1
|
Wu G, Pan B, Shi H, Yi Y, Zheng X, Ma H, Zhao M, Zhang Z, Cheng L, Huang Y, Guo W. Neutrophils' dual role in cancer: from tumor progression to immunotherapeutic potential. Int Immunopharmacol 2024; 140:112788. [PMID: 39083923 DOI: 10.1016/j.intimp.2024.112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
The tumor microenvironment (TME) is intricately associated with cancer progression, characterized by dynamic interactions among various cellular and molecular components that significantly impact the carcinogenic process. Notably, neutrophils play a crucial dual role in regulating this complex environment. These cells oscillate between promoting and inhibiting tumor activity, responding to a multitude of cytokines, chemokines, and tumor-derived factors. This response modulates immune reactions and affects the proliferation, metastasis, and angiogenesis of cancer cells. A significant aspect of their influence is their interaction with the endoplasmic reticulum (ER) stress responses in cancer cells, markedly altering tumor immunodynamics by modulating the phenotypic plasticity and functionality of neutrophils. Furthermore, neutrophil extracellular traps (NETs) exert a pivotal influence in the progression of malignancies by enhancing inflammation, metastasis, immune suppression, and thrombosis, thereby exacerbating the disease. In the realm of immunotherapy, checkpoint inhibitors targeting PD-L1/PD-1 and CTLA-4 among others have underscored the significant role of neutrophils in enhancing therapeutic responses. Recent research has highlighted the potential of using neutrophils for targeted drug delivery through nanoparticle systems, which precisely control drug release and significantly enhance antitumor efficacy. This review thoroughly examines the diverse functions of neutrophils in cancer treatment, emphasizing their potential in regulating immune therapy responses and as drug delivery carriers, offering innovative perspectives and profound implications for the development of targeted diagnostic and therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Binyang Pan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobin Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Center, Shanghai, China
| | - Lin Cheng
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI), Galway, Ireland.
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Weigang Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL-induced cytokine production via NFKB2 pathway promotes neutrophil chemotaxis and immune suppression in triple negative breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604341. [PMID: 39091795 PMCID: PMC11291031 DOI: 10.1101/2024.07.19.604341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. To test this, we performed an RNAseq analysis of MDA-MB-231 cells treated with TRAIL, followed by validation in additional TNBC cell lines. TRAIL significantly induces expression of multiple cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, the induction of these cytokines was predominantly mediated by death receptor 5, caspase 8 (but not caspase 8 enzymatic activity), and the non-canonical NFKB2 pathway. The cytokines produced by the TRAIL-treated TNBC cells enhanced chemotaxis of healthy human donor isolated neutrophils. In vivo , TRAIL treated TNBC murine xenograft tumors showed activation of the NFKB2 pathway, elevated production of CXCLs and IL-6, and increased neutrophil recruitment into the tumors. Moreover, donor isolated neutrophils preincubated in supernatants from TRAIL-treated TNBC cells exhibited impaired cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies with these neutrophils confirmed their suppressive effect on T cell proliferation and an increase in Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and immune suppression.
