1
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2025; 30:679-692. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Chopra S, Levi PT, Holmes A, Orchard ER, Segal A, Francey SM, O'Donoghue B, Cropley VL, Nelson B, Graham J, Baldwin L, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Fornito A. Brainwide Anatomical Connectivity and Prediction of Longitudinal Outcomes in Antipsychotic-Naïve First-Episode Psychosis. Biol Psychiatry 2025; 97:157-166. [PMID: 39069164 DOI: 10.1016/j.biopsych.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Disruptions of axonal connectivity are thought to be a core pathophysiological feature of psychotic illness, but whether they are present early in the illness, prior to antipsychotic exposure, and whether they can predict clinical outcome remain unknown. METHODS We acquired diffusion-weighted magnetic resonance images to map structural connectivity between each pair of 319 parcellated brain regions in 61 antipsychotic-naïve individuals with first-episode psychosis (15-25 years, 46% female) and a demographically matched sample of 27 control participants. Clinical follow-up data were also acquired in patients 3 and 12 months after the scan. We used connectome-wide analyses to map disruptions of inter-regional pairwise connectivity and connectome-based predictive modeling to predict longitudinal change in symptoms and functioning. RESULTS Individuals with first-episode psychosis showed disrupted connectivity in a brainwide network linking all brain regions compared with controls (familywise error-corrected p = .03). Baseline structural connectivity significantly predicted change in functioning over 12 months (r = 0.44, familywise error-corrected p = .041), such that lower connectivity within fronto-striato-thalamic systems predicted worse functional outcomes. CONCLUSIONS Brainwide reductions of structural connectivity exist during the early stages of psychotic illness and cannot be attributed to antipsychotic medication. Moreover, baseline measures of structural connectivity can predict change in patient functional outcomes up to 1 year after engagement with treatment services.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia; Department of Psychology, Yale University, New Haven, Connecticut; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Priscila T Levi
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Alexander Holmes
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Edwina R Orchard
- Yale Child Study Centre, Yale University, New Haven, Connecticut
| | - Ashlea Segal
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia; Wu Tsai Institute, Department of Neuroscience, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Shona M Francey
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian O'Donoghue
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; St. Vincent's University Hospital, Dublin 4, Ireland; Department of Psychiatry, University College Dublin, Dublin 4, Ireland
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lara Baldwin
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susy Harrigan
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Mental Health, Melbourne School of Global and Population Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia; Western Hospital Sunshine, St. Albans, Victoria, Australia
| | - Stephen J Wood
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; School of Psychology, University of Birmingham, Edgbaston, United Kingdom
| | - Patrick McGorry
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Cao X, Li Q, Liu S, Li Z, Wang Y, Cheng L, Yang C, Xu Y. Enhanced Resting-State Functional Connectivity of the Nucleus Accumbens in First-Episode, Medication-Naïve Patients With Early Onset Schizophrenia. Front Neurosci 2022; 16:844519. [PMID: 35401094 PMCID: PMC8990232 DOI: 10.3389/fnins.2022.844519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 01/10/2023] Open
Abstract
There is abundant evidence that early onset schizophrenia (EOS) is associated with abnormalities in widespread regions, including the cortical, striatal, and limbic areas. As a main component of the ventral striatum, the nucleus accumbens (NAc) is implicated in the pathology of schizophrenia. However, functional connection patterns of NAc in patients with schizophrenia, especially EOS, are seldom explored. A total of 78 first-episode, medication-naïve patients with EOS and 90 healthy controls were recruited in the present study, and resting-state, seed-based functional connectivity (FC) analyses were performed to investigate temporal correlations between NAc and the rest of the brain in the two groups. Additionally, correlation analyses were done between regions showing group differences in NAc functional integration and clinical features of EOS. Group comparison found enhanced FC of the NAc in the EOS group relative to the HCs with increased FC in the right superior temporal gyrus and left superior parietal gyrus with the left NAc region of interest (ROI) and elevated FC in left middle occipital gyrus with the right NAc ROI. No significant associations were found between FC strength and symptom severity as well as the age of the patients. Our findings reveal abnormally enhanced FC of the NAc with regions located in the temporal, parietal, and occipital areas, which were implicated in auditory/visual processing, sensorimotor integration, and cognitive functions. The results suggest disturbed relationships between regions subserving reward, salience processing, and regions subserving sensory processing as well as cognitive functions, which may deepen our understanding of the role of NAc in the pathology of EOS.
