1
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2024; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
2
|
Conlon JM, Moffett RC, Flatt PR, Leprince J. Strategy for the Identification of Host-Defense Peptides in Frog Skin Secretions with Therapeutic Potential as Antidiabetic Agents. Methods Mol Biol 2024; 2758:291-306. [PMID: 38549020 DOI: 10.1007/978-1-0716-3646-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Several amphibian peptides that were first identified on the basis of their antimicrobial or cytotoxic properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides that are present in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves (1) fractionation of the secretions by reversed-phase HPLC, (2) identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal β-cells without simultaneously stimulating the release of lactate dehydrogenase, (3) identification of active peptides in the fractions in the mass range 1-6 kDa by MALDI-ToF mass spectrometry, (4) purification of the peptides to near homogeneity by further reversed-phase HPLC on various column matrices, and (5) structural characterization by automated Edman degradation. The effect of synthetic replicates of the active peptides on glucose homeostasis in vivo may be evaluated in appropriate animal models of Type 2 diabetes such as db/db mice and mice fed a high fat diet to produce obesity, glucose intolerance, and insulin resistance.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, UK.
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | |
Collapse
|
3
|
Okyem S, Romanova EV, Tai HC, Checco JW, Sweedler JV. Nontargeted Identification of D-Amino Acid-Containing Peptides Through Enzymatic Screening, Chiral Amino Acid Analysis, and LC-MS. Methods Mol Biol 2024; 2758:227-240. [PMID: 38549017 PMCID: PMC11034756 DOI: 10.1007/978-1-0716-3646-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
D-amino acid-containing peptides (DAACPs) in animals are a class of bioactive molecules formed via the posttranslational modification of peptides consisting of all-L-amino acid residues. Amino acid residue isomerization greatly impacts the function of the resulting DAACP. However, because isomerization does not change the peptide's mass, this modification is difficult to detect by most mass spectrometry-based peptidomic approaches. Here we describe a method for the identification of DAACPs that can be used to systematically survey peptides extracted from a tissue sample in a nontargeted manner.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elena V Romanova
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua-Chia Tai
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Azman AT, Mohd Isa NS, Mohd Zin Z, Abdullah MAA, Aidat O, Zainol MK. Protein Hydrolysate from Underutilized Legumes: Unleashing the Potential for Future Functional Foods. Prev Nutr Food Sci 2023; 28:209-223. [PMID: 37842256 PMCID: PMC10567599 DOI: 10.3746/pnf.2023.28.3.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 10/17/2023] Open
Abstract
Proteins play a vital role in human development, growth, and overall health. Traditionally, animal-derived proteins were considered the primary source of dietary protein. However, in recent years, there has been a remarkable shift in dietary consumption patterns, with a growing preference for plant-based protein sources. This shift has resulted in a significant increase in the production of plant proteins in the food sector. Consequently, there has been a surge in research exploring various plant sources, particularly wild, and underutilized legumes such as Canavalia, Psophocarpus, Cajanus, Lablab, Phaseolus, and Vigna, due to their exceptional nutraceutical value. This review presents the latest insights into innovative approaches used to extract proteins from underutilized legumes. Furthermore, it highlights the purification of protein hydrolysate using Fast Protein Liquid Chromatography. This review also covers the characterization of purified peptides, including their molecular weight, amino acid composition, and the creation of three-dimensional models based on amino acid sequences. The potential of underutilized legume protein hydrolysates as functional ingredients in the food industry is a key focus of this review. By incorporating these protein sources into food production, we can foster sustainable and healthy practices while minimizing environmental impact. The investigation of underutilized legumes offers exciting possibilities for future research and development in this area, further enhancing the utilization of plant-based protein sources.