Collapse
|
4
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
5
|
Liu Y, Xiao J, Cai J, Li R, Sui X, Zhang J, Lu T, Chen H, Chen G, Li H, Jiang C, Zhao X, Xiao C, Lei Y, Yao J, Lv G, Liang J, Zhang Y, Yang JR, Zheng J, Yang Y. Single-cell immune profiling of mouse liver aging reveals Cxcl2+ macrophages recruit neutrophils to aggravate liver injury. Hepatology 2024; 79:589-605. [PMID: 37695548 PMCID: PMC10871588 DOI: 10.1097/hep.0000000000000590] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS Immune cells play a crucial role in liver aging. However, the impact of dynamic changes in the local immune microenvironment on age-related liver injury remains poorly understood. We aimed to characterize intrahepatic immune cells at different ages to investigate key mechanisms associated with liver aging. APPROACH AND RESULTS We carried out single-cell RNA sequencing on mouse liver tissues at 4 different ages, namely, the newborn, suckling, young, and aged stages. The transcriptomic landscape, cellular classification, and intercellular communication were analyzed. We confirmed the findings by multiplex immunofluorescence staining, flow cytometry, in vitro functional experiments, and chimeric animal models. Nine subsets of 89,542 immune cells with unique properties were identified, of which Cxcl2+ macrophages within the monocyte/macrophage subset were preferentially enriched in the aged liver. Cxcl2+ macrophages presented a senescence-associated secretory phenotype and recruited neutrophils to the aged liver through the CXCL2-CXCR2 axis. Through the secretion of IL-1β and TNF-α, Cxcl2+ macrophages stimulated neutrophil extracellular traps formation. Targeting the CXCL2-CXCR2 axis limited the neutrophils migration toward the liver and attenuated age-related liver injury. Moreover, the relationship between Cxcl2+ macrophages and neutrophils in age-related liver injury was further validated by human liver transplantation samples. CONCLUSIONS This in-depth study illustrates that the mechanism of Cxcl2+ macrophage-driven neutrophil activation involves the CXCL2-CXCR2 axis and provides a potential therapeutic strategy for age-related liver injury.
Collapse
Affiliation(s)
- Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Xin Sui
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Xuegang Zhao
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University; Guangzhou, China
| | - Yunguo Lei
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Guo Lv
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jinliang Liang
- Organ Transplantation Research Center of Guangdong Province Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jian-Rong Yang
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| |
Collapse
|
6
|
Murphy DM, Walsh A, Stein L, Petrasca A, Cox DJ, Brown K, Duffin E, Jameson G, Connolly SA, O'Connell F, O'Sullivan J, Basdeo SA, Keane J, Phelan JJ. Human Macrophages Activate Bystander Neutrophils' Metabolism and Effector Functions When Challenged with Mycobacterium tuberculosis. Int J Mol Sci 2024; 25:2898. [PMID: 38474145 DOI: 10.3390/ijms25052898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neutrophils are dynamic cells, playing a critical role in pathogen clearance; however, neutrophil infiltration into the tissue can act as a double-edged sword. They are one of the primary sources of excessive inflammation during infection, which has been observed in many infectious diseases including pneumonia and active tuberculosis (TB). Neutrophil function is influenced by interactions with other immune cells within the inflammatory lung milieu; however, how these interactions affect neutrophil function is unclear. Our study examined the macrophage-neutrophil axis by assessing the effects of conditioned medium (MΦ-CM) from primary human monocyte-derived macrophages (hMDMs) stimulated with LPS or a whole bacterium (Mycobacterium tuberculosis) on neutrophil function. Stimulated hMDM-derived MΦ-CM boosts neutrophil activation, heightening oxidative and glycolytic metabolism, but diminishes migratory potential. These neutrophils exhibit increased ROS production, elevated NET formation, and heightened CXCL8, IL-13, and IL-6 compared to untreated or unstimulated hMDM-treated neutrophils. Collectively, these data show that MΦ-CM from stimulated hMDMs activates neutrophils, bolsters their energetic profile, increase effector and inflammatory functions, and sequester them at sites of infection by decreasing their migratory capacity. These data may aid in the design of novel immunotherapies for severe pneumonia, active tuberculosis and other diseases driven by pathological inflammation mediated by the macrophage-neutrophil axis.
Collapse
Affiliation(s)
- Dearbhla M Murphy
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Anastasija Walsh
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Laura Stein
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, D02 R590 Dublin, Ireland
| | - Donal J Cox
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Kevin Brown
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Emily Duffin
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Gráinne Jameson
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Sarah A Connolly
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute (TTMI), St. James's Hospital, Dublin 8, D08 W9RT Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute (TTMI), St. James's Hospital, Dublin 8, D08 W9RT Dublin, Ireland
| | - Sharee A Basdeo
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - James J Phelan
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| |
Collapse
|
7
|
Maas RR, Soukup K, Fournier N, Massara M, Galland S, Kornete M, Wischnewski V, Lourenco J, Croci D, Álvarez-Prado ÁF, Marie DN, Lilja J, Marcone R, Calvo GF, Santalla Mendez R, Aubel P, Bejarano L, Wirapati P, Ballesteros I, Hidalgo A, Hottinger AF, Brouland JP, Daniel RT, Hegi ME, Joyce JA. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 2023; 186:4546-4566.e27. [PMID: 37769657 DOI: 10.1016/j.cell.2023.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.
