1
|
Norris AM, Fierman KE, Campbell J, Pitale R, Shahraj M, Kopinke D. Studying intramuscular fat deposition and muscle regeneration: insights from a comparative analysis of mouse strains, injury models, and sex differences. Skelet Muscle 2024; 14:12. [PMID: 38812056 PMCID: PMC11134715 DOI: 10.1186/s13395-024-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Intramuscular fat (IMAT) infiltration, pathological adipose tissue that accumulates between muscle fibers, is a shared hallmark in a diverse set of diseases including muscular dystrophies and diabetes, spinal cord and rotator cuff injuries, as well as sarcopenia. While the mouse has been an invaluable preclinical model to study skeletal muscle diseases, they are also resistant to IMAT formation. To better understand this pathological feature, an adequate pre-clinical model that recapitulates human disease is necessary. To address this gap, we conducted a comprehensive in-depth comparison between three widely used mouse strains: C57BL/6J, 129S1/SvlmJ and CD1. We evaluated the impact of strain, sex and injury type on IMAT formation, myofiber regeneration and fibrosis. We confirm and extend previous findings that a Glycerol (GLY) injury causes significantly more IMAT and fibrosis compared to Cardiotoxin (CTX). Additionally, females form more IMAT than males after a GLY injury, independent of strain. Of all strains, C57BL/6J mice, both females and males, are the most resistant to IMAT formation. In regard to injury-induced fibrosis, we found that the 129S strain formed the least amount of scar tissue. Surprisingly, C57BL/6J of both sexes demonstrated complete myofiber regeneration, while both CD1 and 129S1/SvlmJ strains still displayed smaller myofibers 21 days post injury. In addition, our data indicate that myofiber regeneration is negatively correlated with IMAT and fibrosis. Combined, our results demonstrate that careful consideration and exploration are needed to determine which injury type, mouse model/strain and sex to utilize as preclinical model especially for modeling IMAT formation.
Collapse
Affiliation(s)
- Alessandra M Norris
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kiara E Fierman
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Jillian Campbell
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Rhea Pitale
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Muhammad Shahraj
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Hull MA, Nunamaker EA, Reynolds PS. Effects of Refined Handling on Reproductive Indices of BALB/cJ and CD-1 IGS Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:3-9. [PMID: 38154807 PMCID: PMC10844741 DOI: 10.30802/aalas-jaalas-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Current mouse handling methods during cage change procedures can cause stress and potentially compromise animal welfare. Our previous study of breeding C57BL/6J mice found modest increases in pup production and a significant reduction in preweaning litter losses when mice were handled using a tunnel as compared with a tail-lift with padded forceps. The current study evaluated how these 2 handling methods affected reproduction by 2 additional mouse strains, BALB/cJ (a low- to intermediate-fecundity strain) and CD-1 IGS (a high-fecundity stock). We predicted that refined handling would have minimal effects on the high-fecundity line with a satisfactory production rate and greater effects on the low-fecundity line. Handling method (tunnel compared with tail-lift) was randomly assigned to monogamous breeding pairs of mice. Reproductive metrics (litter size at birth and weaning, numbers of litters, litter attrition, between-litter intervals, pup wean- ing weight, and sex ratio) were prospectively monitored for 80 BALB/cJ and 77 CD-1 pairs that were bred continuously for 6 mo. Both strains of mice were highly productive, exceeding previously published breeding data. However, neither strain demonstrated operational or statistically significant differences between handling methods for any reproduction metric. As we detected no negative effects in these 2 strains and the benefits are clear in other strains, refined handling should be considered for all breeding mice.
Collapse
Affiliation(s)
- Margaret A Hull
- Animal Care Services, University of Florida, Gainesville, Florida
| | - Elizabeth A Nunamaker
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, Massachusetts; and
| | - Penny S Reynolds
- Statistics in Anesthesiology Research Core, Department of Anesthesiology, College of Medicine, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Comparison of young male mice of two different strains (C57BL/6J and the hybrid B6129SF1/J) in selected behavior tests: a small scale study. Lab Anim Res 2022; 38:30. [PMID: 36183115 PMCID: PMC9526948 DOI: 10.1186/s42826-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background All mouse strains are different, before choosing a strain for a large study, a small scale study should be done. In this study, we compared young males of two mouse strains, C57BL/6J and the hybrid B6129SF1/J, and gained knowledge on their performance in three different behavioral tests; open field (OF) test, Barnes maze (BM) test and a restraint stress test. Results We found that the young males of the C57BL/6J strain spent more time moving in the OF. In the BM, the hybrid covered less ground before reaching the goal box during the first three sessions, than the C57BL/6J. The hybrid left more fecal pellets than C57BL/6J both in OF and BM. During the stress test, the C57BL/6J had a lower corticosterone response than the hybrid. Conclusions Our findings indicate that the C57BL/6J has a presumably higher locomotor activity and/or explorative behavior than the hybrid, while the hybrid appeared more sensitive to stress.
