1
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2024:S0006-3223(24)01452-5. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
2
|
He Z, Chen Q, Wang K, Lin J, Peng Y, Zhang J, Yan X, Jie Y. Single-cell transcriptomics analysis of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. Eur J Neurosci 2024; 59:333-357. [PMID: 38221677 DOI: 10.1111/ejn.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Single-cell transcriptomics analysis is an advanced technology that can describe the intracellular transcriptome in complex tissues. It profiles and analyses datasets by single-cell RNA sequencing. Neurodegenerative diseases are identified by the abnormal apoptosis of neurons in the brain with few or no effective therapy strategies at present, which has been a growing healthcare concern and brought a great burden to society. The transcriptome of individual cells provides deep insights into previously unforeseen cellular heterogeneity and gene expression differences in neurodegenerative disorders. It detects multiple cell subsets and functional changes during pathological progression, which deepens the understanding of the molecular underpinnings and cellular basis of neurodegenerative diseases. Furthermore, the transcriptome analysis of immune cells shows the regulation of immune response. Different subtypes of immune cells and their interaction are found to contribute to disease progression. This finding enables the discovery of novel targets and biomarkers for early diagnosis. In this review, we emphasize the principles of the technology, and its recent progress in the study of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. The application of single-cell transcriptomics analysis in neurodegenerative disorders would help explore the pathogenesis of these diseases and develop novel therapeutic methods.
Collapse
Affiliation(s)
- Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Kaiyue Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, China
| | - Yan Jie
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Newton K, De Biase L. Substance Use and Addiction. ADVANCES IN NEUROBIOLOGY 2024; 37:343-355. [PMID: 39207701 DOI: 10.1007/978-3-031-55529-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Efforts to reveal the molecular, cellular, and circuit mechanisms of addiction have largely focused on neurons. Yet accumulating data regarding the ability of glial cells to impact synaptic function, circuit activity, and behavior demands that we explore how these nonneuronal cells contribute to substance use disorders and addiction. Important work has shown that glial cells, including microglia, exhibit changes in phenotype following exposure to drugs of abuse and that modification of glial responses can impact behaviors related to drug seeking and drug taking. While these are critical first steps to understanding how microglia can impact addiction, there are still substantial gaps in knowledge that need to be addressed. This chapter reviews some of the key studies that have shown how microglia are affected by and can contribute to addiction. It also discusses areas where more knowledge is urgently needed to reveal new therapeutic and preventative approaches.
Collapse
Affiliation(s)
- Keionna Newton
- Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Lindsay De Biase
- Department of Physiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
5
|
Wang Y, Singh A, Li G, Yue S, Hertel K, Wang ZJ. Opioid induces increased DNA damage in prefrontal cortex and nucleus accumbens. Pharmacol Biochem Behav 2023; 224:173535. [PMID: 36907467 DOI: 10.1016/j.pbb.2023.173535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Opioid use disorder (OUD) is a chronic disease characterized by compulsive opioid taking and seeking, affecting millions of people worldwide. The high relapse rate is one of the biggest challenges in treating opioid addiction. However, the cellular and molecular mechanisms underlying relapse to opioid seeking are still unclear. Recent studies have shown that DNA damage and repair processes are implicated in a broad spectrum of neurodegenerative diseases as well as in substance use disorders. In the present study, we hypothesized that DNA damage is related to relapse to heroin seeking. To test our hypothesis, we aim to examine the overall DNA damage level in prefrontal cortex (PFC) and nucleus accumbens (NAc) after heroin exposure, as well as whether manipulating DNA damage levels can alter heroin seeking. First, we observed increased DNA damage in postmortem PFC and NAc tissues from OUD individuals compared to healthy controls. Next, we found significantly increased levels of DNA damage in the dorsomedial PFC (dmPFC) and NAc from mice that underwent heroin self-administration. Moreover, increased accumulation of DNA damage persisted after prolonged abstinence in mouse dmPFC, but not in NAc. This persistent DNA damage was ameliorated by the treatment of reactive oxygen species (ROS) scavenger N-acetylcysteine, along with attenuated heroin-seeking behavior. Furthermore, intra-PFC infusions of topotecan and etoposide during abstinence, which trigger DNA single-strand breaks and double-strand breaks respectively, potentiated heroin-seeking behavior. These findings provide direct evidence that OUD is associated with the accumulation of DNA damage in the brain (especially in the PFC), which may lead to opioid relapse.