Collapse
Affiliation(s)
- Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Mara Kornete
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Davide Croci
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Ángel F Álvarez-Prado
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Damien N Marie
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Johanna Lilja
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Rachel Marcone
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Gabriel F Calvo
- Department of Mathematics & MOLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Rui Santalla Mendez
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pauline Aubel
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pratyaksha Wirapati
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Iván Ballesteros
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne 1011, Switzerland
| | - Roy T Daniel
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Monika E Hegi
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland.
| |
Collapse
|
8
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
9
|
Kou M, Lu W, Zhu M, Qu K, Wang L, Yu Y. Massively recruited sTLR9 + neutrophils in rapidly formed nodules at the site of tumor cell inoculation and their contribution to a pro-tumor microenvironment. Cancer Immunol Immunother 2023:10.1007/s00262-023-03451-1. [PMID: 37079065 DOI: 10.1007/s00262-023-03451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Neutrophils exert either pro- or anti-tumor activities. However, few studies have focused on neutrophils at the tumor initiation stage. In this study, we unexpectedly found a subcutaneous nodule in the groin areas of mice inoculated with tumor cells. The nodule was developed 24 h after the inoculation, filled with tumor cells and massively recruited neutrophils, being designated as tumor nodules. 22% of the neutrophils in tumor nodules are surface TLR9 (sTLR9) expressing neutrophils (sTLR9+ neutrophils). With tumor progression, sTLR9+ neutrophils were sustainably increased in tumor nodules/tumor tissues, reaching to 90.8% on day 13 after inoculation, with increased expression of IL-10 and decreased or no expression of TNFα. In vivo administration of CpG 5805 significantly reduced sTLR9 expression of the sTLR9+ neutrophils. The reduction of sTLR9 on neutrophils in tumor nodules contributed to the induction of an anti-tumor microenvironment conductive to the inhibition of tumor growth. Overall, the study provides insights for understanding the role of sTLR9+ neutrophils in the tumor development, especially in the early stage.
Collapse
Affiliation(s)
- Mengyuan Kou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenting Lu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Mengru Zhu
- Department of Developmental-Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
10
|
Raghani RM, Ma JA, Zhang Y, Orbach SM, Wang J, Zeinali M, Nagrath S, Kakade S, Xu Q, Podojil JR, Murthy T, Elhofy A, Jeruss JS, Shea LD. Myeloid cell reprogramming alleviates immunosuppression and promotes clearance of metastatic lesions. Front Oncol 2022; 12:1039993. [PMID: 36479083 PMCID: PMC9720131 DOI: 10.3389/fonc.2022.1039993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Suppressive myeloid cells, including monocyte and neutrophil populations, play a vital role in the metastatic cascade and can inhibit the anti-tumor function of cytotoxic T-cells. Cargo-free polymeric nanoparticles (NPs) have been shown to modulate innate immune cell responses in multiple pathologies of aberrant inflammation. Here, we test the hypothesis that the intravenous administration of drug-free NPs in the 4T1 murine model of metastatic triple-negative breast cancer can reduce metastatic colonization of the lungs, the primary metastatic site, by targeting the pro-tumor immune cell mediators of metastatic progression. In vivo studies demonstrated that NP administration reprograms the immune milieu of the lungs and reduces pulmonary metastases. Single-cell RNA sequencing of the lungs revealed that intravenous NP administration alters myeloid cell phenotype and function, skewing populations toward inflammatory, anti-tumor phenotypes and away from pro-tumor phenotypes. Monocytes, neutrophils, and dendritic cells in the lungs of NP-treated mice upregulate gene pathways associated with IFN signaling, TNF signaling, and antigen presentation. In a T-cell deficient model, NP administration failed to abrogate pulmonary metastases, implicating the vital role of T-cells in the NP-mediated reduction of metastases. NPs delivered as an adjuvant therapy, following surgical resection of the primary tumor, led to clearance of established pulmonary metastases in all treated mice. Collectively, these results demonstrate that the in vivo administration of cargo-free NPs reprograms myeloid cell responses at the lungs and promotes the clearance of pulmonary metastases in a method of action dependent on functional T-cells.
