1
|
Sonninen TM, Peltonen S, Niskanen J, Hämäläinen RH, Koistinaho J, Lehtonen Š. LRRK2 G2019S Mutated iPSC-Derived Endothelial Cells Exhibit Increased α-Synuclein, Mitochondrial Impairment, and Altered Inflammatory Responses. Int J Mol Sci 2024; 25:12874. [PMID: 39684585 DOI: 10.3390/ijms252312874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The blood-brain barrier (BBB) serves as an interface between the bloodstream and the central nervous system. It limits the movement of molecules and immune cells, regulates the entry of nutrients, and removes waste products from the brain. The dysfunction of the BBB has been identified in Parkinson's disease (PD) but the role of the BBB and endothelial cells (ECs) has not been well studied. LRRK2 G2019S mutation is the most common PD causing mutation with similar pathophysiology than in sporadic cases. How the mutation affects EC function has not been investigated previously in patient cells. In the study, we used iPSC-derived ECs from PD patients with the LRRK2 mutation as well as cells from healthy individuals. We report that PD patients' ECs have higher levels of α-synuclein and an decreased maximal and ATP-linked respiration and altered response to inflammatory exposure, especially to TNFα. In addition, transcriptomic analysis showed upregulation of fatty-acid-synthesis-related pathways in PD patients' ECs and the downregulation of lncRNA MEG3, both of which have been associated with PD. Altogether, PD patients' ECs manifest some of the PD-related hallmarks and are likely to contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
| | - Sanni Peltonen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jonna Niskanen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014 Helsinki, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Peltonen S, Sonninen TM, Niskanen J, Koistinaho J, Ruponen M, Lehtonen Š. Mutated LRRK2 induces a reactive phenotype and alters migration in human iPSC-derived pericyte-like cells. Fluids Barriers CNS 2024; 21:92. [PMID: 39551752 PMCID: PMC11571670 DOI: 10.1186/s12987-024-00592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Pericytes play a crucial role in controlling inflammation and vascular functions in the central nervous system, which are disrupted in Parkinson's disease (PD). Still, there is a lack of studies on the impact of pericytes on neurodegenerative diseases, and their involvement in the pathology of PD is unclear. Our objective was to investigate the molecular and functional differences between healthy pericytes and pericytes with the LRRK2 G2019S mutation, which is one of the most common mutations associated with PD. METHODS Our study employed pericyte-like cells obtained from induced pluripotent stem cells produced from PD patients with the LRRK2 G2019S mutation as well as from healthy individuals. We examined the gene expression profiles of the cells and analyzed how the alterations reflect on their functionality. RESULTS We have shown differences in the expression of genes related to inflammation and angiogenesis. Furthermore, we observe modified migration speed in PD pericyte-like cells as well as enhanced secretion of inflammatory mediators, such as soluble VCAM-1 and MCP-1, in these pericyte-like cells following exposure to proinflammatory stimuli. CONCLUSIONS In summary, our findings support the notion that pericytes play a role in the inflammatory and vascular changes observed in PD. Further investigation of pericytes could provide valuable insight into understanding the pathogenesis of PD.
Collapse
Affiliation(s)
- Sanni Peltonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuuli-Maria Sonninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Wu YC, Lehtonen Š, Trontti K, Kauppinen R, Kettunen P, Leinonen V, Laakso M, Kuusisto J, Hiltunen M, Hovatta I, Freude K, Dhungana H, Koistinaho J, Rolova T. Human iPSC-derived pericyte-like cells carrying APP Swedish mutation overproduce beta-amyloid and induce cerebral amyloid angiopathy-like changes. Fluids Barriers CNS 2024; 21:78. [PMID: 39334385 PMCID: PMC11438249 DOI: 10.1186/s12987-024-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated. METHODS To explore this, we generated pericyte-like cells from human induced pluripotent stem cells (iPSCs) harboring the Swedish mutation in the amyloid precursor protein (APPswe) along with cells from healthy controls. We initially verified the expression of classic pericyte markers in these cells. Subsequent functional assessments, including permeability, tube formation, and contraction assays, were conducted to evaluate the functionality of both the APPswe and control cells. Additionally, bulk RNA sequencing was utilized to compare the transcriptional profiles between the two groups. RESULTS Our study reveals that iPSC-derived pericyte-like cells (iPLCs) can produce Aβ peptides. Notably, cells with the APPswe mutation secreted Aβ1-42 at levels ten-fold higher than those of control cells. The APPswe iPLCs also demonstrated a reduced ability to support angiogenesis and maintain barrier integrity, exhibited a prolonged contractile response, and produced elevated levels of pro-inflammatory cytokines following inflammatory stimulation. These functional changes in APPswe iPLCs correspond with transcriptional upregulation in genes related to actin cytoskeleton and extracellular matrix organization. CONCLUSIONS Our findings indicate that the APPswe mutation in iPLCs mimics several aspects of CAA pathology in vitro, suggesting that our iPSC-based vascular cell model could serve as an effective platform for drug discovery aimed to ameliorate vascular dysfunction in AD.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Riitta Kauppinen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Pinja Kettunen
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Ville Leinonen
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014, Helsinki, Finland.
| | - Taisia Rolova
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
4
|
Kudriavskii VV, Goncharov AO, Eremeev AV, Ruchko ES, Veselovsky VA, Klimina KM, Bogomazova AN, Lagarkova MA, Moshkovskii SA, Kliuchnikova AA. RNA Editing by ADAR Adenosine Deaminases in the Cell Models of CAG Repeat Expansion Diseases: Significant Effect of Differentiation from Stem Cells into Brain Organoids in the Absence of Substantial Influence of CAG Repeats on the Level of Editing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1474-1489. [PMID: 39245456 DOI: 10.1134/s0006297924080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but exact mechanism behind this is not yet fully understood. It is believed that the double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to the reduced A-to-I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from the patients with Huntington's disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in the specific RNA regions. Differentiation of iPSCs into brain organoids led to increase in the ADAR2 gene expression and decrease in the expression of protein inhibitors of RNA editing. As a result, there was increase in the editing of specific ADAR2 substrates, which allowed identification of differential substrates of ADAR isoforms. However, comparison of the pathology and control groups did not show differences in the editing levels among the iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA PWAR5 was nearly absent in this sample. It could be stated in conclusion that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.
Collapse
Affiliation(s)
- Viacheslav V Kudriavskii
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Anton O Goncharov
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Evgenii S Ruchko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Sergei A Moshkovskii
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Max Planck Institute for Interdisciplinary Research, Göttingen, 37077, Germany.
| | - Anna A Kliuchnikova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| |
Collapse
|
5
|
Oshkolova AA, Grekhnev DA, Kruchinina AA, Belikova LD, Volovikov EA, Lebedeva OS, Bogomazova AN, Vigont VA, Lagarkova MA, Kaznacheyeva EV. Comparison of the calcium signaling alterations in GABA-ergic medium spiny neurons produced from iPSCs of different origins. Biochimie 2024; 222:63-71. [PMID: 38163516 DOI: 10.1016/j.biochi.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Disease models based on induced pluripotent stem cells (iPSCs) are in high demand because of their physiological adequacy and well-reproducibility of the pathological phenotype. Nowadays, the most common approach to generate iPSCs is the reprogramming of somatic cells using vectors based on lentivirus or Sendai virus. We have previously shown impairments of calcium signaling including store-operated calcium entry in Huntington's disease-specific iPSCs-based GABA-ergic medium spiny neurons. However, different approaches for iPSCs generation make it difficult to compare the models since the mechanism of reprogramming may influence the electrophysiological properties of the terminally differentiated neurons. Here, we have studied the features of calcium homeostasis in GABA-ergic medium spiny neurons differentiated from iPSCs obtained from fibroblasts of the same donor using different methods. Our data demonstrated that there were no significant differences neither in calcium influx through the store-operated channels, nor in the levels of proteins activating this type of calcium entry in neurons differentiated from iPSCs generated with lenti- and Sendai viruses-based approaches. We also found no differences in voltage-gated calcium entry for these neurons. Thus, we clearly showed that various methods of cell reprogramming result in similar deregulations in neuronal calcium signaling which substantiates the ability to combine the experimental data on functional studies of ion channels in models based on iPSCs obtained by different methods and expands the prospects for the use of biobanking.
