1
|
Redford SA, Colen J, Shivers JL, Zemsky S, Molaei M, Floyd C, Ruijgrok PV, Vitelli V, Bryant Z, Dinner AR, Gardel ML. Motor crosslinking augments elasticity in active nematics. SOFT MATTER 2024; 20:2480-2490. [PMID: 38385209 PMCID: PMC10933839 DOI: 10.1039/d3sm01176c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.
Collapse
Affiliation(s)
- Steven A Redford
- The Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan Colen
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jordan L Shivers
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Sasha Zemsky
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Mehdi Molaei
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Carlos Floyd
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vincenzo Vitelli
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron R Dinner
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Molaei M, Redford SA, Chou WH, Scheff D, de Pablo JJ, Oakes PW, Gardel ML. Measuring response functions of active materials from data. Proc Natl Acad Sci U S A 2023; 120:e2305283120. [PMID: 37819979 PMCID: PMC10589671 DOI: 10.1073/pnas.2305283120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so-called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems.
Collapse
Affiliation(s)
- Mehdi Molaei
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Steven A. Redford
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL60637
| | - Wen-Hung Chou
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL60637
| | - Danielle Scheff
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Department of Physics, University of Chicago, Chicago, IL60637
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Margaret L. Gardel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- James Franck Institute, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Department of Physics, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Vitriol EA, Quintanilla MA, Tidei JJ, Troughton LD, Cody A, Cisterna BA, Jane ML, Oakes PW, Beach JR. Nonmuscle myosin 2 filaments are processive in cells. Biophys J 2023; 122:3678-3689. [PMID: 37218133 PMCID: PMC10541485 DOI: 10.1016/j.bpj.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events and are therefore not traditionally viewed as processive. However, recent in vitro experiments with purified nonmuscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent on bundled actin in protrusions that terminate at the leading edge. We find that processive velocities in vivo are consistent with in vitro measurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finally, we demonstrate that this is not a cell-specific property, as we observe processive-like movements of NM2 in the lamella and subnuclear stress fibers of fibroblasts. Collectively, these observations further broaden NM2 functionality and the biological processes in which the already ubiquitous motor can contribute.
Collapse
Affiliation(s)
- Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia.
| | - Melissa A Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Joseph J Tidei
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Lee D Troughton
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Abigail Cody
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Bruno A Cisterna
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia
| | - Makenzie L Jane
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois.
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois.
| |
Collapse
|
4
|
Vitriol EA, Quintanilla MA, Tidei JJ, Troughton LD, Cody A, Cisterna BA, Jane ML, Oakes PW, Beach JR. Non-muscle myosin 2 filaments are processive in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529920. [PMID: 36865321 PMCID: PMC9980172 DOI: 10.1101/2023.02.24.529920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Directed transport of cellular components is often dependent on the processive movements of cytoskeletal motors. Myosin 2 motors predominantly engage actin filaments of opposing orientation to drive contractile events, and are therefore not traditionally viewed as processive. However, recent in vitro experiments with purified non-muscle myosin 2 (NM2) demonstrated myosin 2 filaments could move processively. Here, we establish processivity as a cellular property of NM2. Processive runs in central nervous system-derived CAD cells are most apparent as processive movements on bundled actin in protrusions that terminate at the leading edge. We find that processive velocities in vivo are consistent with in vitro measurements. NM2 makes these processive runs in its filamentous form against lamellipodia retrograde flow, though anterograde movement can still occur in the absence of actin dynamics. Comparing the processivity of NM2 isoforms, we find that NM2A moves slightly faster than NM2B. Finally, we demonstrate that this is not a cell-specific property, as we observe processive-like movements of NM2 in the lamella and subnuclear stress fibers of fibroblasts. Collectively, these observations further broaden NM2 functionality and the biological processes in which the already ubiquitous motor can contribute.
