolysin nanopore. Furthermore, by changing the charge of the peptide probe, two of the five unrecognized amino acids above mentioned were identified. These findings promoted the application of aerolysin nanopores in proteinogenic amino acid recognition.
Collapse
Affiliation(s)
- Yaxian Ge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Mengjie Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University Guangzhou 510515 P. R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| |
Collapse
|
34
|
Soni N, Freundlich N, Ohayon S, Huttner D, Meller A. Single-File Translocation Dynamics of SDS-Denatured, Whole Proteins through Sub-5 nm Solid-State Nanopores. ACS NANO 2022; 16:11405-11414. [PMID: 35785960 PMCID: PMC7613183 DOI: 10.1021/acsnano.2c05391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ability to routinely identify and quantify the complete proteome from single cells will greatly advance medicine and basic biology research. To meet this challenge of single-cell proteomics, single-molecule technologies are being developed and improved. Most approaches, to date, rely on the analysis of polypeptides, resulting from digested proteins, either in solution or immobilized on a surface. Nanopore biosensing is an emerging single-molecule technique that circumvents surface immobilization and is optimally suited for the analysis of long biopolymers, as has already been shown for DNA sequencing. However, proteins, unlike DNA molecules, are not uniformly charged and harbor complex tertiary structures. Consequently, the ability of nanopores to analyze unfolded full-length proteins has remained elusive. Here, we evaluate the use of heat denaturation and the anionic surfactant sodium dodecyl sulfate (SDS) to facilitate electrokinetic nanopore sensing of unfolded proteins. Specifically, we characterize the voltage dependence translocation dynamics of a wide molecular weight range of proteins (from 14 to 130 kDa) through sub-5 nm solid-state nanopores, using a SDS concentration below the critical micelle concentration. Our results suggest that proteins' translocation dynamics are significantly slower than expected, presumably due to the smaller nanopore diameters used in our study and the role of the electroosmotic force opposing the translocation direction. This allows us to distinguish among the proteins of different molecular weights based on their dwell time and electrical charge deficit. Given the simplicity of the protein denaturation assay and circumvention of the tailor-made necessities for sensing protein of different folded sizes, shapes, and charges, this approach can facilitate the development of a whole proteome identification technique.
Collapse
Affiliation(s)
- Neeraj Soni
- Department
of Biomedical Engineering, Technion−IIT, Haifa, 3200003 Israel
- Russell
Berrie Nanotechnology Institute Technion−IIT, Haifa, 3200003 Israel
| | - Noam Freundlich
- Department
of Biomedical Engineering, Technion−IIT, Haifa, 3200003 Israel
| | - Shilo Ohayon
- Department
of Biomedical Engineering, Technion−IIT, Haifa, 3200003 Israel
| | - Diana Huttner
- Department
of Biomedical Engineering, Technion−IIT, Haifa, 3200003 Israel
| | - Amit Meller
- Department
of Biomedical Engineering, Technion−IIT, Haifa, 3200003 Israel
- Russell
Berrie Nanotechnology Institute Technion−IIT, Haifa, 3200003 Israel
| |
Collapse
|
35
|
Zollo G, Civitarese T. Ab Initio Properties of Hybrid Cove-Edged Graphene Nanoribbons as Metallic Electrodes for Peptide Sequencing via Transverse Tunneling Current. ACS OMEGA 2022; 7:25164-25170. [PMID: 35910163 PMCID: PMC9330076 DOI: 10.1021/acsomega.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently synthesized metallic cove-edged graphene nanoribbons are considered for use as one-dimensional (1D) electrodes for ideal atomistically resolved recognition of amino acids. To this purpose a narrow nanogap device is considered, and the transversal tunneling current flowing across it is calculated during the translocation of a model Gly homopeptide using the nonequilibrium Green function scheme, based on density functional theory. We show that the signal collected from the metallic spin states is characterized by a double peak per residue in analogy with the results obtained with 1D graphene nanoribbon template electrodes. The presented results pave the way for experimentally feasible atomistically resolved tunneling current recognition using metallic edge engineered graphene electrodes obtained by bottom-up fabrication strategies.