Collapse
Affiliation(s)
- Arina A Oshkolova
- Institute of Cytology RAS, 194064, Tikhoretsky Ave 4, St. Petersburg, Russia
| | - Dmitriy A Grekhnev
- Institute of Cytology RAS, 194064, Tikhoretsky Ave 4, St. Petersburg, Russia
| | - Anna A Kruchinina
- Institute of Cytology RAS, 194064, Tikhoretsky Ave 4, St. Petersburg, Russia
| | - Lilia D Belikova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, St. Malaya Pirogovskaya, 1a, Moscow, Russia
| | - Egor A Volovikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, St. Malaya Pirogovskaya, 1a, Moscow, Russia
| | - Olga S Lebedeva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, St. Malaya Pirogovskaya, 1a, Moscow, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, St. Malaya Pirogovskaya, 1a, Moscow, Russia
| | - Vladimir A Vigont
- Institute of Cytology RAS, 194064, Tikhoretsky Ave 4, St. Petersburg, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, St. Malaya Pirogovskaya, 1a, Moscow, Russia
| | | |
Collapse
|
6
|
Ohtonen S, Giudice L, Jäntti H, Fazaludeen MF, Shakirzyanova A, Gómez-Budia M, Välimäki NN, Niskanen J, Korvenlaita N, Fagerlund I, Koistinaho J, Amiry-Moghaddam M, Savchenko E, Roybon L, Lehtonen Š, Korhonen P, Malm T. Human iPSC-derived microglia carrying the LRRK2-G2019S mutation show a Parkinson's disease related transcriptional profile and function. Sci Rep 2023; 13:22118. [PMID: 38092815 PMCID: PMC10719377 DOI: 10.1038/s41598-023-49294-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
LRRK2-G2019S is one of the most common Parkinson's disease (PD)-associated mutations and has been shown to alter microglial functionality. However, the impact of LRRK2-G2019S on transcriptional profile of human induced pluripotent stem cell-derived microglia-like cells (iMGLs) and how it corresponds to microglia in idiopathic PD brain is not known. Here we demonstrate that LRRK2-G2019S carrying iMGL recapitulate aspects of the transcriptional signature of human idiopathic PD midbrain microglia. LRRK2-G2019S induced subtle and donor-dependent alterations in iMGL mitochondrial respiration, phagocytosis and cytokine secretion. Investigation of microglial transcriptional state in the midbrains of PD patients revealed a subset of microglia with a transcriptional overlap between the in vitro PD-iMGL and human midbrain PD microglia. We conclude that LRRK2-G2019S iMGL serve as a model to study PD-related effects in human microglia.
Collapse
Affiliation(s)
- Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Fagerlund
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Neurodegenerative Science, The MiND Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
8
|
Valadez-Barba V, Juárez-Navarro K, Padilla-Camberos E, Díaz NF, Guerra-Mora JR, Díaz-Martínez NE. Parkinson's disease: an update on preclinical studies of induced pluripotent stem cells. Neurologia 2023; 38:681-694. [PMID: 37858889 DOI: 10.1016/j.nrleng.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among adults worldwide. It is characterised by the death of dopaminergic neurons in the substantia nigra pars compacta and, in some cases, presence of intracytoplasmic inclusions of α-synuclein, called Lewy bodies, a pathognomonic sign of the disease. Clinical diagnosis of PD is based on the presence of motor alterations. The treatments currently available have no neuroprotective effect. The exact causes of PD are poorly understood. Therefore, more precise preclinical models have been developed in recent years that use induced pluripotent stem cells (iPSC). In vitro studies can provide new information on PD pathogenesis and may help to identify new therapeutic targets or to develop new drugs.
Collapse
Affiliation(s)
- V Valadez-Barba
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - K Juárez-Navarro
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - E Padilla-Camberos
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - N F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - J R Guerra-Mora
- Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - N E Díaz-Martínez
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
9
|
Sabogal-Guáqueta AM, Marmolejo-Garza A, Trombetta-Lima M, Oun A, Hunneman J, Chen T, Koistinaho J, Lehtonen S, Kortholt A, Wolters JC, Bakker BM, Eggen BJL, Boddeke E, Dolga A. Species-specific metabolic reprogramming in human and mouse microglia during inflammatory pathway induction. Nat Commun 2023; 14:6454. [PMID: 37833292 PMCID: PMC10575978 DOI: 10.1038/s41467-023-42096-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Metabolic reprogramming is a hallmark of the immune cells in response to inflammatory stimuli. This metabolic process involves a switch from oxidative phosphorylation (OXPHOS) to glycolysis or alterations in other metabolic pathways. However, most of the experimental findings have been acquired in murine immune cells, and little is known about the metabolic reprogramming of human microglia. In this study, we investigate the transcriptomic, proteomic, and metabolic profiles of mouse and iPSC-derived human microglia challenged with the TLR4 agonist LPS. We demonstrate that both species display a metabolic shift and an overall increased glycolytic gene signature in response to LPS treatment. The metabolic reprogramming is characterized by the upregulation of hexokinases in mouse microglia and phosphofructokinases in human microglia. This study provides a direct comparison of metabolism between mouse and human microglia, highlighting the species-specific pathways involved in immunometabolism and the importance of considering these differences in translational research.
Collapse
Affiliation(s)
- Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Jasmijn Hunneman
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Tingting Chen
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Sarka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, The Netherlands
- YETEM-Innovative Technologies Application and Research Centre Suleyman Demirel University, Isparta, Turkey
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Talvio K, Wagner VA, Minkeviciene R, Kirkwood JS, Kulinich AO, Umemori J, Bhatia A, Hur M, Käkelä R, Ethell IM, Castrén ML. An iPSC-derived astrocyte model of fragile X syndrome exhibits dysregulated cholesterol homeostasis. Commun Biol 2023; 6:789. [PMID: 37516746 PMCID: PMC10387075 DOI: 10.1038/s42003-023-05147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Cholesterol is an essential membrane structural component and steroid hormone precursor, and is involved in numerous signaling processes. Astrocytes regulate brain cholesterol homeostasis and they supply cholesterol to the needs of neurons. ATP-binding cassette transporter A1 (ABCA1) is the main cholesterol efflux transporter in astrocytes. Here we show dysregulated cholesterol homeostasis in astrocytes generated from human induced pluripotent stem cells (iPSCs) derived from males with fragile X syndrome (FXS), which is the most common cause of inherited intellectual disability. ABCA1 levels are reduced in FXS human and mouse astrocytes when compared with controls. Accumulation of cholesterol associates with increased desmosterol and polyunsaturated phospholipids in the lipidome of FXS mouse astrocytes. Abnormal astrocytic responses to cytokine exposure together with altered anti-inflammatory and cytokine profiles of human FXS astrocyte secretome suggest contribution of inflammatory factors to altered cholesterol homeostasis. Our results demonstrate changes of astrocytic lipid metabolism, which can critically regulate membrane properties and affect cholesterol transport in FXS astrocytes, providing target for therapy in FXS.
Collapse
Affiliation(s)
- Karo Talvio
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victoria A Wagner
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Rimante Minkeviciene
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Anna O Kulinich
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Juzoh Umemori
- Gene and Cell Technology, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Anil Bhatia
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, Biocenter Finland (Metabolomics), and Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Iryna M Ethell
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Adasheva DA, Lebedeva OS, Goliusova DV, Postnikov AB, Teriakova MV, Kopylova IV, Lagarkova MA, Katrukha AG, Serebryanaya DV. PAPP-A-Specific IGFBP-4 Proteolysis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24098420. [PMID: 37176126 PMCID: PMC10179360 DOI: 10.3390/ijms24098420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The insulin-like growth factors IGF-I and IGF-II-as well as their binding proteins (IGFBPs), which regulate their bioavailability-are involved in many pathological and physiological processes in cardiac tissue. Pregnancy-associated plasma protein A (PAPP-A) is a metalloprotease that preferentially cleaves IGFBP-4, releasing IGF and activating its biological activity. Previous studies have shown that PAPP-A-specific IGFBP-4 proteolysis is involved in the pathogenesis of cardiovascular diseases, such as ischemia, heart failure, and acute coronary syndrome. However, it remains unclear whether PAPP-A-specific IGFBP-4 proteolysis participates in human normal cardiomyocytes. Here, we report PAPP-A-specific IGFBP-4 proteolysis occurring in human cardiomyocytes derived from two independent induced pluripotent cell lines (hiPSC-CMs), detected both on the cell surface and in the cell secretome. PAPP-A was measured by fluoroimmune analysis (FIA) in a conditioned medium of hiPSC-CMs and was detected in concentrations of up to 4.3 ± 1.33 ng/mL and 3.8 ± 1.1 ng/mL. The level of PAPP-A-specific IGFBP-4 proteolysis was determined as the concentration of NT-IGFBP-4 proteolytic fragments using FIA for a proteolytic neo-epitope-specific assay. We showed that PAPP-A-specific IGFBP-4 proteolysis is IGF-dependent and inhibited by EDTA and 1,10-phenanthroline. Therefore, it may be concluded that PAPP-A-specific IGFBP-4 proteolysis functions in human normal cardiomyocytes, and hiPSC-CMs contain membrane-bound and secreted forms of proteolytically active PAPP-A.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | | | - Maria V Teriakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Irina V Kopylova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexey G Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Hytest Ltd., 20520 Turku, Finland
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Lebedeva OS, Sharova EI, Grekhnev DA, Skorodumova LO, Kopylova IV, Vassina EM, Oshkolova A, Novikova IV, Krisanova AV, Olekhnovich EI, Vigont VA, Kaznacheyeva EV, Bogomazova AN, Lagarkova MA. An Efficient 2D Protocol for Differentiation of iPSCs into Mature Postmitotic Dopaminergic Neurons: Application for Modeling Parkinson's Disease. Int J Mol Sci 2023; 24:7297. [PMID: 37108456 PMCID: PMC10139404 DOI: 10.3390/ijms24087297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
About 15% of patients with parkinsonism have a hereditary form of Parkinson's disease (PD). Studies on the early stages of PD pathogenesis are challenging due to the lack of relevant models. The most promising ones are models based on dopaminergic neurons (DAns) differentiated from induced pluripotent stem cells (iPSCs) of patients with hereditary forms of PD. This work describes a highly efficient 2D protocol for obtaining DAns from iPSCs. The protocol is rather simple, comparable in efficiency with previously published protocols, and does not require viral vectors. The resulting neurons have a similar transcriptome profile to previously published data for neurons, and have a high level of maturity marker expression. The proportion of sensitive (SOX6+) DAns in the population calculated from the level of gene expression is higher than resistant (CALB+) DAns. Electrophysiological studies of the DAns confirmed their voltage sensitivity and showed that a mutation in the PARK8 gene is associated with enhanced store-operated calcium entry. The study of high-purity DAns differentiated from the iPSCs of patients with hereditary PD using this differentiation protocol will allow for investigators to combine various research methods, from patch clamp to omics technologies, and maximize information about cell function in normal and pathological conditions.
