1
|
Farinati S, Devillars A, Gabelli G, Vannozzi A, Scariolo F, Palumbo F, Barcaccia G. How Helpful May Be a CRISPR/Cas-Based System for Food Traceability? Foods 2024; 13:3397. [PMID: 39517184 PMCID: PMC11544785 DOI: 10.3390/foods13213397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Genome editing (GE) technologies have the potential to completely transform breeding and biotechnology applied to crop species, contributing to the advancement of modern agriculture and influencing the market structure. To date, the GE-toolboxes include several distinct platforms able to induce site-specific and predetermined genomic modifications, introducing changes within the existing genetic blueprint of an organism. For these reasons, the GE-derived approaches are considered like new plant breeding methods, known also as New Breeding Techniques (NBTs). Particularly, the GE-based on CRISPR/Cas technology represents a considerable improvement forward biotech-related techniques, being highly sensitive, precise/accurate, and straightforward for targeted gene editing in a reliable and reproducible way, with numerous applications in food-related plants. Furthermore, numerous examples of CRISPR/Cas system exploitation for non-editing purposes, ranging from cell imaging to gene expression regulation and DNA assembly, are also increasing, together with recent engagements in target and multiple chemical detection. This manuscript aims, after providing a general overview, to focus attention on the main advances of CRISPR/Cas-based systems into new frontiers of non-editing, presenting and discussing the associated implications and their relative impacts on molecular traceability, an aspect closely related to food safety, which increasingly arouses general interest within public opinion and the scientific community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.F.); (A.D.); (G.G.); (A.V.); (F.S.); (F.P.)
| |
Collapse
|
2
|
Dedičová B, Becerra Lopez-Lavalle LA. Cassava for the future: embryogenic liquid cultures suitable for new biotech techniques. Biotechniques 2024; 76:453-461. [PMID: 39411977 DOI: 10.1080/07366205.2024.2393546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cassava, a crop of importance for subsistence farming in Africa, Asia, and Latin America, has the potential to benefit from global economic integration as a versatile industrial resource. Enhancing cassava productivity is not just a matter of agricultural competitiveness but a crucial step toward ensuring many communities' food security and livelihoods. Given its high performance in marginal environments, where climate change poses threats, ensuring food security and livelihoods relies on rapidly adapting cassava. This study aimed to develop a protocol that swiftly transitions cassava embryogenic short-period liquid suspension cultures, facilitating the regeneration of genetically stable in vitro plants. The resulting protocol, with its potential to be a foundational component in future technologies employing various genome editing or genetic modification techniques, holds promise for the advancement of cassava biotechnology.
Collapse
Affiliation(s)
- Beata Dedičová
- International Center for Tropical Agriculture, CIAT Transformation Platform, A.A. 6713 Cali, Colombia, Latin America
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences (SLU), Sundsvägen 10 P.O. Box 190, SE 234 22, Lomma, Sweden
| | - Luis Augusto Becerra Lopez-Lavalle
- International Center for Tropical Agriculture, CIAT Transformation Platform, A.A. 6713 Cali, Colombia, Latin America
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences (SLU), Sundsvägen 10 P.O. Box 190, SE 234 22, Lomma, Sweden
- International Center for Biosaaline Agriculture, ICBA, Academic City, Al Ain Road, Al Ruwayyah 2, Near Zayed University, Dubai, UAE
| |
Collapse
|
3
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
4
|
Feng H, Jander G. Serine proteinase inhibitors from Nicotiana benthamiana, a nonpreferred host plant, inhibit the growth of Myzus persicae (green peach aphid). PEST MANAGEMENT SCIENCE 2024; 80:4470-4481. [PMID: 38666388 DOI: 10.1002/ps.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, USA
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | | |
Collapse
|
5
|
Yuan X, Xu K, Yan F, Liu Z, Spetz C, Zhou H, Wang X, Jin H, Wang X, Liu Y. CRISPR/Cas9-Mediated Resistance to Wheat Dwarf Virus in Hexaploid Wheat ( Triticum aestivum L.). Viruses 2024; 16:1382. [PMID: 39339858 PMCID: PMC11436044 DOI: 10.3390/v16091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Wheat dwarf virus (WDV, genus Mastrevirus, family Geminiviridae) is one of the causal agents of wheat viral disease, which severely impacts wheat production in most wheat-growing regions in the world. Currently, there is little information about natural resistance against WDV in common wheat germplasms. CRISPR/Cas9 technology is being utilized to manufacture transgenic plants resistant to different diseases. In the present study, we used the CRISPR/Cas9 system targeting overlapping regions of coat protein (CP) and movement protein (MP) (referred to as CP/MP) or large intergenic region (LIR) in the wheat variety 'Fielder' to develop resistance against WDV. WDV-inoculated T1 progenies expressing Cas9 and sgRNA for CP/MP and LIR showed complete resistance against WDV and no accumulation of viral DNA compared with control plants. Mutation analysis revealed that the CP/MP and LIR targeting sites have small indels in the corresponding Cas9-positive plants. Additionally, virus inhibition and indel mutations occurred in T2 homozygous lines. Together, our work gives efficient results of the engineering of CRISPR/Cas9-mediated WDV resistance in common wheat plants, and the specific sgRNAs identified in this study can be extended to utilize the CRISPR/Cas9 system to confer resistance to WDV in other cereal crops such as barley, oats, and rye.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Keya Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Zhiyuan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Carl Spetz
- Norwegian Institute of Bioeconomy Research, Hoegskoleveien 7, 1432 Ås, Norway;
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| |
Collapse
|
6
|
Tripathi L, Ntui VO, Tripathi JN. Application of CRISPR/Cas-based gene-editing for developing better banana. Front Bioeng Biotechnol 2024; 12:1395772. [PMID: 39219618 PMCID: PMC11362101 DOI: 10.3389/fbioe.2024.1395772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Banana (Musa spp.), including plantain, is one of the major staple food and cash crops grown in over 140 countries in the subtropics and tropics, with around 153 million tons annual global production, feeding about 400 million people. Despite its widespread cultivation and adaptability to diverse environments, banana production faces significant challenges from pathogens and pests that often coexist within agricultural landscapes. Recent advancements in CRISPR/Cas-based gene editing offer transformative solutions to enhance banana resilience and productivity. Researchers at IITA, Kenya, have successfully employed gene editing to confer resistance to diseases such as banana Xanthomonas wilt (BXW) by targeting susceptibility genes and banana streak virus (BSV) by disrupting viral sequences. Other breakthroughs include the development of semi-dwarf plants, and increased β-carotene content. Additionally, non-browning banana have been developed to reduce food waste, with regulatory approval in the Philippines. The future prospects of gene editing in banana looks promising with CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi) techniques offering potential for improved disease resistance. The Cas-CLOVER system provides a precise alternative to CRISPR/Cas9, demonstrating success in generating gene-edited banana mutants. Integration of precision genetics with traditional breeding, and adopting transgene-free editing strategies, will be pivotal in harnessing the full potential of gene-edited banana. The future of crop gene editing holds exciting prospects for producing banana that thrives across diverse agroecological zones and offers superior nutritional value, ultimately benefiting farmers and consumers. This article highlights the pivotal role of CRISPR/Cas technology in advancing banana resilience, yield and nutritional quality, with significant implications for global food security.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | | |
Collapse
|
7
|
Manzoor S, Nabi SU, Rather TR, Gani G, Mir ZA, Wani AW, Ali S, Tyagi A, Manzar N. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. Front Genome Ed 2024; 6:1399051. [PMID: 38988891 PMCID: PMC11234172 DOI: 10.3389/fgeed.2024.1399051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024] Open
Abstract
Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, India
| | | | - Gousia Gani
- Division of Basic Science and Humanities, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB, Canada
| | - Ab Waheed Wani
- Department of Horticulture, LPU, Jalander, Punjab, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| |
Collapse
|
8
|
Nabi Z, Manzoor S, Nabi SU, Wani TA, Gulzar H, Farooq M, Arya VM, Baloch FS, Vlădulescu C, Popescu SM, Mansoor S. Pattern-Triggered Immunity and Effector-Triggered Immunity: crosstalk and cooperation of PRR and NLR-mediated plant defense pathways during host-pathogen interactions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:587-604. [PMID: 38737322 PMCID: PMC11087456 DOI: 10.1007/s12298-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
The elucidation of the molecular basis underlying plant-pathogen interactions is imperative for the development of sustainable resistance strategies against pathogens. Plants employ a dual-layered immunological detection and response system wherein cell surface-localized Pattern Recognition Receptors (PRRs) and intracellular Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs) play pivotal roles in initiating downstream signalling cascades in response to pathogen-derived chemicals. Pattern-Triggered Immunity (PTI) is associated with PRRs and is activated by the recognition of conserved molecular structures, known as Pathogen-Associated Molecular Patterns. When PTI proves ineffective due to pathogenic effectors, Effector-Triggered Immunity (ETI) frequently confers resistance. In ETI, host plants utilize NLRs to detect pathogen effectors directly or indirectly, prompting a rapid and more robust defense response. Additionally epigenetic mechanisms are participating in plant immune memory. Recently developed technologies like CRISPR/Cas9 helps in exposing novel prospects in plant pathogen interactions. In this review we explore the fascinating crosstalk and cooperation between PRRs and NLRs. We discuss epigenomic processes and CRISPR/Cas9 regulating immune response in plants and recent findings that shed light on the coordination of these defense layers. Furthermore, we also have discussed the intricate interactions between the salicylic acid and jasmonic acid signalling pathways in plants, offering insights into potential synergistic interactions that would be harnessed for the development of novel and sustainable resistance strategies against diverse group of pathogens.