Collapse
Affiliation(s)
- Ravi M. Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jing Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sandeep Kakade
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Qichen Xu
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Joseph R. Podojil
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tushar Murthy
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Adam Elhofy
- COUR Pharmaceuticals Development Co, Inc, Northbrook, IL, United States
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Lonnie D. Shea,
| |
Collapse
|
11
|
Li R, Mukherjee MB, Lin J. Coordinated Regulation of Myeloid-Derived Suppressor Cells by Cytokines and Chemokines. Cancers (Basel) 2022; 14:cancers14051236. [PMID: 35267547 PMCID: PMC8909268 DOI: 10.3390/cancers14051236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In this review, we summarize the effects of various cytokines and chemokines as a network to regulate the expansion, recruitment, and immunosuppressive functions of myeloid-derived suppressor cells in cancer metastasis. Abstract Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that impair immune cell functions and promote tumor progression. Mounting evidence indicates that cytokines and chemokines in the tumor microenvironment alter MDSCs. Various cytokines and chemokines are involved in MDSC production, their infiltration into tumors, and their exertion of suppressive functions. Here, we consider those cytokines, chemokines, and MDSCs as an intricately connected, complex system and we focus on how tumors manipulate the MDSCs through various cytokines and chemokines. We also discuss treatment capitalizing on cytokines/chemokine signaling aimed at combating the potent immunosuppressive activities of MDSCs to improve disease outcomes.
Collapse
Affiliation(s)
| | | | - Jun Lin
- Correspondence: ; Tel.: +1-631-444-2975
| |
Collapse
|
12
|
Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021; 57:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Celine A N Sewnath
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Kwantwi LB, Wang S, Zhang W, Peng W, Cai Z, Sheng Y, Xiao H, Wang X, Wu Q. Tumor-associated neutrophils activated by tumor-derived CCL20 (C-C motif chemokine ligand 20) promote T cell immunosuppression via programmed death-ligand 1 (PD-L1) in breast cancer. Bioengineered 2021; 12:6996-7006. [PMID: 34519637 PMCID: PMC8806641 DOI: 10.1080/21655979.2021.1977102] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death among women despite the significant improvement in diagnosis and treatment. Tumor-associated neutrophils have been shown to suppress antitumor functions of the host. However, how breast cancer tumor microenvironment influences the phenotype and functions of neutrophils to potentiate T cell immunosuppression is unknown. Herein, neutrophils isolated from peripheral blood of healthy donors were treated with supernatants from breast cancer cell lines or recombinant human CCL20. PD-L1 expression on neutrophils was then evaluated by immunofluorescence and flow cytometry. Neutrophils and Jurkat T cells were cocultured to evaluate the effect of tumor-associated neutrophils on T cell functions. Finally, immunohistochemical staining was performed to evaluate the clinical relevance of neutrophils infiltrating breast tumor tissues. Tumor-derived CCL20 activated and upregulated PD-L1 expression on neutrophils. A significant positive correlation was found between CCL20 and CD66b+ neutrophils in tumor tissues. Through in vitro experiment, tumor-associated neutrophils (TANs) effectively suppressed T cell immunity which was reversed upon PD-L1 blockade.Moreover, a high density of TANs was associated with short disease free survival in breast cancer patients. Furthermore, receiver operating curve showed that the density of TANs could accurately predict disease-free survival in breast cancer patients. Our findings suggest that targeting TANs via CCL20 immunosuppressive pathway may be a novel therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Shujing Wang
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Wenjun Zhang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Weidong Peng
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Zeyu Cai
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Youjing Sheng
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Han Xiao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Xian Wang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Qiang Wu
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
14
|
Jin J, Lin J, Xu A, Lou J, Qian C, Li X, Wang Y, Yu W, Tao H. CCL2: An Important Mediator Between Tumor Cells and Host Cells in Tumor Microenvironment. Front Oncol 2021; 11:722916. [PMID: 34386431 PMCID: PMC8354025 DOI: 10.3389/fonc.2021.722916] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.