Collapse
Affiliation(s)
- Olga S. Lebedeva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Elena I. Sharova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Dmitriy A. Grekhnev
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 St. Petersburg, Russia
| | - Liubov O. Skorodumova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Irina V. Kopylova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Ekaterina M. Vassina
- Vavilov Institute of General Genetics, GSP-1, Gubkina St., 3, 119991 Moscow, Russia
| | - Arina Oshkolova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 St. Petersburg, Russia
| | - Iuliia V. Novikova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 St. Petersburg, Russia
| | - Alena V. Krisanova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 St. Petersburg, Russia
| | - Evgenii I. Olekhnovich
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Vladimir A. Vigont
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 St. Petersburg, Russia
| | - Elena V. Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 St. Petersburg, Russia
| | - Alexandra N. Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Maria A. Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
13
|
Lebedeva O, Poberezhniy D, Novosadova E, Gerasimova T, Novosadova L, Arsenyeva E, Stepanenko E, Shimchenko D, Volovikov E, Anufrieva K, Illarioshkin S, Lagarkova M, Grivennikov I, Tarantul V, Nenasheva V. Overexpression of Parkin in the Neuronal Progenitor Cells from a Patient with Parkinson's Disease Shifts the Transcriptome Towards the Normal State. Mol Neurobiol 2023; 60:3522-3533. [PMID: 36884134 DOI: 10.1007/s12035-023-03293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/05/2023] [Indexed: 03/09/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative pathology caused by the progressive loss of dopaminergic neurons in the substantia nigra. Juvenile PD is known to be strongly associated with mutations in the PARK2 gene encoding E3 ubiquitin ligase Parkin. Despite numerous studies, molecular mechanisms that trigger PD remain largely unknown. Here, we compared the transcriptome of the neural progenitor (NP) cell line, derived from a PD patient with PARK2 mutation resulting in Parkin loss, with the transcriptome of the same NPs but expressing transgenic Parkin. We found that Parkin overexpression led to the substantial recovery of the transcriptome of NPs to a normal state indicating that alterations of transcription in PD-derived NPs were mainly caused by PARK2 mutations. Among genes significantly dysregulated in PD-derived NPs, 106 genes unambiguously restored their expression after reestablishing of the Parkin level. Based on the selected gene sets, we revealed the enriched Gene Ontology (GO) pathways including signaling, neurotransmitter transport and metabolism, response to stimulus, and apoptosis. Strikingly, dopamine receptor D4 that was previously associated with PD appears to be involved in the maximal number of GO-enriched pathways and therefore may be considered as a potential trigger of PD progression. Our findings may help in the screening for promising targets for PD treatment.
Collapse
Affiliation(s)
- Olga Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil Poberezhniy
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia.,Faculty of Biotechnology and Industrial Ecology, D.I. Mendeleyev University of Chemical Technology of Russia, Moscow, Russia
| | - Ekaterina Novosadova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Tatiana Gerasimova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia.
| | - Lyudmila Novosadova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Elena Arsenyeva
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Ekaterina Stepanenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Darya Shimchenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Egor Volovikov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, Russia
| | - Ksenia Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Maria Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Igor Grivennikov
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Vyacheslav Tarantul
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Valentina Nenasheva
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
14
|
Pieger K, Schmitt V, Gauer C, Gießl N, Prots I, Winner B, Winkler J, Brandstätter JH, Xiang W. Translocation of Distinct Alpha Synuclein Species from the Nucleus to Neuronal Processes during Neuronal Differentiation. Biomolecules 2022; 12:biom12081108. [PMID: 36009004 PMCID: PMC9406079 DOI: 10.3390/biom12081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha synuclein (aSyn) and its aggregation are crucial for the neurodegeneration of Parkinson’s disease (PD). aSyn was initially described in the nucleus and presynaptic nerve terminals. However, the biology of nuclear aSyn and the link of aSyn between subcellular compartments are less understood. Current knowledge suggests the existence of various aSyn species with distinct structural and biochemical properties. Here, we identified a C-terminal-targeting aSyn antibody (Nu-aSyn-C), which has a high immunoaffinity towards aSyn in the nucleus. Comparing the Nu-aSyn-C antibody to aSyn antibodies developed against phosphorylated or aggregated forms, we observed that nuclear aSyn differs from cytosolic aSyn by an increased phosphorylation and assembly level in proliferating cells. Employing Nu-aSyn-C, we characterized aSyn distribution during neuronal differentiation in midbrain dopaminergic neurons (mDANs) derived from human-induced pluripotent stem cells (hiPSCs) and Lund human mesencephalic cells, and in primary rat hippocampal neurons. We detected a specific translocation pattern of aSyn during neuronal differentiation from the nucleus to the soma and finally to neuronal processes. Interestingly, a remarkable shift of Nu-aSyn-C-positive species towards neurites was detected in hiPSC mDANs from a PD patient carrying aSyn gene duplication. Together, our results reveal distinct nuclear and cytosolic aSyn species that redistribute during neuronal differentiation—a process that is altered in PD-derived neurons.
Collapse
Affiliation(s)
- Katharina Pieger
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Carina Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nadja Gießl
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johann Helmut Brandstätter
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-44676
| |
Collapse
|
15
|
Leupold L, Sigutova V, Gerasimova E, Regensburger M, Zundler S, Zunke F, Xiang W, Winner B, Prots I. The Quest for Anti-α-Synuclein Antibody Specificity-Lessons Learnt From Flow Cytometry Analysis. Front Neurol 2022; 13:869103. [PMID: 35911883 PMCID: PMC9334871 DOI: 10.3389/fneur.2022.869103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of alpha-synuclein (aSyn) is the hallmark of a group of neurodegenerative conditions termed synucleopathies. Physiological functions of aSyn, including those outside of the CNS, remain elusive. However, a reliable and reproducible evaluation of aSyn protein expression in different cell types and especially in low-expressing cells is impeded by the existence of a huge variety of poorly characterized anti-aSyn antibodies and a lack of a routinely used sensitive detection methods. Here, we developed a robust flow cytometry-based workflow for aSyn detection and antibody validation. We test our workflow using three commercially available antibodies (MJFR1, LB509, and 2A7) in a variety of human cell types, including induced pluripotent stem cells, T lymphocytes, and fibroblasts, and provide a cell- and antibody-specific map for aSyn expression. Strikingly, we demonstrate a previously unobserved unspecificity of the LB509 antibody, while the MJFR1 clone revealed specific aSyn binding however with low sensitivity. On the other hand, we identified an aSyn-specific antibody clone 2A7 with an optimal sensitivity for detecting aSyn in a range of cell types, including those with low aSyn expression. We further utilize our workflow to demonstrate the ability of the 2A7 antibody to distinguish between physiological differences in aSyn expression in neuronal and non-neuronal cells from the cortical organoids, and in neural progenitors and midbrain dopaminergic neurons from healthy controls and in patients with Parkinson's disease who have aSyn gene locus duplication. Our results provide a proof of principle for the use of high-throughput flow cytometry-based analysis of aSyn and highlight the necessity of rigorous aSyn antibody validation to facilitate the research of aSyn physiology and pathology.
Collapse
Affiliation(s)
- Lukas Leupold
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Translational Research Center (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Voronkov DN, Stavrovskaya AV, Guschina AS, Olshansky AS, Lebedeva OS, Eremeev AV, Lagarkova MA. Morphological Characterization of Astrocytes in a Xenograft of Human iPSCDerived Neural Precursor Cells. Acta Naturae 2022; 14:100-108. [PMID: 36348713 PMCID: PMC9611864 DOI: 10.32607/actanaturae.11710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 09/07/2024] Open
Abstract
Transplantation of a mixed astrocyte and neuron culture is of interest in the development of cell therapies for neurodegenerative diseases. In this case, an assessment of engraftment requires a detailed morphological characterization, in particular an analysis of the neuronal and glial populations. In the experiment performed, human iPSC-derived neural progenitors transplanted into a rat striatum produced a mixed neuron and astrocyte population in vivo by the sixth month after transplantation. The morphological characteristics and neurochemical profile of the xenografted astrocytes were similar to those of mature human astroglia. Unlike neurons, astrocytes migrated to the surrounding structures and the density and pattern of their distribution in the striatum and cerebral cortex differed, which indicates that the microenvironment affects human glia integration. The graft was characterized by the zonal features of glial cell morphology, which was a reflection of cell maturation in the central area, glial shaft formation around the transplanted neurons, and migration to the surrounding structures.