Collapse
Affiliation(s)
- Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA
| | - Melissa A Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Joseph J Tidei
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Lee D Troughton
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Abigail Cody
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Bruno A Cisterna
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA
| | - Makenzie L Jane
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| |
Collapse
|
5
|
Kumar N, Zhang R, Redford SA, de Pablo JJ, Gardel ML. Catapulting of topological defects through elasticity bands in active nematics. SOFT MATTER 2022; 18:5271-5281. [PMID: 35789364 DOI: 10.1039/d2sm00414c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active materials are those in which individual, uncoordinated local stresses drive the material out of equilibrium on a global scale. Examples of such assemblies can be seen across scales from schools of fish to the cellular cytoskeleton and underpin many important biological processes. Synthetic experiments that recapitulate the essential features of such active systems have been the object of study for decades as their simple rules allow us to elucidate the physical underpinnings of collective motion. One system of particular interest has been active nematic liquid crystals (LCs). Because of their well understood passive physics, LCs provide a rich platform to interrogate the effects of active stress. The flows and steady state structures that emerge in an active LCs have been understood to result from a competition between nematic elasticity and the local activity. However most investigations of such phenomena consider only the magnitude of the elastic resistance and not its peculiarities. Here we investigate a nematic liquid crystal and selectively change the ratio of the material's splay and bend elasticities. We show that increases in the nematic's bend elasticity specifically drives the material into an exotic steady state where elongated regions of acute bend distortion or "elasticity bands" dominate the structure and dynamics. We show that these bands strongly influence defect dynamics, including the rapid motion or "catapulting" along the disintegration of one of these bands thus converting bend distortion into defect transport. Thus, we report a novel dynamical state resultant from the competition between nematic elasticity and active stress.
Collapse
Affiliation(s)
- Nitin Kumar
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Rui Zhang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Steven A Redford
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Margaret L Gardel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Discovery of ultrafast myosin, its amino acid sequence, and structural features. Proc Natl Acad Sci U S A 2022; 119:2120962119. [PMID: 35173046 PMCID: PMC8872768 DOI: 10.1073/pnas.2120962119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic streaming with extremely high velocity (∼70 μm s-1) occurs in cells of the characean algae (Chara). Because cytoplasmic streaming is caused by myosin XI, it has been suggested that a myosin XI with a velocity of 70 μm s-1, the fastest myosin measured so far, exists in Chara cells. However, the velocity of the previously cloned Chara corallina myosin XI (CcXI) was about 20 μm s-1, one-third of the cytoplasmic streaming velocity in Chara Recently, the genome sequence of Chara braunii has been published, revealing that this alga has four myosin XI genes. We cloned these four myosin XI (CbXI-1, 2, 3, and 4) and measured their velocities. While the velocities of CbXI-3 and CbXI-4 motor domains (MDs) were similar to that of CcXI MD, the velocities of CbXI-1 and CbXI-2 MDs were 3.2 times and 2.8 times faster than that of CcXI MD, respectively. The velocity of chimeric CbXI-1, a functional, full-length CbXI-1 construct, was 60 μm s-1 These results suggest that CbXI-1 and CbXI-2 would be the main contributors to cytoplasmic streaming in Chara cells and show that these myosins are ultrafast myosins with a velocity 10 times faster than fast skeletal muscle myosins in animals. We also report an atomic structure (2.8-Å resolution) of myosin XI using X-ray crystallography. Based on this crystal structure and the recently published cryo-electron microscopy structure of acto-myosin XI at low resolution (4.3-Å), it appears that the actin-binding region contributes to the fast movement of Chara myosin XI. Mutation experiments of actin-binding surface loops support this hypothesis.
Collapse
|
7
|
Nakamura M, Ivec AE, Gao Y, Qi LS. Durable CRISPR-Based Epigenetic Silencing. BIODESIGN RESEARCH 2021; 2021:9815820. [PMID: 37849948 PMCID: PMC10521745 DOI: 10.34133/2021/9815820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 10/19/2023] Open
Abstract
Development of CRISPR-based epigenome editing tools is important for the study and engineering of biological behavior. Here, we describe the design of a reporter system for quantifying the ability of CRISPR epigenome editors to produce a stable gene repression. We characterize the dynamics of durable gene silencing and reactivation, as well as the induced epigenetic changes of this system. We report the creation of single-protein CRISPR constructs bearing combinations of three epigenetic editing domains, termed KAL, that can stably repress the gene expression. This system should allow for the development of novel epigenome editing tools which will be useful in a wide array of biological research and engineering applications.
