1
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
McRae-Clark AL, Gray KM, Baker NL, Sherman BJ, Squeglia L, Sahlem GL, Wagner A, Tomko R. Varenicline as a treatment for cannabis use disorder: A placebo-controlled pilot trial. Drug Alcohol Depend 2021; 229:109111. [PMID: 34655945 PMCID: PMC8665036 DOI: 10.1016/j.drugalcdep.2021.109111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND An efficacious pharmacotherapy for cannabis use disorder (CUD) has yet to be established. This study preliminarily evaluated the safety and efficacy of varenicline for CUD in a proof-of-concept clinical trial. METHODS Participants in this 6-week randomized, placebo-controlled pilot trial received either varenicline (n = 35) or placebo (n = 37), added to a brief motivational enhancement therapy intervention. Outcomes included cannabis withdrawal, cannabis abstinence, urine cannabinoid levels, percent cannabis use days, and cannabis sessions per day. RESULTS Both treatment groups noted significant decreases in self-reported cannabis withdrawal, percentage of days used, and use sessions per day during treatment compared to baseline. While this pilot trial was not powered to detect statistically significant between-group differences, participants randomized to varenicline evidenced numerically greater rates of self-reported abstinence at the final study visit [Week 6 intent-to-treat (ITT): Varenicline: 17.1% vs. Placebo: 5.4%; RR = 3.2 (95% CI: 0.7,14.7)]. End-of-treatment urine creatinine corrected cannabinoid levels were numerically lower in the varenicline group and higher in the placebo group compared to baseline [Change from baseline: Varenicline -1.7 ng/mg (95% CI: -4.1,0.8) vs. Placebo: 1.9 ng/mg (95% CI: -0.4,4.3); Δ = 3.5 (95% CI: 0.1,6.9)]. Adverse events related to study treatment did not reveal new safety signals. CONCLUSIONS Findings support the feasibility of conducting clinical trials of varenicline as a candidate pharmacotherapy for CUD, and indicate that a full-scale efficacy trial, powered based on effect sizes and variability yielded in this study, is warranted.
Collapse
Affiliation(s)
- Aimee L. McRae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Kevin M. Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Brian J. Sherman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Lindsay Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | | | - Amanda Wagner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Rachel Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
3
|
Underner M, Perriot J, Peiffer G, Ruppert AM, de Chazeron I, Jaafari N. [Combinations of pharmacological treatments in smoking cessation. A systematic review]. Rev Mal Respir 2021; 38:706-720. [PMID: 34215484 DOI: 10.1016/j.rmr.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The effectiveness of the three validated smoking cessation medications, nicotine replacement therapy, varenicline and bupropion, may be insufficient, in hard-core smokers. OBJECTIVES This systematic review investigates the efficacy of combinations of different medications in smoking abstinence and their tolerability. RESULTS Three randomized controlled trials (RCTs) compared the combined medications with varenicline and nicotine patches vs. varenicline; two found an increase in abstinence rates with the combined medications. In one study, the beneficial effect was only observed in heavy smokers. The four RCTs comparing the combined medications with varenicline and bupropion (vs. varenicline) demonstrated an increase in abstinence rates with the combined medications, most often in heavy smokers who are very dependent on tobacco. The results of the three RCTs comparing the combined medications with bupropion and nicotine replacement therapy vs. varenicline were discordant. Three studies included other molecules (mecamylamine, selegiline, sertraline, buspirone). Combined medications were well tolerated. CONCLUSION Combination treatments can achieve higher smoking abstinence rates than monotherapies, especially in smokers who have failed to quit (Hard-core smokers). Treatment with a combination of varenicline and nicotine replacement therapy is a therapeutic option in smoking cessation.
Collapse
Affiliation(s)
- M Underner
- Unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 370, avenue Jacques-Cœur, CS 10587, 86021 Poitiers, France.