Collapse
Affiliation(s)
- Xiaohua Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Qiang Li
- Shanxi Provincial Corps Hospital of Chinese People’s Armed Police Force, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Long Cheng
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chengxiang Yang
- Department of Psychiatry, Shanxi Bethune Hospital, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, Taiyuan, China
- *Correspondence: Yong Xu, ;
| |
Collapse
|
4
|
Caspi Y. A Possible White Matter Compensating Mechanism in the Brain of Relatives of People Affected by Psychosis Inferred from Repeated Long-Term DTI Scans. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac055. [PMID: 39144792 PMCID: PMC11205972 DOI: 10.1093/schizbullopen/sgac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis An existing model suggests that some brain features of relatives of people affected by psychosis can be distinguished from both the probands and a control group. Such findings can be interpreted as representing a compensating mechanism. Study Design We studied white matter features using diffusion tensor imaging in a cohort of 82 people affected by psychosis, 122 of their first-degree relatives, and 89 control subjects that were scanned between two to three times with an interval of approximately 3 years between consecutive scans. We measured both fractional anisotropy and other standard diffusivity measures such as axial diffusivity. Additionally, we calculated standard connectivity measures such as path length based on probabilistic or deterministic tractography. Finally, by averaging the values of the different measures over the two or three consecutive scans, we studied epoch-averagely the difference between these three groups. Study Results For several tracts and several connectivity measures, the relatives showed distinct features from both the probands and the control groups. In those cases, the relatives did not necessarily score between the probands and the control group. An aggregate analysis in the form of a group-dependent score for the different modes of the analysis (e.g., for fractional anisotropy) supported this observation. Conclusions We interpret these results as evidence supporting a compensation mechanism in the brain of relatives that may be related to resilience that some of them exhibit in the face of the genetic risk they have for being affected by psychosis.
Collapse
Affiliation(s)
- Yaron Caspi
- UMC Utrecht Brain Center, Department of Psychiatry, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
5
|
Xie Y, Cai Y, Guan M, Wang Z, Ma Z, Fang P, Wang H. The alternations of nucleus accumbent in schizophrenia patients with auditory verbal hallucinations during low-frequency rTMS treatment. Front Psychiatry 2022; 13:971105. [PMID: 36147981 PMCID: PMC9485869 DOI: 10.3389/fpsyt.2022.971105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023] Open
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce the severity of auditory verbal hallucinations (AVH) and induce beneficial functional and structural alternations of the brain in schizophrenia patients with AVH. The nucleus accumbens (NAcc) as an important component of the ventral striatum is implicated with the pathology in AVH. However, the induced characteristic patterns of NAcc by low-frequency rTMS in schizophrenia with AVH are seldom explored. We investigated the functional and structural characteristic patterns of NAcc by using seed-based functional connectivity (FC) analysis and gray matter volume (GMV) measurement in schizophrenia patients with AVH during 1 Hz rTMS treatment. Although low-frequency rTMS treatment did not affect the volumetric changes of NAcc, the abnormal FC patterns of NAcc, including increased FC of NAcc with the temporal lobes and decreased FC of NAcc with the frontal cortices in the pretreatment patients compared to healthy controls, were normalized or reversed after treatment. These FC changes were associated with improvements in clinical symptoms and neurocognitive functions. Our findings may extend our understanding of the NAcc in the pathology of schizophrenia with AVH and might be a biomarker of clinical effect for low-frequency rTMS treatment in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yun Cai
- Department of Neurodevelopment Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Clinical Psychology, Air Force Medical University, Xi'an, China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
6
|