Collapse
Affiliation(s)
| | | | | | | | - O. S. Lebedeva
- Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, 119435 Russia
| | - A. V. Eremeev
- Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, 119435 Russia
| | - M. A. Lagarkova
- Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, 119435 Russia
| |
Collapse
|
17
|
Jäntti H, Sitnikova V, Ishchenko Y, Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita N, Ohtonen S, Belaya I, Fazaludeen F, Mikhailov N, Gotkiewicz M, Ketola K, Lehtonen Š, Koistinaho J, Kanninen KM, Hernández D, Pébay A, Giugno R, Korhonen P, Giniatullin R, Malm T. Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation 2022; 19:147. [PMID: 35706029 PMCID: PMC9199162 DOI: 10.1186/s12974-022-02486-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aβ) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aβ. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. Methods Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aβ pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. Results We show that PIEZO1 orchestrates Aβ clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aβ inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aβ clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. Conclusion These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aβ burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02486-y.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Yevheniia Ishchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Feroze Fazaludeen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Maria Gotkiewicz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Damian Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
18
|
Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc Natl Acad Sci U S A 2022; 119:e2111405119. [PMID: 35294277 PMCID: PMC8944747 DOI: 10.1073/pnas.2111405119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our results demonstrate the existence of early cellular pathways and network alterations in oligodendrocytes in the alpha-synucleinopathies Parkinson’s disease and multiple system atrophy. They further reveal the involvement of an immune component triggered by alpha-synuclein protein, as well as a connection between (epi)genetic changes and immune reactivity in multiple system atrophy. The knowledge generated in this study could be used to devise novel therapeutic approaches to treat synucleinopathies. Limited evidence has shed light on how aSYN proteins affect the oligodendrocyte phenotype and pathogenesis in synucleinopathies that include Parkinson’s disease (PD) and multiple system atrophy (MSA). Here, we investigated early transcriptomic changes within PD and MSA O4+ oligodendrocyte lineage cells (OLCs) generated from patient-induced pluripotent stem cells (iPSCs). We found impaired maturation of PD and MSA O4+ OLCs compared to controls. This phenotype was associated with changes in the human leukocyte antigen (HLA) genes, the immunoproteasome subunit PSMB9, and the complement component C4b for aSYN p.A53T and MSA O4+ OLCs, but not in SNCAtrip O4+ OLCs despite high levels of aSYN assembly formation. Moreover, SNCA overexpression resulted in the development of O4+ OLCs, whereas exogenous treatment with aSYN species led to significant toxicity. Notably, transcriptome profiling of genes encoding proteins forming Lewy bodies and glial cytoplasmic inclusions revealed clustering of PD aSYN p.A53T O4+ OLCs with MSA O4+ OLCs. Our work identifies early phenotypic and pathogenic changes within human PD and MSA O4+ OLCs.
Collapse
|
19
|
Modeling and Targeting Neuroglial Interactions with Human Pluripotent Stem Cell Models. Int J Mol Sci 2022; 23:ijms23031684. [PMID: 35163606 PMCID: PMC8836094 DOI: 10.3390/ijms23031684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Generation of relevant and robust models for neurological disorders is of main importance for both target identification and drug discovery. The non-cell autonomous effects of glial cells on neurons have been described in a broad range of neurodegenerative and neurodevelopmental disorders, pointing to neuroglial interactions as novel alternative targets for therapeutics development. Interestingly, the recent breakthrough discovery of human induced pluripotent stem cells (hiPSCs) has opened a new road for studying neurological and neurodevelopmental disorders “in a dish”. Here, we provide an overview of the generation and modeling of both neuronal and glial cells from human iPSCs and a brief synthesis of recent work investigating neuroglial interactions using hiPSCs in a pathophysiological context.
Collapse
|
20
|
Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells 2021; 11:cells11010124. [PMID: 35011686 PMCID: PMC8750120 DOI: 10.3390/cells11010124] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.
Collapse
|
21
|
Gustavsson N, Savchenko E, Klementieva O, Roybon L. The intracellular milieu of Parkinson's disease patient brain cells modulates alpha-synuclein protein aggregation. Acta Neuropathol Commun 2021; 9:153. [PMID: 34530929 PMCID: PMC8444604 DOI: 10.1186/s40478-021-01256-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023] Open
Abstract
Recent studies suggest that brain cell type specific intracellular environments may play important roles in the generation of structurally different protein aggregates that define neurodegenerative diseases. Using human induced pluripotent stem cells (hiPSC) and biochemical and vibrational spectroscopy techniques, we studied whether Parkinson's disease (PD) patient genomes could modulate alpha-synuclein (aSYN) protein aggregates formation. We found increased β-sheets and aggregated aSYN in PD patient hiPSC-derived midbrain cells, compared to controls. Importantly, we discovered that aSYN protein aggregation is modulated by patient brain cells' intracellular milieus at the primary nucleation phase. Additionally, we found changes in the formation of aSYN fibrils when employing cellular extracts from familial PD compared to idiopathic PD, in a Thioflavin T-based fluorescence assay. The data suggest that changes in cellular milieu induced by patient genomes trigger structural changes of aSYN potentially leading to the formation of strains having different structures, properties and seeding propensities.
Collapse
Affiliation(s)
- Nadja Gustavsson
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Oxana Klementieva
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Peteri UK, Pitkonen J, de Toma I, Nieminen O, Utami KH, Strandin TM, Corcoran P, Roybon L, Vaheri A, Ethell I, Casarotto P, Pouladi MA, Castrén ML. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia 2021; 69:2947-2962. [PMID: 34427356 DOI: 10.1002/glia.24080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
The function of astrocytes intertwines with the extracellular matrix, whose neuron and glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities have been reported in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We compared human FXS and control astrocytes generated from human induced pluripotent stem cells and we found increased expression of urokinase plasminogen activator (uPA), which modulates degradation of extracellular matrix. Several pathways associated with uPA and its receptor function were activated in FXS astrocytes. Levels of uPA were also increased in conditioned medium collected from FXS hiPSC-derived astrocyte cultures and correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB within the docking site for the phospholipase-Cγ1 (PLCγ1), indicating effects of uPA on neuronal plasticity. Gene expression changes during neuronal differentiation preceding astrogenesis likely contributed to properties of astrocytes with FXS-specific alterations that showed specificity by not affecting differentiation of adenosine triphosphate (ATP)-responsive astrocyte population. To conclude, our studies identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.
Collapse
Affiliation(s)
- Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho Pitkonen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilario de Toma
- Systems Neurobiology Laboratory, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Otso Nieminen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kagistia Hana Utami
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore
| | - Tomas M Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, and MultiPark and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iryna Ethell
- Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | | | - Mahmoud A Pouladi
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Brazdis RM, Alecu JE, Marsch D, Dahms A, Simmnacher K, Lörentz S, Brendler A, Schneider Y, Marxreiter F, Roybon L, Winner B, Xiang W, Prots I. Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease. Hum Mol Genet 2021; 29:1180-1191. [PMID: 32160287 PMCID: PMC7206857 DOI: 10.1093/hmg/ddaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by protein inclusions mostly composed of aggregated forms of α-synuclein (α-Syn) and by the progressive degeneration of midbrain dopaminergic neurons (mDANs), resulting in motor symptoms. While other brain regions also undergo pathologic changes in PD, the relevance of α-Syn aggregation for the preferential loss of mDANs in PD pathology is not completely understood yet. To elucidate the mechanisms of the brain region-specific neuronal vulnerability in PD, we modeled human PD using human-induced pluripotent stem cells (iPSCs) from familial PD cases with a duplication (Dupl) of the α-Syn gene (SNCA) locus. Human iPSCs from PD Dupl patients and a control individual were differentiated into mDANs and cortical projection neurons (CPNs). SNCA dosage increase did not influence the differentiation efficiency of mDANs and CPNs. However, elevated α-Syn pathology, as revealed by enhanced α-Syn insolubility and phosphorylation, was determined in PD-derived mDANs compared with PD CPNs. PD-derived mDANs exhibited higher levels of reactive oxygen species and protein nitration levels compared with CPNs, which might underlie elevated α-Syn pathology observed in mDANs. Finally, increased neuronal death was observed in PD-derived mDANs compared to PD CPNs and to control mDANs and CPNs. Our results reveal, for the first time, a higher α-Syn pathology, oxidative stress level, and neuronal death rate in human PD mDANs compared with PD CPNs from the same patient. The finding implies the contribution of pathogenic α-Syn, probably induced by oxidative stress, to selective vulnerability of substantia nigra dopaminergic neurons in human PD.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Daniel Marsch
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Annika Dahms
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anna Brendler
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
24
|
Valadez-Barba V, Juárez-Navarro K, Padilla-Camberos E, Díaz NF, Guerra-Mora JR, Díaz-Martínez NE. Parkinson's disease: An update on preclinical studies of induced pluripotent stem cells. Neurologia 2021; 38:S0213-4853(21)00020-7. [PMID: 33715888 DOI: 10.1016/j.nrl.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 01/16/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among adults worldwide. It is characterised by the death of dopaminergic neurons in the substantia nigra pars compacta and, in some cases, presence of intracytoplasmic inclusions of α-synuclein, called Lewy bodies, a pathognomonic sign of the disease. Clinical diagnosis of PD is based on the presence of motor alterations. The treatments currently available have no neuroprotective effect. The exact causes of PD are poorly understood. Therefore, more precise preclinical models have been developed in recent years that use induced pluripotent stem cells. In vitro studies can provide new information on PD pathogenesis and may help to identify new therapeutic targets or to develop new drugs.