Collapse
Affiliation(s)
- Zarka Nabi
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132 India
| | | | - Humira Gulzar
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Mehreena Farooq
- Division of Plant Pathology, FOH-SKUAST-K, Shalimar, Srinagar, 190025 India
| | - Vivak M. Arya
- Division of Soil Science and Agriculture Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33100 Yenişehir, Mersin Turkey
| | - Carmen Vlădulescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I. Cuza 13, 200585 Craiova, Romania
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I. Cuza 13, 200585 Craiova, Romania
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243 Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243 Republic of Korea
| |
Collapse
|
9
|
Li C, Iqbal MA. Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1369416. [PMID: 38601306 PMCID: PMC11004347 DOI: 10.3389/fpls.2024.1369416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Under changing climatic scenarios, grassland conservation and development have become imperative to impart functional sustainability to their ecosystem services. These goals could be effectively and efficiently achieved with targeted genetic improvement of native grass species. To the best of our literature search, very scant research findings are available pertaining to gene editing of non-cultivated grass species (switch grass, wild sugarcane, Prairie cordgrass, Bermuda grass, Chinese silver grass, etc.) prevalent in natural and semi-natural grasslands. Thus, to explore this novel research aspect, this study purposes that gene editing techniques employed for improvement of cultivated grasses especially sugarcane might be used for non-cultivated grasses as well. Our hypothesis behind suggesting sugarcane as a model crop for genetic improvement of non-cultivated grasses is the intricacy of gene editing owing to polyploidy and aneuploidy compared to other cultivated grasses (rice, wheat, barley, maize, etc.). Another reason is that genome editing protocols in sugarcane (x = 10-13) have been developed and optimized, taking into consideration the high level of genetic redundancy. Thus, as per our knowledge, this review is the first study that objectively evaluates the concept and functioning of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technique in sugarcane regarding high versatility, target specificity, efficiency, design simplicity, and multiplexing capacity in order to explore novel research perspectives for gene editing of non-cultivated grasses against biotic and abiotic stresses. Additionally, pronounced challenges confronting sugarcane gene editing have resulted in the development of different variants (Cas9, Cas12a, Cas12b, and SpRY) of the CRISPR tool, whose technicalities have also been critically assessed. Moreover, different limitations of this technique that could emerge during gene editing of non-cultivated grass species have also been highlighted.
Collapse
Affiliation(s)
- Chunjia Li
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| | - Muhammad Aamir Iqbal
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, Yunnan, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan, China
| |
Collapse
|
10
|
Havlickova L, He Z, Berger M, Wang L, Sandmann G, Chew YP, Yoshikawa GV, Lu G, Hu Q, Banga SS, Beaudoin F, Bancroft I. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:738-750. [PMID: 37921406 PMCID: PMC10893948 DOI: 10.1111/pbi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.
Collapse
Affiliation(s)
| | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | - Lihong Wang
- Department of BiologyUniversity of YorkYorkUK
| | | | | | - Guilherme V. Yoshikawa
- Department of BiologyUniversity of YorkYorkUK
- Present address:
School of Agriculture, Food and Wine, Waite Research InstituteUniversity of AdelaideGlen OsmondSAAustralia
| | - Guangyuan Lu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
- College of Biology and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Qiong Hu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
| | - Surinder S. Banga
- Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia
| | | | | |
Collapse
|
11
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
12
|
Saini H, Thakur R, Gill R, Tyagi K, Goswami M. CRISPR/Cas9-gene editing approaches in plant breeding. GM CROPS & FOOD 2023; 14:1-17. [PMID: 37725519 PMCID: PMC10512805 DOI: 10.1080/21645698.2023.2256930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
CRISPR/Cas9 gene editing system is recently developed robust genome editing technology for accelerating plant breeding. Various modifications of this editing system have been established for adaptability in plant varieties as well as for its improved efficiency and portability. This review provides an in-depth look at the various strategies for synthesizing gRNAs for efficient delivery in plant cells, including chemical synthesis and in vitro transcription. It also covers traditional analytical tools and emerging developments in detection methods to analyze CRISPR/Cas9 mediated mutation in plant breeding. Additionally, the review outlines the various analytical tools which are used to detect and analyze CRISPR/Cas9 mediated mutations, such as next-generation sequencing, restriction enzyme analysis, and southern blotting. Finally, the review discusses emerging detection methods, including digital PCR and qPCR. Hence, CRISPR/Cas9 has great potential for transforming agriculture and opening avenues for new advancements in the system for gene editing in plants.