Collapse
Affiliation(s)
- Yunwanbin Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Archana Singh
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Guohui Li
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuwen Yue
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Kegan Hertel
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Zi-Jun Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
6
|
Dittmann NL, Torabi P, Watson AES, Yuzwa SA, Voronova A. Culture Protocol and Transcriptomic Analysis of Murine SVZ NPCs and OPCs. Stem Cell Rev Rep 2023; 19:983-1000. [PMID: 36617597 DOI: 10.1007/s12015-022-10492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
The mammalian adult brain contains two neural stem and precursor (NPC) niches: the subventricular zone [SVZ] lining the lateral ventricles and the subgranular zone [SGZ] in the hippocampus. From these, SVZ NPCs represent the largest NPC pool. While SGZ NPCs typically only produce neurons and astrocytes, SVZ NPCs produce neurons, astrocytes and oligodendrocytes throughout life. Of particular importance is the generation and replacement of oligodendrocytes, the only myelinating cells of the central nervous system (CNS). SVZ NPCs contribute to myelination by regenerating the parenchymal oligodendrocyte precursor cell (OPC) pool and by differentiating into oligodendrocytes in the developing and demyelinated brain. The neurosphere assay has been widely adopted by the scientific community to facilitate the study of NPCs in vitro. Here, we present a streamlined protocol for culturing postnatal and adult SVZ NPCs and OPCs from primary neurosphere cells. We characterize the purity and differentiation potential as well as provide RNA-sequencing profiles of postnatal SVZ NPCs, postnatal SVZ OPCs and adult SVZ NPCs. We show that primary neurospheres cells generated from postnatal and adult SVZ differentiate into neurons, astrocytes and oligodendrocytes concurrently and at comparable levels. SVZ OPCs are generated by subjecting primary neurosphere cells to OPC growth factors fibroblast growth factor (FGF) and platelet-derived growth factor-AA (PDGF-AA). We further show SVZ OPCs can differentiate into oligodendrocytes in the absence and presence of thyroid hormone T3. Transcriptomic analysis confirmed the identities of each cell population and revealed novel immune and signalling pathways expressed in an age and cell type specific manner.
Collapse
Affiliation(s)
- Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Pouria Torabi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Women and Children's Health Research Institute5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, Alberta, T6G 1C9, Canada. .,Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Multiple Sclerosis Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
7
|
King SG, Gaudreault PO, Malaker P, Kim JW, Alia-Klein N, Xu J, Goldstein RZ. Prefrontal-habenular microstructural impairments in human cocaine and heroin addiction. Neuron 2022; 110:3820-3832.e4. [PMID: 36206758 PMCID: PMC9671835 DOI: 10.1016/j.neuron.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The habenula (Hb) is central to adaptive reward- and aversion-driven behaviors, comprising a hub for higher-order processing networks involving the prefrontal cortex (PFC). Despite an established role in preclinical models of cocaine addiction, the translational significance of the Hb and its connectivity with the PFC in humans is unclear. Using diffusion tractography, we detailed PFC structural connectivity with the Hb and two control regions, quantifying tract-specific microstructural features in healthy and cocaine-addicted individuals. White matter was uniquely impaired in PFC-Hb projections in both short-term abstainers and current cocaine users. Abnormalities in this tract further generalized to an independent sample of heroin-addicted individuals and were associated, in an exploratory analysis, with earlier onset of drug use across the addiction subgroups, potentially serving as a predisposing marker amenable for early intervention. Importantly, these findings contextualize a plausible PFC-Hb circuit in the human brain, supporting preclinical evidence for its impairment in cocaine addiction.
Collapse
Affiliation(s)
- Sarah G King
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre-Olivier Gaudreault
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Mitra S, Thomas SA, Martin JA, Williams J, Woodhouse K, Chandra R, Li JX, Lobo MK, Sim FJ, Dietz DM. EGR3 regulates opioid-related nociception and motivation in male rats. Psychopharmacology (Berl) 2022; 239:3539-3550. [PMID: 36098762 PMCID: PMC10094589 DOI: 10.1007/s00213-022-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.