Collapse
Affiliation(s)
- Ain Tasnim Azman
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Nur Suaidah Mohd Isa
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Zamzahaila Mohd Zin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Mohd Aidil Adhha Abdullah
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Omaima Aidat
- Laboratory of Food Technology and Nutrition, Abdelhamid Ibn Badis University, Mostaganem 27000, Algeria
| | - Mohamad Khairi Zainol
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| |
Collapse
|
5
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
6
|
Ngashangva N, Mukherjee PK, Sharma C, Kalita MC, Sarangthem I. Integrated genomics and proteomics analysis of Paenibacillus peoriae IBSD35 and insights into its antimicrobial characteristics. Sci Rep 2022; 12:18861. [PMID: 36344671 PMCID: PMC9640621 DOI: 10.1038/s41598-022-23613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance has been developing fast and incurring a loss of human life, and there is a need for new antimicrobial agents. Naturally occurring antimicrobial peptides offer the characteristics to counter AMR because the resistance development is low or no resistance. Antimicrobial peptides from Paenibacillus peoriae IBSD35 cell-free supernatant were salted out and purified using chromatography and characterized with liquid chromatography-tandem-mass spectrometry. The extract has shown a high and broad spectrum of antimicrobial activity. Combining the strain IBSD35 genome sequence with its proteomic data enabled the prediction of biosynthetic gene clusters by connecting the peptide from LC-MS/MS data to the gene that encode. Antimicrobial peptide databases offered a platform for the effective search, prediction, and design of AMPs and expanded the studies on their isolation, structure elucidation, biological evaluation, and pathway engineering. The genome-based taxonomy and comparisons have shown that P. peoriae IBSD35 is closely related to Paenibacillus peoriae FSL J3-0120. P. peoriae IBSD35 harbored endophytic trait genes and nonribosomal peptide synthases biosynthetic gene clusters. The comparative genomics revealed evolutionary insights and facilitated the discovery of novel SMs using proteomics from the extract of P. peoriae IBSD35. It will increase the potential to find novel bio-molecules to counter AMR.
Collapse
Affiliation(s)
- Ng Ngashangva
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| | - Pulok K. Mukherjee
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| | - Chandradev Sharma
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| | - Mohan C. Kalita
- grid.411779.d0000 0001 2109 4622Department of Biotechnology, Gauhati University, Jalukbari, Guwahati, Assam 781014 India
| | - Indira Sarangthem
- grid.464584.f0000 0004 0640 0101A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Takyelpat, Imphal, Manipur 795001 India
| |
Collapse
|
7
|
Rosa GM, Perez R, Richards LA, Richards‐Zawacki CL, Smilanich AM, Reinert LK, Rollins‐Smith LA, Wetzel DP, Voyles J. Seasonality of host immunity in a tropical disease system. Ecosphere 2022. [DOI: 10.1002/ecs2.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gonçalo M. Rosa
- Department of Biology University of Nevada, Reno Reno Nevada USA
- Institute of Zoology Zoological Society of London London UK
- Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências da Universidade de Lisboa Lisbon Portugal
| | - Rachel Perez
- Department of Biology New Mexico Institute of Mining and Technology Socorro New Mexico USA
| | - Lora A. Richards
- Department of Biology University of Nevada, Reno Reno Nevada USA
| | | | | | - Laura K. Reinert
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Louise A. Rollins‐Smith
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Daniel P. Wetzel
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jamie Voyles
- Department of Biology University of Nevada, Reno Reno Nevada USA
| |
Collapse
|
8
|
An Evaluation of Immersive and Handling Methods for Collecting Salamander Skin Peptides. J HERPETOL 2021. [DOI: 10.1670/20-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Sharma S, Kaur G, Handa S. Insights into Fast Amide Couplings in Aqueous Nanomicelles. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sudripet Sharma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Gaganpreet Kaur
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Sachin Handa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
10
|
Ujszegi J, Ludányi K, Móricz ÁM, Krüzselyi D, Drahos L, Drexler T, Németh MZ, Vörös J, Garner TWJ, Hettyey A. Exposure to Batrachochytrium dendrobatidis affects chemical defences in two anuran amphibians, Rana dalmatina and Bufo bufo. BMC Ecol Evol 2021; 21:135. [PMID: 34217227 PMCID: PMC8254444 DOI: 10.1186/s12862-021-01867-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/23/2021] [Indexed: 11/03/2022] Open
Abstract