Collapse
Affiliation(s)
- Himanshu Saini
- School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- School of Agriculture, Forestry & Fisheries, Himgiri Zee University, Dehradun, Uttarakhand, India
| | - Rajneesh Thakur
- Department of Plant Pathology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Rubina Gill
- Department of Agronomy, School of Agriculture, Lovely professional university, Phagwara, Punjab, India
| | - Kalpana Tyagi
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun, Uttarakhand, India
| | - Manika Goswami
- Department of Fruit Science, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| |
Collapse
|
13
|
Yıldırım K, Miladinović D, Sweet J, Akin M, Galović V, Kavas M, Zlatković M, de Andrade E. Genome editing for healthy crops: traits, tools and impacts. FRONTIERS IN PLANT SCIENCE 2023; 14:1231013. [PMID: 37965029 PMCID: PMC10641503 DOI: 10.3389/fpls.2023.1231013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Crop cultivars in commercial use have often been selected because they show high levels of resistance to pathogens. However, widespread cultivation of these crops for many years in the environments favorable to a pathogen requires durable forms of resistance to maintain "healthy crops". Breeding of new varieties tolerant/resistant to biotic stresses by incorporating genetic components related to durable resistance, developing new breeding methods and new active molecules, and improving the Integrated Pest Management strategies have been of great value, but their effectiveness is being challenged by the newly emerging diseases and the rapid change of pathogens due to climatic changes. Genome editing has provided new tools and methods to characterize defense-related genes in crops and improve crop resilience to disease pathogens providing improved food security and future sustainable agricultural systems. In this review, we discuss the principal traits, tools and impacts of utilizing genome editing techniques for achieving of durable resilience and a "healthy plants" concept.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jeremy Sweet
- Sweet Environmental Consultants, Cambridge, United Kingdom
| | - Meleksen Akin
- Department of Horticulture, Iğdır University, Iğdır, Türkiye
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Eugenia de Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
14
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
15
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
16
|
Kasi Viswanath K, Hamid A, Ateka E, Pappu HR. CRISPR/Cas, Multiomics, and RNA Interference in Virus Disease Management. PHYTOPATHOLOGY 2023; 113:1661-1676. [PMID: 37486077 DOI: 10.1094/phyto-01-23-0002-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Plant viruses infect a wide range of commercially important crop plants and cause significant crop production losses worldwide. Numerous alterations in plant physiology related to the reprogramming of gene expression may result from viral infections. Although conventional integrated pest management-based strategies have been effective in reducing the impact of several viral diseases, continued emergence of new viruses and strains, expanding host ranges, and emergence of resistance-breaking strains necessitate a sustained effort toward the development and application of new approaches for virus management that would complement existing tactics. RNA interference-based techniques, and more recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technologies have paved the way for precise targeting of viral transcripts and manipulation of viral genomes and host factors. In-depth knowledge of the molecular mechanisms underlying the development of disease would further expand the applicability of these recent methods. Advances in next-generation/high-throughput sequencing have made possible more intensive studies into host-virus interactions. Utilizing the omics data and its application has the potential to expedite fast-tracking traditional plant breeding methods, as well as applying modern molecular tools for trait enhancement, including virus resistance. Here, we summarize the recent developments in the CRISPR/Cas system, transcriptomics, endogenous RNA interference, and exogenous application of dsRNA in virus disease management.
Collapse
Affiliation(s)
| | - Aflaq Hamid
- Department of Plant Pathology, Washington State University, Pullman, WA, U.S.A
| | - Elijah Ateka
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, U.S.A
| |
Collapse
|
17
|
Ashraf S, Ahmad A, Khan SH, Jamil A, Sadia B, Brown JK. LbCas12a mediated suppression of Cotton leaf curl Multan virus. FRONTIERS IN PLANT SCIENCE 2023; 14:1233295. [PMID: 37636103 PMCID: PMC10456881 DOI: 10.3389/fpls.2023.1233295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Begomoviruses are contagious and severely affect commercially important fiber and food crops. Cotton leaf curl Multan virus (CLCuMuV) is one of the most dominant specie of Begomovirus and a major constraint on cotton yield in Pakistan. Currently, the field of plant genome editing is being revolutionized by the CRISPR/Cas system applications such as base editing, prime editing and CRISPR based gene drives. CRISPR/Cas9 system has successfully been used against biotic and abiotic plant stresses with proof-of-concept studies in both model and crop plants. CRISPR/Cas12 and CRISPR/Cas13 have recently been applied in plant sciences for basic and applied research. In this study, we used a novel approach, multiplexed crRNA-based Cas12a toolbox to target the different ORFs of the CLCuMuV genome at multiple sites simultaneously. This method successfully eliminated the symptoms of CLCuMuV in Nicotiana benthamiana and Nicotiana tabacum. Three individual crRNAs were designed from the CLCuMuV genome, targeting the specific sites of four different ORFs (C1, V1 and overlapping region of C2 and C3). The Cas12a-based construct Cas12a-MV was designed through Golden Gate three-way cloning for precise editing of CLCuMuV genome. Cas12a-MV construct was confirmed through whole genome sequencing using the primers Ubi-intron-F1 and M13-R1. Transient assays were performed in 4 weeks old Nicotiana benthamiana plants, through the agroinfiltration method. Sanger sequencing indicated that the Cas12a-MV constructs made a considerable mutations at the target sites of the viral genome. In addition, TIDE analysis of Sanger sequencing results showed the editing efficiency of crRNA1 (21.7%), crRNA2 (24.9%) and crRNA3 (55.6%). Furthermore, the Cas12a-MV construct was stably transformed into Nicotiana tabacum through the leaf disc method to evaluate the potential of transgenic plants against CLCuMuV. For transgene analysis, the DNA of transgenic plants of Nicotiana tabacum was subjected to PCR to amplify Cas12a genes with specific primers. Infectious clones were agro-inoculated in transgenic and non-transgenic plants (control) for the infectivity assay. The transgenic plants containing Cas12a-MV showed rare symptoms and remained healthy compared to control plants with severe symptoms. The transgenic plants containing Cas12a-MV showed a significant reduction in virus accumulation (0.05) as compared to control plants (1.0). The results demonstrated the potential use of the multiplex LbCas12a system to develop virus resistance in model and crop plants against begomoviruses.
Collapse
Affiliation(s)
- Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
- Cotton Biotechnology Lab, Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, Pakistan
| | - Aftab Ahmad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
- Cotton Biotechnology Lab, Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Cotton Biotechnology Lab, Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
18
|
Erdoğan İ, Cevher-Keskin B, Bilir Ö, Hong Y, Tör M. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance. BIOLOGY 2023; 12:1037. [PMID: 37508466 PMCID: PMC10376527 DOI: 10.3390/biology12071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The revolutionary CRISPR/Cas9 genome-editing technology has emerged as a powerful tool for plant improvement, offering unprecedented precision and efficiency in making targeted gene modifications. This powerful and practical approach to genome editing offers tremendous opportunities for crop improvement, surpassing the capabilities of conventional breeding techniques. This article provides an overview of recent advancements and challenges associated with the application of CRISPR/Cas9 in plant improvement. The potential of CRISPR/Cas9 in terms of developing crops with enhanced resistance to biotic and abiotic stresses is highlighted, with examples of genes edited to confer disease resistance, drought tolerance, salt tolerance, and cold tolerance. Here, we also discuss the importance of off-target effects and the efforts made to mitigate them, including the use of shorter single-guide RNAs and dual Cas9 nickases. Furthermore, alternative delivery methods, such as protein- and RNA-based approaches, are explored, and they could potentially avoid the integration of foreign DNA into the plant genome, thus alleviating concerns related to genetically modified organisms (GMOs). We emphasize the significance of CRISPR/Cas9 in accelerating crop breeding processes, reducing editing time and costs, and enabling the introduction of desired traits at the nucleotide level. As the field of genome editing continues to evolve, it is anticipated that CRISPR/Cas9 will remain a prominent tool for crop improvement, disease resistance, and adaptation to challenging environmental conditions.