Collapse
Affiliation(s)
- Swarup Mitra
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
- Department of Biomedical Sciences, John C. Edwards School of Medicine, Marshall University, 1700, 3rd Avenue, Huntington, WV, 25755, USA.
| | - Shruthi A Thomas
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jennifer A Martin
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jamal Williams
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Kristen Woodhouse
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Jun Xu Li
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, USA
| | - Fraser J Sim
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA
| | - David M Dietz
- Program in Neuroscience, Department of Pharmacology and Toxicology, The State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
9
|
Fulton SL, Mitra S, Lepack AE, Martin JA, Stewart AF, Converse J, Hochstetler M, Dietz DM, Maze I. Histone H3 dopaminylation in ventral tegmental area underlies heroin-induced transcriptional and behavioral plasticity in male rats. Neuropsychopharmacology 2022; 47:1776-1783. [PMID: 35094023 PMCID: PMC9372029 DOI: 10.1038/s41386-022-01279-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
Persistent transcriptional events in ventral tegmental area (VTA) and other reward relevant brain regions contribute to enduring behavioral adaptations that characterize substance use disorder. Recent data from our laboratory indicate that aberrant accumulation of the newly discovered histone post-translational modification (PTM), H3 dopaminylation at glutamine 5 (H3Q5dop), contributes significantly to cocaine-seeking behavior following prolonged periods of abstinence. It remained unclear, however, whether this modification is important for relapse vulnerability in the context of other drugs of abuse, such as opioids. Here, we showed that H3Q5dop plays a critical role in heroin-mediated transcriptional plasticity in midbrain regions, particularly the VTA. In rats undergoing abstinence from heroin self-administration (SA), we found acute and persistent accumulation of H3Q5dop in VTA. Attenuation of H3Q5dop during abstinence induced persistent changes in gene expression programs associated with neuronal signaling and dopaminergic function in heroin abstinence and led to reduced heroin-seeking behavior. Interestingly, the observed changes in molecular pathways after heroin SA showed significant yet reversed overlap with the same genes altered in cocaine SA. These findings establish an essential role for H3Q5dop, and its downstream transcriptional consequences, in heroin-induced functional plasticity in VTA.
Collapse
Affiliation(s)
- Sasha L. Fulton
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Swarup Mitra
- grid.273335.30000 0004 1936 9887Department of Pharmacology and Toxicology, Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Ashley E. Lepack
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jennifer A. Martin
- grid.273335.30000 0004 1936 9887Department of Pharmacology and Toxicology, Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Andrew F. Stewart
- grid.59734.3c0000 0001 0670 2351Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jacob Converse
- grid.273335.30000 0004 1936 9887Department of Pharmacology and Toxicology, Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Mason Hochstetler
- grid.273335.30000 0004 1936 9887Department of Pharmacology and Toxicology, Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - David M. Dietz
- grid.273335.30000 0004 1936 9887Department of Pharmacology and Toxicology, Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Lam D, Sebastian A, Bogguri C, Hum NR, Ladd A, Cadena J, Valdez CA, Fischer NO, Loots GG, Enright HA. Dose-dependent consequences of sub-chronic fentanyl exposure on neuron and glial co-cultures. FRONTIERS IN TOXICOLOGY 2022; 4:983415. [PMID: 36032789 PMCID: PMC9403314 DOI: 10.3389/ftox.2022.983415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Fentanyl is one of the most common opioid analgesics administered to patients undergoing surgery or for chronic pain management. While the side effects of chronic fentanyl abuse are recognized (e.g., addiction, tolerance, impairment of cognitive functions, and inhibit nociception, arousal, and respiration), it remains poorly understood what and how changes in brain activity from chronic fentanyl use influences the respective behavioral outcome. Here, we examined the functional and molecular changes to cortical neural network activity following sub-chronic exposure to two fentanyl concentrations, a low (0.01 μM) and high (10 μM) dose. Primary rat co-cultures, containing cortical neurons, astrocytes, and oligodendrocyte precursor cells, were seeded in wells on either a 6-well multi-electrode array (MEA, for electrophysiology) or a 96-well tissue culture plate (for serial endpoint bulk RNA sequencing analysis). Once networks matured (at 28 days in vitro), co-cultures were treated with 0.01 or 10 μM of fentanyl for 4 days and monitored daily. Only high dose exposure to fentanyl resulted in a decline in features of spiking and bursting activity as early as 30 min post-exposure and sustained for 4 days in cultures. Transcriptomic analysis of the complex cultures after 4 days of fentanyl exposure revealed that both the low and high dose induced gene expression changes involved in synaptic transmission, inflammation, and organization of the extracellular matrix. Collectively, the findings of this in vitro study suggest that while neuroadaptive changes to neural network activity at a systems level was detected only at the high dose of fentanyl, transcriptomic changes were also detected at the low dose conditions, suggesting that fentanyl rapidly elicits changes in plasticity.