Background Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, one of the major causes of worldwide amphibian biodiversity loss. Many amphibians exhibit skin-based chemical defences, which may play an important role against invading pathogens, but whether the synthesis of these chemical compounds is enhanced or suppressed in the presence of pathogens is largely unknown. Here we investigated direct and indirect effects of larval exposure to the globally distributed and highly virulent Bd-GPL strain on skin secreted chemical defences and life history traits during early ontogeny of agile frogs (Rana dalmatina) and common toads (Bufo bufo). Results Exposure to Bd during the larval stage did not result in enhanced synthesis of the antimicrobial peptide Brevinin-1 Da in R. dalmatina tadpoles or in increased production of bufadienolides in B. bufo tadpoles. However, exposure to Bd during the larval stage had a carry-over effect reaching beyond metamorphosis: both R. dalmatina and B. bufo froglets contained smaller quantities of defensive chemicals than their Bd-naïve conspecifics in the control treatment. Prevalence of Bd and infection intensities were very low in both larvae and metamorphs of R. dalmatina, while in B. bufo we observed high Bd prevalence and infection intensities, especially in metamorphs. At the same time, we did not find a significant effect of Bd-exposure on body mass or development rate in larvae or metamorphs in either species. Conclusions The lack of detrimental effect of Bd-exposure on life history traits, even parallel with high infection intensities in the case of B. bufo individuals, is surprising and suggests high tolerance of local populations of these two species against Bd. However, the lowered quantity of defensive chemicals may compromise antimicrobial and antipredatory defences of froglets, which may ultimately contribute to population declines also in the absence of conspicuous mass-mortality events.
Collapse
Affiliation(s)
- János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - Krisztina Ludányi
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre utca 7, Budapest, 1092, Hungary
| | - Ágnes M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Dániel Krüzselyi
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Tamás Drexler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| | - Márk Z Németh
- Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Judit Vörös
- Department of Zoology, Hungarian Natural History Museum, Baross street 13, Budapest, 1088, Hungary
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| |
Collapse
|
11
|
Ngashangva N, Mukherjee P, Sharma KC, Kalita MC, Indira S. Analysis of Antimicrobial Peptide Metabolome of Bacterial Endophyte Isolated From Traditionally Used Medicinal Plant Millettia pachycarpa Benth. Front Microbiol 2021; 12:656896. [PMID: 34149644 PMCID: PMC8208310 DOI: 10.3389/fmicb.2021.656896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing prevalence of antimicrobial resistance (AMR) has posed a major health concern worldwide, and the addition of new antimicrobial agents is diminishing due to overexploitation of plants and microbial resources. Inevitably, alternative sources and new strategies are needed to find novel biomolecules to counter AMR and pandemic circumstances. The association of plants with microorganisms is one basic natural interaction that involves the exchange of biomolecules. Such a symbiotic relationship might affect the respective bio-chemical properties and production of secondary metabolites in the host and microbes. Furthermore, the discovery of taxol and taxane from an endophytic fungus, Taxomyces andreanae from Taxus wallachiana, has stimulated much research on endophytes from medicinal plants. A gram-positive endophytic bacterium, Paenibacillus peoriae IBSD35, was isolated from the stem of Millettia pachycarpa Benth. It is a rod-shaped, motile, gram-positive, and endospore-forming bacteria. It is neutralophilic as per Joint Genome Institute’s (JGI) IMG system analysis. The plant was selected based on its ethnobotany history of traditional uses and highly insecticidal properties. Bioactive molecules were purified from P. peoriae IBSD35 culture broth using 70% ammonium sulfate and column chromatography techniques. The biomolecule was enriched to 151.72-fold and the yield percentage was 0.05. Peoriaerin II, a highly potent and broad-spectrum antimicrobial peptide against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 was isolated. LC-MS sequencing revealed that its N-terminal is methionine. It has four negatively charged residues (Asp + Glu) and a total number of two positively charged residues (Arg + Lys). Its molecular weight is 4,685.13 Da. It is linked to an LC-MS/MS inferred biosynthetic gene cluster with accession number A0A2S6P0H9, and blastp has shown it is 82.4% similar to fusaricidin synthetase of Paenibacillus polymyxa SC2. The 3D structure conformation of the BGC and AMP were predicted using SWISS MODEL homology modeling. Therefore, combining both genomic and proteomic results obtained from P. peoriae IBSD35, associated with M. pachycarpa Benth., will substantially increase the understanding of antimicrobial peptides and assist to uncover novel biological agents.