Xu X, Luo S, Wen X, Wang X, Yin J, Luo X, He B, Liang C, Xiong S, Zhu D, Fu J, Lv D, Dai Z, Lin J, Li Y, Lin Z, Chen W, Luo Z, Wang Y, Ma G. Genetic Contribution of Synapse-Associated Protein 97 to Orbitofrontal-Striatal-Thalamic Circuitry Connectivity Changes in First-Episode Schizophrenia. Front Psychiatry 2021; 12:691007. [PMID: 34349683 PMCID: PMC8326367 DOI: 10.3389/fpsyt.2021.691007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
Functional and structural disturbances in the orbitofrontal-striatal-thalamic circuitry are thought to be associated with mental symptoms and neurocognitive impairments in schizophrenia. This study tested whether synapse-associated protein 97 (SAP97), a reasonable candidate gene for schizophrenia, is related to orbitofrontal-striatal-thalamic connection changes in first-episode schizophrenia (FES) patients and the clinical performance of schizophrenic patients by affecting this integrity. Fifty-two FES patients and 52 matched healthy controls were recruited. All subjects underwent genotyping via the improved multiplex ligation detection reaction technique and scanning with magnetic resonance imaging (MRI) to provide orbitofrontal-striatal-thalamic functional and structural imaging data. A two-way analysis of covariance model was employed to examine abnormal brain connectivities, and Spearman correlations were applied to estimate the relationships between brain connectivity and clinical manifestations. In the FES group, those with the SAP97 rs3915512 TT genotype showed lower structural and functional connectivity than A allele carriers between the orbitofrontal gyrus and striatum/thalamus. In the FES group, negative correlations were found between resting-state functional connectivity (RSFC) in the orbitofrontal gyrus and thalamus, and positive symptoms between structural connections in the orbitofrontal gyrus and striatum and cognitive functions, and positive correlations were suggested between RSFC in the orbitofrontal gyrus and thalamus and negative symptoms. Our findings suggested that the SAP97 rs3915512 polymorphism may be involved in mental symptoms and cognitive dysfunction in FES patients by influencing structural and functional connectivity of the orbitofrontal-striatal and orbitofrontal-thalamic regions.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoxia Wang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
7
|
Li P, Jing RX, Zhao RJ, Shi L, Sun HQ, Ding Z, Lin X, Lu L, Fan Y. Association between functional and structural connectivity of the corticostriatal network in people with schizophrenia and unaffected first-degree relatives. J Psychiatry Neurosci 2020; 45:395-405. [PMID: 32436671 PMCID: PMC7595738 DOI: 10.1503/jpn.190015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Dysfunction of the corticostriatal network has been implicated in the pathophysiology of schizophrenia, but findings are inconsistent within and across imaging modalities. We used multimodal neuroimaging to analyze functional and structural connectivity in the corticostriatal network in people with schizophrenia and unaffected first-degree relatives. METHODS We collected resting-state functional magnetic resonance imaging and diffusion tensor imaging scans from people with schizophrenia (n = 47), relatives (n = 30) and controls (n = 49). We compared seed-based functional and structural connectivity across groups within striatal subdivisions defined a priori. RESULTS Compared with controls, people with schizophrenia had altered connectivity between the subdivisions and brain regions in the frontal and temporal cortices and thalamus; relatives showed different connectivity between the subdivisions and the right anterior cingulate cortex (ACC) and the left precuneus. Post-hoc t tests revealed that people with schizophrenia had decreased functional connectivity in the ventral loop (ventral striatum-right ACC) and dorsal loop (executive striatum-right ACC and sensorimotor striatum-right ACC), accompanied by decreased structural connectivity; relatives had reduced functional connectivity in the ventral loop and the dorsal loop (right executive striatum-right ACC) and no significant difference in structural connectivity compared with the other groups. Functional connectivity among people with schizophrenia in the bilateral ventral striatum-right ACC was correlated with positive symptom severity. LIMITATIONS The number of relatives included was moderate. Striatal subdivisions were defined based on a relatively low threshold, and structural connectivity was measured based on fractional anisotropy alone. CONCLUSION Our findings provide insight into the role of hypoconnectivity of the ventral corticostriatal system in people with schizophrenia.