Collapse
Affiliation(s)
| | - Alexis E. Ivec
- Department of Bioengineering, Stanford, CA 94305USA
- Program in Human Biology, Stanford, CA 94305USA
| | - Yuchen Gao
- Department of Bioengineering, Stanford, CA 94305USA
- Cancer Biology Program, Stanford, CA 94305USA
| | - Lei S. Qi
- Department of Bioengineering, Stanford, CA 94305USA
- Department of Chemical and Systems Biology, Stanford, CA 94305USA
- ChEM-H Institute, Stanford, CA 94305USA
| |
Collapse
|
8
|
Zhang R, Redford SA, Ruijgrok PV, Kumar N, Mozaffari A, Zemsky S, Dinner AR, Vitelli V, Bryant Z, Gardel ML, de Pablo JJ. Spatiotemporal control of liquid crystal structure and dynamics through activity patterning. NATURE MATERIALS 2021; 20:875-882. [PMID: 33603187 PMCID: PMC8404743 DOI: 10.1038/s41563-020-00901-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/03/2020] [Indexed: 05/26/2023]
Abstract
Active materials are capable of converting free energy into mechanical work to produce autonomous motion, and exhibit striking collective dynamics that biology relies on for essential functions. Controlling those dynamics and transport in synthetic systems has been particularly challenging. Here, we introduce the concept of spatially structured activity as a means of controlling and manipulating transport in active nematic liquid crystals consisting of actin filaments and light-sensitive myosin motors. Simulations and experiments are used to demonstrate that topological defects can be generated at will and then constrained to move along specified trajectories by inducing local stresses in an otherwise passive material. These results provide a foundation for the design of autonomous and reconfigurable microfluidic systems where transport is controlled by modulating activity with light.
Collapse
Affiliation(s)
- Rui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Steven A Redford
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nitin Kumar
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Ali Mozaffari
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Sasha Zemsky
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Aaron R Dinner
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Vincenzo Vitelli
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University Medical Center, Stanford, CA, USA
| | - Margaret L Gardel
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Physics, The University of Chicago, Chicago, IL, USA.
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
9
|
Ruijgrok PV, Ghosh RP, Zemsky S, Nakamura M, Gong R, Ning L, Chen R, Vachharajani VT, Chu AE, Anand N, Eguchi RR, Huang PS, Lin MZ, Alushin GM, Liphardt JT, Bryant Z. Optical control of fast and processive engineered myosins in vitro and in living cells. Nat Chem Biol 2021; 17:540-548. [PMID: 33603247 PMCID: PMC10807509 DOI: 10.1038/s41589-021-00740-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality. We characterize the performance of the motors using in vitro motility assays, single-molecule tracking and live-cell imaging. Bidirectional processive motors move efficiently toward the tips of cellular protrusions in the presence of blue light, and can transport molecular cargo in cells. Robust gearshifting myosins will further enable programmable transport in contexts ranging from in vitro active matter reconstitutions to microfabricated systems that harness molecular propulsion.
Collapse
Affiliation(s)
- Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rajarshi P Ghosh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Cell Biology Division, Stanford Cancer Institute, Stanford, CA, USA
- Howard Hughes Medical Institute, and Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sasha Zemsky
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Muneaki Nakamura
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Lin Ning
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Robert Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Vipul T Vachharajani
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Alexander E Chu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Namrata Anand
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Raphael R Eguchi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Jan T Liphardt
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Cell Biology Division, Stanford Cancer Institute, Stanford, CA, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Bio-X Institute, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Erdogan B, Whited JL. Engineered myosins drive filopodial transport. Nat Cell Biol 2021; 23:113-115. [PMID: 33526903 DOI: 10.1038/s41556-021-00632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Burcu Erdogan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Colen J, Han M, Zhang R, Redford SA, Lemma LM, Morgan L, Ruijgrok PV, Adkins R, Bryant Z, Dogic Z, Gardel ML, de Pablo JJ, Vitelli V. Machine learning active-nematic hydrodynamics. Proc Natl Acad Sci U S A 2021; 118:e2016708118. [PMID: 33653956 PMCID: PMC7958379 DOI: 10.1073/pnas.2016708118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to access in experiments. We can also forecast the evolution of these chaotic many-body systems solely from image sequences of their past using a combination of autoencoders and recurrent neural networks with residual architecture. In realistic experimental setups for which the initial conditions are not perfectly known, our physics-inspired machine-learning algorithms can surpass deterministic simulations. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems, even in the absence of knowledge of the underlying dynamics.