Collapse
Affiliation(s)
- Doris Lam
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Chandrakumar Bogguri
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alexander Ladd
- Computational Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jose Cadena
- Computational Engineering Division, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Carlos A. Valdez
- Nuclear and Chemical Sciences Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O. Fischer
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- *Correspondence: Heather A. Enright,
| |
Collapse
|
11
|
Insulin-like growth factor 1 regulates excitatory synaptic transmission in pyramidal neurons from adult prefrontal cortex. Neuropharmacology 2022; 217:109204. [PMID: 35931212 DOI: 10.1016/j.neuropharm.2022.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor 1 (IGF1) influences synaptic function in addition to its role in brain development and aging. Although the expression levels of IGF1 and IGF1 receptor (IGF1R) peak during development and decline with age, the adult brain has abundant IGF1 or IGF1R expression. Studies reveal that IGF1 regulates the synaptic transmission in neurons from young animals. However, the action of IGF1 on neurons in the adult brain is still unclear. Here, we used prefrontal cortical (PFC) slices from adult mice (∼8 weeks old) to characterize the role of IGF1 on excitatory synaptic transmission in pyramidal neurons and the underlying molecular mechanisms. We first validated IGF1R expression in pyramidal neurons using translating ribosomal affinity purification assay. Then, using whole-cell patch-clamp recording, we found that IGF1 attenuated the amplitude of evoked excitatory postsynaptic current (EPSC) without affecting the frequency and amplitude of miniature EPSC. Furthermore, this decrease in excitatory neurotransmission was blocked by pharmacological inhibition of IGF1R or conditionally knockdown of IGF1R in PFC pyramidal neurons. In addition, we determined that IGF1-induced decrease of EPSC amplitude was due to postsynaptic effect (internalization of a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors [AMPAR]) rather than presynaptic glutamate release. Finally, we found that inhibition of metabotropic glutamate receptor subtype-1 (mGluR1) abolished IGF1-induced attenuation of evoked EPSC amplitude and decrease of AMPAR expression at synaptic membrane, suggesting mGluR1-mediated endocytosis of AMPAR was involved. Taken together, these data provide the first evidence that IGF1 regulates excitatory synaptic transmission in adult PFC via the interaction between IGF1R-dependent signaling pathway and mGluR1-mediated AMPAR endocytosis.
Collapse
|
12
|
Singh A, Xie Y, Davis A, Wang ZJ. Early social isolation stress increases addiction vulnerability to heroin and alters c-Fos expression in the mesocorticolimbic system. Psychopharmacology (Berl) 2022; 239:1081-1095. [PMID: 34997861 DOI: 10.1007/s00213-021-06024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Adverse psychosocial factors during early childhood or adolescence compromise neural structure and brain function, inducing susceptibility for many psychiatric disorders such as substance use disorder. Nevertheless, the mechanisms underlying early life stress-induced addiction vulnerability is still unclear, especially for opioids. OBJECTIVES To address this, we used a mouse heroin self-administration model to examine how chronic early social isolation (ESI) stress (5 weeks, beginning at weaning) affects the behavioral and neural responses to heroin during adulthood. RESULTS We found that ESI stress did not alter the acquisition for sucrose or heroin self-administration, nor change the motivation for sucrose on a progressive ratio schedule. However, ESI stress induced an upward shift of heroin dose-response curve in female mice and increased motivation and seeking for heroin in both sexes. Furthermore, we examined the neuronal activity (measured by c-Fos expression) within the key brain regions of the mesocorticolimbic system, including the prelimbic cortex (PrL), infralimbic cortex (IL), nucleus accumbens (NAc) core and shell, caudate putamen, and ventral tegmental area (VTA). We found that ESI stress dampened c-Fos expression in the PrL, IL, and VTA after 14-day forced abstinence, while augmented the neuronal responses to heroin-predictive context and cue in the IL and NAc core. Moreover, ESI stress disrupted the association between c-Fos expression and attempted infusions during heroin-seeking test in the PrL. CONCLUSIONS These data indicate that ESI stress leads to increased seeking and motivation for heroin, and this may be associated with distinct changes in neuronal activities in different subregions of the mesocorticolimbic system.