Collapse
Affiliation(s)
- Peng Li
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Ri-Xing Jing
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Rong-Jiang Zhao
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Le Shi
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Hong-Qiang Sun
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Zengbo Ding
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Xiao Lin
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Lin Lu
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Yong Fan
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| |
Collapse
|
8
|
Heller C, Steinmann S, Levitt JJ, Makris N, Antshel KM, Fremont W, Coman IL, Schweinberger SR, Weiß T, Bouix S, Kubicki MR, Kates WR, Kikinis Z. Abnormalities in white matter tracts in the fronto-striatal-thalamic circuit are associated with verbal performance in 22q11.2DS. Schizophr Res 2020; 224:141-150. [PMID: 33268158 PMCID: PMC7727455 DOI: 10.1016/j.schres.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Abnormalities in fronto-striatal-thalamic (FST) sub-circuits are present in schizophrenia and are associated with cognitive impairments. However, it remains unknown whether abnormalities in FST sub-circuits are present before psychosis onset. This may be elucidated by investigating 22q11.2 deletion syndrome (22q11DS), a genetic syndrome associated with a 30% risk for developing schizophrenia in adulthood and a decline in Verbal IQ (VIQ) preceding psychosis onset. Here, we examined white matter (WM) tracts in FST sub-circuits, especially those in the dorsolateral (DLPFC) and ventrolateral prefrontal cortex (VLPFC) sub-circuits, and their associations with VIQ in young adults with 22q11DS. METHODS Diffusion MRI scans were acquired from 21 individuals with 22q11DS with prodromal symptoms of schizophrenia, 30 individuals with 22q11DS without prodromal symptoms, and 30 healthy controls (mean age: 21 ± 2 years). WM tracts were reconstructed between striatum and thalamus with rostral middle frontal gyrus (rMFG) and inferior frontal gyrus (IFG), representing DLPFC and VLPFC respectively. Fractional anisotropy (FA) and radial diffusivity (RD) were used for group comparisons. VIQ was assessed and associations with the diffusion measures were evaluated. RESULTS FA was significantly increased and RD decreased in most tracts of the DLPFC and VLPFC sub-circuits in 22q11DS. Verbal IQ scores correlated negatively with FA and, at trend level, positively with RD in the right thalamus-IFG tract in 22q11DS with prodromal symptoms. CONCLUSIONS While abnormalities in FST sub-circuits are associated with schizophrenia, we observed that these abnormalities are also present in 22q11DS individuals with prodromal symptoms and are associated with verbal performance in the right thalamus-IFG tract.
Collapse
Affiliation(s)
- Carina Heller
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; Department of Clinical Psychology, Friedrich-Schiller-University Jena, Germany.