| | - J Perriot
- CLAT 63, dispensaire Emile-Roux, centre de tabacologie, 63100 Clermont-Ferrand, France
| | - G Peiffer
- Service de pneumologie, CHR Metz-Thionville, 57038 Metz, France
| | - A-M Ruppert
- Service de pneumologie et oncologie thoracique, GRC n(o) 04 Theranoscan, unité de tabacologie, Sorbonne Université, hôpital Tenon, Assistance publique-Hôpitaux de Paris, 4, rue de la Chine, 75970 Paris cedex 20, France
| | - I de Chazeron
- Service de psychiatrie-addictologie, CMP-B, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - N Jaafari
- Unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 370, avenue Jacques-Cœur, CS 10587, 86021 Poitiers, France
| |
Collapse
|
4
|
Albin RL, Müller MLTM, Bohnen NI, Spino C, Sarter M, Koeppe RA, Szpara A, Kim K, Lustig C, Dauer WT. α4β2 * Nicotinic Cholinergic Receptor Target Engagement in Parkinson Disease Gait-Balance Disorders. Ann Neurol 2021; 90:130-142. [PMID: 33977560 DOI: 10.1002/ana.26102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Attentional deficits following degeneration of brain cholinergic systems contribute to gait-balance deficits in Parkinson disease (PD). As a step toward assessing whether α4β2* nicotinic acetylcholine receptor (nAChR) stimulation improves gait-balance function, we assessed target engagement of the α4β2* nAChR partial agonist varenicline. METHODS Nondemented PD participants with cholinergic deficits were identified with [18 F]fluoroethoxybenzovesamicol positron emission tomography (PET). α4β2* nAChR occupancy after subacute oral varenicline treatment was measured with [18 F]flubatine PET. With a dose selected from the nAChR occupancy experiment, varenicline effects on gait, balance, and cognition were assessed in a double-masked placebo-controlled crossover study. Primary endpoints were normal pace gait speed and a measure of postural stability. RESULTS Varenicline doses (0.25mg per day, 0.25mg twice daily [b.i.d.], 0.5mg b.i.d., and 1.0mg b.i.d.) produced 60 to 70% receptor occupancy. We selected 0.5mg orally b.i.d for the crossover study. Thirty-three participants completed the crossover study with excellent tolerability. Varenicline had no significant impact on the postural stability measure and caused slower normal pace gait speed. Varenicline narrowed the difference in normal pace gait speed between dual task and no dual task gait conditions, reduced dual task cost, and improved sustained attention test performance. We obtained identical conclusions in 28 participants with treatment compliance confirmed by plasma varenicline measurements. INTERPRETATION Varenicline occupied α4β2* nicotinic acetylcholine receptors, was tolerated well, enhanced attention, and altered gait performance. These results are consistent with target engagement. α4β2* agonists may be worth further evaluation for mitigation of gait and balance disorders in PD. ANN NEUROL 2021;90:130-142.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI
| | - Martijn L T M Müller
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Nicolaas I Bohnen
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Cathie Spino
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Martin Sarter
- University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Ashley Szpara
- Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI
| | - Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Cindy Lustig
- University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, MI.,Department of Psychology, University of Michigan, Ann Arbor, MI
| | - William T Dauer
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI.,University of Michigan Morris K. Udall Parkinson's Disease Research Center of Excellence, Ann Arbor, MI.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX.,Peter J. O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
McCaul ME, Wand GS, Kuwabara H, Dannals RF, Wong D, Xu X. The Relationship of Varenicline Agonism of α4β2 Nicotinic Acetylcholine Receptors and Nicotine-Induced Dopamine Release in Nicotine-Dependent Humans. Nicotine Tob Res 2020; 22:892-899. [PMID: 31096265 PMCID: PMC7529151 DOI: 10.1093/ntr/ntz080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Cigarette smoking continues to be one of the most important behavioral causes of morbidity and mortality in the world. Varenicline, an α4β2 nicotinic acetylcholine receptor (nAChR) partial agonist, has been shown to increase smoking quit rates compared with nicotine-based products. This human laboratory, double-blind, placebo-controlled study examined varenicline and placebo effects on α4β2-nAChRs occupancy, nicotine-induced change in [11C]raclopride non-displaceable binding potential (BPND), and behavioral measures of cigarette smoking, nicotine craving, and withdrawal. METHODS Current nicotine dependent daily smokers (N = 17) were randomized to varenicline 1 mg twice daily or placebo for 13 days. Using positron emission tomography), we characterized α4β2-nAChRs occupancy using [18F]AZAN and dopamine receptor binding using [11C]raclopride as well as behavioral measures of cigarettes smoked, craving, and nicotine withdrawal. RESULTS Varenicline compared with placebo resulted in significant reductions in [18F]AZAN BPND in multiple brain regions including thalamus, midbrain, putamen, and ventral striatum. Following administration of a controlled-dose nicotine cigarette, dopamine release was significantly suppressed in the ventral striatum in the varenicline-treated compared with the placebo group. There was a significant relationship between α4β2-nAChRs BPND measured in thalamus during the [18F]AZAN scan and nicotine-induced change in raclopride BPND in the ventral striatum. CONCLUSION This is the first human study to demonstrate a direct relationship between the extent of varenicline occupancy of α4β2-nAChRs and the magnitude of dopamine release following nicotine use. IMPLICATIONS It has remained unclear how nicotinic receptor blockade through partial agonist medications such as varenicline promotes smoking cessation. One hypothesized mechanism is downstream dampening of the mesolimbic reward dopamine system. For the first time in human smokers, we observed a direct relationship between the extent of varenicline blockade of α4β2-nACh nicotinic receptors and the magnitude of dopamine release following smoking. This has mechanistic and therapeutic implications for improving smoking cessation interventions.