Collapse
Affiliation(s)
- Jonathan Colen
- Department of Physics, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Ming Han
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Rui Zhang
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, IL 60637
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, People's Republic of China
| | - Steven A Redford
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Linnea M Lemma
- Department of Physics, Brandeis University, Waltham, MA 02454
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Link Morgan
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Raymond Adkins
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University Medical Center, Stanford, CA 94305
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, CA 92111
| | - Margaret L Gardel
- Department of Physics, University of Chicago, Chicago, IL 60637
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Juan J de Pablo
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, IL 60637;
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439
| | - Vincenzo Vitelli
- Department of Physics, University of Chicago, Chicago, IL 60637;
- James Franck Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
12
|
Zhang Z, Denans N, Liu Y, Zhulyn O, Rosenblatt HD, Wernig M, Barna M. Optogenetic manipulation of cellular communication using engineered myosin motors. Nat Cell Biol 2021; 23:198-208. [PMID: 33526902 PMCID: PMC7880895 DOI: 10.1038/s41556-020-00625-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nicolas Denans
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yingfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Olena Zhulyn
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Hannah D Rosenblatt
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Mathony J, Niopek D. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion. Adv Biol (Weinh) 2020; 5:e2000181. [PMID: 33107225 DOI: 10.1002/adbi.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Indexed: 11/05/2022]
Abstract
Optogenetics harnesses natural photoreceptors to non-invasively control selected processes in cells with previously unmet spatiotemporal precision. Linking the activity of a protein of choice to the conformational state of a photosensor domain through allosteric coupling represents a powerful method for engineering light-responsive proteins. It enables the design of compact and highly potent single-component optogenetic systems with fast on- and off-switching kinetics. However, designing protein-photoreceptor chimeras, in which structural changes of the photoreceptor are effectively propagated to the fused effector protein, is a challenging engineering problem and often relies on trial and error. Here, recent advances in the design and application of optogenetic allosteric switches are reviewed. First, an overview of existing optogenetic tools based on inducible allostery is provided and their utility for cell biology applications is highlighted. Focusing on light-oxygen-voltage domains, a widely applied class of small blue light sensors, the available strategies for engineering light-dependent allostery are presented and their individual advantages and limitations are highlighted. Finally, high-throughput screening technologies based on comprehensive insertion libraries, which could accelerate the creation of stimulus-responsive receptor-protein chimeras for use in optogenetics and beyond, are discussed.
Collapse
Affiliation(s)
- Jan Mathony
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany.,BZH graduate school, Heidelberg University, Im Neuheimer Feld 328, Heidelberg, 69120, Germany
| | - Dominik Niopek
- Department of Biology and Centre for Synthetic Biology, Technische Universität Darmstadt, Schnittspahnstrasse 12, Darmstadt, 64287, Germany
| |
Collapse
|
14
|
Linke H, Höcker B, Furuta K, Forde NR, Curmi PMG. Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers. Biophys Rev 2020; 12:1041-1054. [PMID: 32651904 PMCID: PMC7429643 DOI: 10.1007/s12551-020-00717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have provided many structural and biophysical insights and enabled the development of models for motor function. However, from the study of highly evolved, biological motors, it remains difficult to discern detailed mechanisms, for example, about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the "holy grail" of designing and building a functional synthetic protein motor has not been realized. Here, we review the progress made to date, and we put forward a roadmap for achieving the aim of constructing the first artificial, autonomously running protein motor. Specifically, we propose to break down the task into (i) enzymatic control of track binding, (ii) the engineering of asymmetry and (iii) the engineering of allosteric control for internal communication. We also propose specific approaches for solving each of these challenges.
Collapse
Affiliation(s)
- Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE 22100, Lund, Sweden
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
15
|
Positional Isomers of a Non-Nucleoside Substrate Differentially Affect Myosin Function. Biophys J 2020; 119:567-580. [PMID: 32652059 DOI: 10.1016/j.bpj.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Molecular motors have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction of these motors is a root cause of many pathologies necessitating the need for intrinsic control over molecular motor function. Herein, we demonstrate that positional isomerism can be used as a simple and powerful tool to control the molecular motor of muscle, myosin. Using three isomers of a synthetic non-nucleoside triphosphate, we demonstrate that myosin's force- and motion-generating capacity can be dramatically altered at both the ensemble and single-molecule levels. By correlating our experimental results with computation, we show that each isomer exerts intrinsic control by affecting distinct steps in myosin's mechanochemical cycle. Our studies demonstrate that subtle variations in the structure of an abiotic energy source can be used to control the force and motility of myosin without altering myosin's structure.