| | - Saskia Steinmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James J Levitt
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin M Antshel
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ioana L Coman
- Department of Computer Science, SUNY Oswego, Oswego, NY, USA
| | | | - Thomas Weiß
- Department of Clinical Psychology, Friedrich-Schiller-University Jena, Germany
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek R Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Bhat NA, Sharma V, Kumar D. Prospective memory in obsessive compulsive disorder. Psychiatry Res 2018; 261:124-131. [PMID: 29294457 DOI: 10.1016/j.psychres.2017.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023]
Abstract
Studies on the nature and extent of prospective memory impairment in patients with obsessive-compulsive disorder are relatively scarce. The present study examined prospective memory in patients with obsessive-compulsive disorder in comparison to patients with schizophrenia and healthy controls. Prospective memory was assessed using Memory for Intentions Screening Test (MIST). Further, the participants were administered Delis-Kaplan Executive Function System Tower Test, Wisconsin Card Sorting Test, and Stroop Test for assessing their planning ability, mental flexibility and cognitive inhibition, respectively. Monitoring was assessed by frequency of clock checking. Results indicated that as compared to healthy controls, the patients with obsessive-compulsive disorder performed poorly on both time- and event-based prospective memory tasks, whereas, patients with schizophrenia performed poorly on time-based prospective memory task only. Further, both the patient groups had comparable performance across time- and event-based tasks. Results of error analysis indicated that patients with obsessive-compulsive disorder mainly committed no response and task substitution errors, whereas patients with schizophrenia committed no response errors. Except monitoring, none of the neurocognitive variables correlated with time or event-based prospective memory in any group. The findings are discussed in the light of their implications for retraining of prospective memory deficits in patients with obsessive-compulsive disorder and schizophrenia.
Collapse
Affiliation(s)
- Naseer Ahmad Bhat
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.
| | - Vibha Sharma
- Department of Clinical Psychology, Institute of Human Behaviour and Allied Sciences, (IHBAS), Delhi 110095, India
| | - Devvarta Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| |
Collapse
|
10
|
Dubourg L, Schneider M, Padula MC, Chambaz L, Schaer M, Eliez S. Implication of reward alterations in the expression of negative symptoms in 22q11.2 deletion syndrome: a behavioural and DTI study. Psychol Med 2017; 47:1442-1453. [PMID: 28112057 DOI: 10.1017/s0033291716003482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alterations of the reward system have been proposed as one of the core mechanisms underlying the expression of negative symptoms in schizophrenia. Specifically, deficits in specific reward components and white matter (WM) integrity of the reward system have been highlighted. The putative link between negative symptoms and the hedonic experience, or structural connectivity of the reward system has never been examined in the 22q11.2 deletion syndrome (22q11DS), a condition with increased risk for psychosis. METHOD Anticipatory and consummatory dimensions of pleasure were assessed in participants with 22q11DS (N = 54) and healthy controls (N = 55). In patients with 22q11DS, the association between pleasure scores and positive or negative symptoms was investigated. Furthermore, WM integrity of the accumbofrontal tract was quantified using diffusion tensor imaging (DTI). Associations between DTI measures, pleasure dimensions and negative symptoms were examined. RESULTS Patients with 22q11DS showed reduced anticipatory and consummatory pleasure compared to controls. Furthermore, anticipatory pleasure scores were negatively correlated to negative and positive symptoms in 22q11DS. WM microstructural changes of the accumbofrontal tract in terms of increased fractional anisotropy and reduced radial anisotropy were also identified in patients. However, no significant correlation between the DTI measures and pleasure dimensions or psychotic symptoms was observed. CONCLUSIONS This study revealed that participants with 22q11DS differed in their experience of pleasure compared to controls. The anticipatory pleasure component appears to be related to negative and positive symptom severity in patients. Alterations of WM integrity of the accumbofrontal tract seem to be related to myelination abnormalities in 22q11DS patients.
