1
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
2
|
Gong S, Fayette N, Heinsbroek JA, Ford CP. Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron 2021; 109:3421-3435.e5. [PMID: 34506723 PMCID: PMC8571051 DOI: 10.1016/j.neuron.2021.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a chronic, relapsing disorder characterized by maladaptation in the brain mesolimbic and nigrostriatal dopamine system. Although changes in the properties of D2-receptor-expressing medium spiny neurons (D2-MSNs) and connected striatal circuits following cocaine treatment are known, the contributions of altered D2-receptor (D2R) function in mediating the rewarding properties of cocaine remain unclear. Here, we describe how a 7-day exposure to cocaine alters dopamine signaling by selectively reducing the sensitivity, but not the expression, of nucleus accumbens D2-MSN D2Rs via an alteration in the relative expression and coupling of G protein subunits. This cocaine-induced reduction of D2R sensitivity facilitated the development of the rewarding effects of cocaine as blocking the reduction in G protein expression was sufficient to prevent cocaine-induced behavioral adaptations. These findings identify an initial maladaptive change in sensitivity by which mesolimbic dopamine signals are encoded by D2Rs following cocaine exposure.
Collapse
Affiliation(s)
- Sheng Gong
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas Fayette
- Department of Anesthesiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Ågren R, Sahlholm K. G protein-coupled receptor kinase-2 confers isoform-specific calcium sensitivity to dopamine D 2 receptor desensitization. FASEB J 2021; 35:e22013. [PMID: 34699610 DOI: 10.1096/fj.202100704rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The dopamine D2 receptor (D2 R) functions as an autoreceptor on dopaminergic cell bodies and terminals and as a postsynaptic receptor on a variety of neurons in the central nervous system. As a result of alternative splicing, the D2 R is expressed as two isoforms: long (D2L R) and short (D2S R) differing by a stretch of 29 residues in the third intracellular loop, with D2S R being the predominant presynaptic isoform. Recent reports described a Ca2+ sensitivity of the desensitization time course of potassium currents elicited via D2S R, but not via D2L R, when either isoform was selectively expressed in dopaminergic neurons. Here, we aimed to study the mechanism behind this subtype-specific Ca2+ sensitivity. Thus, we measured the desensitization of potassium channel responses evoked by D2L R and D2S R using two-electrode voltage clamp in Xenopus oocytes in the absence and presence of different amounts of β-arrestin2 and G protein-coupled receptor kinase-2 (GRK2), both of which are known to play important roles in D2 R desensitization in native cells. We found that co-expression of both GRK2 and β-arrestin2 was necessary for reconstitution of the Ca2+ sensitivity of D2S R desensitization, while D2L R did not display Ca2+ sensitivity under these conditions. The effect of Ca2+ chelation by BAPTA-AM to slow the rate of D2S R desensitization was mimicked by the GRK2 inhibitor, Cmpd101, and by the kinase-inactivating GRK2 mutation, K220R, but not by the PKC inhibitor, Gö6976, nor by the calmodulin antagonist, KN-93. Thus, Ca2+ -sensitive desensitization of D2S R appears to be mediated via a GRK2 phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Zhou Y, Liang Y. Involvement of GRK2 in modulating nalfurafine-induced reduction of excessive alcohol drinking in mice. Neurosci Lett 2021; 760:136092. [PMID: 34197905 DOI: 10.1016/j.neulet.2021.136092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Though it is well known that G protein-coupled receptor kinase 2 [GRK2] is involved in regulation of mu opioid receptor [MOR] desensitization and morphine-related behaviors, the potential role of GRK2 in regulation of kappa opioid receptor [KOR] functions in vivo has not been established yet. A couple of recent studies have found that GRK2 activity desensitizes KOR functions via decreasing G protein-coupled signaling with sensitizing arrestin-coupled signaling. Nalfurafine, a G protein-biased KOR full agonist, produces an inhibitory effect on alcohol intake in mice, with fewer side effects (sedation, aversion, or anxiety/depression-like behaviors). Using RNA sequencing (RNA-seq) analysis, we first identified that nuclear transcript level of grk2 [adrbk1] (but not other grks) was significantly up-regulated in mouse nucleus accumbens shell (NAcs) after chronic excessive alcohol drinking, suggesting alcohol specifically increased NAcs grk2 expression. We then tested whether selective GRK2/3 inhibitor CMPD101 could alter alcohol intake and found that CMPD101 alone had no effect on alcohol drinking. Therefore, we hypothesized that the grk2 increase in the NAcs could modulate the nalfurafine effect on alcohol intake via interacting with the G protein-mediated KOR signaling. Nalfurafine decreased alcohol drinking in a dose-related manner, and pretreatment with CMPD101 enhanced the reduction in alcohol intake induced by nalfurafine, indicating an involvement of GRK2/3 blockade in modulating G protein-biased KOR agonism of nalfurafine. Together, our study provides initial evidence relevant to the transcriptional change of grk2 gene in the NAc shell after excessive alcohol drinking. Pharmacological GRK2/3 blockade enhanced nalfurafine's efficacy, suggesting a GRK2/3-mediated mechanism, probably through the G protein-mediated KOR signaling.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, USA.