Collapse
|
4
|
Mastrodonato A, Pavlova I, Kee NC, Pham VA, McGowan JC, Mann JJ, Denny CA. Prophylactic (R,S)-Ketamine Is Effective Against Stress-Induced Behaviors in Adolescent but Not Aged Mice. Int J Neuropsychopharmacol 2022; 25:512-523. [PMID: 35229871 PMCID: PMC9211010 DOI: 10.1093/ijnp/pyac020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND (R,S)-ketamine, an N-methyl-D-aspartate receptor antagonist, is frequently used as an anesthetic and as a rapid-acting antidepressant. We and others have reported that (R,S)-ketamine is prophylactic against stress in adult mice but have yet to test its efficacy in adolescent or aged populations. METHODS Here, we administered saline or (R,S)-ketamine as a prophylactic at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes 1 week before a 3-shock contextual fear-conditioning (CFC) stressor. Following CFC, we assessed behavioral despair, avoidance, perseverative behavior, locomotion, and contextual fear discrimination. To assess whether the prophylactic effect could persist into adulthood, adolescent mice were injected with saline or varying doses of (R,S)-ketamine and administered a 3-shock CFC as a stressor 1 month later. Mice were then re-exposed to the aversive context 5 days later and administered behavioral tests as aforementioned. Brains were also processed to quantify Cyclooxygenase 2 expression as a proxy for inflammation to determine whether the prophylactic effects of (R,S)-ketamine were partially due to changes in brain inflammation. RESULTS Our data indicate that (R,S)-ketamine is prophylactic at sex-specific doses in adolescent but not aged mice. (R,S)-ketamine attenuated learned fear and perseverative behavior in females, reduced behavioral despair in males, and facilitated contextual fear discrimination in both sexes. (R,S)-ketamine reduced Cyclooxygenase 2 expression specifically in ventral Cornu Ammonis region 3 of male mice. CONCLUSIONS These findings demonstrate that prophylactic (R,S)-ketamine efficacy is sex, dose, and age dependent and will inform future studies investigating (R,S)-ketamine efficacy across the lifespan.
Collapse
Affiliation(s)
- Alessia Mastrodonato
- Alessia Mastrodonato, PhD, Columbia University Irving Medical Center (CUIMC), New York State Psychiatric Institute Kolb Research Annex, Room 774, 1051 Riverside Drive, Unit 87, New York, NY 10032 ()
| | - Ina Pavlova
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York,USA,Department of Psychiatry, Columbia University Irving Medical Center, New York, New York,USA
| | | | - Van Anh Pham
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York,USA
| | - Josephine C McGowan
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York,USA
| | - J John Mann
- Molecular Imaging and the Neuropathology Division/Department of Psychiatry, Columbia University Irving Medical Center, New York, New York,USA
| | - Christine A Denny
- Correspondence: Christine Ann Denny, PhD, Columbia University Irving Medical Center (CUIMC), New York State Psychiatric Institute Kolb Research Annex, Room 777, 1051 Riverside Drive, Unit 87, New York, NY 10032 ()
| |
Collapse
|
5
|
Hill EM, Howard CD, Bale TL, Jašarević E. Perinatal exposure to tetracycline contributes to lasting developmental effects on offspring. Anim Microbiome 2021; 3:37. [PMID: 33975649 PMCID: PMC8111738 DOI: 10.1186/s42523-021-00099-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For more than 30 years, the tetracycline on/off system of inducible gene expression has been leveraged to study disease mechanisms across many research areas, especially that of metabolism and neuroscience. This system requires acute or chronic exposure to tetracycline derivatives, such as doxycycline, to manipulate gene expression in a temporal and tissue-specific manner, with exposure often being restricted to gestational and early developmental windows. Despite evidence showing that early life antibiotic exposure has adverse effects on gut microbiota, metabolism, physiology, immunity and behavior, little is known regarding the lasting impact of doxycycline treatment on relevant outcomes in experimental offspring. RESULTS To examine the hypothesis that early life doxycycline exposure produces effects on offspring growth, behavior, and gut microbiota, we employed the most commonly used method for tetracycline on/off system by administering a low dose of doxycycline (0.5 mg/ml) in the drinking water to C57Bl/6J and C57BL/6J:129S1/SvImJ dams from embryonic day 15.5 to postnatal day 28. Developmental exposure to low dose doxycycline resulted in significant alterations to growth trajectories and body weight in both strains, which persisted beyond cessation of doxycycline exposure. Developmental doxycycline exposure influenced offspring bacterial community assembly in a temporal and sex-specific manner. Further, gut microbiota composition failed to recover by adulthood, suggesting a lasting imprint of developmental antibiotic exposure. CONCLUSIONS Our results demonstrated that early life doxycycline exposure shifts the homeostatic baseline of prior exposed animals that may subsequently impact responses to experimental manipulations. These results highlight the gut microbiota as an important factor to consider in systems requiring methods of chronic antibiotic administration during pregnancy and critical periods of postnatal development.