Collapse
Affiliation(s)
- Jiakang Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jinti Lin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jianan Lou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chao Qian
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiumao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Laha D, Grant R, Mishra P, Nilubol N. The Role of Tumor Necrosis Factor in Manipulating the Immunological Response of Tumor Microenvironment. Front Immunol 2021; 12:656908. [PMID: 33986746 PMCID: PMC8110933 DOI: 10.3389/fimmu.2021.656908] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is an intricate system within solid neoplasms. In this review, we aim to provide an updated insight into the TME with a focus on the effects of tumor necrosis factor-α (TNF-α) on its various components and the use of TNF-α to improve the efficiency of drug delivery. The TME comprises the supporting structure of the tumor, such as its extracellular matrix and vasculature. In addition to cancer cells and cancer stem cells, the TME contains various other cell types, including pericytes, tumor-associated fibroblasts, smooth muscle cells, and immune cells. These cells produce signaling molecules such as growth factors, cytokines, hormones, and extracellular matrix proteins. This review summarizes the intricate balance between pro-oncogenic and tumor-suppressive functions that various non-tumor cells within the TME exert. We focused on the interaction between tumor cells and immune cells in the TME that plays an essential role in regulating the immune response, tumorigenesis, invasion, and metastasis. The multifunctional cytokine, TNF-α, plays essential roles in diverse cellular events within the TME. The uses of TNF-α in cancer treatment and to facilitate cancer drug delivery are discussed. The effects of TNF-α on tumor neovasculature and tumor interstitial fluid pressure that improve treatment efficacy are summarized.
Collapse
Affiliation(s)
| | | | | | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
16
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
17
|
Samec M, Liskova A, Koklesova L, Samuel SM, Murin R, Zubor P, Bujnak J, Kwon TK, Büsselberg D, Prosecky R, Caprnda M, Rodrigo L, Ciccocioppo R, Kruzliak P, Kubatka P. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J Cancer Res Clin Oncol 2020; 146:3137-3154. [PMID: 33063131 DOI: 10.1007/s00432-020-03424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The role of immune system in carcinogenesis represents fundamental events associated with cancer eradication; however, tumor evolution is connected with various mechanisms of tumor evasion and progression of cancer. Based on recent evidence, phytochemicals are directly associated with immunomodulation of the innate and adaptive immunity via different mechanisms of action including stimulation and amplification of immune cells, humoral compartments, and associated molecules. This comprehensive study focuses on immunomodulating potential of phytochemicals (mixture in plants or separately such as individual phytochemical) and their impact on regulation of immune response during cancer development, immune tolerance, and immune escape. Clinical application of phytochemicals as modulators of host immunity against cancer may represent perspective approach in anticancer therapy.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, Michalovce, Slovakia
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia.