Collapse
Affiliation(s)
- V Valadez-Barba
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - K Juárez-Navarro
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - E Padilla-Camberos
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - N F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, México
| | - J R Guerra-Mora
- Instituto Nacional de Cancerología, Ciudad de México, México
| | - N E Díaz-Martínez
- Biotecnología Medica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México.
| |
Collapse
|
25
|
TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration. Cell Rep 2021; 34:108895. [PMID: 33761362 DOI: 10.1016/j.celrep.2021.108895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Here, we examine the cellular changes triggered by tumor necrosis factor alpha (TNF-α) and different alpha-synuclein (αSYN) species in astrocytes derived from induced pluripotent stem cells. Human astrocytes treated with TNF-α display a strong reactive pro-inflammatory phenotype with upregulation of pro-inflammatory gene networks, activation of the nuclear factor κB (NF-κB) pathway, and release of pro-inflammatory cytokines, whereas those treated with high-molecular-weight αSYN fibrils acquire a reactive antigen (cross)-presenting phenotype with upregulation of major histocompatibility complex (MHC) genes and increased human leukocyte antigen (HLA) molecules at the cell surface. Surprisingly, the cell surface location of MHC proteins is abrogated by larger F110 fibrillar polymorphs, despite the upregulation of MHC genes. Interestingly, TNF-α and αSYN fibrils compete to drive the astrocyte immune reactive response. The astrocyte immune responses are accompanied by an impaired mitochondrial respiration, which is exacerbated in Parkinson's disease (PD) astrocytes. Our data provide evidence for astrocytic involvement in PD pathogenesis and reveal their complex immune reactive responses to exogenous stressors.
Collapse
|
26
|
Charvériat M, Lafon V, Mouthon F, Zimmer L. Innovative approaches in CNS drug discovery. Therapie 2021; 76:101-109. [DOI: 10.1016/j.therap.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
27
|
Mohamed NV, Mathur M, da Silva RV, Thomas RA, Lepine P, Beitel LK, Fon EA, Durcan TM. Generation of human midbrain organoids from induced pluripotent stem cells. ACTA ACUST UNITED AC 2021. [DOI: 10.12688/mniopenres.12816.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of brain organoids represents a major technological advance in the stem cell field, a novel bridge between traditional 2D cultures and in vivo animal models. In particular, the development of midbrain organoids containing functional dopaminergic neurons producing neuromelanin granules, a by-product of dopamine synthesis, represents a potential new model for Parkinson’s disease. To generate human midbrain organoids, we introduce specific inductive cues, at defined timepoints, during the 3D culture process to drive the stem cells towards a midbrain fate. In this method paper, we describe a standardized protocol to generate human midbrain organoids (hMOs) from induced pluripotent stem cells (iPSCs). This protocol was developed to demonstrate how human iPSCs can be successfully differentiated into numerous, high quality midbrain organoids in one batch. We also describe adaptations for cryosectioning of fixed organoids for subsequent histological analysis.
Collapse
|
28
|
Generation of the Human Pluripotent Stem-Cell-Derived Astrocyte Model with Forebrain Identity. Brain Sci 2021; 11:brainsci11020209. [PMID: 33572154 PMCID: PMC7914711 DOI: 10.3390/brainsci11020209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/04/2023] Open
Abstract
Astrocytes form functionally and morphologically distinct populations of cells with brain-region-specific properties. Human pluripotent stem cells (hPSCs) offer possibilities to generate astroglia for studies investigating mechanisms governing the emergence of astrocytic diversity. We established a method to generate human astrocytes from hPSCs with forebrain patterning and final specification with ciliary neurotrophic factor (CNTF). Transcriptome profiling and gene enrichment analysis monitored the sequential expression of genes determining astrocyte differentiation and confirmed activation of forebrain differentiation pathways at Day 30 (D30) and D60 of differentiation in vitro. More than 90% of astrocytes aged D95 in vitro co-expressed the astrocytic markers glial fibrillary acidic protein (GFAP) and S100β. Intracellular calcium responses to ATP indicated differentiation of the functional astrocyte population with constitutive monocyte chemoattractant protein-1 (MCP-1/CCL2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression. The method was reproducible across several hPSC lines, and the data demonstrated the usefulness of forebrain astrocyte modeling in research investigating forebrain pathology.
Collapse
|
29
|
Vigont VA, Grekhnev DA, Lebedeva OS, Gusev KO, Volovikov EA, Skopin AY, Bogomazova AN, Shuvalova LD, Zubkova OA, Khomyakova EA, Glushankova LN, Klyushnikov SA, Illarioshkin SN, Lagarkova MA, Kaznacheyeva EV. STIM2 Mediates Excessive Store-Operated Calcium Entry in Patient-Specific iPSC-Derived Neurons Modeling a Juvenile Form of Huntington's Disease. Front Cell Dev Biol 2021; 9:625231. [PMID: 33604336 PMCID: PMC7884642 DOI: 10.3389/fcell.2021.625231] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a severe autosomal-dominant neurodegenerative disorder caused by a mutation within a gene, encoding huntingtin protein. Here we have used the induced pluripotent stem cell technology to produce patient-specific terminally differentiated GABA-ergic medium spiny neurons modeling a juvenile form of HD (HD76). We have shown that calcium signaling is dramatically disturbed in HD76 neurons, specifically demonstrating higher levels of store-operated and voltage-gated calcium uptakes. However, comparing the HD76 neurons with the previously described low-repeat HD models, we have demonstrated that the severity of calcium signaling alterations does not depend on the length of the polyglutamine tract of the mutant huntingtin. Here we have also observed greater expression of huntingtin and an activator of store-operated calcium channels STIM2 in HD76 neurons. Since shRNA-mediated suppression of STIM2 decreased store-operated calcium uptake, we have speculated that high expression of STIM2 underlies the excessive entry through store-operated calcium channels in HD pathology. Moreover, a previously described potential anti-HD drug EVP4593 has been found to attenuate high levels of both huntingtin and STIM2 that may contribute to its neuroprotective effect. Our results are fully supportive in favor of the crucial role of calcium signaling deregulation in the HD pathogenesis and indicate that the cornerstone of excessive calcium uptake in HD-specific neurons is a calcium sensor and store-operated calcium channels activator STIM2, which should become a molecular target for medical treatment and novel neuroprotective drug development.
Collapse
Affiliation(s)
- Vladimir A Vigont
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Dmitriy A Grekhnev
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga S Lebedeva
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Konstantin O Gusev
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Egor A Volovikov
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Anton Yu Skopin
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra N Bogomazova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Lilia D Shuvalova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Olga A Zubkova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina A Khomyakova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Lyubov N Glushankova
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - Maria A Lagarkova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena V Kaznacheyeva
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
30
|
Valadez-Barba V, Cota-Coronado A, Hernández-Pérez O, Lugo-Fabres PH, Padilla-Camberos E, Díaz NF, Díaz-Martínez NE. iPSC for modeling neurodegenerative disorders. Regen Ther 2021; 15:332-339. [PMID: 33426236 PMCID: PMC7770414 DOI: 10.1016/j.reth.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders such as Parkinson's and Alzheimer's disease, are fundamental health concerns all around the world. The development of novel treatments and new techniques to address these disorders, are being actively studied by researchers and medical personnel. In the present review we will discuss the application of induced Pluripotent Stem Cells (iPSCs) for cell-therapy replacement and disease modelling. The aim of iPSCs is to restore the functionality of the damaged tissue by replacing the impaired cells with competitive ones. To achieve this objective, iPSCs can be properly differentiated into virtually any cell fate and can be strongly translated into human health via in vitro and in vivo disease modeling for the development of new therapies, the discovery of biomarkers for several disorders, the elaboration and testing of new drugs as novel treatments, and as a tool for personalized medicine. Novel treatments to address neurodegenerative disorders. Induced pluripotent stem cell therapy and disease modelling. Parkinson's & Alzheimer's disease research.
Collapse
Key Words
- AD, Alzheimer's disease
- AFP, Alpha-Fetoprotein
- Alzheimer
- Aβ, β-Amyloid
- B-III-TUB, β–III–Tubulin
- BBB, Blood Brain Barrier
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- DOPAL, 3,4-Dihydroxyphenylacetaldehyde
- EBs, Embryoid Bodies
- FLASH, Fast Length Adjustment of Short Reads
- LUHMES, Lund Human Mesencephalic Cell Line
- MHC, Mayor Histocompatibility Complex
- Neurodegenerative diseasaes
- PCR, Polymerase Chain Reaction
- PD, Parkinson's Disease
- Parkinson
- ROS, Reactive Oxygen Species
- SCs, Stem Cells
- SMA, Smooth-Muscle Antibody
- SNPc, Substantia Nigra Pars Compacta
- TH, Tyrosine Hydroxylase
- WGS, Whole Genome Sequencing
- gRNA, guide RNA
- hESC, Human Embryonic Stem Cells
- iPSCs
- iPSCs, Induced Pluripotent Stem Cells
- nsSNVs, nonsynonymous single nucleotide variants
- pTau, Phosphorylated Tau
Collapse
Affiliation(s)
- Valeria Valadez-Barba
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - A. Cota-Coronado
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - O.R. Hernández-Pérez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Pavel H. Lugo-Fabres
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Eduardo Padilla-Camberos
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - N. Emmanuel Díaz-Martínez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
- Corresponding author. Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Jalisco, Mexico.