Collapse
Affiliation(s)
- Mary E McCaul
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gary S Wand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hiroto Kuwabara
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert F Dannals
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dean Wong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiaoqiang Xu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Ghura S, Gross R, Jordan-Sciutto K, Dubroff J, Schnoll R, Collman RG, Ashare RL. Bidirectional Associations among Nicotine and Tobacco Smoke, NeuroHIV, and Antiretroviral Therapy. J Neuroimmune Pharmacol 2019; 15:694-714. [PMID: 31834620 DOI: 10.1007/s11481-019-09897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
People living with HIV (PLWH) in the antiretroviral therapy (ART) era may lose more life-years to tobacco use than to HIV. Yet, smoking rates are more than twice as high among PLWH than the general population, contributing not just to mortality but to other adverse health outcomes, including neurocognitive deficits (neuroHIV). There is growing evidence that synergy with chronic inflammation and immune dysregulation that persists despite ART may be one mechanism by which tobacco smoking contributes to neuroHIV. This review will summarize the differential effects of nicotine vs tobacco smoking on inflammation in addition to the effects of tobacco smoke components on HIV disease progression. We will also discuss biomarkers of inflammation via neuroimaging as well as biomarkers of nicotine dependence (e.g., nicotine metabolite ratio). Tobacco smoking and nicotine may impact ART drug metabolism and conversely, certain ARTs may impact nicotine metabolism. Thus, we will review these bidirectional relationships and how they may contribute to neuroHIV and other adverse outcomes. We will also discuss the effects of tobacco use on the interaction between peripheral organs (lungs, heart, kidney) and subsequent CNS function in the context of HIV. Lastly, given the dramatic rise in the use of electronic nicotine delivery systems, we will discuss the implications of vaping on these processes. Despite the growing recognition of the importance of addressing tobacco use among PLWH, more research is necessary at both the preclinical and clinical level to disentangle the potentially synergistic effects of tobacco use, nicotine, HIV, cognition and immune dysregulation, as well as identify optimal approaches to reduce tobacco use. Graphical Abstract Proposed model of the relationships among HIV, ART, smoking, inflammation, and neurocognition. Solid lines represent relationships supported by evidence. Dashed lines represent relationships for which there is not enough evidence to make a conclusion. (a) HIV infection produces elevated levels of inflammation even among virally suppressed individuals. (b) HIV is associated with deficits in cognition function. (c) Smoking rates are higher among PLWH, compared to the general population. (d) The nicotine metabolite ratio (NMR) is associated with smoking behavior. (e) HIV and tobacco use are both associated with higher rates of psychiatric comorbidities, such as depression, and elevated levels of chronic stress. These factors may represent other mechanisms linking HIV and tobacco use. (f) The relationship between nicotine, tobacco smoking, and inflammation is complex, but it is well-established that smoking induces inflammation; the evidence for nicotine as anti-inflammatory is supported in some studies, but not others. (g) The relationship between tobacco use and neurocognition may differ for the effects of nicotine (acute nicotine use may have beneficial effects) vs. tobacco smoking (chronic use may impair cognition). (h) Elevated levels of inflammation may be associated with deficits in cognition. (i) PLWH may metabolize nicotine faster than those without HIV; the mechanism is not yet known and the finding needs validation in larger samples. We also hypothesize that if HIV-infection increases nicotine metabolism, then we should observe an attenuation effect once ART is initiated. (j) It is possible that the increase in NMR is due to ART effects on CYP2A6. (k) We hypothesize that faster nicotine metabolism may result in higher levels of inflammation since nicotine has anti-inflammatory properties.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Gross
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Dubroff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Schnoll
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ashare
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA.
| |
Collapse
|
7
|
Ashok AH, Mizuno Y, Howes OD. Tobacco smoking and dopaminergic function in humans: a meta-analysis of molecular imaging studies. Psychopharmacology (Berl) 2019; 236:1119-1129. [PMID: 30887059 PMCID: PMC6591186 DOI: 10.1007/s00213-019-05196-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE About 1.1 billion people smoke tobacco globally and tobacco-related health care costs 1.8% of GDP in many countries. The majority of people are unable to quit smoking despite pharmacological intervention, highlighting the need to understand the pathophysiology associated with tobacco smoking to aid the development of new therapeutics. The reinforcing effects of tobacco smoking are thought to be mediated by the dopamine system. However, the nature of dopamine dysfunction seen in smokers is unclear. OBJECTIVE To determine the nature and robustness of the evidence for dopaminergic alterations in smokers. METHODS The entire MEDLINE, EMBASE, and PsycINFO databases were searched for studies from inception date to November 18, 2018. In vivo human molecular imaging studies of dopamine measures (dopamine synthesis or release capacity, transporter levels, receptor levels) in tobacco smokers were selected. Demographic, clinical, and imaging measures were extracted from each study and meta-analyses, and sensitivity analyses were conducted. RESULTS Fourteen studies met inclusion criteria comprising a total sample of 219 tobacco smokers and 297 controls. The meta-analysis showed a significant reduction in dopamine transporter availability in the smokers relative to controls with an effect size of - 0.72 ([95% CI, - 1.38 to - 0.05], p = 0.03). However, there was no difference in D2/3 receptor availability in smokers relative to controls (d = -0.16 ([95% CI, - 0.42 to 0.1], p = 0.23). There were insufficient studies for meta-analysis of other measures. However, findings from the published studies indicated blunted dopamine release and lower D1 receptor availability, while findings for dopamine synthesis capacity were inconsistent. CONCLUSION Our data indicate that striatal dopamine transporter availability is lower but D2/3 receptors are unaltered in smokers relative to controls. We discuss the putative mechanisms underlying this and their implications.