| |
Collapse
|
18
|
Singha TK, Dagar VK, Gulati P, Kumar S. Kinetic study and optimization of recombinant human tumor necrosis factor-alpha (rhTNF-α) production in Escherichia coli. Prep Biochem Biotechnol 2020; 51:267-276. [PMID: 32876507 DOI: 10.1080/10826068.2020.1815056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine that plays a major role in immune regulation, homeostatic function, and cellular organization. The present study was undertaken to overproduce recombinant human TNF-α (rhTNF-α) in Escherichia coli (E.coli) in high cell density culture. The use of a codon-optimized gene and strong promoter-based (T7) expression system, choice of Terrific Broth (TB) as medium, and subsequent optimization of culture conditions in shake flasks resulted in production of 0.95 g/L insoluble rhTNF-α comprising upto 50% of total cellular protein (TCP) The protein yield further increased upto 1.26 g/L in 1 L TB medium batch culture in bioreactor with the controlled temperature, pH, and dissolved oxygen. In a series of chemostats operated at dilution rates of 0.2 h-1, 0.3 h-1, 0.4 h-1 and 0.5 h-1 the specific growth rate (μ) positively correlated with specific yield (Yp/x) and a maximum yield of 164 mg/g DCW was obtained at μ = 0.4 h-1 within 4 h post-induction. A fed-batch cultivation in TB with an exponential feeding profile (μ = ∼0.4 h-1) of concentrated feed resulted in an accumulation of 5.5 g/L of rhTNF-α within 14 h of cultivation which accounted for ∼29% of TCP.
Collapse
Affiliation(s)
| | - Vikas Kumar Dagar
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Pooja Gulati
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Sanjay Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
19
|
Li S, Xu Y, Zhang Y, Nie L, Ma Z, Ma L, Fang X, Ma X. Mendelian randomization analyses of genetically predicted circulating levels of cytokines with risk of breast cancer. NPJ Precis Oncol 2020; 4:25. [PMID: 32923685 PMCID: PMC7462857 DOI: 10.1038/s41698-020-00131-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
To determine whether genetically predicted circulating levels of cytokines are associated with risk of overall breast cancer (BC), estrogen receptor (ER)-positive and ER-negative BC, we conducted two-sample MR analyses using data from the most comprehensive genome-wide association studies (GWAS) on cytokines in 8293 Finnish participants and the largest BC GWAS from the Breast Cancer Association Consortium (BCAC) with totally 122,977 BC cases and 105,974 healthy controls. We systematically screened 41 cytokines (of which 24 cytokines have available instruments) and identified that genetically predicted circulating levels (1-SD increase) of MCP1 (OR: 1.08; 95% CIs: 1.03–1.12; P value: 3.55 × 10−4), MIP1b (OR: 1.02; 95% CIs: 1.01–1.04; P value: 2.70 × 10−3) and IL13 (OR: 1.06; 95% CIs: 1.03–1.10; P value: 3.33 × 10−4) were significantly associated with increased risk of overall BC, as well as ER-positive BC. In addition, higher levels of MIP1b and IL13 were also significantly associated with increased risk of ER-negative BC. These findings suggest the crucial role of cytokines in BC carcinogenesis and potential of targeting specific inflammatory cytokines for BC prevention.
Collapse
Affiliation(s)
- Shen Li
- The second clinical college, Chongqing Medical University, Chongqing, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lili Nie
- Student Brigade, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Zhihua Ma
- Department of Anaesthesia, The first affiliated hospital of Third Military medical University, Chongqing, China
| | - Ling Ma
- Banan People's hospital of Chongqing, Chongqing, China
| | - Xiaoyu Fang
- College of public health, Southwest medical University, Luzhou, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Mai N, Prifti V, Kim M, Halterman MW. Characterization of neutrophil-neuronal co-cultures to investigate mechanisms of post-ischemic immune-mediated neurotoxicity. J Neurosci Methods 2020; 341:108782. [PMID: 32445795 DOI: 10.1016/j.jneumeth.2020.108782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Immune-mediated reperfusion injury is a critical component of post-ischemic central nervous system (CNS) damage. In this context, the activation and recruitment of polymorphonuclear neutrophils (PMNs) to the CNS induces neurotoxicity in part through the release of degradative enzymes, cytokines, and reactive oxygen species. However, the extent to which close-range interactions between PMNs and neurons contribute to injury in this context has not been directly investigated. NEW METHOD We devised a co-culture model to investigate mechanisms of PMN-dependent neurotoxicity. Specifically, we established the effect of PMN dose, co-incident neuronal ischemia, lipopolysaccharide (LPS)-induced PMN priming, and the requirement for cell-cell contact on cumulative neuron damage. RESULTS AND COMPARISON TO EXISTING METHOD(S) Pre-exposure of day in vitro 10 primary cortical neurons to oxygen-glucose deprivation (OGD) enhanced PMN-dependent neuronal death. Likewise, LPS-induced priming of the PMN donor further increased PMN-induced toxicity in vitro compared to saline-injected controls. Compartmentalization of LPS-primed PMNs using net wells confirmed the requirement for close-range cell-cell interactions in the process of PMN-induced neuronal injury. Moreover, time-lapse imaging and quantitative neurite analyses implicate PMN-neurite interactions in this pathological response. These experiments establish a platform to investigate immune and neural factors that contribute to post-ischemic neurodegeneration. CONCLUSIONS Ischemic and immune priming enhance neurotoxicity in PMN-neuronal co-cultures. Moreover, cell-cell contact and neurite destruction are prominent features in the observed mechanism of post-ischemic neuronal death.