Collapse
|
16
|
Uçar MC, Lipowsky R. Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding. NANO LETTERS 2020; 20:669-676. [PMID: 31797672 DOI: 10.1021/acs.nanolett.9b04445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria , Am Campus 1 , 3400 Klosterneuburg , Austria
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|
17
|
Průša J, Cifra M. Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci Rep 2019; 9:19721. [PMID: 31873109 PMCID: PMC6928163 DOI: 10.1038/s41598-019-56052-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic.,Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 16628, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic.
| |
Collapse
|
18
|
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
19
|
Richard M, Blanch-Mercader C, Ennomani H, Cao W, De La Cruz EM, Joanny JF, Jülicher F, Blanchoin L, Martin P. Active cargo positioning in antiparallel transport networks. Proc Natl Acad Sci U S A 2019; 116:14835-14842. [PMID: 31289230 PMCID: PMC6660773 DOI: 10.1073/pnas.1900416116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytoskeletal filaments assemble into dense parallel, antiparallel, or disordered networks, providing a complex environment for active cargo transport and positioning by molecular motors. The interplay between the network architecture and intrinsic motor properties clearly affects transport properties but remains poorly understood. Here, by using surface micropatterns of actin polymerization, we investigate stochastic transport properties of colloidal beads in antiparallel networks of overlapping actin filaments. We found that 200-nm beads coated with myosin Va motors displayed directed movements toward positions where the net polarity of the actin network vanished, accumulating there. The bead distribution was dictated by the spatial profiles of local bead velocity and diffusion coefficient, indicating that a diffusion-drift process was at work. Remarkably, beads coated with heavy-mero-myosin II motors showed a similar behavior. However, although velocity gradients were steeper with myosin II, the much larger bead diffusion observed with this motor resulted in less precise positioning. Our observations are well described by a 3-state model, in which active beads locally sense the net polarity of the network by frequently detaching from and reattaching to the filaments. A stochastic sequence of processive runs and diffusive searches results in a biased random walk. The precision of bead positioning is set by the gradient of net actin polarity in the network and by the run length of the cargo in an attached state. Our results unveiled physical rules for cargo transport and positioning in networks of mixed polarity.
Collapse
Affiliation(s)
- Mathieu Richard
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France
- Sorbonne Université, F-75252 Paris, France
| | - Carles Blanch-Mercader
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France
- Sorbonne Université, F-75252 Paris, France
| | - Hajer Ennomani
- CytomorphoLab, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, 38054 Grenoble, France
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Jean-François Joanny
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France
- Sorbonne Université, F-75252 Paris, France
- ESPCI ParisTech, 75005 Paris, France
- Collège de France, 75231 Paris Cedex 05, France
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Laurent Blanchoin
- CytomorphoLab, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, 38054 Grenoble, France
- CytomorphoLab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, UMRS1160, INSERM/AP-HP/Université Paris Diderot, 75010 Paris, France
| | - Pascal Martin
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, UMR168, F-75248 Paris, France;
- Sorbonne Université, F-75252 Paris, France
| |
Collapse
|
20
|
Amrute-Nayak M, Nayak A, Steffen W, Tsiavaliaris G, Scholz T, Brenner B. Transformation of the Nonprocessive Fast Skeletal Myosin II into a Processive Motor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804313. [PMID: 30657637 DOI: 10.1002/smll.201804313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Myosin family motors play diverse cellular roles. Precise insights into how the light chains contribute to the functional variabilities among myosin motors, however, remain unresolved. Here, it is demonstrated that the fast skeletal muscle myosin II isoform myosin heavy chain (MHC-IID) can be transformed into a processive motor, by simply replacing the native regulatory light chain MLC2f with the regulatory light chain variant MLC2v from the slow muscle myosin II. Single molecule kinetic analyses and optical trapping measurements of the hybrid motor reveal marked changes such as increased association rate of myosin toward adenosine triphosphate (ATP) and actin by more than twofold. The direct consequence of high adenosine diphosphate (ADP) affinity and increased actin rebinding is the altered overall actomyosin association time during the cross-bridge cycle. The data indicate that the MLC2v influences the duty ratio in the hybrid motor, suggestive of promoting interhead communication and enabling processive movement. This finding establishes that the regulatory light chain fine-tunes the motor's mechanical output that may have important implications under physiological conditions. Furthermore, the success of this approach paves the way to engineer motors from a known motor protein element to assemble highly specialized biohybrid machines for potential applications in nano-biomedicine and engineering.