| | - Yupu Liang
- Research Bioinformatics, CCTS, The Rockefeller University, NY, USA
| |
Collapse
|
5
|
Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021; 10:735. [PMID: 33810328 PMCID: PMC8066851 DOI: 10.3390/cells10040735] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter involved in multiple physiological functions including motor control, modulation of affective and emotional states, reward mechanisms, reinforcement of behavior, and selected higher cognitive functions. Dysfunction in dopaminergic transmission is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson's disease (PD), schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we will discuss the current insights on the role of DA in motor control and reward learning mechanisms and its involvement in the modulation of synaptic dynamics through different pathways. In particular, we will consider the role of DA as neuromodulator of two forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term depression (LTD) in several cortical and subcortical areas. Finally, we will delineate how the effect of DA on dendritic spines places this molecule at the interface between the motor and the cognitive systems. Specifically, we will be focusing on PD, vascular dementia, and schizophrenia.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Davide Viggiano
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Antonio de Donato
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
6
|
Costa KM, Schenkel D, Roeper J. Sex-dependent alterations in behavior, drug responses and dopamine transporter expression in heterozygous DAT-Cre mice. Sci Rep 2021; 11:3334. [PMID: 33558587 PMCID: PMC7870653 DOI: 10.1038/s41598-021-82600-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Heterozygous mice that express Cre-recombinase under the dopamine transporter promoter (DAT-Cre knock in mice, or KI) are widely used for targeting midbrain dopamine neurons, under the assumption that their constitutive physiology is not affected. We report here that these mice display striking sex-dependent behavioral and molecular differences in relation to wildtypes (WT). Male and female KI mice were constitutively hyperactive, and male KI mice showed attenuated hyperlocomotor responses to amphetamine. In contrast, female KIs displayed a marked reduction in locomotion ("calming" effect) in response to the same dose of amphetamine. Furthermore, male and female DAT-Cre KI mice showed opposing differences in reinforcement learning, with females showing faster conditioning and males showing slower extinction. Other behavioral variables, including working memory and novelty preference, were not changed compared to WT. These effects were paralleled by differences in striatal DAT expression that disproportionately affected female KI mice. Our findings reveal clear limitations of the DAT-Cre line that must be considered when using this model.
Collapse
Affiliation(s)
- Kauê Machado Costa
- grid.7839.50000 0004 1936 9721Institute of Neurophysiology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany ,grid.94365.3d0000 0001 2297 5165Present Address: National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Daniela Schenkel
- grid.7839.50000 0004 1936 9721Institute of Neurophysiology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Jochen Roeper
- grid.7839.50000 0004 1936 9721Institute of Neurophysiology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Gurevich EV, Gurevich VV. GRKs as Modulators of Neurotransmitter Receptors. Cells 2020; 10:cells10010052. [PMID: 33396400 PMCID: PMC7823573 DOI: 10.3390/cells10010052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.