Collapse
Affiliation(s)
- Ng Ngashangva
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - Pulok Mukherjee
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - K Chandradev Sharma
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - M C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Sarangthem Indira
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| |
Collapse
|
12
|
Mouchbahani-Constance S, Sharif-Naeini R. Proteomic and Transcriptomic Techniques to Decipher the Molecular Evolution of Venoms. Toxins (Basel) 2021; 13:154. [PMID: 33669432 PMCID: PMC7920473 DOI: 10.3390/toxins13020154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Nature's library of venoms is a vast and untapped resource that has the potential of becoming the source of a wide variety of new drugs and therapeutics. The discovery of these valuable molecules, hidden in diverse collections of different venoms, requires highly specific genetic and proteomic sequencing techniques. These have been used to sequence a variety of venom glands from species ranging from snakes to scorpions, and some marine species. In addition to identifying toxin sequences, these techniques have paved the way for identifying various novel evolutionary links between species that were previously thought to be unrelated. Furthermore, proteomics-based techniques have allowed researchers to discover how specific toxins have evolved within related species, and in the context of environmental pressures. These techniques allow groups to discover novel proteins, identify mutations of interest, and discover new ways to modify toxins for biomimetic purposes and for the development of new therapeutics.
Collapse
Affiliation(s)
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
13
|
Lin S, He C. Streamlined purification and characterization of Pyrococcus furiosus rubredoxins with different N-terminal modifications by reversed-phase HPLC. Anal Biochem 2021; 619:114128. [PMID: 33577792 DOI: 10.1016/j.ab.2021.114128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/12/2023]
Abstract
Rubredoxins (Rds), like those from Pyrococcus furious (Pf), have largely been found to be expressed in Escherichia coli (E. coli) as a mixture of different N-terminal forms, which may affect the properties of the protein. The typical procedures for the purification of Rds are cumbersome and usually with low yield. We present herein a streamlined purification strategy based on the reversed-phase high performance liquid chromatography (RP-HPLC), which offers high yield and high resolution after simply one-step purification following pre-treatment. We also show that RP-HPLC can be a valuable tool to gain information related to the thermal decomposition pathway of Pf-Rds.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
14
|
Schelletter L, Hertel O, Antar SJ, Scherling C, Lättig J, Noll T, Hoffrogge R. A positive pressure workstation for semi-automated peptide purification of complex proteomic samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8873. [PMID: 32583429 DOI: 10.1002/rcm.8873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE High-throughput reliable data generation has become a substantial requirement in many "omics" investigations. In proteomics the sample preparation workflow consists of multiple steps adding more bias to the sample with each additional manual step. Especially for label-free quantification experiments, this drastically impedes reproducible quantification of proteins in replicates. Here, a positive pressure workstation was evaluated to increase automation of sample preparation and reduce workload as well as consumables. METHODS Digested peptide samples were purified utilizing a new semi-automated sample preparation device, the Resolvex A200, followed by nanospray liquid chromatography/electrospray ionization (nLC/ESI) Orbitrap tandem mass spectrometry (MS/MS) measurements. In addition, the sorbents Maestro and WWP2 (available in conventional cartridge and dual-chamber narrow-bore extraction columns) were compared with Sep-Pak C18 cartridges. Raw data was analyzed by MaxQuant and Perseus software. RESULTS The semi-automated workflow with the Resolvex A200 workstation and both new sorbents produced highly reproducible results within 10-300 μg of peptide starting material. The new workflow performed equally as well as the routinely conducted manual workflow with similar technical variability in MS/MS-based identifications of peptides and proteins. A first application of the system to a biological question contributed to highly reliable results, where time-resolved proteomic data was separated by principal component analysis (PCA) and hierarchical clustering. CONCLUSIONS The new workstation was successfully established for proteolytic peptide purification in our proteomic workflow without any drawbacks. Highly reproducible results were obtained in decreased time per sample, which will facilitate further large-scale proteomic investigations.