Collapse
Affiliation(s)
- İbrahim Erdoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Kirsehir Ahi Evran University, Kırşehir 40100, Türkiye
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - Birsen Cevher-Keskin
- Genetic Engineering and Biotechnology Institute, TÜBİTAK Marmara Research Center, Kocaeli 41470, Türkiye
| | - Özlem Bilir
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
- Trakya Agricultural Research Institute, Atatürk Bulvarı 167/A, Edirne 22100, Türkiye
| | - Yiguo Hong
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mahmut Tör
- Department of Biological Sciences, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| |
Collapse
|
19
|
Srivastava A, Pandey V, Al-Sadi AM, Shahid MS, Gaur R. An Insight into Emerging Begomoviruses and their Satellite Complex causing Papaya Leaf Curl Disease. Curr Genomics 2023; 24:2-17. [PMID: 37920727 PMCID: PMC10334704 DOI: 10.2174/1389202924666230207111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Papaya leaf curl disease (PaLCD) was primarily detected in India and causes major economic damage to agriculture crops grown globally, seriously threatening food security. Begomoviruses are communicated by the vector Bemisia tabaci, and their transmission efficiency and persistence in the vector are the highest, exhibiting the widest host range due to adaptation and evolution. Symptoms induced during PaLCD include leaf curl, leaf yellowing, interveinal chlorosis, and reduced fruit quality and yield. Consequently, plants have evolved several multi-layered defense mechanisms to resist Begomovirus infection and distribution. Subsequently, Begomovirus genomes organise circular ssDNA of size ~2.5-2.7 kb of overlapping viral transcripts and carry six-seven ORFs encoding multifunctional proteins, which are precisely evolved by the viruses to maintain the genome-constraint and develop complex but integrated interactions with a variety of host components to expand and facilitate successful infection cycles, i.e., suppression of host defense strategies. Geographical distribution is continuing to increase due to the advent and evolution of new Begomoviruses, and sweep to new regions is a future scenario. This review summarizes the current information on the biological functions of papaya-infecting Begomoviruses and their encoded proteins in transmission through vectors and modulating host-mediated responses, which may improve our understanding of how to challenge these significant plant viruses by revealing new information on the development of antiviral approaches against Begomoviruses associated with PaLCD.
Collapse
Affiliation(s)
- Aarshi Srivastava
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, India
| | - Vineeta Pandey
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, India
| | - Abdullah. M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Muhammad S. Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - R.K. Gaur
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, India
| |
Collapse
|
20
|
Jabran M, Ali MA, Zahoor A, Muhae-Ud-Din G, Liu T, Chen W, Gao L. Intelligent reprogramming of wheat for enhancement of fungal and nematode disease resistance using advanced molecular techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1132699. [PMID: 37235011 PMCID: PMC10206142 DOI: 10.3389/fpls.2023.1132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Wheat (Triticum aestivum L.) diseases are major factors responsible for substantial yield losses worldwide, which affect global food security. For a long time, plant breeders have been struggling to improve wheat resistance against major diseases by selection and conventional breeding techniques. Therefore, this review was conducted to shed light on various gaps in the available literature and to reveal the most promising criteria for disease resistance in wheat. However, novel techniques for molecular breeding in the past few decades have been very fruitful for developing broad-spectrum disease resistance and other important traits in wheat. Many types of molecular markers such as SCAR, RAPD, SSR, SSLP, RFLP, SNP, and DArT, etc., have been reported for resistance against wheat pathogens. This article summarizes various insightful molecular markers involved in wheat improvement for resistance to major diseases through diverse breeding programs. Moreover, this review highlights the applications of marker assisted selection (MAS), quantitative trait loci (QTL), genome wide association studies (GWAS) and the CRISPR/Cas-9 system for developing disease resistance against most important wheat diseases. We also reviewed all reported mapped QTLs for bunts, rusts, smuts, and nematode diseases of wheat. Furthermore, we have also proposed how the CRISPR/Cas-9 system and GWAS can assist breeders in the future for the genetic improvement of wheat. If these molecular approaches are used successfully in the future, they can be a significant step toward expanding food production in wheat crops.
Collapse
Affiliation(s)
- Muhammad Jabran
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Majumdar A, Sharma A, Belludi R. Natural and Engineered Resistance Mechanisms in Plants against Phytoviruses. Pathogens 2023; 12:619. [PMID: 37111505 PMCID: PMC10143959 DOI: 10.3390/pathogens12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Plant viruses, as obligate intracellular parasites, rely exclusively on host machinery to complete their life cycle. Whether a virus is pathogenic or not depends on the balance between the mechanisms used by both plants and viruses during the intense encounter. Antiviral defence mechanisms in plants can be of two types, i.e., natural resistance and engineered resistance. Innate immunity, RNA silencing, translational repression, autophagy-mediated degradation, and resistance to virus movement are the possible natural defence mechanisms against viruses in plants, whereas engineered resistance includes pathogen-derived resistance along with gene editing technologies. The incorporation of various resistance genes through breeding programmes, along with gene editing tools such as CRISPR/Cas technologies, holds great promise in developing virus-resistant plants. In this review, different resistance mechanisms against viruses in plants along with reported resistance genes in major vegetable crops are discussed.
Collapse
Affiliation(s)
- Anik Majumdar
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| | - Abhishek Sharma
- Department of Vegetable Science, College of Horticulture and Forestry, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Rakesh Belludi
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| |
Collapse
|
22
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
23
|
Yıldırım K, Kavas M, Küçük İS, Seçgin Z, Saraç ÇG. Development of Highly Efficient Resistance to Beet Curly Top Iran Virus (Becurtovirus) in Sugar Beet (B. vulgaris) via CRISPR/Cas9 System. Int J Mol Sci 2023; 24:ijms24076515. [PMID: 37047489 PMCID: PMC10095410 DOI: 10.3390/ijms24076515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Beet Curly Top Iran Virus (BCTIV, Becurtovirus) is a dominant and widespread pathogen responsible for great damage and yield reduction in sugar beet production in the Mediterranean and Middle East. CRISPR-based gene editing is a versatile tool that has been successfully used in plants to improve resistance against many viral pathogens. In this study, the efficiency of gRNA/Cas9 constructs targeting the expressed genes of BCTIV was assessed in sugar beet leaves by their transient expression. Almost all positive control sugar beets revealed systemic infection and severe disease symptoms (90%), with a great biomass reduction (68%) after BCTIV agroinoculation. On the other hand, sugar beets co-agronioculated with BCTIV and gRNA/Cas9 indicated much lower systemic infection (10–55%), disease symptoms and biomass reduction (13–45%). Viral inactivation was also verified by RCA and qPCR assays for gRNA/Cas9 treated sugar beets. PCR-RE digestion and sequencing assays confirmed the gRNA/Cas9-mediated INDEL mutations at the target sites of the BCTIV genome and represented high efficiencies (53–88%), especially for those targeting BCTIV’s movement gene and its overlapping region between capsid and ssDNA regulator genes. A multiplex CRISPR approach was also tested. The most effective four gRNAs targeting all the genes of BCTIV were cloned into a Cas9-containing vector and agroinoculated into virus-infected sugar beet leaves. The results of this multiplex CRISPR system revealed almost complete viral resistance with inhibition of systemic infection and mutant escape. This is the first report of CRSIPR-mediated broad-spectrum resistance against Becurtovirus in sugar beet.
Collapse
|
24
|
Boubakri H. Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Gene 2023; 866:147334. [PMID: 36871676 DOI: 10.1016/j.gene.2023.147334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Nowadays, agricultural production is strongly affected by both climate change and pathogen attacks which seriously threaten global food security. For a long time, researchers have been waiting for a tool allowing DNA/RNA manipulation to tailor genes and their expression. Some earlier genetic manipulation methods such as meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) allowed site directed modification but their successful rate was limited due to lack of flexibility when targeting a 'site-specific nucleic acid'. The discovery of clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has revolutionized genome editing domain in different living organisms during the past 9 years. Based on RNA-guided DNA/RNA recognition, CRISPR/Cas9 optimizations have offered an unrecorded scientific opportunity to engineer plants resistant to diverse pathogens. In this report, we describe the main characteristics of the primary reported-genome editing tools ((MNs, ZFNs, TALENs) and evaluate the different CRISPR/Cas9 methods and achievements in developing crop plants resistant to viruses, fungi and bacteria.