Collapse
Affiliation(s)
- Archana Singh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Yang Xie
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Ashton Davis
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
13
|
Gerra MC, Dallabona C, Arendt-Nielsen L. Epigenetic Alterations in Prescription Opioid Misuse: New Strategies for Precision Pain Management. Genes (Basel) 2021; 12:genes12081226. [PMID: 34440400 PMCID: PMC8392465 DOI: 10.3390/genes12081226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Prescription opioids are used for some chronic pain conditions. However, generally, long-term therapy has unwanted side effects which may trigger addiction, overdose, and eventually cause deaths. Opioid addiction and chronic pain conditions have both been associated with evidence of genetic and epigenetic alterations. Despite intense research interest, many questions about the contribution of epigenetic changes to this typology of addiction vulnerability and development remain unanswered. The aim of this review was to summarize the epigenetic modifications detected in specific tissues or brain areas and associated with opioid prescription and misuse in patients who have initiated prescribed opioid management for chronic non-cancer pain. The review considers the effects of opioid exposure on the epigenome in central and peripheral tissues in animal models and human subjects and highlights the mechanisms in which opioid epigenetics may be involved. This will improve our current understanding, provide the basis for targeted, personalized pain management, and thus balance opioid risks and benefits in managing chronic pain.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Correspondence:
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43123 Parma, Italy;
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| |
Collapse
|
14
|
Abstract
Substance use disorders (SUDs) are chronic brain diseases characterized by transitions from recreational to compulsive drug use and aberrant drug craving that persists for months to years after abstinence is achieved. The transition to compulsive drug use implies that plasticity is occurring, altering the physiology of the brain to precipitate addicted states. Epigenetic phenomena represent a varied orchestra of transcriptional tuning mechanisms that, in response to environmental stimuli, create and maintain gene expression-mediated physiological outcomes. Therefore, epigenetic mechanisms represent a convergent regulatory framework through which the plasticity required to achieve an addicted state can arise and then persist long after drug use has ended. In the first section, we will introduce basic concepts in epigenetics, such as chromatin architecture, histones and their posttranslational modifications, DNA methylation, noncoding RNAs, and transcription factors, along with methods for their investigation. We will then examine the implications of these mechanisms in SUDs, with a particular focus on cocaine-mediated neuroepigenetic plasticity across multiple behavioral models of addiction.
Collapse
Affiliation(s)
- Andrew F Stewart
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sasha L Fulton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ian Maze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
15
|
Kumar M, Rainville JR, Williams K, Lile JA, Hodes GE, Vassoler FM, Turner JR. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology 2021; 186:108469. [PMID: 33485944 PMCID: PMC7988821 DOI: 10.1016/j.neuropharm.2021.108469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/30/2022]
Abstract
Opioid use disorder is a leading cause of morbidity and mortality in the United States. Increasing pre-clinical and clinical evidence demonstrates sex differences in opioid use and dependence. However, the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are still obscure. Therefore, in this study, we investigated the effect of oxycodone exposure and withdrawal on sex- and region-specific neuroimmune response. Real-time PCR and multiplex cytokine array analysis demonstrated elevated neuroinflammation with increased pro-inflammatory cytokine levels, and aberrant oligodendroglial response in reward neurocircuitry, following withdrawal from chronic oxycodone treatment. Chronic oxycodone and withdrawal treated male mice had lower mRNA expression of TMEM119 along with elevated protein levels of pro-inflammatory cytokines/chemokines and growth factors (IL-1β, IL-2, IL-7, IL-9, IL-12, IL-15, IL17, M-CSF, VEGF) in the prefrontal cortex (PFC) as compared to their female counterparts. In contrast, reduced levels of pro-inflammatory cytokines/chemokines (IL-1β, IL-6, IL-9, IL-12, CCL11) was observed in the nucleus accumbens (NAc) of oxycodone and withdrawal-treated males as compared to female mice. No treatment specific effects were observed on the mRNA expression of putative microglial activation markers (Iba1, CD68), but an overall sex specific decrease in the mRNA expression of Iba1 and CD68 was found in the PFC and NAc of male mice as compared to females. Moreover, a sex and region-specific increase in the mRNA levels of oligodendrocyte lineage markers (NG2, Sox10) was also observed in oxycodone and withdrawal treated animals. These findings may open a new avenue for the development of sex-specific precision therapeutics for opioid dependence by targeting region-specific neuroimmune signaling.