| |
Collapse
|
31
|
Simmnacher K, Krach F, Schneider Y, Alecu JE, Mautner L, Klein P, Roybon L, Prots I, Xiang W, Winner B. Unique signatures of stress-induced senescent human astrocytes. Exp Neurol 2020; 334:113466. [PMID: 32949572 DOI: 10.1016/j.expneurol.2020.113466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Senescence was recently linked to neurodegeneration and astrocytes are one of the major cell types to turn senescent under neurodegenerative conditions. Senescent astrocytes were detected in Parkinson's disease (PD) patients' brains besides reactive astrocytes, yet the difference between senescent and reactive astrocytes is unclear. We aimed to characterize senescent astrocytes in comparison to reactive astrocytes and investigate differences and similarities. In a cell culture model of human fetal astrocytes, we determined a unique senescent transcriptome distinct from reactive astrocytes, which comprises dysregulated pathways. Both, senescent and reactive human astrocytes activated a proinflammatory pattern. Astrocyte senescence was at least partially depending on active mechanistic-target-of-rapamycin (mTOR) and DNA-damage response signaling, both drivers of senescence. To further investigate how PD and senescence connect to each other, we asked if a PD-linked environmental factor induces senescence and if senescence impairs midbrain neurons. We could show that the PD-linked pesticide rotenone causes astrocyte senescence. We further delineate, that the senescent secretome exaggerates rotenone-induced neurodegeneration in midbrain neurons differentiated from human induced pluripotent stem cells (hiPSC) of PD patients with alpha-synuclein gene (SNCA) locus duplication.
Collapse
Affiliation(s)
- Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yanni Schneider
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lena Mautner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Paulina Klein
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
32
|
Sonninen TM, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, Wojciechowski S, Puttonen K, Naumenko N, Goldsteins G, Laham-Karam N, Lehtonen M, Tavi P, Koistinaho J, Lehtonen Š. Metabolic alterations in Parkinson's disease astrocytes. Sci Rep 2020; 10:14474. [PMID: 32879386 PMCID: PMC7468111 DOI: 10.1038/s41598-020-71329-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
In Parkinson`s disease (PD), the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta is associated with Lewy bodies arising from the accumulation of alpha-synuclein protein which leads ultimately to movement impairment. While PD has been considered a disease of the DA neurons, a glial contribution, in particular that of astrocytes, in PD pathogenesis is starting to be uncovered. Here, we report findings from astrocytes derived from induced pluripotent stem cells of LRRK2 G2019S mutant patients, with one patient also carrying a GBA N370S mutation, as well as healthy individuals. The PD patient astrocytes manifest the hallmarks of the disease pathology including increased expression of alpha-synuclein. This has detrimental consequences, resulting in altered metabolism, disturbed Ca2+ homeostasis and increased release of cytokines upon inflammatory stimulation. Furthermore, PD astroglial cells manifest increased levels of polyamines and polyamine precursors while lysophosphatidylethanolamine levels are decreased, both of these changes have been reported also in PD brain. Collectively, these data reveal an important role for astrocytes in PD pathology and highlight the potential of iPSC-derived cells in disease modeling and drug discovery.
Collapse
Affiliation(s)
- Tuuli-Maria Sonninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Marja Koskuvi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Anastasia Shakirzyanova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Katja Puttonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Nikolay Naumenko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Pasi Tavi
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Šárka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland.
- Neuroscience Center, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
33
|
Kouchaki R, Abd-Nikfarjam B, Maali AH, Abroun S, Foroughi F, Ghaffari S, Azad M. Induced Pluripotent Stem Cell Meets Severe Combined Immunodeficiency. CELL JOURNAL 2020; 22:1-10. [PMID: 32779449 PMCID: PMC7481889 DOI: 10.22074/cellj.2020.6849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Severe combined immunodeficiency (SCID) is classified as a primary immunodeficiency, which is characterized by impaired
T-lymphocytes differentiation. IL2RG, IL7Ralpha, JAK3, ADA, RAG1/RAG2, and DCLE1C (Artemis) are the most defective
genes in SCID. The most recent SCID therapies are based on gene therapy (GT) of hematopoietic stem cells (HSC), which
are faced with many challenges. The new studies in the field of stem cells have made great progress in overcoming the
challenges ahead. In 2006, Yamanaka et al. achieved "reprogramming" technology by introducing four transcription factors
known as Yamanaka factors, which generate induced pluripotent stem cells (iPSC) from somatic cells. It is possible to apply
iPSC-derived HSC for transplantation in patients with abnormality or loss of function in specific cells or damaged tissue, such
as T-cells and NK-cells in the context of SCID. The iPSC-based HSC transplantation in SCID and other hereditary disorders
needs gene correction before transplantation. Furthermore, iPSC technology has been introduced as a promising tool in
cellular-molecular disease modeling and drug discovery. In this article, we review iPSC-based GT and modeling for SCID
disease and novel approaches of iPSC application in SCID.
Collapse
Affiliation(s)
- Reza Kouchaki
- Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bahareh Abd-Nikfarjam
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farshad Foroughi
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sasan Ghaffari
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azad
- Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran. Electronic Address:
| |
Collapse
|
34
|
Pomeshchik Y, Klementieva O, Gil J, Martinsson I, Hansen MG, de Vries T, Sancho-Balsells A, Russ K, Savchenko E, Collin A, Vaz AR, Bagnoli S, Nacmias B, Rampon C, Sorbi S, Brites D, Marko-Varga G, Kokaia Z, Rezeli M, Gouras GK, Roybon L. Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports 2020; 15:256-273. [PMID: 32589876 PMCID: PMC7363942 DOI: 10.1016/j.stemcr.2020.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer disease (AD). Our understanding of early pathogenic processes occurring in hippocampi in AD is limited due to tissue unavailability. Here, we report a chemical approach to rapidly generate free-floating hippocampal spheroids (HSs), from human induced pluripotent stem cells. When used to model AD, both APP and atypical PS1 variant HSs displayed increased Aβ42/Aβ40 peptide ratios and decreased synaptic protein levels, which are common features of AD. However, the two variants differed in tau hyperphosphorylation, protein aggregation, and protein network alterations. NeuroD1-mediated gene therapy in HSs-derived progenitors resulted in modulation of expression of numerous genes, including those involved in synaptic transmission. Thus, HSs can be harnessed to unravel the mechanisms underlying early pathogenic changes in the hippocampi of AD patients, and provide a robust platform for the development of therapeutic strategies targeting early stage AD.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Medical Microspectroscopy, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Jeovanis Gil
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Isak Martinsson
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Marita Grønning Hansen
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Tessa de Vries
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Sancho-Balsells
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Kaspar Russ
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Collin
- Department of Clinical Genetics and Pathology, Office for Medical Services, Lund SE-221 85, Sweden
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Silvia Bagnoli
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Sandro Sorbi
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| |
Collapse
|
35
|
Mohamed NV, Larroquette F, Beitel LK, Fon EA, Durcan TM. One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. JOURNAL OF PARKINSONS DISEASE 2020; 9:265-281. [PMID: 30741685 PMCID: PMC6597965 DOI: 10.3233/jpd-181515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying Parkinson’s disease (PD) in the laboratory presents many challenges, the main one being the limited availability of human cells and tissue from affected individuals. As PD is characterized by a loss of dopaminergic (DA) neurons in the brain, it is nearly impossible for researchers to access and extract these cells from living patients. Thus, in the past PD research has focused on the use of patients’ post-mortem tissues, animal models, or immortalized cell lines to dissect cellular pathways of interest. While these strategies deepened our knowledge of pathological mechanisms in PD, they failed to faithfully capture key mechanisms at play in the human brain. The emergence of induced pluripotent stem cell (iPSC) technology is revolutionizing PD research, as it allows for the differentiation and growth of human DA neurons in vitro, holding immense potential not only for modelling PD, but also for identifying novel therapies. However, to reproduce the complexity of the brain’s environment, researchers are recognizing the need to further develop and refine iPSC-based tools. In this review, we provide an overview of different systems now available for the study of PD, with a particular emphasis on the potential and limitations of iPSC as research tools to generate more relevant models of PD pathophysiology and advance the drug discovery process.
Collapse
Affiliation(s)
- Nguyen-Vi Mohamed
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Frédérique Larroquette
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Generation of induced pluripotent stem cell line RCPCMi004-A derived from patient with Parkinson's disease with deletion of the exon 2 in PARK2 gene. Stem Cell Res 2020; 44:101733. [PMID: 32151951 DOI: 10.1016/j.scr.2020.101733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022] Open
Abstract
IPSC line RCPCMi004-A was generated from skin fibroblasts collected from a male patient with early onset Parkinson's disease. The patient carries a heterozygous deletion of the exon 2 of PARK2 gene. The reprogramming of fibroblasts was performed with Sendai viruses containing Oct-4, Sox-2, Klf-4 and c-Myc. Pluripotency was confirmed by immunofluorescence, RT-PCR, and formation of embryoid bodies. The RCPCMi004-A cell line carries the same deletion in PARK2 gene. The RCPCMi004-A cell line can be used to model Parkinson's disease in vitro.