Collapse
Affiliation(s)
- Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia.
| |
Collapse
|
25
|
Tripathi S, Khatri P, Fatima Z, Pandey RP, Hameed S. A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens 2022; 12:pathogens12010056. [PMID: 36678404 PMCID: PMC9863163 DOI: 10.3390/pathogens12010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Viral diseases have emerged as a serious threat to humanity and as a leading cause of morbidity worldwide. Many viral diagnostic methods and antiviral therapies have been developed over time, but we are still a long way from treating certain infections caused by viruses. Acquired immunodeficiency syndrome (AIDS) is one of the challenges where current medical science advancements fall short. As a result, new diagnostic and treatment options are desperately needed. The CRISPR/Cas9 system has recently been proposed as a potential therapeutic approach for viral disease treatment. CRISPR/Cas9 is a specialised, effective, and adaptive gene-editing technique that can be used to modify, delete, or correct specific DNA sequences. It has evolved into an advanced, configurable nuclease-based single or multiple gene-editing tool with a wide range of applications. It is widely preferred simply because its operational procedures are simple, inexpensive, and extremely efficient. Exploration of infectious virus genomes is required for a comprehensive study of infectious viruses. Herein, we have discussed the historical timeline-based advancement of CRISPR, CRISPR/Cas9 as a gene-editing technology, the structure of CRISPR, and CRISPR as a diagnostic tool for studying emerging viral infections. Additionally, utilizing CRISPR/Cas9 technology to fight viral infections in plants, CRISPR-based diagnostics of viruses, pros, and cons, and bioethical issues of CRISPR/Cas9-based genomic modification are discussed.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Correspondence: (R.P.P.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
- Correspondence: (R.P.P.); (S.H.)
| |
Collapse
|
26
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Chen X. Exploring new strategies in diseases resistance of horticultural crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1021350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Horticultural crops are susceptible to various biotic stressors including fungi, oomycetes, bacteria, viruses, and root-knot nematodes. These pathogens limit the growth, development, yield, and quality of horticultural crops, and also limit their adaptability and geographic distribution. The continuous cropping model in horticultural facilities exacerbates soil-borne diseases, and severely restricts yield, quality, and productivity. Recent progress in the understanding of mechanisms that confer tolerance to different diseases through innovative strategies including host-induced gene silencing (HIGS), targeting susceptibility genes, and rootstocks grafting applications are reviewed to systematically explore the resistance mechanisms against horticultural plant diseases. Future work should successfully breed resistant varieties using these strategies combined with molecular biologic methods.
Collapse
|
28
|
Robertson G, Burger J, Campa M. CRISPR/Cas-based tools for the targeted control of plant viruses. MOLECULAR PLANT PATHOLOGY 2022; 23:1701-1718. [PMID: 35920132 PMCID: PMC9562834 DOI: 10.1111/mpp.13252] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.
Collapse
Affiliation(s)
- Gaëlle Robertson
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
- Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Johan Burger
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| | - Manuela Campa
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
29
|
Sharma KK, Palakolanu SR, Bhattacharya J, Shankhapal AR, Bhatnagar-Mathur P. CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Front Genet 2022; 13:999207. [PMID: 36276961 PMCID: PMC9582247 DOI: 10.3389/fgene.2022.999207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
Technologies and innovations are critical for addressing the future food system needs where genetic resources are an essential component of the change process. Advanced breeding tools like "genome editing" are vital for modernizing crop breeding to provide game-changing solutions to some of the "must needed" traits in agriculture. CRISPR/Cas-based tools have been rapidly repurposed for editing applications based on their improved efficiency, specificity and reduced off-target effects. Additionally, precise gene-editing tools such as base editing, prime editing, and multiplexing provide precision in stacking of multiple traits in an elite variety, and facilitating specific and targeted crop improvement. This has helped in advancing research and delivery of products in a short time span, thereby enhancing the rate of genetic gains. A special focus has been on food security in the drylands through crops including millets, teff, fonio, quinoa, Bambara groundnut, pigeonpea and cassava. While these crops contribute significantly to the agricultural economy and resilience of the dryland, improvement of several traits including increased stress tolerance, nutritional value, and yields are urgently required. Although CRISPR has potential to deliver disruptive innovations, prioritization of traits should consider breeding product profiles and market segments for designing and accelerating delivery of locally adapted and preferred crop varieties for the drylands. In this context, the scope of regulatory environment has been stated, implying the dire impacts of unreasonable scrutiny of genome-edited plants on the evolution and progress of much-needed technological advances.
Collapse
Affiliation(s)
- Kiran K. Sharma
- Sustainable Agriculture Programme, The Energy and Resources Institute (TERI), India Habitat Center, New Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R. Shankhapal
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- International Maize and Wheat Improvement Center (CIMMYT), México, United Kingdom
| |
Collapse
|
30
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
31
|
Trinh DD, Le NT, Bui TP, Le TNT, Nguyen CX, Chu HH, Do PT. A sequential transformation method for validating soybean genome editing by CRISPR/Cas9 system. Saudi J Biol Sci 2022; 29:103420. [PMID: 36060110 PMCID: PMC9434168 DOI: 10.1016/j.sjbs.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
This study was performed to evaluate the sequential transformation for soybean genome editing using the CRISPR/Cas9 system as well as to show a strategy for examining the activity of CRISPR/Cas9 constructs, especially the designed guide RNAs (gRNAs). The gRNAs for targeted mutations of an exogenous gene and multiple endogenous genes were constructed and transferred into a stably-overexpressed-Cas9 soybean line using Agrobacterium rhizogenes-mediated hairy root induction system. The targeted mutations were identified and characterized by the poly-acrylamide gel electrophoresis (PAGE) heteroduplex method and by sequencing. Induced mutations of the exogenous gene (gus) were observed in 57% of tested transgenic hairy roots, while 100% of the transgenic root lines showed targeted mutations of the endogenous (SACPD-C) gene. Multiple gRNAs targeting two endogenous genes (SACPD-C and SMT) induced mutation rates of 75% and 67%, respectively. Various indels including small and large deletions as well as insertions were found in target sites of the tested genes. This sequential transformation method could present the targeting efficacy of different gRNAs of each tested gene. Additionally, in this study differences in gRNA ratings were found between bioinformatics predictions and actual experimental results. This is the first successful application of the sequential transformation method for genome editing in soybean using the hairy root system. This method could be potentially useful for validating CRISPR/Cas9 constructs, evaluating gRNA targeting efficiencies, and could be applied for other research directions.