Collapse
Affiliation(s)
- Abhishekh H. Ashok
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences Centre (LMS), Du Cane Road, London, W12 0NN UK ,Psychiatric Imaging Group, Faculty of Medicine, Imperial College London, Institute of Clinical Sciences (ICS), Du Cane Road, London, UK ,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AB UK
| | - Yuya Mizuno
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AB UK ,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Oliver D. Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences Centre (LMS), Du Cane Road, London, W12 0NN UK ,Psychiatric Imaging Group, Faculty of Medicine, Imperial College London, Institute of Clinical Sciences (ICS), Du Cane Road, London, UK ,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AB UK
| |
Collapse
|
8
|
Chen J, Liu XM, Zhang Y. Venom based neural modulators. Exp Ther Med 2018; 15:615-619. [PMID: 29399064 PMCID: PMC5772594 DOI: 10.3892/etm.2017.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Different types of neuronal nicotinic acetylcholine receptors (nAChRs) are expected to occur in vivo, most structure-activity relationship studies have been carried out for just a few neuronal subtypes. The present review enlightens current aspects of venom modulators of nAChRs. Important electronic databases such as PubMed or Google scholar were explored for the collection of latest studies in the field. Clinical and basic research has shown that cholinergic receptors play a role in several disorders of the nervous system such as chronic pain, Alzheimers disease and addiction to nicotine, alcohol and drugs. Unfortunately, the lack of selective modulators for each subtype of nAChR makes their pharmacological characterization difficult, which has slowed the development of therapeutic nAChR modulators with high selectivity and absence of off-target side-effects. Animal venoms have proven to be an excellent natural source of bioactive molecules with activity against ion channels. The present review concludes that the presence of small-molecule nAChR modulators in spider venoms support the use of venoms as a potential source of novel modulators.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiao-Ming Liu
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuan Zhang
- Department of Pediatric Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
9
|
Bhatt S, Hillmer AT, Nabulsi N, Matuskey D, Lim K, Lin SF, Esterlis I, Carson RE, Huang Y, Cosgrove KP. Evaluation of (-)-[ 18 F]Flubatine-specific binding: Implications for reference region approaches. Synapse 2017; 72. [PMID: 29105121 DOI: 10.1002/syn.22016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/13/2017] [Accepted: 10/31/2017] [Indexed: 11/05/2022]
Abstract
We aimed to characterize changes in binding of (-)-[18 F]Flubatine to α4 β2 *-nicotinic acetylcholine receptors (α4 β2 *-nAChRs) during a tobacco cigarette smoking challenge. Displacement of (-)-[18 F]Flubatine throughout the brain was quantified as change in (-)-[18 F]Flubatine distribution volume (VT ), with particular emphasis on regions with low VT . Three tobacco smokers were imaged with positron emission tomography (PET) during a 210 min bolus-plus-constant infusion of (-)-[18 F]Flubatine. A tobacco cigarette was smoked in the PET scanner ∼125 min after the start of (-)-[18 F]Flubatine injection. Equilibrium analysis was used to estimate VT at baseline (90-120 min) and after cigarette challenge (180-210 min), at the time of greatest receptor occupancy by nicotine. Smoking reduced VT by 21 ± 9% (average ±SD) in corpus callosum, 17 ± 9% in frontal cortex, 36 ± 11% in cerebellum, and 22 ± 10% in putamen. The finding of displaceable (-)-[18 F]Flubatine binding throughout the brain is an important consideration for reference region-based quantification approaches with this tracer. We observed displacement of (-)-[18 F]Flubatine binding to α4 β2 *-nicotinic acetylcholine receptors in corpus callosum by a tobacco cigarette challenge. We conclude that reference region approaches utilizing corpus callosum should first perform careful characterization of displaceable (-)-[18 F]Flubatine binding and nondisplaceable kinetics in this putative reference region.