Collapse
Affiliation(s)
- L Dubourg
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M Schneider
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M C Padula
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - L Chambaz
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M Schaer
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - S Eliez
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| |
Collapse
|
11
|
Changes in White Matter Organization in Adolescent Offspring of Schizophrenia Patients. Neuropsychopharmacology 2017; 42:495-501. [PMID: 27440007 PMCID: PMC5399227 DOI: 10.1038/npp.2016.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 11/08/2022]
Abstract
Schizophrenia is associated with frontostriatal network impairments underlying clinical and cognitive symptoms. We previously found disruptions in anatomical pathways, including the tract connecting the left nucleus accumbens and left dorsolateral prefrontal cortex (DLPFC). Similar deficits are observed in unaffected siblings of schizophrenia patients, indicating that these deficits are linked to a genetic vulnerability for the disorder. Frontostriatal tract disruptions may arise during adolescence, preceding the clinical manifestation of the disorder. However, to date, no studies have been performed to investigate frontostriatal tract connections in adolescents who are at increased familial risk for schizophrenia. In this study, we investigate the impact of familial risk on frontostriatal tract connections using diffusion tensor imaging in 27 adolescent offspring of schizophrenia patients and 32 matched control adolescents, aged 10-18 years. Mean fractional anisotropy (FA) was calculated for the tracts connecting the striatum (caudate nucleus, putamen, nucleus accumbens) and frontal cortex regions (DLPFC, medial orbital frontal cortex, inferior frontal gyrus). As expected, based on siblings data, we found an impact of familial risk on frontostriatal development: schizophrenia offspring showed increased FA in the tracts connecting nucleus accumbens and DLPFC as compared with control adolescents. Moreover, while FA increased across age in control adolescents, it did not in schizophrenia offspring. We did not find differences in FA in other frontostriatal tracts. These results indicate altered development of white matter in subjects who are at familial risk for schizophrenia and may precede frontostriatal white matter alterations in adult schizophrenia patients and siblings.
Collapse
|
12
|
van Dellen E, Bohlken MM, Draaisma L, Tewarie PK, van Lutterveld R, Mandl R, Stam CJ, Sommer IE. Structural Brain Network Disturbances in the Psychosis Spectrum. Schizophr Bull 2016; 42:782-9. [PMID: 26644605 PMCID: PMC4838099 DOI: 10.1093/schbul/sbv178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Individuals with subclinical psychotic symptoms provide a unique window on the pathophysiology of psychotic experiences as these individuals are free of confounders such as hospitalization, negative and cognitive symptoms and medication use. Brain network disturbances of white matter connections are thought to play a central role in the pathophysiology of psychosis. Based on the structural network disconnection hypothesis in schizophrenia, we expect less and weaker connections, and altered brain network organization in individuals with clinical and those with subclinical psychotic symptoms. METHODS We used diffusion tensor imaging to study 35 patients with a psychotic disorder, 35 subjects with subclinical psychotic symptoms, and 36 healthy controls. The structural brain network was analyzed on 3 levels: connection density, white matter microstructure (fractional anisotropy, mean diffusivity, and magnetic transfer ratio), and network organization. Network organization was studied with minimum spanning tree analysis, a method to reconstruct a backbone of structural highways in the brain. RESULTS Decreased fractional anisotropy and increased mean diffusivity was found in both groups with psychotic symptoms, while their network topology showed decreased overlap with a healthy reference network. Decreased centrality was found in several brain regions, including parietal hubs and language areas, in both groups with psychotic symptoms. Deviation of network characteristics was more apparent in clinical subjects than in subclinical subjects. DISCUSSION Weaker connections and decreased centrality of parietal hubs characterize the structural brain network in subjects with psychotic symptoms. These differences are more notable in clinical than in subclinical subjects with psychotic experiences.