Collapse
Affiliation(s)
- Duy Dinh Trinh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Ngoc Thu Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thao Phuong Bui
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thao Nhu Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Cuong Xuan Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Phat Tien Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
- Corresponding author at: Institute of Biotechnology, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
32
|
Voloudakis AE, Kaldis A, Patil BL. RNA-Based Vaccination of Plants for Control of Viruses. Annu Rev Virol 2022; 9:521-548. [PMID: 36173698 DOI: 10.1146/annurev-virology-091919-073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Basavaprabhu L Patil
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka State, India
| |
Collapse
|
33
|
Liu H, Chen W, Li Y, Sun L, Chai Y, Chen H, Nie H, Huang C. CRISPR/Cas9 Technology and Its Utility for Crop Improvement. Int J Mol Sci 2022; 23:10442. [PMID: 36142353 PMCID: PMC9499353 DOI: 10.3390/ijms231810442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid growth of the global population has resulted in a considerable increase in the demand for food crops. However, traditional crop breeding methods will not be able to satisfy the worldwide demand for food in the future. New gene-editing technologies, the most widely used of which is CRISPR/Cas9, may enable the rapid improvement of crop traits. Specifically, CRISPR/Cas9 genome-editing technology involves the use of a guide RNA and a Cas9 protein that can cleave the genome at specific loci. Due to its simplicity and efficiency, the CRISPR/Cas9 system has rapidly become the most widely used tool for editing animal and plant genomes. It is ideal for modifying the traits of many plants, including food crops, and for creating new germplasm materials. In this review, the development of the CRISPR/Cas9 system, the underlying mechanism, and examples of its use for editing genes in important crops are discussed. Furthermore, certain limitations of the CRISPR/Cas9 system and potential solutions are described. This article will provide researchers with important information regarding the use of CRISPR/Cas9 gene-editing technology for crop improvement, plant breeding, and gene functional analyses.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wendan Chen
- Beijing Key Laboratory of Forest Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yushu Li
- Beijing Vocational College of Agriculture, Beijing 100097, China
| | - Lei Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuhong Chai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haixia Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haochen Nie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
34
|
Li Y, Wu X, Zhang Y, Zhang Q. CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops. Front Genome Ed 2022; 4:987817. [PMID: 36188128 PMCID: PMC9524261 DOI: 10.3389/fgeed.2022.987817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Abiotic stress such as cold, drought, saline-alkali stress and biotic stress including disease and insect pest are the main factors that affect plant growth and limit agricultural productivity. In recent years, with the rapid development of molecular biology, genome editing techniques have been widely used in botany and agronomy due to their characteristics of high efficiency, controllable and directional editing. Genome editing techniques have great application potential in breeding resistant varieties. These techniques have achieved remarkable results in resistance breeding of important cereal crops (such as maize, rice, wheat, etc.), vegetable and fruit crops. Among them, CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) provides a guarantee for the stability of crop yield worldwide. In this paper, the development of CRISRR/Cas and its application in different resistance breeding of important crops are reviewed, the advantages and importance of CRISRR/Cas technology in breeding are emphasized, and the possible problems are pointed out.
Collapse
Affiliation(s)
- Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiang Zhang, ; Yan Zhang,
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiang Zhang, ; Yan Zhang,
| |
Collapse
|
35
|
Increasing disease resistance in host plants through genome editing. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
36
|
Singh J, Sharma D, Brar GS, Sandhu KS, Wani SH, Kashyap R, Kour A, Singh S. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Mol Biol Rep 2022; 49:11443-11467. [PMID: 36002653 DOI: 10.1007/s11033-022-07741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
Crop plants are prone to several yield-reducing biotic and abiotic stresses. The crop yield reductions due to these stresses need addressing to maintain an adequate balance between the increasing world population and food production to avoid food scarcities in the future. It is impossible to increase the area under food crops proportionately to meet the rising food demand. In such an adverse scenario overcoming the biotic and abiotic stresses through biotechnological interventions may serve as a boon to help meet the globe's food requirements. Under the current genomic era, the wide availability of genomic resources and genome editing technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), and Clustered-Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas) has widened the scope of overcoming these stresses for several food crops. These techniques have made gene editing more manageable and accessible with changes at the embryo level by adding or deleting DNA sequences of the target gene(s) from the genome. The CRISPR construct consists of a single guide RNA having complementarity with the nucleotide fragments of the target gene sequence, accompanied by a protospacer adjacent motif. The target sequence in the organism's genome is then cleaved by the Cas9 endonuclease for obtaining a desired trait of interest. The current review describes the components, mechanisms, and types of CRISPR/Cas techniques and how this technology has helped to functionally characterize genes associated with various biotic and abiotic stresses in a target organism. This review also summarizes the application of CRISPR/Cas technology targeting these stresses in crops through knocking down/out of associated genes.
Collapse
Affiliation(s)
- Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, 110012, New Delhi, India.,Guru Angad Dev Veterinary and Animal Science University, KVK, Barnala, India
| | - Dimple Sharma
- Department of Food Science and Human Nutrition, Michigan State University, 48824, East Lansing, MI, USA
| | - Gagandeep Singh Brar
- Department of Biological Sciences, North Dakota State University, 58102, Fargo, ND, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu, Kashmir, India
| | - Ruchika Kashyap
- Department of Agronomy, Horticulture, and Plant Sciences, South Dakota State University, 57007, Brookings, SD, USA
| | - Amardeep Kour
- Regional Research Station, Punjab Agricultural University, 151001, Bathinda, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, 151203, Faridkot, Punjab, India.
| |
Collapse
|
37
|
Choudhary AK, Jain SK, Dubey AK, Kumar J, Sharma M, Gupta KC, Sharma LD, Prakash V, Kumar S. Conventional and molecular breeding for disease resistance in chickpea: status and strategies. Biotechnol Genet Eng Rev 2022:1-32. [PMID: 35959728 DOI: 10.1080/02648725.2022.2110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/21/2021] [Indexed: 11/02/2022]
Abstract
Chickpea (Cicer arietinum L.) is an important grain legume at the global level. Among different biotic stresses, diseases are the most important factor limiting its production, causing yield losses up to 100% in severe condition. The major diseases that adversely affect yield of chickpea include Fusarium wilt, Ascochyta blight and Botrytis gray mold. However, dry root rot, collar rot, Sclerotinia stem rot, rust, stunt disease and phyllody have been noted as emerging biotic threats to chickpea production in many production regions. Identification and incorporation of different morphological and biochemical traits are required through breeding to enhance genetic gain for disease resistance. In recent years, remarkable progress has been made in the development of trait-specific breeding lines, genetic and genomic resources in chickpea. Advances in genomics technologies have opened up new avenues to introgress genes from secondary and tertiary gene pools for improving disease resistance in chickpea. In this review, we have discussed important diseases, constraints and improvement strategies for enhancing disease resistance in chickpea.
Collapse
Affiliation(s)
- Arbind K Choudhary
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Shailesh Kumar Jain
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Abhishek Kumar Dubey
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Jitendra Kumar
- Division of Crop Improvement, Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | - Mamta Sharma
- Crop Protection and Seed Health, International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), Patancheru, Telangana, India
| | - Kailash Chand Gupta
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Leela Dhar Sharma
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Ved Prakash
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Saurabh Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| |
Collapse
|
38
|
Talakayala A, Mekala GK, Reddy MK, Ankanagari S, Garladinne M. Manipulating resistance to mungbean yellow mosaic virus in greengram (Vigna radiata L): Through CRISPR/Cas9 mediated editing of the viral genome. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.911574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) associated protein (CRISPR/Cas9) is an adaptive immune system of bacteria to counter the impending viral pathogen attack. With persistent improvements, CRISPR has become a versatile tool for developing molecular immunity against viruses in plants. In the current report, we utilized the Cas9 endonuclease and dual 20 bp-gRNAs targeting two different locations in single-stranded DNA-A of AC1 (rep protein) and AV1 (coat protein) of mungbean yellow mosaic virus for achieving resistance in greengram. The cotyledonary nodal explants were infected with Agrobacterium strain EHA105 harboring pMDC100-Cas9 with AC1 and AV1 gRNA cassettes and generated transgenic plants. The integration of Cas9 and gRNA cassettes in the transformed plants of greengram were confirmed by PCR and dot blot assays. Agroinfiltrated T2 transgenic lines exhibited minimal mosaic symptoms. A drastic reduction in the accumulation of AC1 and AV1 was observed in T2 transformed lines. The T7EI assay indicated that AC1 fragments were edited at a frequency of 46%, 32%, 20%, and AV1 at 38.15%, 40%, and 21.36% in MYMV infected greengram lines T2-6-2-3, T2-6-4-4, and T2-6-4-7, respectively. The manipulation of resistance to MYMV through the editing of the pathogen genome using the CRISPR/Cas9 tool can be a powerful approach to combat viruses and develop resistance in greengram.