Collapse
Affiliation(s)
- Mohit Kumar
- University of Kentucky, College of Pharmacy, KY, USA
| | - Jennifer R Rainville
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Kori Williams
- University of Kentucky, College of Pharmacy, KY, USA
| | - Joshua A Lile
- University of Kentucky, College of Medicine, KY, USA
| | - Georgia E Hodes
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, MA, USA
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, KY, USA.
| |
Collapse
|
16
|
Sex-Specific Role for Egr3 in Nucleus Accumbens D2-Medium Spiny Neurons Following Long-Term Abstinence From Cocaine Self-administration. Biol Psychiatry 2020; 87:992-1000. [PMID: 31858986 PMCID: PMC7897443 DOI: 10.1016/j.biopsych.2019.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND We previously showed that the transcription factor Egr3 (early growth response 3) is oppositely regulated in nucleus accumbens (NAc) cell subtypes 24 hours following cocaine exposure and bidirectionally mediates cocaine-related behaviors in male rodents. Overexpressing Egr3 in D2 receptor-containing medium spiny neurons (D2-MSNs) before drug exposure reduces the rewarding and psychomotor sensitization effects of cocaine. However, it is unknown if Egr3 plays a role in long-term neuroadaptations in the NAc and relapse to cocaine seeking. METHODS We measured EGR3 protein levels in the NAc following 20 days of forced abstinence from intravenous cocaine self-administration in 10-week-old Sprague Dawley rats and C57BL/6 mice. In 8- to 10-week-old A2A-Cre mice, we used virally mediated Egr3 overexpression in NAc D2-MSNs to test the role of Egr3 on operant responding during seeking, extinction, and drug-induced reinstatement of cocaine self-administration. To evaluate if Egr3 contributed to sex differences to cocaine relapse, we conducted these procedures in both male and female rodents. RESULTS We found that EGR3 expression was reduced only in female rodents after 20 days of forced abstinence. Additionally, we showed that our self-administration paradigm in mice recapitulated the sex differences in cocaine intake and relapse demonstrated in humans and rats. Finally, whereas Egr3 overexpression in D2-MSNs during forced abstinence facilitated extinction and blunted drug-induced reinstatement in female mice, it had the opposite effect in male mice. CONCLUSIONS We showed that the immediate early gene Egr3 has long-term effects on drug-related behaviors. Our work suggests that changes in Egr3 expression in D2-MSNs contributes to sex differences in cocaine relapse.
Collapse
|
17
|
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry 2020; 87:22-33. [PMID: 31477236 PMCID: PMC6898774 DOI: 10.1016/j.biopsych.2019.06.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Opioid use kills tens of thousands of Americans each year, devastates families and entire communities, and cripples the health care system. Exposure to opioids causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug seeking and drug taking that can remain a lifelong struggle. The persistence of these neuroadaptations is mediated in part by epigenetic remodeling of gene expression programs in discrete brain regions. Although the majority of work examining how epigenetic modifications contribute to addiction has focused on psychostimulants such as cocaine, research into opioid-induced changes to the epigenetic landscape is emerging. This review summarizes our knowledge of opioid-induced epigenetic modifications and their consequential changes to gene expression. Current evidence points toward opioids promoting higher levels of permissive histone acetylation and lower levels of repressive histone methylation as well as alterations to DNA methylation patterns and noncoding RNA expression throughout the brain's reward circuitry. Additionally, studies manipulating epigenetic enzymes in specific brain regions are beginning to build causal links between these epigenetic modifications and changes in addiction-related behavior. Moving forward, studies must leverage advanced chromatin analysis and next-generation sequencing approaches combined with bioinformatics pipelines to identify novel gene networks regulated by particular epigenetic modifications. Improved translational relevance also requires increased focus on volitional drug-intake models and standardization of opioid exposure paradigms. Such work will significantly advance our understanding of how opioids cause persistent changes to brain function and will provide a platform on which to develop interventions for treating opioid addiction.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Arthur Godino
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
18
|
Affiliation(s)
- Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, CB 3270, 235 E. Cameron Avenue, Chapel Hill, NC, 27599, USA.