Collapse
Affiliation(s)
- Giuseppe Zollo
- Dipartimento di Scienze di Base e Applicate
per l’Ingegneria, University of Rome
“La Sapienza”, Via Antonio Scarpa 14-16, 00161 Rome, Italy
| | - Tommaso Civitarese
- Dipartimento di Scienze di Base e Applicate
per l’Ingegneria, University of Rome
“La Sapienza”, Via Antonio Scarpa 14-16, 00161 Rome, Italy
| |
Collapse
|
36
|
Dynamic rotation featured translocations of human serum albumin with a conical glass nanopore. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Jiang X, Pan T, Lang C, Zeng C, Hou J, Xu J, Luo Q, Hou C, Liu J. Single-Molecule Observation of Selenoenzyme Intermediates in a Semisynthetic Seleno-α-Hemolysin Nanoreactor. Anal Chem 2022; 94:8433-8440. [PMID: 35621827 DOI: 10.1021/acs.analchem.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of monitoring methods to capture short-lived intermediates is crucial for kinetic mechanism validation of enzymatic reaction steps. In this work, a semisynthetic selenoenzyme nanoreactor was constructed by introducing the unnatural amino acid (Sec) into the lumen of the α-hemolysin (αHL) nanopore. This nanoreactor not only created a highly confined space to trap the enzyme-substrate complex for a highly efficient antioxidant activity but also provided a single channel to characterize a series of selenoenzyme intermediates in the whole catalytic cycle through electrochemical analysis. In particular, the unstable intermediate of SeOH can be clearly detected by the characteristic blocking current. The duration time corresponding to the lifetime of each intermediate that stayed within the nanopore was also determined. This label-free approach showed a high detection sensitivity and temporal-spatial resolution to scrutinize a continuous enzymatic process, which would facilitate uncovering the mysteries of selenoenzyme catalysis at the single-molecule level.
Collapse
Affiliation(s)
- Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tiezheng Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chao Lang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jinxing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiayun Xu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
38
|
Circularized fluorescent nanodiscs for probing protein-lipid interactions. Commun Biol 2022; 5:507. [PMID: 35618817 PMCID: PMC9135701 DOI: 10.1038/s42003-022-03443-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/03/2022] [Indexed: 12/29/2022] Open
Abstract
Protein–lipid interactions are vital for numerous transmembrane signaling pathways. However, simple tools to characterize these interactions remain scarce and are much needed to advance our understanding of signal transduction across lipid bilayers. To tackle this challenge, we herein engineer nanodisc as a robust fluorescent sensor for reporting membrane biochemical reactions. We circularize nanodiscs via split GFP and thereby create an intensity-based fluorescent sensor (isenND) for detecting membrane binding and remodeling events. We show that isenND responds robustly and specifically to the action of a diverse array of membrane-interacting proteins and peptides, ranging from synaptotagmin and synuclein involved in neurotransmission to viral fusion peptides of HIV-1 and SARS-CoV-2. Together, isenND can serve as a versatile biochemical reagent useful for basic and translational research of membrane biology. A fluorescent probe for detecting membrane protein binding and remodeling events is presented, which relies on split-GFP technology to generate circularized nanodiscs useful in membrane protein biophysics and structural biology.
Collapse
|
39
|
Abstract
Despite tremendous gains over the past decade, methods for characterizing proteins have generally lagged behind those for nucleic acids, which are characterized by extremely high sensitivity, dynamic range, and throughput. However, the ability to directly characterize proteins at nucleic acid levels would address critical biological challenges such as more sensitive medical diagnostics, deeper protein quantification, large-scale measurement, and discovery of alternate protein isoforms and modifications and would open new paths to single-cell proteomics. In response to this need, there has been a push to radically improve protein sequencing technologies by taking inspiration from high-throughput nucleic acid sequencing, with a particular focus on developing practical methods for single-molecule protein sequencing (SMPS). SMPS technologies fall generally into three categories: sequencing by degradation (e.g., mass spectrometry or fluorosequencing), sequencing by transit (e.g., nanopores or quantum tunneling), and sequencing by affinity (as in DNA hybridization-based approaches). We describe these diverse approaches, which range from those that are already experimentally well-supported to the merely speculative, in this nascent field striving to reformulate proteomics.
Collapse
Affiliation(s)
- Brendan M Floyd
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, Texas, USA; ,
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, Texas, USA; ,
| |
Collapse
|
40
|
Abstract
Evolution has found countless ways to transport material across cells and cellular compartments separated by membranes. Protein assemblies are the cornerstone for the formation of channels and pores that enable this regulated passage of molecules in and out of cells, contributing to maintaining most of the fundamental processes that sustain living organisms. As in several other occasions, we have borrowed from the natural properties of these biological systems to push technology forward and have been able to hijack these nano-scale proteinaceous pores to learn about the physical and chemical features of molecules passing through them. Today, a large repertoire of biological pores is exploited as molecular sensors for characterizing biomolecules that are relevant for the advancement of life sciences and application to medicine. Although the technology has quickly matured to enable nucleic acid sensing with transformative implications for genomics, biological pores stand as some of the most promising candidates to drive the next developments in single-molecule proteomics.