Collapse
|
37
|
Korpi ER, Lindholm D, Panula P, Tienari PJ, Haltia M. Finnish neuroscience from past to present. Eur J Neurosci 2020; 52:3273-3289. [PMID: 32017266 DOI: 10.1111/ejn.14693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Research Programs Unit, Translational Immunology, University of Helsinki, Helsinki, Finland.,Department of Neurology, Neurocenter, Helsinki University Hospital, Helsinki, Finland
| | - Matti Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
de Majo M, Koontz M, Rowitch D, Ullian EM. An update on human astrocytes and their role in development and disease. Glia 2020; 68:685-704. [PMID: 31926040 DOI: 10.1002/glia.23771] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mark Koontz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - David Rowitch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California.,Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
39
|
Azevedo C, Chumarina M, Serafimova E, Goldwurm S, Collin A, Roybon L, Savchenko E, Pomeshchik Y. Generation of an induced pluripotent stem cell line (CSC-32) from a patient with Parkinson's disease carrying a heterozygous variation p.A53T in the SNCA gene. Stem Cell Res 2020; 43:101694. [PMID: 31954327 DOI: 10.1016/j.scr.2019.101694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022] Open
Abstract
Here, we describe the generation of an induced pluripotent stem cell (iPSC) line, from a male patient diagnosed with Parkinson's disease (PD). The patient carries a heterozygous variation p.A53T in the SNCA gene. Skin fibroblasts were reprogrammed using the non-integrating Sendai virus technology to deliver OCT3/4, SOX2, c-MYC and KLF4 factors. The generated iPSC line (CSC-32) preserved the mutation, displayed expression of common pluripotency markers, differentiated into derivatives of the three germ layers, and exhibited a normal karyotype. The clone CSC-32B is presented thereafter; it can be used to study the mechanisms underlying PD pathogenesis.
Collapse
Affiliation(s)
- Carla Azevedo
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Margarita Chumarina
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Evgenija Serafimova
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Stefano Goldwurm
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | - Anna Collin
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden.
| | - Ekaterina Savchenko
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| | - Yuriy Pomeshchik
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Mesquita FCP, Arantes PC, Kasai-Brunswick TH, Araujo DS, Gubert F, Monnerat G, Silva Dos Santos D, Neiman G, Leitão IC, Barbosa RAQ, Coutinho JL, Vaz IM, Dos Santos MN, Borgonovo T, Cruz FES, Miriuka S, Medei EH, Campos de Carvalho AC, Carvalho AB. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci Rep 2019; 9:19203. [PMID: 31844156 PMCID: PMC6915575 DOI: 10.1038/s41598-019-55837-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Patient-specific cardiomyocytes obtained from induced pluripotent stem cells (CM-iPSC) offer unprecedented mechanistic insights in the study of inherited cardiac diseases. The objective of this work was to study a type 2 long QT syndrome (LQTS2)-associated mutation (c.1600C > T in KCNH2, p.R534C in hERG) in CM-iPSC. Peripheral blood mononuclear cells were isolated from two patients with the R534C mutation and iPSCs were generated. In addition, the same mutation was inserted in a control iPSC line by genome editing using CRISPR/Cas9. Cells expressed pluripotency markers and showed spontaneous differentiation into the three embryonic germ layers. Electrophysiology demonstrated that action potential duration (APD) of LQTS2 CM-iPSC was significantly longer than that of the control line, as well as the triangulation of the action potentials (AP), implying a longer duration of phase 3. Treatment with the IKr inhibitor E4031 only caused APD prolongation in the control line. Patch clamp showed a reduction of IKr on LQTS2 CM-iPSC compared to control, but channel activation was not significantly affected. Immunofluorescence for hERG demonstrated perinuclear staining in LQTS2 CM-iPSC. In conclusion, CM-iPSC recapitulated the LQTS2 phenotype and our findings suggest that the R534C mutation in KCNH2 leads to a channel trafficking defect to the plasma membrane.
Collapse
Affiliation(s)
- Fernanda C P Mesquita
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo C Arantes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tais H Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Dayana S Araujo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Gubert
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco F, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gustavo Monnerat
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Danúbia Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gabriel Neiman
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Isabela C Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jorge L Coutinho
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Isadora M Vaz
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Marcus N Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Tamara Borgonovo
- Pontifical Catholic University of Parana. Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil
| | - Fernando E S Cruz
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil
| | - Santiago Miriuka
- FLENI Foundation, Sede Escobar. Ruta 9, Km 53, Belen de Escobar, BA, B1625, Argentina
| | - Emiliano H Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Antonio C Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute of Cardiology, Rua das Laranjeiras 374, Rio de Janeiro, RJ, 22240-006, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Adriana B Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
- National Institute for Science and Technology in Regenerative Medicine. Avenida Carlos Chagas Filho 373, Bloco M, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
41
|
Chumarina M, Russ K, Azevedo C, Heuer A, Pihl M, Collin A, Frostner EÅ, Elmer E, Hyttel P, Cappelletti G, Zini M, Goldwurm S, Roybon L. Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene. Acta Neuropathol Commun 2019; 7:208. [PMID: 31843010 PMCID: PMC6916051 DOI: 10.1186/s40478-019-0863-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Variations in the POLG1 gene encoding the catalytic subunit of the mitochondrial DNA polymerase gamma, have recently been associated with Parkinson's disease (PD), especially in patients diagnosed with progressive external ophthalmoplegia (PEO). However, the majority of the studies reporting this association mainly focused on the genetic identification of the variation in POLG1 in PD patient primary cells, and determination of mitochondrial DNA copy number, providing little information about the cellular alterations existing in patient brain cells, in particular dopaminergic neurons. Therefore, through the use of induced pluripotent stem cells (iPSCs), we assessed cellular alterations in novel p.Q811R POLG1 (POLG1Q811R) variant midbrain dopaminergic neuron-containing spheroids (MDNS) from a female patient who developed early-onset PD, and compared them to cultures derived from a healthy control of the same gender. Both POLG1 variant and control MDNS contained functional midbrain regionalized TH/FOXA2-positive dopaminergic neurons, capable of releasing dopamine. Western blot analysis identified the presence of high molecular weight oligomeric alpha-synuclein in POLG1Q811R MDNS compared to control cultures. In order to assess POLG1Q811R-related cellular alterations within the MDNS, we applied mass-spectrometry based quantitative proteomic analysis. In total, 6749 proteins were identified, with 61 significantly differentially expressed between POLG1Q811R and control samples. Pro- and anti-inflammatory signaling and pathways involved in energy metabolism were altered. Notably, increased glycolysis in POLG1Q811R MDNS was suggested by the increase in PFKM and LDHA levels and confirmed using functional analysis of glycolytic rate and oxygen consumption levels. Our results validate the use of iPSCs to assess cellular alterations in relation to PD pathogenesis, in a unique PD patient carrying a novel p.Q811R variation in POLG1, and identify several altered pathways that may be relevant to PD pathogenesis.
Collapse
|
42
|
Ren C, Wang F, Guan LN, Cheng XY, Zhang CY, Geng DQ, Liu CF. A compendious summary of Parkinson's disease patient-derived iPSCs in the first decade. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:685. [PMID: 31930086 PMCID: PMC6944564 DOI: 10.21037/atm.2019.11.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022]
Abstract
The number of Parkinson's disease (PD) patients increases with aging, which brings heavy burden to families and society. The emergence of patient-derived induced pluripotent stem cells (iPSCs) has brought hope to the current situation of lacking new breakthroughs in diagnosis and treatment of PD. In this article, we reviewed and analyzed the current researches related to PD patient-derived iPSCs, in order to provide solid theoretical basis for future study of PD. In 2008, successful iPSCs derived from PD patients were reported. The current iPSCs research in PD mostly focused on the establishment of specific iPSCs models of PD patients carrying susceptible genes. The main source of PD patient-derived iPSCs is skin fibroblasts and the mainstream reprogramming methodology is the mature "four-factor" method, which introduces four totipotent correlation factors Oct4, Sox2, Klf4 and c-Myc into somatic cells. The main sources of iPSCs are patients with non-pedigrees and there have been no studies involving both PD patients and unaffected carriers within the same family. Most of the existing studies of PD patient-derived iPSCs started with the induction method for obtaining dopaminergic neurons in the first instance, but therapeutic applications are being increased. Although it is not the ultimate panacea, and there are still some unsolved problems (e.g., whether the mutated genes should be corrected or not), a better understanding of iPSCs may be a good gift for both PD patients and doctors due to their advantages in diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Li-Na Guan
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Neurosurgical Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Xiao-Yu Cheng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Cai-Yi Zhang
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - De-Qin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Konttinen H, Cabral-da-Silva MEC, Ohtonen S, Wojciechowski S, Shakirzyanova A, Caligola S, Giugno R, Ishchenko Y, Hernández D, Fazaludeen MF, Eamen S, Budia MG, Fagerlund I, Scoyni F, Korhonen P, Huber N, Haapasalo A, Hewitt AW, Vickers J, Smith GC, Oksanen M, Graff C, Kanninen KM, Lehtonen S, Propson N, Schwartz MP, Pébay A, Koistinaho J, Ooi L, Malm T. PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports 2019; 13:669-683. [PMID: 31522977 PMCID: PMC6829767 DOI: 10.1016/j.stemcr.2019.08.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1ΔE9, and APPswe, on functionality of human microglia-like cells (iMGLs). We present a physiologically relevant high-yield protocol for producing iMGLs from induced pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1ΔE9 and APPswe mutations trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD. APOE4 genotype has a profound impact on several functions of microglia-like cells Inflammatory responses are aggravated in cells with APOE4 genotype Metabolism, phagocytosis, and migration are decreased in APOE4 microglia-like cells Familial mutations APPswe and PSEN1ΔE9 have only minor effects on functionality
Collapse
Affiliation(s)
- Henna Konttinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Mauricio E Castro Cabral-da-Silva
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sohvi Ohtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Anastasia Shakirzyanova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Simone Caligola
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Yevheniia Ishchenko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Damián Hernández
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia; Department of Anatomy and Neuroscience, the University of Melbourne, Melbourne, VIC 3002, Australia
| | | | - Shaila Eamen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Mireia Gómez Budia
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Ilkka Fagerlund
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Flavia Scoyni
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Paula Korhonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Nadine Huber
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Annakaisa Haapasalo
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, VIC 7005, Australia
| | - James Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Grady C Smith
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Caroline Graff
- Department NVS, Division of Neurogeriatrics, Karolinka Institutet, Stockholm 17176, Sweden; Theme Aging, Genetics Unit, Karolinska University Hospital-Solna, Stockholm 17176, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Sarka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Nicholas Propson
- Department of Molecular and Cell Biology and the Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; Department of Surgery, the University of Melbourne, Melbourne, VIC 3002, Australia; Department of Anatomy and Neuroscience, the University of Melbourne, Melbourne, VIC 3002, Australia
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland; Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland.