Collapse
Affiliation(s)
- Nguyen Mai
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, United States.
| | - Viollandi Prifti
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, United States.
| | - Minsoo Kim
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, United States.
| | - Marc W Halterman
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, United States; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, United States.
| |
Collapse
|
21
|
Nassiri I, Inga A, Meškytė EM, Alessandrini F, Ciribilli Y, Priami C. Regulatory Crosstalk of Doxorubicin, Estradiol and TNFα Combined Treatment in Breast Cancer-derived Cell Lines. Sci Rep 2019; 9:15172. [PMID: 31645610 PMCID: PMC6811586 DOI: 10.1038/s41598-019-51349-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/28/2019] [Indexed: 11/10/2022] Open
Abstract
We present a new model of ESR1 network regulation based on analysis of Doxorubicin, Estradiol, and TNFα combination treatment in MCF-7. We used Doxorubicin as a therapeutic agent, TNFα as marker and mediator of an inflammatory microenvironment and 17β-Estradiol (E2) as an agonist of Estrogen Receptors, known predisposing factor for hormone-driven breast cancer, whose pharmacological inhibition reduces the risk of breast cancer recurrence. Based on the results of transcriptomics analysis, we found 71 differentially expressed genes that are specific for the combination treatment with Doxorubicin + Estradiol + TNFα in comparison with single or double treatments. The responsiveness to the triple treatment was examined for seven genes by qPCR, of which six were validated, and then extended to four additional cell lines differing for p53 and/or ER status. The results of differential regulation enrichment analysis highlight the role of the ESR1 network that included 36 of 71 specific differentially expressed genes. We propose that the combined activation of p53 and NF-kB transcription factors significantly influences ligand-dependent, ER-driven transcriptional responses, also of the ESR1 gene itself. These results provide a model of coordinated interaction of TFs to explain the Doxorubicin, E2 and TNFα induced repression mechanisms.
Collapse
Affiliation(s)
- Isar Nassiri
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, TN, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Erna Marija Meškytė
- Laboratory of Molecular Cancer Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy.,Department of Biological Models, Life Sciences Centre, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Federica Alessandrini
- Laboratory of Molecular Cancer Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Corrado Priami
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, TN, Italy. .,Dipartimento di Informatica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
22
|
Immune effector monocyte-neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer. Proc Natl Acad Sci U S A 2019; 116:21704-21714. [PMID: 31591235 DOI: 10.1073/pnas.1907660116] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metastatic behavior varies significantly among breast cancers. Mechanisms explaining why the majority of breast cancer patients never develop metastatic outgrowth are largely lacking but could underlie the development of novel immunotherapeutic target molecules. Here we show interplay between nonmetastatic primary breast cancer and innate immune response, acting together to control metastatic progression. The primary tumor systemically recruits IFNγ-producing immune effector monocytes to the lung. IFNγ up-regulates Tmem173/STING in neutrophils and enhances their killing capacity. The immune effector monocytes and tumoricidal neutrophils target disseminated tumor cells in the lungs, preventing metastatic outgrowth. Importantly, our findings could underlie the development of immunotherapeutic target molecules that augment the function of immune effector monocytes and neutrophils.