Collapse
Affiliation(s)
- Elizabeth M Hill
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher D Howard
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tracy L Bale
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eldin Jašarević
- Center for Epigenetics Research in Child Health and Brain Development, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Jašarević E, Hecht PM, Fritsche KL, Geary DC, Rivera RM, Beversdorf DQ. Maternal DHA supplementation influences sex-specific disruption of placental gene expression following early prenatal stress. Biol Sex Differ 2021; 12:10. [PMID: 33422127 PMCID: PMC7797134 DOI: 10.1186/s13293-020-00356-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2023] Open
Abstract
Early life adversity is widely recognized as a key risk factor for early developmental perturbations and contributes to the presentation of neuropsychiatric disorders in adulthood. Neurodevelopmental disorders exhibit a strong sex bias in susceptibility, presentation, onset, and severity, although the underlying mechanisms conferring vulnerability are not well understood. Environmental perturbations during pregnancy, such as malnutrition or stress, have been associated with sex-specific reprogramming that contribute to increased disease risk in adulthood, whereby stress and nutritional insufficiency may be additive and further exacerbate poor offspring outcomes. To determine whether maternal supplementation of docosahexanoic acid (DHA) exerts an effect on offspring outcome following exposure to early prenatal stress (EPS), dams were fed a purified 10:1 omega-6/omega-3 diet supplemented with either 1.0% preformed DHA/kg feed weight (DHA-enriched) or no additional DHA (denoted as the control diet, CTL). Dams were administered chronic variable stress during the first week of pregnancy (embryonic day, E0.5–7.5), and developmental milestones were assessed at E 12.5. Exposure to early prenatal stress (EPS) decreased placenta and embryo weight in males, but not females, exposed to the CTL diet. DHA enrichment reversed the sex-specific decrease in placenta and embryo weight following EPS. Early prenatal exposure upregulated expression of genes associated with oxygen and nutrient transport, including hypoxia inducible factor 3α (HIF3α), peroxisome proliferator-activated receptor alpha (PPARα), and insulin-like growth binding factor 1 (IGFBP1), in the placenta of CTL diet males exposed to EPS. DHA enrichment in EPS-exposed animals abrogated the male-specific upregulation of PPARα, HIF3α, and IGFBP1. Taken together, these studies suggest that maternal dietary DHA enrichment may buffer against maternal stress programming of sex-specific outcomes during early development.
Collapse
Affiliation(s)
- Eldin Jašarević
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.,Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - Patrick M Hecht
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.,Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - David C Geary
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.,Department of Psychological Sciences, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Department of Psychological Sciences, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Department of Radiology, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Department of Neurology, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.
| |
Collapse
|
7
|
A fish is not a mouse: understanding differences in background genetics is critical for reproducibility. Lab Anim (NY) 2020; 50:19-25. [PMID: 33268901 DOI: 10.1038/s41684-020-00683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Poorly controlled background genetics in animal models contributes to the lack of reproducibility that is increasingly recognized in biomedical research. The laboratory zebrafish, Danio rerio, has been an important model organism for decades in many research areas, yet inbred strains and traditionally managed outbred stocks are not available for this species. Sometimes incorrectly referred to as 'inbred strains' or 'strains', zebrafish wild-type lines possess background genetics that are often not well characterized, and breeding practices for these lines have not been consistent over time or among institutions. In this Perspective, we trace key milestones in the history of one of the most widely used genetic backgrounds, the AB line, to illustrate the dynamic complexity within an example background that is largely invisible when reading the scientific literature. Failure to adequately control for genetic background compromises the validity of experimental outcomes. We therefore propose that authors provide as much specific detail about the origin and genetic makeup of zebrafish lines as is reasonable and possible, and that the terms used to describe background genetics be applied in a way that is consistent with other fish and mammalian model organisms. We strongly encourage the adoption of genetic monitoring for the characterization of existing zebrafish lines, to help detect genetic contamination in breeding colonies and to verify the level of genetic heterogeneity in breeding colonies over time. Careful attention to background genetics will improve transparency and reproducibility, therefore improving the utility of the zebrafish as a model organism.