| |
Collapse
|
44
|
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 2019; 76:2739-2760. [PMID: 31016348 PMCID: PMC6588647 DOI: 10.1007/s00018-019-03111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/06/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease. Moreover, human astrocytes have been found to be much more complex than their rodent counterparts, and to date, astrocytes are known to actively participate in a multitude of processes such as neurotransmitter uptake and recycling, gliotransmitter release, neuroenergetics, inflammation, modulation of synaptic activity, ionic balance, maintenance of the blood-brain barrier, and many other crucial functions of the brain. This review focuses on the role of astrocytes in human neurodegenerative disease and the potential of the novel stem cell-based platforms in modeling astrocytic functions in health and in disease.
Collapse
Affiliation(s)
- Minna Oksanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Sarka Lehtonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland
| | - Merja Jaronen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Gundars Goldsteins
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, PO. Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
45
|
Mohamed NV, Mathur M, da Silva RV, Beitel LK, Fon EA, Durcan TM. Generation of human midbrain organoids from induced pluripotent stem cells. ACTA ACUST UNITED AC 2019. [DOI: 10.12688/mniopenres.12816.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of brain organoids represents a major technological advance in the stem cell field, a novel bridge between traditional 2D cultures and in vivo animal models. In particular, the development of midbrain organoids containing functional dopaminergic neurons producing neuromelanin granules, a by-product of dopamine synthesis, represents a potential new model for Parkinson’s disease. To generate human midbrain organoids, we introduce specific inductive cues, at defined timepoints, during the 3D culture process to drive the stem cells towards a midbrain fate. In this method paper, we describe a standardized protocol to generate human midbrain organoids (hMOs) from induced pluripotent stem cells (iPSCs). This protocol was developed to demonstrate how human iPSCs can be successfully differentiated into numerous, high quality midbrain organoids in one batch. We also describe adaptations for cryosectioning of fixed organoids for subsequent histological analysis.
Collapse
|
46
|
Gustavsson N, Marote A, Pomeshchik Y, Russ K, Azevedo C, Chumarina M, Goldwurm S, Collin A, Pinto L, Salgado AJ, Klementieva O, Roybon L, Savchenko E. Generation of an induced pluripotent stem cell line (CSC-46) from a patient with Parkinson's disease carrying a novel p.R301C mutation in the GBA gene. Stem Cell Res 2019; 34:101373. [DOI: 10.1016/j.scr.2018.101373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 11/26/2022] Open
|
47
|
Kashpur O, Smith A, Gerami-Naini B, Maione AG, Calabrese R, Tellechea A, Theocharidis G, Liang L, Pastar I, Tomic-Canic M, Mooney D, Veves A, Garlick JA. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB J 2019; 33:1262-1277. [PMID: 30088952 PMCID: PMC6355091 DOI: 10.1096/fj.201801059] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
Diabetic foot ulcers (DFUs) are a major complication of diabetes, and there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Induced pluripotent stem cells (iPSCs) offer a replenishing source of allogeneic and autologous cell types that may be beneficial to improve DFU wound-healing outcomes. However, the biologic potential of iPSC-derived cells to treat DFUs has not, to our knowledge, been investigated. Toward that goal, we have performed detailed characterization of iPSC-derived fibroblasts from both diabetic and nondiabetic patients. Significantly, gene array and functional analyses reveal that iPSC-derived fibroblasts from both patients with and those without diabetes are more similar to each other than were the primary cells from which they were derived. iPSC-derived fibroblasts showed improved migratory properties in 2-dimensional culture. iPSC-derived fibroblasts from DFUs displayed a unique biochemical composition and morphology when grown as 3-dimensional (3D), self-assembled extracellular matrix tissues, which were distinct from tissues fabricated using the parental DFU fibroblasts from which they were reprogrammed. In vivo transplantation of 3D tissues with iPSC-derived fibroblasts showed they persisted in the wound and facilitated diabetic wound closure compared with primary DFU fibroblasts. Taken together, our findings support the potential application of these iPSC-derived fibroblasts and 3D tissues to improve wound healing.-Kashpur, O., Smith, A., Gerami-Naini, B., Maione, A. G., Calabrese, R., Tellechea, A., Theocharidis, G., Liang, L., Pastar, I., Tomic-Canic, M., Mooney, D., Veves, A., Garlick, J. A. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.
Collapse
Affiliation(s)
- Olga Kashpur
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Avi Smith
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Behzad Gerami-Naini
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Anna G. Maione
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Rossella Calabrese
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Ana Tellechea
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Georgios Theocharidis
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Liang Liang
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Aristidis Veves
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Jonathan A. Garlick
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Mishima T, Fujioka S, Fukae J, Yuasa-Kawada J, Tsuboi Y. Modeling Parkinson's Disease and Atypical Parkinsonian Syndromes Using Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:ijms19123870. [PMID: 30518093 PMCID: PMC6321610 DOI: 10.3390/ijms19123870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/11/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease (PD) and atypical parkinsonian syndromes are age-dependent multifactorial neurodegenerative diseases, which are clinically characterized by bradykinesia, tremor, muscle rigidity and postural instability. Although these diseases share several common clinical phenotypes, their pathophysiological aspects vary among the disease categories. Extensive animal-based approaches, as well as postmortem studies, have provided important insights into the disease mechanisms and potential therapeutic targets. However, the exact pathological mechanisms triggering such diseases still remain elusive. Furthermore, the effects of drugs observed in animal models are not always reproduced in human clinical trials. By using induced pluripotent stem cell (iPSC) technology, it has become possible to establish patient-specific iPSCs from their somatic cells and to effectively differentiate these iPSCs into different types of neurons, reproducing some key aspects of the disease phenotypes in vitro. In this review, we summarize recent findings from iPSC-based modeling of PD and several atypical parkinsonian syndromes including multiple system atrophy, frontotemporal dementia and parkinsonism linked to chromosome 17 and Perry syndrome. Furthermore, we discuss future challenges and prospects for modeling and understanding PD and atypical parkinsonian syndromes.
Collapse
Affiliation(s)
- Takayasu Mishima
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Jiro Fukae
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
49
|
Simonova VV, Vetchinova AS, Novosadova EV, Khaspekov LG, Illarioshkin SN. Genome Editing and the Problem of Tetraploidy in Cell Modeling of the Genetic Form of Parkinsonism. BIOCHEMISTRY (MOSCOW) 2018; 83:1040-1045. [PMID: 30472942 DOI: 10.1134/s0006297918090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The prevalent form of familial parkinsonism is caused by mutations in the LRRK2 gene encoding for the mitochondrial protein kinase. In the review, we discuss possible causes of appearance of tetraploid cells in neuronal precursors obtained from induced pluripotent stem cells from patients with the LRRK2-associated form of parkinsonism after genome editing procedure. As LRRK2 protein participates in cell proliferation and maintenance of the nuclear envelope, spindle fibers, and cytoskeleton, mutations in the LRRK2 gene can affect protein functions and lead, via various mechanisms, to the mitotic machinery disintegration and chromosomal aberration. These abnormalities can appear at different stages of fibroblast reprogramming; therefore, editing of the LRRK2 nucleotide sequence should be done during or before the reprogramming stage.
Collapse
Affiliation(s)
- V V Simonova
- Research Center of Neurology, Moscow, 125367, Russia
| | | | - E V Novosadova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - L G Khaspekov
- Research Center of Neurology, Moscow, 125367, Russia.
| | | |
Collapse
|
50
|
Konttinen H, Gureviciene I, Oksanen M, Grubman A, Loppi S, Huuskonen MT, Korhonen P, Lampinen R, Keuters M, Belaya I, Tanila H, Kanninen KM, Goldsteins G, Landreth G, Koistinaho J, Malm T. PPARβ/δ-agonist GW0742 ameliorates dysfunction in fatty acid oxidation in PSEN1ΔE9 astrocytes. Glia 2018; 67:146-159. [PMID: 30453390 DOI: 10.1002/glia.23534] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022]
Abstract
Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARβ/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aβ) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aβ-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARβ/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.
Collapse
Affiliation(s)
- Henna Konttinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irina Gureviciene
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Sanna Loppi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko T Huuskonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Meike Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gary Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|