Collapse
Affiliation(s)
- Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands;
| | - Marc M. Bohlken
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Laurijn Draaisma
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Prejaas K. Tewarie
- Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Remko van Lutterveld
- Center for Mindfulness, University of Massachusetts School of Medicine, Shrewsbury, MA
| | - René Mandl
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Iris E. Sommer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
13
|
James A, Joyce E, Lunn D, Hough M, Kenny L, Ghataorhe P, Fernandes HM, Matthews PM, Zarei M. Abnormal frontostriatal connectivity in adolescent-onset schizophrenia and its relationship to cognitive functioning. Eur Psychiatry 2016; 35:32-8. [PMID: 27061375 DOI: 10.1016/j.eurpsy.2016.01.2426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Adolescent-onset schizophrenia (AOS) is associated with cognitive impairment and poor clinical outcome. Cognitive dysfunction is hypothesised, in part, to reflect functional dysconnectivity between the frontal cortex and the striatum, although structural abnormalities consistent with this hypothesis have not yet been demonstrated in adolescence. OBJECTIVE To characterise frontostriatal white matter (WM) tracts in relation to cognition in AOS. DESIGN A MRI volumetric and diffusion tensor imaging study. PARTICIPANTS Thirty-seven AOS subjects and 24 age and sex-matched healthy subjects. OUTCOME MEASURES Using probabilistic tractography, cortical regions with the highest connection probability for each striatal voxel were determined, and correlated with IQ and specific cognitive functions after co-varying for age and sex. Fractional anisotropy (FA) from individual tracts was a secondary measure. RESULTS Bayesian Structural Equation modeling of FA from 12 frontostriatal tracts showed processing speed to be an intermediary variable for cognition. AOS patients demonstrated generalised cognitive impairment with specific deficits in verbal learning and memory and in processing speed after correction for IQ. Dorsolateral prefrontal cortex connectivity with the striatum correlated positively with these measures and with IQ. DTI voxel-wise comparisons showed lower connectivity between striatum and the motor and lateral orbitofrontal cortices bilaterally, the left amygdalohippocampal complex, right anterior cingulate cortex, left medial orbitofrontal cortex and right dorsolateral prefrontal cortex. CONCLUSIONS Frontostriatal dysconnectivity in large WM tracts that can explain core cognitive deficits are evident during adolescence. Processing speed, which is affected by alterations in WM connectivity, appears an intermediary variable in the cognitive deficits seen in schizophrenia.
Collapse
Affiliation(s)
- A James
- Highfield Unit, Warneford Hospital, Oxford, UK; Department of Psychiatry, Oxford University, Oxford, UK
| | - E Joyce
- Sobell Department Motor Neuroscience, UCL Institute of Neurology, London, UK
| | - D Lunn
- Department of Statistics, University of Oxford, Oxford, UK
| | - M Hough
- FMRIB Centre, John Radcliffe Hospital Oxford, University of Oxford, Oxford, UK
| | - L Kenny
- Highfield Unit, Warneford Hospital, Oxford, UK
| | - P Ghataorhe
- GSK Clinical Imaging Centre, Hammersmith Hospital, London, UK
| | - H M Fernandes
- Department of Psychiatry, Oxford University, Oxford, UK; Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - P M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - M Zarei
- National Brain Mapping Centre, Shahid Beheshti University M&G campus, Tehran, Iran.
| |
Collapse
|
14
|
Vink M, de Leeuw M, Pouwels R, van den Munkhof HE, Kahn RS, Hillegers M. Diminishing striatal activation across adolescent development during reward anticipation in offspring of schizophrenia patients. Schizophr Res 2016; 170:73-9. [PMID: 26631365 DOI: 10.1016/j.schres.2015.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
Abstract
Schizophrenia is a severe psychiatric disorder associated with impaired fronto-striatal functioning. Similar deficits are observed in unaffected siblings of patients, indicating that these deficits are linked to a familial risk for the disorder. Fronto-striatal deficits may arise during adolescence and precede clinical manifestation of the disorder. However, the development of the fronto-striatal network in adolescents at increased familial risk for schizophrenia is still poorly understood. In this cross-sectional study, we investigate the impact of familial risk on fronto-striatal functioning across age related to reward anticipation and receipt in 25 adolescent offspring of schizophrenia patients (SZ offspring) and 36 age-matched healthy controls (range 10-19years). Subjects performed a reward task while being scanned with functional MRI. Overall response times and the amount of money won did not differ between the groups. Striatal activation during reward anticipation decreased across age in the SZ offspring, while it did not in the healthy controls. Activation in the orbitofrontal cortex during reward receipt did not differ between the groups. These results, taken together with data from adult schizophrenia patients and their siblings, indicate that the diminishing striatal activation across adolescence may signify a familial vulnerability for schizophrenia.
Collapse
Affiliation(s)
- Matthijs Vink
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Max de Leeuw
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ruby Pouwels
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanna E van den Munkhof
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manon Hillegers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|