Collapse
Affiliation(s)
- Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Walter Steffen
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Georgios Tsiavaliaris
- Institute of Biophysical Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, D-30625, Hannover, Germany
| |
Collapse
|
21
|
Abstract
Biomolecular motors, such as the motor protein kinesin, can be used as off-the-shelf components to power hybrid nanosystems. These hybrid systems combine elements from the biological and synthetic toolbox of the nanoengineer and can be used to explore the applications and design principles of active nanosystems. Efforts to advance nanoscale engineering benefit greatly from biological and biophysical research into the operating principles of motor proteins and their biological roles. In return, the process of creating in vitro systems outside of the context of biology can lead to an improved understanding of the physical constraints creating the fitness landscape explored by evolution. However, our main focus is a holistic understanding of the engineering principles applying to systems integrating molecular motors in general. To advance this goal, we and other researchers have designed biomolecular motor-powered nanodevices, which sense, compute, and actuate. In addition to demonstrating that biological solutions can be mimicked in vitro, these devices often demonstrate new paradigms without parallels in current technology. Long-term trends in technology toward the deployment of ever smaller and more numerous motors and computers give us confidence that our work will become increasingly relevant. Here, our discussion aims to step back and look at the big picture. From our perspective, energy efficiency is a key and underappreciated metric in the design of synthetic motors. On the basis of an analogy to ecological principles, we submit that practical molecular motors have to have energy conversion efficiencies of more than 10%, a threshold only exceeded by motor proteins. We also believe that motor and system lifetime is a critical metric and an important topic of investigation. Related questions are if future molecular motors, by necessity, will resemble biomolecular motors in their softness and fragility and have to conform to the "universal performance characteristics of motors", linking the maximum force and mass of any motor, identified by Marden and Allen. The utilization of molecular motors for computing devices emphasizes the interesting relationship among the conversion of energy, extraction of work, and production of information. Our recent work touches upon these topics and discusses molecular clocks as well as a Landauer limit for robotics. What is on the horizon? Just as photovoltaics took advantage of progress in semiconductor fabrication to become commercially viable over a century, one can envision that engineers working with biomolecular motors leverage progress in biotechnology and drug development to create the engines of the future. However, the future source of energy is going to be electricity rather than fossil or biological fuels, a fact that has to be accounted for in our future efforts. In summary, we are convinced that past, ongoing, and future efforts to engineer with biomolecular motors are providing exciting demonstrations and fundamental insights as well as opportunities to wander freely across the borders of engineering, biology, and chemistry.
Collapse
Affiliation(s)
- Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
22
|
Omabegho T, Gurel PS, Cheng CY, Kim LY, Ruijgrok PV, Das R, Alushin GM, Bryant Z. Controllable molecular motors engineered from myosin and RNA. NATURE NANOTECHNOLOGY 2018; 13:34-40. [PMID: 29109539 PMCID: PMC5762270 DOI: 10.1038/s41565-017-0005-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/19/2017] [Indexed: 05/12/2023]
Abstract
Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems 1 or in living cells 2 . Previously, synthetic nucleic acid motors 3-5 and modified natural protein motors 6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors 11-15 . Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure 7,9 . We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing 16 . Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement 17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.