Collapse
Affiliation(s)
- Shivani Bhatt
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut.,Yale PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Ansel T Hillmer
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - David Matuskey
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Keunpoong Lim
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Shu-Fei Lin
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Irina Esterlis
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,West Haven VA Hospital, National Center for PTSD, West Haven, Connecticut
| | - Richard E Carson
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Yale PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly P Cosgrove
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut.,Yale PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,West Haven VA Hospital, National Center for PTSD, West Haven, Connecticut
| |
Collapse
|
10
|
Kassenbrock A, Vasdev N, Liang SH. Selected PET Radioligands for Ion Channel Linked Neuroreceptor Imaging: Focus on GABA, NMDA and nACh Receptors. Curr Top Med Chem 2017; 16:1830-42. [PMID: 26975506 DOI: 10.2174/1568026616666160315142457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) neuroimaging of ion channel linked receptors is a developing area of preclinical and clinical research. The present review focuses on recent advances with radiochemistry, preclinical and clinical PET imaging studies of three receptors that are actively pursued in neuropsychiatric drug discovery: namely the γ-aminobutyric acid-benzodiazapine (GABA) receptor, nicotinic acetylcholine receptor (nAChR), and N-methyl-D-aspartate (NMDA) receptor. Recent efforts to develop new PET radioligands for these targets with improved brain uptake, selectivity, stability and pharmacokinetics are highlighted.
Collapse
Affiliation(s)
| | | | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Hone AJ, Michael McIntosh J, Rueda-Ruzafa L, Passas J, de Castro-Guerín C, Blázquez J, González-Enguita C, Albillos A. Therapeutic concentrations of varenicline in the presence of nicotine increase action potential firing in human adrenal chromaffin cells. J Neurochem 2016; 140:37-52. [PMID: 27805736 DOI: 10.1111/jnc.13883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023]
Abstract
Varenicline is a nicotinic acetylcholine receptor (nAChR) agonist used to treat nicotine addiction, but a live debate persists concerning its mechanism of action in reducing nicotine consumption. Although initially reported as α4β2 selective, varenicline was subsequently shown to activate other nAChR subtypes implicated in nicotine addiction including α3β4. However, it remains unclear whether activation of α3β4 nAChRs by therapeutically relevant concentrations of varenicline is sufficient to affect the behavior of cells that express this subtype. We used patch-clamp electrophysiology to assess the effects of varenicline on native α3β4* nAChRs (asterisk denotes the possible presence of other subunits) expressed in human adrenal chromaffin cells and compared its effects to those of nicotine. Varenicline and nicotine activated α3β4* nAChRs with EC50 values of 1.8 (1.2-2.7) μM and 19.4 (11.1-33.9) μM, respectively. Stimulation of adrenal chromaffin cells with 10 ms pulses of 300 μM acetylcholine (ACh) in current-clamp mode evoked sodium channel-dependent action potentials (APs). Under these conditions, perfusion of 50 or 100 nM varenicline showed very little effect on AP firing compared to control conditions (ACh stimulation alone), but at higher concentrations (250 nM) varenicline increased the number of APs fired up to 436 ± 150%. These results demonstrate that therapeutic concentrations of varenicline are unlikely to alter AP firing in chromaffin cells. In contrast, nicotine showed no effect on AP firing at any of the concentrations tested (50, 100, 250, and 500 nM). However, perfusion of 50 nM nicotine simultaneously with 100 nM varenicline increased AP firing by 290 ± 104% indicating that exposure to varenicline and nicotine concurrently may alter cellular behavior such as excitability and neurotransmitter release.
Collapse
Affiliation(s)
- Arik J Hone
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain.,Departments of Biology, University of Utah, Salt Lake City, Utah, USA
| | - J Michael McIntosh
- Departments of Biology, University of Utah, Salt Lake City, Utah, USA.,Psychiatry, University of Utah, Salt Lake City, Utah, USA.,The George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Lola Rueda-Ruzafa
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Upton M, Lotfipour S. α2-Null mutant mice have altered levels of neuronal activity in restricted midbrain and limbic brain regions during nicotine withdrawal as demonstrated by cfos expression. Biochem Pharmacol 2015; 97:558-565. [PMID: 26111579 PMCID: PMC4607355 DOI: 10.1016/j.bcp.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are the primary binding sites for nicotine within the brain. Using alpha(α)2 nAChR subunit-null mutant mice, the current study evaluates whether the absence of this gene product during mecamylamine-precipitated nicotine withdrawal eliminates neuronal activity within selective midbrain and limbic brain regions, as determined by the expression of the immediate early gene, cfos. Our results demonstrate that nicotine withdrawal enhances neuronal activity within the interpeduncular nucleus and dorsal hippocampus, which is absent in mice null for α2-containing nAChRs. In contrast, we observe that α2-null mutant mice exhibit a suppression of neuronal activity in the dentate gyrus in mice undergoing nicotine withdrawal. Interestingly, α2-null mutant mice display potentiated neuronal activity specifically within the stratum lacunosum moleculare layer of the hippocampus, independent of nicotine withdrawal. Overall, our findings demonstrate that α2-null mutant mice have altered cfos expression in distinct populations of neurons within selective midbrain and limbic brain structures that mediate baseline and nicotine withdrawal-induced neuronal activity.