Collapse
Affiliation(s)
- Simon Finn Mayer
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chan Cao
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
42
|
Meyer N, Arroyo N, Baldelli M, Coquart N, Janot JM, Perrier V, Chinappi M, Picaud F, Torrent J, Balme S. Conical nanopores highlight the pro-aggregating effects of pyrimethanil fungicide on Aβ(1-42) peptides and dimeric splitting phenomena. CHEMOSPHERE 2022; 291:132733. [PMID: 34742766 DOI: 10.1016/j.chemosphere.2021.132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The Aβ(1-42) aggregation is a key event in the physiopathology of Alzheimer's disease (AD). Exogenous factors such as environmental pollutants, and more particularly pesticides, can corrupt Aβ(1-42) assembly and could influence the occurrence and pathophysiology of AD. However, pesticide involvement in the early stages of Aβ(1-42) aggregation is still unknown. Here, we employed conical track-etched nanopore in order to analyse the Aβ(1-42) fibril formation in the presence of pyrimethanil, a widely used fungicide belonging to the anilinopyrimidine class. Our results evidenced a pro-aggregating effect of pyrimethanil on Aβ(1-42). Aβ(1-42) assemblies were successfully detected using conical nanopore coated with PEG. Using an analytical model, the large current blockades observed (>0.7) were assigned to species with size close to the sensing pore. The long dwell times (hundreds ms scale) were interpreted by the possible interactions amyloid/PEG using molecular dynamic simulation. Such interaction could leave until splitting phenomena of the dimer structure. Our work also evidences that the pyrimethanil induce an aggregation of Aβ(1-42) mechanism in two steps including the reorganization prior the elongation phase.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Nicolas Arroyo
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 Route de Gray, 25030, Besançon, France
| | - Matteo Baldelli
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Via Del Politecnico 1, 00133, Roma, Italy
| | - Nicolas Coquart
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Jean Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | | | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Via Del Politecnico 1, 00133, Roma, Italy
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 Route de Gray, 25030, Besançon, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
43
|
Brady MM, Meyer AS. Cataloguing the proteome: Current developments in single-molecule protein sequencing. BIOPHYSICS REVIEWS 2022; 3:011304. [PMID: 38505228 PMCID: PMC10903494 DOI: 10.1063/5.0065509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/13/2022] [Indexed: 03/21/2024]
Abstract
The cellular proteome is complex and dynamic, with proteins playing a critical role in cell-level biological processes that contribute to homeostasis, stimuli response, and disease pathology, among others. As such, protein analysis and characterization are of extreme importance in both research and clinical settings. In the last few decades, most proteomics analysis has relied on mass spectrometry, affinity reagents, or some combination thereof. However, these techniques are limited by their requirements for large sample amounts, low resolution, and insufficient dynamic range, making them largely insufficient for the characterization of proteins in low-abundance or single-cell proteomic analysis. Despite unique technical challenges, several single-molecule protein sequencing (SMPS) technologies have been proposed in recent years to address these issues. In this review, we outline several approaches to SMPS technologies and discuss their advantages, limitations, and potential contributions toward an accurate, sensitive, and high-throughput platform.
Collapse
Affiliation(s)
- Morgan M. Brady
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
44
|
Afshar Bakshloo M, Kasianowicz JJ, Pastoriza-Gallego M, Mathé J, Daniel R, Piguet F, Oukhaled A. Nanopore-Based Protein Identification. J Am Chem Soc 2022; 144:2716-2725. [PMID: 35120294 DOI: 10.1021/jacs.1c11758] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The implementation of a reliable, rapid, inexpensive, and simple method for whole-proteome identification would greatly benefit cell biology research and clinical medicine. Proteins are currently identified by cleaving them with proteases, detecting the polypeptide fragments with mass spectrometry, and mapping the latter to sequences in genomic/proteomic databases. Here, we demonstrate that the polypeptide fragments can instead be detected and classified at the single-molecule limit using a nanometer-scale pore formed by the protein aerolysin. Specifically, three different water-soluble proteins treated with the same protease, trypsin, produce different polypeptide fragments defined by the degree by which the latter reduce the nanopore's ionic current. The fragments identified with the aerolysin nanopore are consistent with the predicted fragments that trypsin could produce.