Collapse
Affiliation(s)
- Tosan Omabegho
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pinar S Gurel
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Clarence Y Cheng
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Y Kim
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul V Ruijgrok
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory M Alushin
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors. Curr Opin Biotechnol 2017; 46:20-26. [PMID: 28088100 DOI: 10.1016/j.copbio.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Cytoskeletal molecular motors provide exciting proof that nanoscale transporters can be highly efficient, moving for microns along filamentous tracks by hydrolyzing ATP to fuel nanometer-size steps. For nanotechnology, such conversion of chemical energy into productive work serves as an enticing platform for re-purposing and re-engineering. It also provides a roadmap for successful molecular mechanisms that can be mimicked to create de novo molecular motors for nanotechnology applications. Here we focus specifically on how the mechanisms of molecular motors are being re-engineered for greater control over their transport parameters. We then discuss mechanistic work to create fully synthetic motors de novo and conclude with future directions in creating novel motor systems.
Collapse
|
24
|
Månsson A. Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? J Muscle Res Cell Motil 2016; 37:181-194. [PMID: 27864648 PMCID: PMC5383694 DOI: 10.1007/s10974-016-9458-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 12/26/2022]
Abstract
Bridging the gaps between experimental systems on different hierarchical scales is needed to overcome remaining challenges in the understanding of muscle contraction. Here, a mathematical model with well-characterized structural and biochemical actomyosin states is developed to that end. We hypothesize that this model accounts for generation of force and motion from single motor molecules to the large ensembles of muscle. In partial support of this idea, a wide range of contractile phenomena are reproduced without the need to invoke cooperative interactions or ad hoc states/transitions. However, remaining limitations exist, associated with ambiguities in available data for model definition e.g.: (1) the affinity of weakly bound cross-bridges, (2) the characteristics of the cross-bridge elasticity and (3) the exact mechanistic relationship between the force-generating transition and phosphate release in the actomyosin ATPase. Further, the simulated number of attached myosin heads in the in vitro motility assay differs several-fold from duty ratios, (fraction of strongly attached ATPase cycle times) derived in standard analysis. After addressing the mentioned issues the model should be useful in fundamental studies, for engineering of myosin motors as well as for studies of muscle disease and drug development.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
25
|
Vélez M. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:121-141. [DOI: 10.1007/978-3-319-39196-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Abstract
F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.
Collapse
|
27
|
Nemhauser JL, Torii KU. Plant synthetic biology for molecular engineering of signalling and development. NATURE PLANTS 2016; 2:16010. [PMID: 27249346 PMCID: PMC5164986 DOI: 10.1038/nplants.2016.10] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
Collapse
Affiliation(s)
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
28
|
Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S, Tao N. Label-Free Tracking of Single Organelle Transportation in Cells with Nanometer Precision Using a Plasmonic Imaging Technique. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2878-84. [PMID: 25703098 PMCID: PMC4474744 DOI: 10.1002/smll.201403016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/20/2014] [Indexed: 05/14/2023]
Abstract
Imaging and tracking of nano- and micrometer-sized organelles in cells with nanometer precision is crucial for understanding cellular behaviors at the molecular scale. Because of the fast intracellular dynamic processes, the imaging and tracking method must also be fast. In addition, to ensure that the observed dynamics is relevant to the native functions, it is critical to keep the cells under their native states. Here, a plasmonics-based imaging technique is demonstrated for studying the dynamics of organelles in 3D with high localization precision (5 nm) and temporal (10 ms) resolution. The technique is label-free and can track subcellular structures in the native state of the cells. Using the technique, nanometer steps of organelle (e.g., mitochondria) transportation are observed along neurite microtubules in primary neurons, and the 3D structure of neurite microtubule bundles is reconstructed at the nanometer scale from the tracks of the moving organelles.
Collapse
Affiliation(s)
- Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hui Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaonan Shan
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 USA
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xianwei Liu
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
29
|
Ishigure Y, Nitta T. Simulating an Actomyosin in Vitro Motility Assay: Toward the Rational Design of Actomyosin-Based Microtransporters. IEEE Trans Nanobioscience 2015; 14:641-8. [PMID: 26087497 DOI: 10.1109/tnb.2015.2443373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present a simulation study of an actomyosin in vitro motility assay. In vitro motility assays have served as an essential element facilitating the application of actomyosin in nanotechnology; such applications include biosensors and biocomputation. Although actomyosin in vitro motility assays have been extensively investigated, some ambiguities remain, as a result of the limited spatio-temporal resolution and unavoidable uncertainties associated with the experimental process. These ambiguities hamper the rational design of nanodevices for practical applications. Here, with the aim of moving toward a rational design process, we developed a 3D computer simulation method of an actomyosin in vitro motility assay, based on a Brownian dynamics simulation. The simulation explicitly included the ATP hydrolysis cycle of myosin. The simulation was validated by the reproduction of previous experimental results. More importantly, the simulation provided new insights that are difficult to obtain experimentally, including data on the number of myosin motors actually binding to actin filaments, the mechanism responsible for the guiding of actin filaments by chemical edges, and the effect of the processivity of motor proteins on the guiding probabilities. The simulations presented here will be useful in interpreting experimental results, and also in designing future nanodevices integrated with myosin motors.