Collapse
Affiliation(s)
- Montana Upton
- Department of Psychiatry, University of California, Los Angeles, MRL Building, Room 2557, 675 Charles E. Young Drive South, Los Angeles, CA 90095, United States
| | - Shahrdad Lotfipour
- Department of Psychiatry, University of California, Los Angeles, MRL Building, Room 2557, 675 Charles E. Young Drive South, Los Angeles, CA 90095, United States
| |
Collapse
|
13
|
Dubroff JG, Doot RK, Falcone M, Schnoll RA, Ray R, Tyndale RF, Brody AL, Hou C, Schmitz A, Lerman C. Decreased Nicotinic Receptor Availability in Smokers with Slow Rates of Nicotine Metabolism. J Nucl Med 2015; 56:1724-9. [PMID: 26272810 DOI: 10.2967/jnumed.115.155002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The nicotine metabolite ratio (NMR), a stable measure of hepatic nicotine metabolism via the CYP2A6 pathway and total nicotine clearance, is a predictive biomarker of response to nicotine replacement therapy, with increased quit rates in slower metabolizers. Nicotine binds directly to nicotinic acetylcholine receptors (nAChRs) to exert its psychoactive effects. This study examined the relationship between NMR and nAChR (α4β2* subtype) availability using PET imaging of the radiotracer 2-(18)F-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-(18)F-FA-85380, or 2-(18)F-FA). METHODS Twenty-four smokers-12 slow metabolizers (NMR < 0.26) and 12 normal metabolizers (NMR ≥ 0.26)-underwent 2-(18)F-FA-PET brain imaging after overnight nicotine abstinence (18 h before scanning), using a validated bolus-plus-infusion protocol. Availability of nAChRs was compared between NMR groups in a priori volumes of interest, with total distribution volume (VT/fP) being the measure of nAChR availability. Cravings to smoke were assessed before and after the scans. RESULTS Thalamic nAChR α4β2* availability was significantly reduced in slow nicotine metabolizers (P = 0.04). Slow metabolizers exhibited greater reductions in cravings after scanning than normal metabolizers; however, craving was unrelated to nAChR availability. CONCLUSION The rate of nicotine metabolism is associated with thalamic nAChR availability. Additional studies could examine whether altered nAChR availability underlies the differences in treatment response between slow and normal metabolizers of nicotine.
Collapse
Affiliation(s)
- Jacob G Dubroff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Falcone
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert A Schnoll
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Riju Ray
- Global Medical Affairs, GlaxoSmithKline, Brussels, Belgium
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, and Department of Psychiatry, CAMH, University of Toronto, Toronto, Canada
| | - Arthur L Brody
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California; and Department of Psychiatry, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Schmitz
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caryn Lerman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Chang PH, Chiang CH, Ho WC, Wu PZ, Tsai JS, Guo FR. Combination therapy of varenicline with nicotine replacement therapy is better than varenicline alone: a systematic review and meta-analysis of randomized controlled trials. BMC Public Health 2015; 15:689. [PMID: 26198192 PMCID: PMC4508997 DOI: 10.1186/s12889-015-2055-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/14/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Smoking is a major preventable cause of morbidity and premature death worldwide. Both varenicline and nicotine replacement therapy (NRT) help achieve smoking cessation. However, limited evidence exists regarding whether combination of varenicline and NRT is more effective than either alone. The aim of this research was to investigate the efficacy and safety of varenicline combined with NRT. METHODS A systematic search of MEDLINE, EMBASE, ClinicalTrial.gov, and Cochrane Library was conducted in November 2014. Two authors independently reviewed and selected randomized controlled trials. The quality of the studies was evaluated by the Jadad score. We carried out meta-analysis of both early (abstinence rate assessed before or at the end of treatment) and late (assessed after the end of the treatment) outcomes. RESULTS Three randomized controlled trials with 904 participants were included in this meta-analysis. All three were comparing combination therapy with varenicline therapy alone. The late outcomes were assessed in 2 of the 3 trials. Both the early and late outcomes were favorable for combination therapy (OR = 1.50, 95 % CI 1.14 to 1.97; OR = 1.62, 95 % CI 1.18 to 2.23, respectively). However, this significance diminished after eliminating a study with pre-cessation treatment using nicotine patch. The most common adverse events were nausea, insomnia, abnormal dreams, and headache. One study reported more skin reactions (14.4 % vs 7.8 %; p = 0.03) associated with combination therapy. CONCLUSIONS Combination therapy is more effective than varenicline alone, especially if pre-cessation treatment of nicotine patch is administrated. Adverse events of combination therapy are similar to mono-therapy except for skin reactions.