Collapse
|
39
|
Tiwari JK, A J, Tuteja N, Khurana SMP. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.). Mol Biol Rep 2022; 49:12109-12119. [PMID: 35764748 DOI: 10.1007/s11033-022-07704-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Plant viruses are the major pathogens that cause heavy yield loss in potato. The important viruses are potato virus X, potato virus Y and potato leaf roll virus around the world. Besides these three viruses, a novel tomato leaf curl New Delhi virus is serious in India. Conventional cum molecular breeding and transgenics approaches have been applied to develop virus resistant potato genotypes. But progress is slow in developing resistant varieties due to lack of host genes and long breeding process, and biosafety concern with transgenics. Hence, CRISPR-Cas mediated genome editing has emerged as a powerful technology to address these issues. CRISPR-Cas technology has been deployed in potato for several important traits. We highlight here CRISPR-Cas approaches of virus resistance through targeting viral genome (DNA or RNA), host factor gene and multiplexing of target genes simultaneously. Further, advancement in CRISPR-Cas research is presented in the area of DNA-free genome editing, virus-induced genome editing, and base editing. CRISPR-Cas delivery, transformation methods, and challenges in tetraploid potato and possible methods are also discussed.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Jeevalatha A
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | | |
Collapse
|
40
|
Uranga M, Daròs JA. Tools and targets: The dual role of plant viruses in CRISPR-Cas genome editing. THE PLANT GENOME 2022:e20220. [PMID: 35698891 DOI: 10.1002/tpg2.20220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The recent emergence of tools based on the clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins have revolutionized targeted genome editing, thus holding great promise to both basic plant science and precision crop breeding. Conventional approaches for the delivery of editing components rely on transformation technologies or transient delivery to protoplasts, both of which are time-consuming, laborious, and can raise legal concerns. Alternatively, plant RNA viruses can be used as transient delivery vectors of CRISPR-Cas reaction components, following the so-called virus-induced genome editing (VIGE). During the last years, researchers have been able to engineer viral vectors for the delivery of CRISPR guide RNAs and Cas nucleases. Considering that each viral vector is limited to its molecular biology properties and a specific host range, here we review recent advances for improving the VIGE toolbox with a special focus on strategies to achieve tissue-culture-free editing in plants. We also explore the utility of CRISPR-Cas technology to enhance biotic resistance with a special focus on plant virus diseases. This can be achieved by either targeting the viral genome or modifying essential host susceptibility genes that mediate in the infection process. Finally, we discuss the challenges and potential that VIGE holds in future breeding technologies.
Collapse
Affiliation(s)
- Mireia Uranga
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - University. Politècnica de València, Valencia, 46022, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - University. Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
41
|
Beernink BM, Lappe RR, Bredow M, Whitham SA. Impacts of RNA Mobility Signals on Virus Induced Somatic and Germline Gene Editing. Front Genome Ed 2022; 4:925088. [PMID: 35755451 PMCID: PMC9219249 DOI: 10.3389/fgeed.2022.925088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Viral vectors are being engineered to deliver CRISPR/Cas9 components systemically in plants to induce somatic or heritable site-specific mutations. It is hypothesized that RNA mobility signals facilitate entry of viruses or single guide RNAs (sgRNAs) into the shoot apical meristem where germline mutations can occur. Our objective was to understand the impact of RNA mobility signals on virus-induced somatic and germline gene editing in Nicotiana benthamiana and Zea mays. Previously, we showed that foxtail mosaic virus (FoMV) expressing sgRNA induced somatic mutations in N. benthamiana and Z. mays expressing Cas9. Here, we fused RNA mobility signals to sgRNAs targeting the genes encoding either N. benthamiana phytoene desaturase (PDS) or Z. mays high affinity potassium transporter 1 (HKT1). Addition of Arabidopsis thaliana Flowering Locus T (AtFT) and A. thaliana tRNA-Isoleucine (AttRNAIle) did not improve FoMV-induced somatic editing, and neither were sufficient to facilitate germline mutations in N. benthamiana. Maize FT homologs, Centroradialus 16 (ZCN16) and ZCN19, as well as AttRNAIle were found to aid somatic editing in maize but did not enable sgRNAs delivered by FoMV to induce germline mutations. Additional viral guide RNA delivery systems were assessed for somatic and germline mutations in N. benthamiana with the intention of gaining a better understanding of the specificity of mobile signal-facilitated germline editing. Potato virus X (PVX), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV) were included in this comparative study, and all three of these viruses delivering sgRNA were able to induce somatic and germline mutations. Unexpectedly, PVX, a potexvirus closely related to FoMV, expressing sgRNA alone induced biallelic edited progeny, indicating that mobility signals are dispensable in virus-induced germline editing. These results show that PVX, BSMV, and TRV expressing sgRNA all have an innate ability to induce mutations in the germline. Our results indicate that mobility signals alone may not be sufficient to enable virus-based delivery of sgRNAs using the viruses, FoMV, PVX, BSMV, and TRV into cell types that result in germline mutations.
Collapse
Affiliation(s)
| | | | | | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
42
|
Silva FDA, Fontes EPB. Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein System for Resistance Against Plant Viruses: Applications and Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:904829. [PMID: 35693174 PMCID: PMC9178237 DOI: 10.3389/fpls.2022.904829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Different genome editing approaches have been used to engineer resistance against plant viruses. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas; CRISPR/Cas) systems to create pinpoint genetic mutations have emerged as a powerful tool for molecular engineering of plant immunity and increasing resistance against plant viruses. This review presents (i) recent advances in engineering resistance against plant viruses by CRISPR/Cas and (ii) an overview of the potential host factors as targets for the CRISPR/Cas system-mediated broad-range resistance and immunity. Applications, challenges, and perspectives in enabling the CRISPR/Cas system for crop protection are also outlined.
Collapse
|
43
|
CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. Mol Biol Rep 2022; 49:7101-7110. [PMID: 35568789 DOI: 10.1007/s11033-022-07523-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system was initially identified in bacteria and archaea as a defense mechanism to confer immunity against phages. Later on, it was developed as a gene editing tool for both prokaryotic and eukaryotic cells including plant cells. METHODS AND RESULTS CRISPR/Cas9 approach has wider applications in reverse genetics as well as in crop improvement. Various characters involved in enhancing economic value and crop sustainability against biotic/abiotic stresses can be targeted through this tool. Currently, CRISPR/Cas9 gene editing mechanism has been applied on around 20 crop species for improvement in several traits including yield enhancement and resistance against biotic and abiotic stresses. In the last five years, maximum genome editing research has been validated in rice, wheat, maize and soybean. Genes targeted in these plants has been involved in causing male sterility, conferring resistance against pathogens or having certain nutritional value. CONCLUSIONS Current review summarizes various applications of CRISPR/Cas system and its future prospects in plant biotechnology targeting crop improvement with higher yield, disease tolerance and enhanced nutritional value.