Collapse
|
8
|
Heck AL, Sheng JA, Miller AM, Stover SA, Bales NJ, Tan SML, Daniels RM, Fleury TK, Handa RJ. Social isolation alters hypothalamic pituitary adrenal axis activity after chronic variable stress in male C57BL/6 mice. Stress 2020; 23:457-465. [PMID: 32093522 PMCID: PMC7376957 DOI: 10.1080/10253890.2020.1733962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The chronic variable stress (CVS) paradigm is frequently used to model the changes in hypothalamic pituitary adrenal (HPA) axis function characteristic of many stress-related diseases. However, male C57BL/6 mice are typically resistant to CVS's effects, making it difficult to determine how chronic stress exposure may alter acute HPA function and regulation in these mice. As social support in rodents can profoundly influence physiological and behavioral processes, including the HPA axis, we sought to characterize the effects of CVS exposure on basal and acute stress-induced HPA axis function in pair- and single-housed adult male mice. Despite all subjects exhibiting decreased body weight gain after six weeks of CVS, the corticosterone response to a novel, acute restraint stressor was enhanced by CVS exclusively in single-housed males. CVS also significantly increased arginine vasopressin (AVP) mRNA in the hypothalamic paraventricular nucleus (PVN) in single-housed males only. Moreover, in single-, but not pair-housed mice, CVS attenuated decreases in circulating OT found following acute restraint. Only the effect of CVS to elevate PVN corticotropin releasing hormone (CRH) mRNA levels after an acute stressor was restricted to pair-housed mice. Collectively, our findings suggest that social isolation reveals effects of CVS on the HPA axis in male C57BL/6 mice.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alex M Miller
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sally A Stover
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Natalie J Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Renata M Daniels
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Theodore K Fleury
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
9
|
Trumpff C, Marsland AL, Sloan RP, Kaufman BA, Picard M. Predictors of ccf-mtDNA reactivity to acute psychological stress identified using machine learning classifiers: A proof-of-concept. Psychoneuroendocrinology 2019; 107:82-92. [PMID: 31112904 PMCID: PMC6637411 DOI: 10.1016/j.psyneuen.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/21/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We have previously found that acute psychological stress may affect mitochondria and trigger an increase in serum mitochondrial DNA, known as circulating cell-free mtDNA (ccf-mtDNA). Similar to other stress reactivity measures, there are substantial unexplained inter-individual differences in the magnitude of ccf-mtDNA reactivity, as well as within-person differences across different occasions of testing. Here, we sought to identify psychological and physiological predictors of ccf-mtDNA reactivity using machine learning-based multivariate classifiers. METHOD We used data from serum ccf-mtDNA concentration measured pre- and post-stress in 46 healthy midlife adults tested on two separate occasions. To identify variables predicting the magnitude of ccf-mtDNA reactivity, two multivariate classification models, partial least-squares discriminant analysis (PLS-DA) and random forest (RF), were trained to discriminate between high and low ccf-mtDNA responders. Potential predictors used in the models included state variables such as physiological measures and affective states, and trait variables such as sex and personality measures. Variables identified across both models were considered to be predictors of ccf-mtDNA reactivity and selected for downstream analyses. RESULTS Identified predictors were significantly enriched for state over trait measures (X2 = 7.03; p = 0.008) and for physiological over psychological measures (X2 = 4.36; p = 0.04). High responders were more likely to be male (X2 = 26.95; p < 0.001) and differed from low-responders on baseline cardiovascular and autonomic measures, and on stress-induced reduction in fatigue (Cohen's d = 0.38-0.73). These group-level findings also accurately accounted for within-person differences in 90% of cases. CONCLUSION These results suggest that acute cardiovascular and psychological indices, rather than stable individual traits, predict stress-induced ccf-mtDNA reactivity. This work provides a proof-of-concept that machine learning approaches can be used to explore determinants of inter-individual and within-person differences in stress psychophysiology.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Richard P Sloan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, 15261, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA; Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Trumpff C, Marsland AL, Basualto-Alarcón C, Martin JL, Carroll JE, Sturm G, Vincent AE, Mosharov EV, Gu Z, Kaufman BA, Picard M. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology 2019; 106:268-276. [PMID: 31029929 PMCID: PMC6589121 DOI: 10.1016/j.psyneuen.2019.03.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/09/2023]