Collapse
Affiliation(s)
- Ping-Hsun Chang
- Department of Family Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
- Department of Community and Family Medicine, National Taiwan University Hospital Hsin-Chu Branch, 25, Lane 442, Sec. 1, Jingguo Rd., Hsinchu, 30059, Taiwan.
| | - Chien-Hsieh Chiang
- Department of Family Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
- Department of Family Medicine, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
- Department of Community and Family Medicine, National Taiwan University Hospital Yun-Lin Branch, 579, Sec. 2, Yunlin Road, Yunlin, 640, Taiwan.
| | - Wei-Che Ho
- Department of Family Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
| | - Pei-Zu Wu
- Department of Family Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
| | - Jaw-Shiun Tsai
- Department of Family Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
- Department of Family Medicine, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
| | - Fei-Ran Guo
- Department of Family Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
- Department of Family Medicine, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan South Road, Taipei, 10016, Taiwan.
| |
Collapse
|
15
|
Varenicline effects on drinking, craving and neural reward processing among non-treatment-seeking alcohol-dependent individuals. Psychopharmacology (Berl) 2014; 231:3799-807. [PMID: 24647921 PMCID: PMC4146648 DOI: 10.1007/s00213-014-3518-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE The α4β2 nicotinic acetylcholine receptor partial agonist varenicline has been reported to reduce drinking among both heavy-drinking smokers and primary alcoholics, and this effect may be related to varenicline-mediated reduction of alcohol craving. Among smokers, varenicline has been reported to modulate cigarette cue-elicited brain activation in several reward-related areas. OBJECTIVES This pilot study tested varenicline's effects on drinking, alcohol craving, and alcohol cue-elicited activation of reward-related brain areas among non-treatment-seeking alcohol-dependent individuals. METHODS Thirty-five such individuals (mean age = 30, 57 % male, 76 % heavy drinking days in the past month, 15 smokers) were randomized to either varenicline (titrated to 2 mg) or placebo for 14 days, and were administered an alcohol cue reactivity fMRI task on day 14. A priori regions of interest (ROIs) were bilateral and medial orbitofrontal cortex (OFC), right ventral striatum (VS), and medial prefrontal cortex (mPFC). RESULTS Despite good medication adherence, varenicline did not reduce heavy drinking days or other drinking parameters. It did, however, increase self-reported control over alcohol-related thoughts and reduced cue-elicited activation bilaterally in the OFC, but not in other brain areas. CONCLUSIONS These data indicate that varenicline reduces alcohol craving and some of the neural substrates of alcohol cue reactivity. However, varenicline effects on drinking mediated by cue-elicited brain activation and craving might be best observed among treatment-seekers motivated to reduce their alcohol consumption.
Collapse
|
16
|
Jasinska AJ, Zorick T, Brody AL, Stein EA. Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology 2014; 84:111-22. [PMID: 23474015 PMCID: PMC3710300 DOI: 10.1016/j.neuropharm.2013.02.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/28/2012] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
Substantial evidence demonstrates both nicotine's addiction liability and its cognition-enhancing effects. However, the neurobiological mechanisms underlying nicotine's impact on brain function and behavior remain incompletely understood. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation as well as for a number of cognitive disorders such as schizophrenia. Neuroimaging techniques such as positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), which make it possible to study the actions of nicotine in the human brain in vivo, play an increasingly important role in identifying these dual mechanisms of action. In this review, we summarize the current state of knowledge and discuss outstanding questions and future directions in human neuroimaging research on nicotine and tobacco. This research spans from receptor-level PET and SPECT studies demonstrating nicotine occupancy at nicotinic acetylcholine receptors (nAChRs) and upregulation of nAChRs induced by chronic smoking; through nicotine's interactions with the mesocorticolimbic dopamine system believed to mediate nicotine's reinforcing effects leading to dependence; to functional activity and connectivity fMRI studies documenting nicotine's complex behavioral and cognitive effects manifest by its actions on large-scale brain networks engaged both during task performance and at rest. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Agnes J Jasinska
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Todd Zorick
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States
| | - Arthur L Brody
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| |
Collapse
|
17
|
Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J Med Chem 2014; 57:8204-23. [PMID: 24901260 PMCID: PMC4207546 DOI: 10.1021/jm401937a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Nicotinic acetylcholine receptors
(nAChRs) have been investigated
for developing drugs that can potentially treat various central nervous
system disorders. Considerable evidence supports the hypothesis that
modulation of the cholinergic system through activation and/or desensitization/inactivation
of nAChR holds promise for the development of new antidepressants.
The introductory portion of this Miniperspective discusses the basic
pharmacology that underpins the involvement of α4β2-nAChRs
in depression, along with the structural features that are essential
to ligand recognition by the α4β2-nAChRs. The remainder
of this Miniperspective analyzes reported nicotinic ligands in terms
of drug design considerations and their potency and selectivity, with
a particular focus on compounds exhibiting antidepressant-like effects
in preclinical or clinical studies. This Miniperspective aims to provide
an in-depth analysis of the potential for using nicotinic ligands
in the treatment of depression, which may hold some promise in addressing
an unmet clinical need by providing relief from depressive symptoms
in refractory patients.