Collapse
|
8
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
9
|
Topalidou I, Cooper K, Pereira L, Ailion M. Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genet 2017; 13:e1007032. [PMID: 28968387 PMCID: PMC5638609 DOI: 10.1371/journal.pgen.1007032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/12/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| |
Collapse
|
10
|
Role of G Protein-Coupled Receptors in the Regulation of Structural Plasticity and Cognitive Function. Molecules 2017; 22:molecules22071239. [PMID: 28737723 PMCID: PMC6152405 DOI: 10.3390/molecules22071239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cognition and other higher brain functions are known to be intricately associated with the capacity of neural circuits to undergo structural reorganization. Structural remodelling of neural circuits, or structural plasticity, in the hippocampus plays a major role in learning and memory. Dynamic modifications of neuronal connectivity in the form of dendritic spine morphology alteration, as well as synapse formation and elimination, often result in the strengthening or weakening of specific neural circuits that determine synaptic plasticity. Changes in dendritic complexity and synapse number are mediated by cellular processes that are regulated by extracellular signals such as neurotransmitters and neurotrophic factors. As many neurotransmitters act on G protein-coupled receptors (GPCRs), it has become increasingly apparent that GPCRs can regulate structural plasticity through a myriad of G protein-dependent pathways and non-canonical signals. A thorough understanding of how GPCRs exert their regulatory influence on dendritic spine morphogenesis may provide new insights for treating cognitive impairment and decline in various age-related diseases. In this article, we review the evidence of GPCR-mediated regulation of structural plasticity, with a special emphasis on the involvement of common as well as distinct signalling pathways that are regulated by major neurotransmitters.
Collapse
|
11
|
Ledonne A, Mercuri NB. Current Concepts on the Physiopathological Relevance of Dopaminergic Receptors. Front Cell Neurosci 2017; 11:27. [PMID: 28228718 PMCID: PMC5296367 DOI: 10.3389/fncel.2017.00027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Dopamine (DA) is a key neurotransmitter modulating essential functions of the central nervous system (CNS), like voluntary movement, reward, several cognitive functions and goal-oriented behaviors. The factual relevance of DAergic transmission can be well appreciated by considering that its dysfunction is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson’s disease (PD) and associated movement disorders, as well as, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we present an overview of the current knowledge on the involvement of DAergic receptors in the regulation of key physiological brain activities, and the consequences of their dysfunctions in brain disorders such as PD, schizophrenia and addiction.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation Rome, Italy
| | - Nicola B Mercuri
- Department of Experimental Neuroscience, Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata"Rome, Italy
| |
Collapse
|
12
|
Kalinowska M, Francesconi A. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease. Curr Neuropharmacol 2017; 14:494-503. [PMID: 27296642 PMCID: PMC4983749 DOI: 10.2174/1570159x13666150515234434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022] Open
Abstract
Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions.
Collapse
Affiliation(s)
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 706, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
13
|
New Concepts in Dopamine D 2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol Psychiatry 2017; 81:78-85. [PMID: 27832841 PMCID: PMC5702557 DOI: 10.1016/j.biopsych.2016.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor that is a common target for antipsychotic drugs. Antagonism of D2R signaling in the striatum is thought to be the primary mode of action of antipsychotic drugs in alleviating psychotic symptoms. However, antipsychotic drugs are not clinically effective at reversing cortical-related symptoms, such as cognitive deficits in schizophrenia. While the exact mechanistic underpinnings of these cognitive deficits are largely unknown, deficits in cortical dopamine function likely play a contributing role. It is now recognized that similar to most G protein-coupled receptors, D2Rs signal not only through canonical G protein pathways but also through noncanonical beta-arrestin2-dependent pathways. We review the current mechanistic bases for this dual signaling mode of D2Rs and how these new concepts might be leveraged for therapeutic gain to target both cortical and striatal dysfunction in dopamine neurotransmission and hence have the potential to correct both positive and cognitive symptoms of schizophrenia.