Collapse
Affiliation(s)
| | - John J Kasianowicz
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States.,Freiburg Institute for Advanced Studies, Universität Freiburg, 79104 Freiburg, Germany
| | | | - Jérôme Mathé
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, 91000, France
| | - Régis Daniel
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, 91000, France
| | - Fabien Piguet
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, 95000, France
| | | |
Collapse
|
45
|
Verma N, Prajapati P, Singh V, Pandya A. An introduction to microfluidics and their applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:1-14. [PMID: 35033280 DOI: 10.1016/bs.pmbts.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the past decade, microfluidics and lab-on-chip are rapidly growing area. It has been used for number of biology to biotechnology and medicine applications. It has the potential to reduce cost of reagent and time of experiment. It has been used integrated with automation for extraction and detection of protein, nucleic acids, enzymes, metabolites and delivery of drug to target location. It has been used for drug discovery, high throughput screening of potent drug and used for delivery. Paper based microfluidics was used for point-of-care diagnosis for accurate treatment of diseases. In this chapter, we highlight advances of microfluidics devices for number of biological and translational science applications.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Parth Prajapati
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Alok Pandya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
46
|
Iizuka R, Yamazaki H, Uemura S. Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies. Biophys Physicobiol 2022; 19:e190032. [DOI: 10.2142/biophysico.bppb-v19.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Hirohito Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
47
|
Brinkerhoff H, Kang ASW, Liu J, Aksimentiev A, Dekker C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 2021; 374:1509-1513. [PMID: 34735217 DOI: 10.1126/science.abl4381] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Henry Brinkerhoff
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Albert S W Kang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Jingqian Liu
- Center for Biophysics and Quantitative Biology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| |
Collapse
|
48
|
Abstract
The force- and flow-induced translocation processes of linear and ring polymers are studied using a combination of multiparticle collision dynamics and molecular dynamics, focusing on the behavior of the polymer translocation time. We compare the force- and flow-induced translocations of linear and ring polymers. It is found that when the translocation time (τ*) is characterized by scaling exponents, δ, δ', and α, via the relations τ* ∼ fδNα and τ* ∼ Jδ'Nα, the scaling exponents are not constants. For long chains tested, α = 1.0 for both force- and flow-induced translocations. The difference between the force- and flow-induced translocations stems from different monomer crowding effects due to distinct flow patterns outside the channel. Furthermore, general relations for polymer translocation time are derived for these two translocation processes, which are in good agreement with the simulation results. Our results provide clear molecular pictures for the force- and flow-induced translocations, which shed light on the understanding of translocation dynamics and provide guidance for practical applications such as molecular sequencing and ultrafiltration.
Collapse
Affiliation(s)
- Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhenhua Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
49
|
Abstract
Chemical reactions of single molecules, caused by rapid formation or breaking of chemical bonds, are difficult to observe even with state-of-the-art instruments. A biological nanopore can be engineered into a single molecule reactor, capable of detecting the binding of a monatomic ion or the transient appearance of chemical intermediates. Pore engineering of this type is however technically challenging, which has significantly restricted further development of this technique. We propose a versatile strategy, "programmable nano-reactors for stochastic sensing" (PNRSS), by which a variety of single molecule reactions of hydrogen peroxide, metal ions, ethylene glycol, glycerol, lactic acid, vitamins, catecholamines or nucleoside analogues can be observed directly. PNRSS presents a refined sensing resolution which can be further enhanced by an artificial intelligence algorithm. Remdesivir, a nucleoside analogue and an investigational anti-viral drug used to treat COVID-19, can be distinguished from its active triphosphate form by PNRSS, suggesting applications in pharmacokinetics or drug screening.
Collapse
|
50
|
Motone K, Cardozo N, Nivala J. Herding cats: Label-based approaches in protein translocation through nanopore sensors for single-molecule protein sequence analysis. iScience 2021; 24:103032. [PMID: 34527891 PMCID: PMC8433247 DOI: 10.1016/j.isci.2021.103032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteins carry out life's essential functions. Comprehensive proteome analysis technologies are thus required for a full understanding of the operating principles of biological systems. While current proteomics techniques suffer from limitations in sensitivity and/or throughput, nanopore technology has the potential to enable de novo protein identification through single-molecule sequencing. However, a significant barrier to achieving this goal is controlling protein/peptide translocation through the nanopore sensor for processive strand analysis. Here, we review recent approaches that use a range of techniques, from oligonucleotide conjugation to molecular motors, aimed at driving protein strands and peptides through protein nanopores. We further discuss site-specific protein conjugation chemistry that could be combined with these translocation approaches as future directions to achieve single-molecule protein detection and sequencing of native proteins.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|