| | - Mikhail V Pletnikov
- Departments of Psychiatry and Behavioral Sciences and Neuroscience, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-117, Baltimore, MD, 21287, USA.
| |
Collapse
|
19
|
Avey D, Sankararaman S, Yim AKY, Barve R, Milbrandt J, Mitra RD. Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia. Cell Rep 2019; 24:3619-3629.e4. [PMID: 30257220 DOI: 10.1016/j.celrep.2018.08.080] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
Abstract
Molecular and behavioral responses to opioids are thought to be primarily mediated by neurons, although there is accumulating evidence that other cell types play a prominent role in drug addiction. To investigate cell-type-specific opioid responses, we performed single-cell RNA sequencing (scRNA-seq) of the nucleus accumbens of mice following acute morphine treatment. Differential expression analysis uncovered unique morphine-dependent transcriptional responses by oligodendrocytes and astrocytes. We examined the expression of selected genes, including Cdkn1a and Sgk1, by FISH, confirming their induction by morphine in oligodendrocytes. Further analysis using RNA-seq of FACS-purified oligodendrocytes revealed a large cohort of morphine-regulated genes. The affected genes are enriched for roles in cellular pathways intimately linked to oligodendrocyte maturation and myelination, including the unfolded protein response. Altogether, our data illuminate the morphine-dependent transcriptional response by oligodendrocytes and offer mechanistic insights into myelination defects associated with opioid abuse.
Collapse
Affiliation(s)
- Denis Avey
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA; Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Sumithra Sankararaman
- Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Aldrin K Y Yim
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Ruteja Barve
- Genome Technology Access Center, Department of Genetics. Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA.
| | - Robi D Mitra
- Department of Genetics, Washington University, School of Medicine, St. Louis, MO 63110, USA; Center for Genome Sciences and Systems Biology, Washington University, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Hong Q, Liu J, Lin Z, Zhuang D, Xu W, Xu Z, Lai M, Zhu H, Zhou W, Liu H. Histone 3 lysine 9 acetylation of BRG1 in the medial prefrontal cortex is associated with heroin self‑administration in rats. Mol Med Rep 2019; 21:405-412. [PMID: 31939625 DOI: 10.3892/mmr.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/20/2019] [Indexed: 11/06/2022] Open
Abstract
Heroin addiction is a chronic relapsing brain disorder with negative social consequences. Histone acetylation serves a role in drug‑induced behavior and neuroplasticity impairment. Brahma/SWI2‑related gene‑1 (BRG1) participates in cerebellar development, embryogenesis and transcriptional regulation of neuronal genes concurrent with histone modifications. However, little is known about the relationship between histone H3 lysine 9 acetylation (H3K9ac) and BRG1 in response to heroin. The present study aimed to assess the contribution of histone 3 lysine 9 acetylation of BRG1 to heroin self‑administration. The present study established a Sprague‑Dawley rat model of heroin self‑administration under a fixed‑ratio‑1 paradigm. Chromatin immunoprecipitation followed by reverse transcription‑quantitative PCR (RT‑qPCR) was used to detect the accumulation of H3K9ac on BRG1 in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) following heroin self‑administration. The relative expression levels of BRG1 were analyzed by RT‑qPCR. H3K9ac at the promoter region of BRG1 was significantly elevated (P=0.002), and the expression of BRG1 in the mPFC increased 1.47‑fold in the heroin self‑administration group compared with the control group. No significant difference in H3K9ac at the BRG1 locus was observed in the NAc (P=0.323), with the expression of BRG1 decreasing 1.38‑fold in the heroin self‑administering rats compared with the control group. H3K9ac is associated with transcriptional activation, and the increased BRG1 expression suggested an essential and novel role for BRG1 and its H3K9ac‑mediated regulation in the mPFC after heroin self‑administration; and this may function through epigenetically modulating the activation of neuroplasticity‑associated genes. This association may provide a novel therapeutic target for the treatment of heroin addiction.