Collapse
|
44
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
45
|
Tripathi L, Dhugga KS, Ntui VO, Runo S, Syombua ED, Muiruri S, Wen Z, Tripathi JN. Genome Editing for Sustainable Agriculture in Africa. Front Genome Ed 2022; 4:876697. [PMID: 35647578 PMCID: PMC9133388 DOI: 10.3389/fgeed.2022.876697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Sustainable intensification of agriculture in Africa is essential for accomplishing food and nutritional security and addressing the rising concerns of climate change. There is an urgent need to close the yield gap in staple crops and enhance food production to feed the growing population. In order to meet the increasing demand for food, more efficient approaches to produce food are needed. All the tools available in the toolbox, including modern biotechnology and traditional, need to be applied for crop improvement. The full potential of new breeding tools such as genome editing needs to be exploited in addition to conventional technologies. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing has rapidly become the most prevalent genetic engineering approach for developing improved crop varieties because of its simplicity, efficiency, specificity, and easy to use. Genome editing improves crop variety by modifying its endogenous genome free of any foreign gene. Hence, genome-edited crops with no foreign gene integration are not regulated as genetically modified organisms (GMOs) in several countries. Researchers are using CRISPR/Cas-based genome editing for improving African staple crops for biotic and abiotic stress resistance and improved nutritional quality. Many products, such as disease-resistant banana, maize resistant to lethal necrosis, and sorghum resistant to the parasitic plant Striga and enhanced quality, are under development for African farmers. There is a need for creating an enabling environment in Africa with science-based regulatory guidelines for the release and adoption of the products developed using CRISPR/Cas9-mediated genome editing. Some progress has been made in this regard. Nigeria and Kenya have recently published the national biosafety guidelines for the regulation of gene editing. This article summarizes recent advances in developments of tools, potential applications of genome editing for improving staple crops, and regulatory policies in Africa.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | - Valentine O. Ntui
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | - Easter D. Syombua
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Samwel Muiruri
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Kenyatta University, Nairobi, Kenya
| | - Zhengyu Wen
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | |
Collapse
|
46
|
Bhattacharjee B, Hallan V. Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 2022; 13:799345. [PMID: 35432267 PMCID: PMC9010885 DOI: 10.3389/fmicb.2022.799345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites. Their ability to independently replicate within the plant without integration into the host genome and the relatively easy handling make them excellent candidates for plant bioengineering. This aspect is of great importance as geminiviruses can act as natural nanoparticles in plants which can be utilized for a plethora of functions ranging from vaccine development systems to geminivirus-induced gene silencing (GIGS), through deconstructed viral vectors. Thus, the investigation of these plant viruses is pertinent to understanding their crucial roles in nature and subsequently utilizing them as beneficial tools in functional genomics. This review, therefore, highlights some of the characteristics of these viruses that can be deemed significant and the subsequent successful case studies for exploitation of these potentially significant pathogens for role mining in functional biology.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
47
|
Rana S, Aggarwal PR, Shukla V, Giri U, Verma S, Muthamilarasan M. Genome Editing and Designer Crops for the Future. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2408:37-69. [PMID: 35325415 DOI: 10.1007/978-1-0716-1875-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Domestication spanning over thousands of years led to the evolution of crops that are being cultivated in recent times. Later, selective breeding methods were practiced by human to produce improved cultivars/germplasm. Classical breeding was further transformed into molecular- and genomics-assisted breeding strategies, however, these approaches are labor-intensive and time-consuming. The advent of omics technologies has facilitated the identification of genes and genetic determinants that regulate particular traits allowing the direct manipulation of target genes and genomic regions to achieve desirable phenotype. Recently, genome editing technologies such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-Associated protein 9 (Cas9) have gained popularity for precise editing of genes to develop crop varieties with superior agronomic, physiological, climate-resilient, and nutritional traits. Owing to the efficiency and precision, genome editing approaches have been widely used to design the crops that can survive the challenges posed by changing climate, and also cater the food and nutritional requirements for ever-growing population. Here, we briefly review different genome editing technologies deployed for crop improvement, and the fundamental differences between GE technology and transgene-based approach. We also summarize the recent advances in genome editing and how this radical expansion can complement the previously established technologies along with breeding for creating designer crops.
Collapse
Affiliation(s)
- Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Varsa Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Urmi Giri
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
48
|
Resistance Management through Brassica Crop–TuMV–Aphid Interactions: Retrospect and Prospects. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Turnip mosaic virus (TuMV) is an important threat to the yield and quality of brassica crops in China, and has brought serious losses to brassica crops in the Far East, including China and the north. Aphids (Hemiptera, Aphidoidea) are the main mediators of TuMV transmission in field production, and not only have strong virus transmission ability (small individuals, strong concealment, and strong fecundity), but are also influenced by the environment, making them difficult to control. Till now, there have been few studies on the resistance to aphids in brassica crops, which depended mainly on pesticide control in agriculture production. However, the control effect was temporarily effective, which also brought environmental pollution, pesticide residues in food products, and destroyed the ecological balance. This study reviews the relationship among brassica crop–TuMV, TuMV–aphid, and brassica crop–aphid interactions, and reveals the influence factors (light, temperature, and CO2 concentration) on brassica crop–TuMV–aphid interactions, summarizing the current research status and main scientific problems about brassica crop–TuMV–aphid interactions. It may provide theoretical guidance for opening up new ways of aphid and TuMV management in brassica crops.
Collapse
|
49
|
Khan ZA, Kumar R, Dasgupta I. CRISPR/Cas-Mediated Resistance against Viruses in Plants. Int J Mol Sci 2022; 23:ijms23042303. [PMID: 35216418 PMCID: PMC8879314 DOI: 10.3390/ijms23042303] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas9 provides a robust and widely adaptable system with enormous potential for genome editing directed towards generating useful products. It has been used extensively to generate resistance against viruses infecting plants with more effective and prolonged efficiency as compared with previous antiviral approaches, thus holding promise to alleviate crop losses. In this review, we have discussed the reports of CRISPR/Cas-based virus resistance strategies against plant viruses. These strategies include approaches targeting single or multiple genes (or non-coding region) in the viral genome and targeting host factors essential for virus propagation. In addition, the utilization of base editing has been discussed to generate transgene-free plants resistant to viruses. This review also compares the efficiencies of these approaches. Finally, we discuss combinatorial approaches, including multiplexing, to increase editing efficiency and bypass the generation of escape mutants.
Collapse
|
50
|
Jiao B, Hao X, Liu Z, Liu M, Wang J, Liu L, Liu N, Song R, Zhang J, Fang Y, Xu Y. Engineering CRISPR immune systems conferring GLRaV-3 resistance in grapevine. HORTICULTURE RESEARCH 2022; 9:uhab023. [PMID: 35039817 PMCID: PMC8796251 DOI: 10.1093/hr/uhab023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/18/2022] [Accepted: 10/03/2021] [Indexed: 05/14/2023]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the causal agents of grapevine leafroll disease (GLD), which severely impacts grapevine production in most viticultural regions of the world. The development of virus-resistant plants is a desirable strategy for the efficient control of viral diseases. However, natural resistant resources have not been reported in the genus Vitis, and anti-GLRaV-3 research has been quite limited in grapevine. In this study, by expressing FnCas9 and LshCas13a, we established a highly effective transgenic construct screening system via an optimized Agrobacterium-mediated transient delivery system in grapevine plantlets. Our study indicated that CRISPR/FnCas9 and LshCas13a caused GLRaV-3 inhibition. Moreover, three vectors-pCR01-CP, pCR11-Hsp70h and pCR11-CP-exhibited the most robust inhibition efficiency compared to those targeting other sites and could be further engineered to generate GLRaV-3-resistant grapevine. In addition, the viral interference efficiency of FnCas9 was dependent on its RNA binding activity. The efficiency of virus inhibition was positively correlated with the level of Cas gene expression. Importantly, we demonstrated that LshCas13a had better interference efficiency against viruses than FnCas9. In summary, this study confirmed that these two RNA-targeting CRISPR mechanisms can confer immunity against viruses in grapevine, providing new avenues to control GLRaV-3 or other RNA viruses in fruit crops.
Collapse
Affiliation(s)
- Bolei Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyi Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiming Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingbo Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Song
- Chinese Wine Industry Technology Institute, Zhongguancun Innovator Center, Yinchuan, Ningxia, 750000, China
| | - Junxiang Zhang
- Chinese Wine Industry Technology Institute, Zhongguancun Innovator Center, Yinchuan, Ningxia, 750000, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|