Collapse
|
30
|
Poorly understood aspects of striated muscle contraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:245154. [PMID: 25961006 PMCID: PMC4415482 DOI: 10.1155/2015/245154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/28/2014] [Indexed: 11/23/2022]
Abstract
Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.
Collapse
|
31
|
Kovacic S, Samii L, Curmi PMG, Linke H, Zuckermann MJ, Forde NR. Design and Construction of the Lawnmower, An Artificial Burnt-Bridges Motor. IEEE Trans Nanobioscience 2015; 14:305-12. [DOI: 10.1109/tnb.2015.2393872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Diensthuber RP, Tominaga M, Preller M, Hartmann FK, Orii H, Chizhov I, Oiwa K, Tsiavaliaris G. Kinetic mechanism of Nicotiana tabacum myosin-11 defines a new type of a processive motor. FASEB J 2015; 29:81-94. [PMID: 25326536 DOI: 10.1096/fj.14-254763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The 175-kDa myosin-11 from Nicotiana tabacum (Nt(175kDa)myosin-11) is exceptional in its mechanical activity as it is the fastest known processive actin-based motor, moving 10 times faster than the structurally related class 5 myosins. Although this ability might be essential for long-range organelle transport within larger plant cells, the kinetic features underlying the fast processive movement of Nt(175kDa)myosin-11 still remain unexplored. To address this, we generated a single-headed motor domain construct and carried out a detailed kinetic analysis. The data demonstrate that Nt(175kDa)myosin-11 is a high duty ratio motor, which remains associated with actin most of its enzymatic cycle. However, different from other processive myosins that establish a high duty ratio on the basis of a rate-limiting ADP-release step, Nt(175kDa)myosin-11 achieves a high duty ratio by a prolonged duration of the ATP-induced isomerization of the actin-bound states and ADP release kinetics, both of which in terms of the corresponding time constants approach the total ATPase cycle time. Molecular modeling predicts that variations in the charge distribution of the actin binding interface might contribute to the thermodynamic fine-tuning of the kinetics of this myosin. Our study unravels a new type of a high duty ratio motor and provides important insights into the molecular mechanism of processive movement of higher plant myosins.
Collapse
Affiliation(s)
- Ralph P Diensthuber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Motoki Tominaga
- Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan; Science and Technology Agency, PRESTO, Saitama, Japan
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Structural Systems Biology, German Electron Synchrotron (DESY), Hamburg, Germany
| | - Falk K Hartmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Hidefumi Orii
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan; and
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Kazuhiro Oiwa
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan; and Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | | |
Collapse
|
33
|
Nakamura M, Chen L, Howes SC, Schindler TD, Nogales E, Bryant Z. Remote control of myosin and kinesin motors using light-activated gearshifting. NATURE NANOTECHNOLOGY 2014; 9:693-7. [PMID: 25086603 PMCID: PMC4349207 DOI: 10.1038/nnano.2014.147] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/19/2014] [Indexed: 05/10/2023]
Abstract
Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells. Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears--speed up, slow down or switch directions--when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport.
Collapse
Affiliation(s)
- Muneaki Nakamura
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Lu Chen
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Stuart C. Howes
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA
| | - Tony D. Schindler
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
34
|
Abstract
The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.
Collapse
|
35
|
Tsao DS, Diehl MR. Molecular motors: myosins move ahead of the pack. NATURE NANOTECHNOLOGY 2014; 9:9-10. [PMID: 24390558 DOI: 10.1038/nnano.2013.298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- David S Tsao
- Department of Bioengineering and Chemistry of Rice University, Houston, Texas 77030, USA
| | - Michael R Diehl
- Department of Bioengineering and Chemistry of Rice University, Houston, Texas 77030, USA
| |
Collapse
|