Abstract
Intrinsic biological mechanisms transduce psychological stress into physiological adaptation that requires energy, but the role of mitochondria and mitochondrial DNA (mtDNA) in this process has not been defined in humans. Here, we show that similar to physical injury, exposure to psychological stress increases serum circulating cell-free mtDNA (ccf-mtDNA) levels. Healthy midlife adults exposed on two separate occasions to a brief psychological challenge exhibited a 2-3-fold increase in ccf-mtDNA, with no change in ccf-nuclear DNA levels, establishing the magnitude and specificity for ccf-mtDNA reactivity. In cell-based studies, we show that glucocorticoid signaling - a consequence of psychological stress in humans - is sufficient to induce mtDNA extrusion in a time frame consistent with stress-induced ccf-mtDNA increase. Collectively, these findings provide evidence that acute psychological stress induces ccf-mtDNA and implicate neuroendocrine signaling as a potential trigger for ccf-mtDNA release. Further controlled work is needed to confirm that observed increases in ccf-mtDNA result from stress exposure and to determine the functional significance of this effect.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Carla Basualto-Alarcón
- Universidad de Aysén, Coyhaique, Chile; Anatomy and Legal Medicine Department, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - James L Martin
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, 15261, USA
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Amy E Vincent
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; Wellcome Trust Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; New York State Psychiatric Institute, New York, NY, 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, NY, 14850, USA
| | - Brett A Kaufman
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, 15261, USA.
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; New York State Psychiatric Institute, New York, NY, 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA; Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Borrow AP, Heck AL, Miller AM, Sheng JA, Stover SA, Daniels RM, Bales NJ, Fleury TK, Handa RJ. Chronic variable stress alters hypothalamic-pituitary-adrenal axis function in the female mouse. Physiol Behav 2019; 209:112613. [PMID: 31299374 DOI: 10.1016/j.physbeh.2019.112613] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Chronic stress is often associated with a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which can greatly increase risk for a number of stress-related diseases, including neuropsychiatric disorders. Despite a striking sex-bias in the prevalence of many of these disorders, few preclinical studies have examined female subjects. Hence, the present study aimed to explore the effects of chronic stress on the basal and acute stress-induced activity of the HPA axis in the female C57BL/6 mouse. We used a chronic variable stress (CVS) paradigm in these studies, which successfully induces physiological and behavioral changes that are similar to those reported for some patients with mood disorders. Using this model, we found pronounced, time-dependent effects of chronic stress on the HPA axis. CVS-treated females exhibited adrenal hypertrophy, yet their pattern of glucocorticoid secretion in the morning resembled that of controls. CVS-treated and control females had similar morning basal corticosterone (CORT) levels, which were both significantly elevated following a restraint stressor. Although morning basal gene expression of the key HPA-controlling neuropeptides corticotropin releasing hormone (CRH), arginine vasopressin (AVP) and oxytocin (OT) was unaltered within the paraventricular nucleus (PVN) by CVS, CVS altered the PVN OT and AVP mRNA responses to acute restraint. In control females, acute stress decreased AVP, but not OT mRNA; whereas, in CVS females, it decreased OT, but not, AVP mRNA. Unlike the morning pattern of HPA activity, in the evening, CVS-treated females showed increased basal CORT with hypoactive responses of CORT and PVN c-Fos immunoreactivity to restraint stress. Furthermore, CVS elevated evening PVN CRH and OT mRNAs in the PVN, but it did not influence anxiety- or depressive-like behavior after a light/dark box or tail suspension test. Taken together, these findings indicate that CVS is an effective model for HPA axis dysregulation in the female mouse and may be relevant for stress-related diseases.