Collapse
Affiliation(s)
- Louise Schelletter
- Cell Culture Technology, Technical Faculty, Bielefeld University, Bielefeld, Germany
| | - Oliver Hertel
- Cell Culture Technology, Technical Faculty, Bielefeld University, Bielefeld, Germany
| | | | | | - Jens Lättig
- LC-MS Application Lab, Tecan SP Europe, Hamburg, Germany
| | - Thomas Noll
- Cell Culture Technology, Technical Faculty, Bielefeld University, Bielefeld, Germany
| | - Raimund Hoffrogge
- Cell Culture Technology, Technical Faculty, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Pereira KE, Woodley SK. Skin defenses of North American salamanders against a deadly salamander fungus. Anim Conserv 2021. [DOI: 10.1111/acv.12666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- K. E. Pereira
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| | - S. K. Woodley
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| |
Collapse
|
16
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
17
|
Chen Y, Chen J, Chen J, Yu H, Zheng Y, Zhao J, Zhu J. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 2020; 62:1187-1203. [PMID: 33094645 DOI: 10.1080/10408398.2020.1836606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine biodiversity provides a range of diverse biological resources, including seafoods that are rich in protein and a well-balanced amino acid composition. Previous studies have shown that peptides can improve bone formation and/or inhibit bone resorption, suggesting the potential for seafood bioactive peptides (SBPs) in development of food and pharmaceuticals for management of osteoporosis. In this review, we provided an up-to-date overview of the anti-osteoporosis activity of SBPs and describe their underlying molecular mechanisms. We focus on SBPs' development, broadening the scope and depth of research, as well as strengthening in vivo and clinical research. In vitro cell cultures and in vivo animal osteoporosis models have demonstrated the potential for seafood-derived SBPs, including fish, mollusks, crustaceans, seaweed and microalgae, in preventing osteoporosis. These peptides may act by activating the signaling pathways, such as BMP/Smads, MAPK, OPG/RANKL/RANK, and NF-κB, which are associated with modulation bone health.