Collapse
|
14
|
Fox ME, Wightman RM. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective. Pharmacol Rev 2017; 69:12-32. [PMID: 28267676 PMCID: PMC7558309 DOI: 10.1124/pr.116.012948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Catecholamine neurotransmission plays a key role in regulating a variety of behavioral and physiologic processes, and its dysregulation is implicated in both neurodegenerative and neuropsychiatric disorders. Over the last four decades, in vivo electrochemistry has enabled the discovery of contrasting catecholamine regulation in the brain. These rapid and spatially resolved measurements have been conducted in brain slices, and in anesthetized and freely behaving animals. In this review, we describe the methods enabling in vivo measurements of dopamine and norepinephrine, and subsequent findings regarding their release and regulation in intact animals. We thereafter discuss key studies in awake animals, demonstrating that these catecholamines are not only differentially regulated, but are released in opposition of each other during appetitive and aversive stimuli.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | - R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111:1-16. [PMID: 27178731 DOI: 10.1016/j.phrs.2016.05.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Actions of the neurotransmitter dopamine in the brain are mediated by dopamine receptors that belong to the superfamily of G protein-coupled receptors (GPCRs). Mammals have five dopamine receptor subtypes, D1 through D5. D1 and D5 couple to Gs/olf and activate adenylyl cyclase, whereas D2, D3, and D4 couple to Gi/o and inhibit it. Most GPCRs upon activation by an agonist are phosphorylated by GPCR kinases (GRKs). The GRK phosphorylation makes receptors high-affinity binding partners for arrestin proteins. Arrestin binding to active phosphorylated receptors stops further G protein activation and promotes receptor internalization, recycling or degradation, thereby regulating their signaling and trafficking. Four non- visual GRKs are expressed in striatal neurons. Here we describe known effects of individual GRKs on dopamine receptors in cell culture and in the two in vivo models of dopamine-mediated signaling: behavioral response to psychostimulants and L-DOPA- induced dyskinesia. Dyskinesia, associated with dopamine super-sensitivity of striatal neurons, is a debilitating side effect of L-DOPA therapy in Parkinson's disease. In vivo, GRK subtypes show greater receptor specificity than in vitro or in cultured cells. Overexpression, knockdown, and knockout of individual GRKs, particularly GRK2 and GRK6, have differential effects on signaling of dopamine receptor subtypes in the brain. Furthermore, deletion of GRK isoforms in select striatal neuronal types differentially affects psychostimulant-induced behaviors. In addition, anti-dyskinetic effect of GRK3 does not require its kinase activity: it is mediated by the binding of its RGS-like domain to Gαq/11, which suppresses Gq/11 signaling. The data demonstrate that the dopamine signaling in defined neuronal types in vivo is regulated by specific and finely orchestrated actions of GRK isoforms.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow, Russia
| | | |
Collapse
|
16
|
Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3798-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Reinius B, Blunder M, Brett FM, Eriksson A, Patra K, Jonsson J, Jazin E, Kullander K. Conditional targeting of medium spiny neurons in the striatal matrix. Front Behav Neurosci 2015; 9:71. [PMID: 25870547 PMCID: PMC4375991 DOI: 10.3389/fnbeh.2015.00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/05/2015] [Indexed: 01/15/2023] Open
Abstract
The striatum serves as the main input to the basal ganglia, and is key for the regulation of motor behaviors, compulsion, addiction, and various cognitive and emotional states. Its deterioration is associated with degenerative disorders such as Huntington's disease. Despite its apparent anatomical uniformity, it consists of intermingled cell populations, which have precluded straightforward anatomical sub-classifications adhering to functional dissections. Approximately 95% of the striatal neurons are inhibitory projection neurons termed medium spiny neurons (MSNs). They are commonly classified according to their expression of either dopamine receptor D1 or D2, which also determines their axonal projection patterns constituting the direct and indirect pathway in the basal ganglia. Immunohistochemical patterns have further indicated compartmentalization of the striatum to the striosomes and the surrounding matrix, which integrate MSNs of both the D1 and D2 type. Here, we present a transgenic mouse line, Gpr101-Cre, with Cre recombinase activity localized to matrix D1 and D2 MSNs. Using two Gpr101-Cre founder lines with different degrees of expression in the striatum, we conditionally deleted the vesicular inhibitory amino acid transporter (VIAAT), responsible for storage of GABA and glycine in synaptic vesicles. Partial ablation of VIAAT (in ~36% of MSNs) resulted in elevated locomotor activity compared to control mice, when provoked with the monoamine reuptake inhibitor cocaine. Near complete targeting of matrix MSNs led to profoundly changed motor behaviors, which increased in severity as the mice aged. Moreover, these mice had exaggerated muscle rigidity, retarded growth, increased rate of spontaneous deaths, and defective memory. Therefore, our data provide a link between dysfunctional GABA signaling of matrix MSNs to specific behavioral alterations, which are similar to the symptoms of Huntington's disease.
Collapse
Affiliation(s)
- Björn Reinius
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden ; Department of Organismal Biology, EBC, Uppsala University Uppsala, Sweden
| | - Martina Blunder
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Frances M Brett
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Anders Eriksson
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Kalicharan Patra
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Jörgen Jonsson
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University Uppsala, Sweden
| | - Klas Kullander
- Unit of Developmental Genetics, Department of Neuroscience, BMC, Uppsala University Uppsala, Sweden
| |
Collapse
|