Collapse
Affiliation(s)
- Amanda P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alex M Miller
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sally A Stover
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Renata M Daniels
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Natalie J Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Theodore K Fleury
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
12
|
Rompala GR, Simons A, Kihle B, Homanics GE. Paternal Preconception Chronic Variable Stress Confers Attenuated Ethanol Drinking Behavior Selectively to Male Offspring in a Pre-Stress Environment Dependent Manner. Front Behav Neurosci 2018; 12:257. [PMID: 30450042 PMCID: PMC6225737 DOI: 10.3389/fnbeh.2018.00257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Stress-related psychiatric disorders such as major depression are strongly associated with alcohol abuse and alcohol use disorder. Recently, many epidemiological and preclinical studies suggest that chronic stress prior to conception has cross-generational effects on the behavior and physiological response to stress in subsequent generations. Thus, we hypothesized that chronic stress may also affect ethanol drinking behaviors in the next generation. In the first cohort of mice, we found that paternal preconception chronic variable stress significantly reduced both two-bottle choice and binge-like ethanol drinking selectively in male offspring. However, these results were not replicated in a second cohort that were tested under experimental conditions that were nearly identical, except for one notable difference. Cohort 1 offspring were derived from in-house C57BL/6J sires that were born in the animal vivarium at the University of Pittsburgh whereas cohort 2 offspring were derived from C57BL/6J sires shipped directly from the vendor. Therefore, a third cohort that included both in-house and vendor born sires was analyzed. Consistent with the first two cohorts, we observed a significant interaction between chronic stress and sire-source with only stressed sires that were born in-house able to impart reduced ethanol drinking behaviors to male offspring. Overall, these results demonstrate that paternal preconception stress can impact ethanol drinking behavior in males of the next generation. These studies provide additional support for a recently recognized role of the paternal preconception environment in shaping ethanol drinking behavior.
Collapse
Affiliation(s)
- Gregory R Rompala
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alison Simons
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brooke Kihle
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Anesthesiology, University of Pittsburgh School Medicine, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Abstract
Stress is a precipitating factor for anxiety-related disorders, which are among the leading forms of psychiatric illness and impairment in the modern world. Rodent-based behavioral tests and models are widely used to understand the mechanisms by which stress triggers anxiety-related behaviors and to identify new treatments for anxiety-related disorders. Although substantial progress has been made and many of the key neural circuits and molecular pathways mediating stress responsiveness have been characterized, these advances have thus far failed to translate into fundamentally new treatments that are safer and more efficacious in humans. The purpose of this article is to describe methods that have been historically used for this type of research and to highlight new approaches that align with recent conceptualizations of disease symptomatology and that may ultimately prove to be more fruitful in facilitating the development of improved therapeutics.
Collapse
Affiliation(s)
- Kimberly R Lezak
- Behavioral Genetics Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Galen Missig
- Behavioral Genetics Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - William A Carlezon
- Behavioral Genetics Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
14
|
Schoenrock SA, Oreper D, Farrington J, McMullan RC, Ervin R, Miller DR, Pardo-Manuel de Villena F, Valdar W, Tarantino LM. Perinatal nutrition interacts with genetic background to alter behavior in a parent-of-origin-dependent manner in adult Collaborative Cross mice. GENES BRAIN AND BEHAVIOR 2017; 17:e12438. [PMID: 29125223 DOI: 10.1111/gbb.12438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022]
Abstract
Previous studies in animal models and humans have shown that exposure to nutritional deficiencies in the perinatal period increases the risk of psychiatric disease. Less well understood is how such effects are modulated by the combination of genetic background and parent-of-origin (PO). To explore this, we exposed female mice from 20 Collaborative Cross (CC) strains to protein deficient, vitamin D deficient, methyl donor enriched or standard diet during the perinatal period. These CC females were then crossed to a male from a different CC strain to produce reciprocal F1 hybrid females comprising 10 distinct genetic backgrounds. The adult F1 females were then tested in the open field, light/dark, stress-induced hyperthermia, forced swim and restraint stress assays. Our experimental design allowed us to estimate effects of genetic background, perinatal diet, PO and their interactions on behavior. Genetic background significantly affected all assessed phenotypes. Perinatal diet exposure interacted with genetic background to affect body weight, basal body temperature, anxiety-like behavior and stress response. In 8 of 9 genetic backgrounds, PO effects were observed on multiple phenotypes. Additionally, we identified a small number of diet-by-PO effects on body weight, stress response, anxiety- and depressive-like behavior. Our data show that rodent behaviors that model psychiatric disorders are affected by genetic background, PO and perinatal diet, as well as interactions among these factors.
Collapse
Affiliation(s)
- S A Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - D Oreper
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Bioinformatics and Computational Biology Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - J Farrington
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - R C McMullan
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - R Ervin
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - D R Miller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - F Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - W Valdar
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L M Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|