Collapse
Affiliation(s)
- Yixuan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Juan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Yangfan Zheng
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiawen Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
18
|
Conlon JM, Mechkarska M, Leprince J. Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev Proteomics 2019; 16:897-908. [DOI: 10.1080/14789450.2019.1693894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Michael Conlon
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom of Great Britain and Northern Ireland
| | - Milena Mechkarska
- Department of Life Sciences, University of the West Indies at Saint Augustine, Saint Augustine, Trinidad and Tobago
| | - Jérôme Leprince
- Equipe Facteurs Neurotrophiques et Différenciation Neuronale, Universite de Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
19
|
Compositional Analysis of Non-Polar and Polar Metabolites in 14 Soybeans Using Spectroscopy and Chromatography Tools. Foods 2019; 8:foods8110557. [PMID: 31703250 PMCID: PMC6915420 DOI: 10.3390/foods8110557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/23/2022] Open
Abstract
There has been significant interest in soybean oil, fatty acid, and sugar composition to develop new value-added soybean products. Thus, compositional analysis is critical for developing value-added soybeans. In the present study, we showed simple screening tools (near infrared spectroscopy (NIR) and high-performance thin layer chromatography (HPTLC)) coupled with multivariate analysis for the sample classification of 14 soybeans as a proof-of-concept. We further determined major non-polar and polar metabolites responsible for differences between different soybeans using gas and ion chromatography. These differences in soybean profiles were attributed to lower levels of total oil content in wild soybeans (~9%) versus cultivated soybeans (16%–22%). In addition, higher levels of linolenic acid (~17%) and stachyose (~53%) were determined in wild type, whereas higher levels of oleic acid (~19%) and sucrose (~59%) were detected in cultivated soybeans. Interestingly, one cultivated soybean had a desirable sugar profile with a high amount of sucrose (86%) and a low abundance of stachyose (9%). The correlation studies showed a positive correlation between oil and soluble sugars (R2 = 0.80) and negative correlations between methyl linolenate and soluble sugars (R2 = −0.79), oil (R2 = −0.94), and methyl oleate (R2 = −0.94) content. Both polar and non-polar metabolites showed significant differences in wild and cultivated soybeans.
Collapse
|
20
|
Samuelsson J, Eiriksson FF, Åsberg D, Thorsteinsdóttir M, Fornstedt T. Determining gradient conditions for peptide purification in RPLC with machine-learning-based retention time predictions. J Chromatogr A 2019; 1598:92-100. [DOI: 10.1016/j.chroma.2019.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/22/2023]
|
21
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
22
|
Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia. BMC Neurosci 2019; 20:18. [PMID: 31023212 PMCID: PMC6485123 DOI: 10.1186/s12868-019-0502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite increasing evidence that lipopolysaccharide (LPS) affects the biological active substances of dorsal root ganglia (DRG) we have limited knowledge of the influence of a single low dose of LPS, which does not result in any clinical symptoms of disease (subclinical LPS) on neuropeptides connected with the sensory pathway. Accordingly, in this work, we investigated the influence of subclinical LPS from Salmonella Enteritidis on selected neuropeptides: substance P (SP), galanin (GAL), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM) in the cervical, thoracic, lumbar and sacral regions of the DRG and spinal cord. Methods This study was performed on immature female pigs of the Pietrain × Duroc breed. Seven days after the intravenous injection of saline solution for control animals (n = 5) and 5 μg/kg b.w. LPS from S. Enteritidis for the experimental group (n = 5), the DRG and the spinal cord were collected to extract the neuropeptides using solid-phase extraction technology. Results Our results demonstrated that subclinical LPS in DRG was able to change the levels of all studied neuropeptides except SOM, whereas in the spinal cord it down-regulated all studied neuropeptides in the sacral spinal cord, maintaining the concentration of all studied neuropeptides in other regions similar to that observed in the control animals. The significant differences in the intensity and character of observed changes between particular regions of the DRG suggest that the exact functions of the studied neuropeptides and mechanisms of responses to subclinical LPS action depend on specific characteristics and functions of each examination region of DRG. Conclusions The mechanisms of observed changes are not fully understood and require further study of the molecular interactions between subclinical LPS from S. Enteritidis and neuronal and non-neuronal cells of DRG and spinal cord. The peripheral and central pain pathways must be analysed with the aspect of unknown long-term consequences of the influence of subclinical LPS from S. Enteritidis on neuropeptides in the spinal cord and the dorsal root ganglia.