Collapse
Affiliation(s)
- Li-Fang Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
18
|
Wong DF, Kuwabara H, Kim J, Brasic JR, Chamroonrat W, Gao Y, Valentine H, Willis W, Mathur A, McCaul ME, Wand G, Gean EG, Dannals RF, Horti AG. PET imaging of high-affinity α4β2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J Nucl Med 2013; 54:1308-14. [PMID: 23801676 DOI: 10.2967/jnumed.112.108001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED We evaluated (-)-2-(6-[(18)F]fluoro-2,3'-bipyridin-5'-yl)-7-methyl-7-aza-bicyclo[2.2.1]heptane ((18)F-AZAN), a novel radiotracer that binds to α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs) and shows high specific binding and rapid and reversible kinetics in the baboon and human brain. METHODS We tested safety tolerability and test-retest reliability (n = 5) and proposed initial quantification of (18)F-AZAN receptors in 3 healthy human subjects who had nicotine exposure and 9 who did not. We also present a receptor blocking study in a nicotine subject dosed with the α4β2-nAChR-selective partial agonist varenicline. RESULTS Radiation dosimetry PET/CT experiments indicated that most human organs received doses between 0.008 and 0.015 mSv/MBq, with an effective dose of approximately 0.014 mSv/MBq. The tracer rapidly entered the brain, and the peak was reached before 20 min, even for thalamus. Ninety-minute scans were sufficient for (18)F-AZAN to obtain the ratio at equilibrium of specifically bound radioligand to nondisplaceable radioligand in tissue (BPND) using plasma reference graphical analysis, which showed excellent reproducibility of BPND (test-retest variability < 10%) in the nAChR-rich brain regions. Regional plasma reference graphical analysis BP(ND) values exceeded 2 in the midbrain tegmental nuclei, lateral geniculate body, and thalamus for nonsmokers (n = 9) but were less than 1 in the nAChR-poor brain regions. There was a dramatic reduction of (18)F-AZAN brain uptake in smokers and varenicline-treated subjects. CONCLUSION (18)F-AZAN is a highly specific, safe, and effective PET radioligand for human subjects that requires only 90 min of PET scanning to estimate high-affinity α4β2-nAChR in the living human brain.
Collapse
Affiliation(s)
- Dean F Wong
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Horti AG, Kuwabara H, Holt DP, Dannals RF, Wong DF. Recent PET radioligands with optimal brain kinetics for imaging nicotinic acetylcholine receptors. J Labelled Comp Radiopharm 2013; 56:159-66. [DOI: 10.1002/jlcr.3020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew G. Horti
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Daniel P. Holt
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Robert F. Dannals
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| | - Dean F. Wong
- Division of Nuclear Medicine, Department of Radiology; Johns Hopkins University; Baltimore; MD; USA
| |
Collapse
|
20
|
Bordia T, Hrachova M, Chin M, McIntosh JM, Quik M. Varenicline is a potent partial agonist at α6β2* nicotinic acetylcholine receptors in rat and monkey striatum. J Pharmacol Exp Ther 2012; 342:327-34. [PMID: 22550286 DOI: 10.1124/jpet.112.194852] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extensive evidence indicates that varenicline reduces nicotine craving and withdrawal symptoms by modulating dopaminergic function at α4β2* nicotinic acetylcholine receptors (nAChRs) (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex). More recent data suggest that α6β2* nAChRs also regulate dopamine release and mediate nicotine reinforcement. The present experiments were therefore done to test the effect of varenicline on α6β2* nAChRs and their function, because its interaction with this subtype is currently unclear. Receptor competition studies showed that varenicline inhibited α6β2* nAChR binding (K(i) = 0.12 nM) as potently as α4β2* nAChR binding (K(i) = 0.14 nM) in rat striatal sections and with ∼20-fold greater affinity than nicotine. Functionally, varenicline was more potent in stimulating α6β2* versus α4β2* nAChR-mediated [(3)H]dopamine release from rat striatal synaptosomes with EC(50) values of 0.007 and 0.086 μM, respectively. However, it acted as a partial agonist on α6β2* and α4β2* nAChR-mediated [(3)H]dopamine release with maximal efficacies of 49 and 24%, respectively, compared with nicotine. We also evaluated varenicline's action in striatum of monkeys, a useful animal model for comparison with humans. Varenicline again potently inhibited monkey striatal α6β2* (K(i) = 0.13 nM) and α4β2* (K(i) = 0.19 nM) nAChRs in competition studies. Functionally, it potently stimulated both α6β2* (EC(50) = 0.014 μM) and α4β2* (EC(50) = 0.029 μM) nAChR-mediated [(3)H]dopamine release from monkey striatal synaptosomes, again acting as a partial agonist relative to nicotine at both subtypes. These data suggest that the ability of varenicline to interact at α6β2* nAChRs may contribute to its efficacy as a smoking cessation aid.
Collapse
Affiliation(s)
- Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | | | | | | | | |
Collapse
|