Collapse
|
23
|
Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood 2019; 133:2159-2167. [PMID: 30898857 PMCID: PMC6524564 DOI: 10.1182/blood-2018-11-844548] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Neutrophils act as the body's first line of defense against infection and respond to diverse inflammatory cues, including cancer. Neutrophils display plasticity, with the ability to adapt their function in different inflammatory contexts. In the tumor microenvironment, neutrophils have varied functions and have been classified using different terms, including N1/N2 neutrophils, tumor-associated neutrophils, and polymorphonuclear neutrophil myeloid-derived suppressor cells (PMN-MDSCs). These populations of neutrophils are primarily defined by their functional phenotype, because few specific cell surface markers have been identified. In this review, we will discuss neutrophil polarization and plasticity and the function of proinflammatory/anti-inflammatory and protumor/antitumor neutrophils in the tumor microenvironment. We will also discuss how neutrophils with the ability to suppress T-cell activation, referred to by some as PMN-MDSCs, fit into this paradigm.
Collapse
Affiliation(s)
| | - Laurel E Hind
- Department of Medical Microbiology and Immunology and
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology and
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
24
|
Bousquet PA, Meltzer S, Sønstevold L, Esbensen Y, Dueland S, Flatmark K, Sitter B, Bathen TF, Seierstad T, Redalen KR, Eide L, Ree AH. Markers of Mitochondrial Metabolism in Tumor Hypoxia, Systemic Inflammation, and Adverse Outcome of Rectal Cancer. Transl Oncol 2018; 12:76-83. [PMID: 30273860 PMCID: PMC6170256 DOI: 10.1016/j.tranon.2018.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor hypoxia contributes to therapy resistance and metastatic progression of locally advanced rectal cancer (LARC). We postulated that the tumor mitochondrial metabolism, manifested by reactive oxygen species (ROS) and mitochondrial DNA (mtDNA) damage, reflects how hypoxic conditions connect to cancer-induced systemic inflammation and poor outcome. Levels of ROS and mtDNA damage were analyzed in three colorectal cancer (CRC) cell lines cultured for 24 hours under normoxia (21% O2) or hypoxia (0.2% O2) and serum sampled at the time of diagnosis from 35 LARC patients participating in a prospective therapy study. Compared with normoxia, ROS were significantly repressed and mtDNA damage was significantly enhanced in the hypoxic CRC cell lines; hence, a low ratio of ROS to mtDNA damage was an indicator of hypoxic conditions. In the LARC patients, low serum ROS were associated with elevated levels of circulating carcinoembryonic antigen and tumor choline concentration, both indicative of unfavorable biology, as well as adverse progression-free and overall survival. A low ratio of ROS to mtDNA damage in serum was associated with poor local tumor response to the neoadjuvant treatment and, of note, elevated systemic inflammation factors (C-reactive protein, the interleukin-1 receptor antagonist, and factors involved in tumor necrosis factor signaling), indicating that deficient treatment response locally and detrimental inflammation systemically link to a hypoxic mitochondrial metabolism. In conclusion, serum ROS and damaged mtDNA may be markers of the mitochondrial metabolism driven by the state of oxygenation of the primary tumor and possibly implicated in systemic inflammation and adverse outcome of LARC.
Collapse
Affiliation(s)
- Paula A Bousquet
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, 1478 Lørenskog, Norway.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway.
| | - Linda Sønstevold
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, 1478 Lørenskog, Norway.
| | - Ying Esbensen
- Department of Clinical Molecular Biology, Akershus University Hospital, 1478 Lørenskog, Norway.
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, 0424 Oslo, Norway.
| | - Kjersti Flatmark
- Department of Tumor Biology, Oslo University Hospital, 0424 Oslo, Norway; Department of Gastroenterological Surgery, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway.
| | - Beathe Sitter
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Therese Seierstad
- Department of Radiology, Oslo University Hospital, 0424 Oslo, Norway.
| | - Kathrine Røe Redalen
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Lars Eide
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway.
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway.
| |
Collapse
|