Collapse
Affiliation(s)
- Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Zemin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Huaqiang Zhu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
21
|
Abstract
Recent discussions of human brain evolution have largely focused on increased neuron numbers and changes in their connectivity and expression. However, it is increasingly appreciated that oligodendrocytes play important roles in cognitive function and disease. Whether both cell types follow similar or distinctive evolutionary trajectories is not known. We examined the transcriptomes of neurons and oligodendrocytes in the frontal cortex of humans, chimpanzees, and rhesus macaques. We identified human-specific trajectories of gene expression in neurons and oligodendrocytes and show that both cell types exhibit human-specific up-regulation. Moreover, oligodendrocytes have undergone more pronounced accelerated gene expression evolution in the human lineage compared to neurons. We highlighted human-specific coexpression networks with specific functions. Our data suggest that oligodendrocyte human-specific networks are enriched for alternative splicing and transcriptional regulation. Oligodendrocyte networks are also enriched for variants associated with schizophrenia and other neuropsychiatric disorders. Such enrichments were not found in neuronal networks. These results offer a glimpse into the molecular mechanisms of oligodendrocytes during evolution and how such mechanisms are associated with neuropsychiatric disorders.
Collapse
|
22
|
Cates HM, Bagot RC, Heller EA, Purushothaman I, Lardner CK, Walker DM, Peña CJ, Neve RL, Shen L, Nestler EJ. A novel role for E2F3b in regulating cocaine action in the prefrontal cortex. Neuropsychopharmacology 2019; 44:776-784. [PMID: 30552390 PMCID: PMC6372591 DOI: 10.1038/s41386-018-0296-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022]
Abstract
Drug abuse is a multifaceted disorder that involves maladaptive decision making. Long-lasting changes in the addicted brain are mediated by a complex circuit of brain reward regions. The prefrontal cortex (PFC) is one region in which chronic drug exposure changes expression and function of upstream transcriptional regulators to alter drug responses and aspects of the addicted phenotype. We reported recently that the transcription factor E2F3a is a critical mediator of cocaine responses in the nucleus accumbens. E2F3a is one of two splice variants of the E2f3 gene; the other is E2F3b. Another recent study predicted E2F3 as an upstream regulator of the transcriptional response to cocaine self-administration (SA) in PFC. Based on previous findings that E2F3a and E2F3b have divergent regulatory roles, we set out to study the putative transcriptional role of these transcripts in PFC in the context of repeated I.P. cocaine exposure. We implemented viral-mediated isoform-specific gene manipulation, RNA-sequencing, advanced bioinformatics analyses, and animal behavior to determine how E2F3a and E2F3b contribute to persistent cocaine-induced transcriptional changes in PFC. We show that E2F3b, but not E2F3a, in PFC is critical for cocaine locomotor and place preference behaviors. Interestingly, RNA-seq of PFC following E2f3b overexpression or I.P. cocaine exposure showed very different effects on expression levels of differentially expressed genes. However, we found that E2F3b drives a similar transcriptomic pattern to that of cocaine SA with overlapping upstream regulators and downstream pathways predicted. These findings reveal a novel transcriptional mechanism in PFC that controls behavioral and molecular responses to cocaine.
Collapse
Affiliation(s)
- Hannah M. Cates
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Rosemary C. Bagot
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0004 1936 8649grid.14709.3bPresent Address: Department of Psychology, Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Québec, H3A 1B1 Canada
| | - Elizabeth A. Heller
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0004 1936 8972grid.25879.31Present Address: Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Immanuel Purushothaman
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Casey K. Lardner
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Deena M. Walker
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Catherine J. Peña
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Rachael L. Neve
- 0000 0004 0386 9924grid.32224.35Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA USA
| | - Li Shen
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric J. Nestler
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|