Collapse
|
23
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
24
|
Identification of Arenin, a Novel Kunitz-Like Polypeptide from the Skin Secretions of Dryophytes arenicolor. Int J Mol Sci 2018; 19:ijms19113644. [PMID: 30463246 PMCID: PMC6274936 DOI: 10.3390/ijms19113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 11/17/2022] Open
Abstract
Amphibian skin secretions are enriched with complex cocktails of bioactive molecules such as proteins, peptides, biogenic amines, alkaloids guanidine derivatives, steroids and other minor components spanning a wide spectrum of pharmacological actions exploited for centuries in folk medicine. This study presents evidence on the protein profile of the skin secretions of the canyon tree frog, Dryophytes arenicolor. At the same time, it presents the reverse-phase liquid chromatography isolation, mass spectrometry characterization and identification at mRNA level of a novel 58 amino acids Kunitz-like polypeptide from the skin secretions of Dryophytes arenicolor, arenin. Cell viability assays performed on HDFa, CaCo2 and MCF7 cells cultured with different concentrations of arenin showed a discrete effect at low concentrations (2, 4, 8 and 16 µg/mL) suggesting a multi-target interaction in a hormetic-like dose-response. Further work is required to investigate the mechanisms underlying the variable effect on cell viability produced by different concentrations of arenin.
Collapse
|
25
|
Development and validation of a rapid reversed-phase liquid chromatography method for CnAMP1 peptide quantification in human intestinal cell lines. Amino Acids 2018; 51:407-418. [PMID: 30430331 DOI: 10.1007/s00726-018-2675-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023]
Abstract
Plant foods are rich sources of biologically active peptides that may have a role in the prevention of diseases. Coconut water is a valuable beverage due to its nutrient composition and the presence of bioactive compounds, such as the peptide CnAMP1. It is unknown if CnAMP1 can be absorbed into intestinal cells. We, therefore, aimed to develop and validate a simple reversed-phase liquid chromatographic method to quantify the peptide in Caco-2 and LS180 cell lysates. CnAMP1 standards (1-200 µmol/L) and spiked cell lysates were injected onto a Reprosil-Pur 120 C18-AQ column (4.6 × 250 mm) using acetonitrile:water:trifluoroacetic acid (14.0:85.9:0.1, by volume) as mobile phase in isocratic mode at flow rate of 1 mL/min. The method achieved rapid separation (total run time of 6 min), with linear response, good sensitivity (limit of detection, 8.2 ng; lower limit of quantification, 30.6 ng) and no interfering peaks. Best recoveries (84-96%), accuracies (7.6-14.8%) and precision (1.5-8%) were found for LS180 cell lysates spiked with medium (50 µmol/L) and high (100 µmol/L) amounts of the peptide. Uptake assays detected no peptides in the cell lysates; however, after the first 15-min incubation CnAMP1 underwent partial hydrolysis upon incubation with LS180 cells (29%) and extensive hydrolysis with Caco-2 cells (93%).
Collapse
|
26
|
Mikołajczyk A, Złotkowska D. Neuroimmunological Implications of Subclinical Lipopolysaccharide from Salmonella Enteritidis. Int J Mol Sci 2018; 19:ijms19103274. [PMID: 30360353 PMCID: PMC6214136 DOI: 10.3390/ijms19103274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023] Open
Abstract
Mounting evidence has indicated that lipopolysaccharide (LPS) is implicated in neuroimmunological responses, but the body’s response to subclinical doses of bacterial endotoxin remains poorly understood. The influence of a low single dose of LPS from Salmonella Enteritidis, which does not result in any clinical symptoms of intoxication (subclinical lipopolysaccharide), on selected cells and signal molecules of the neuroimmune system was tested. Five juvenile crossbred female pigs were intravenously injected with LPS from S. Enteritidis (5 μg/kg body weight (b.w.)), while five pigs from the control group received sodium chloride in the same way. Our data demonstrated that subclinical LPS from S. Enteritidis increased levels of dopamine in the brain and neuropeptides such as substance P (SP), galanin (GAL), neuropeptide Y (NPY), and active intestinal peptide (VIP) in the cervical lymph nodes with serum hyperhaptoglobinaemia and reduction of plasma CD4 and CD8 T-lymphocytes seven days after lipopolysaccharide administration. CD4 and CD8 T-lymphocytes from the cervical lymph node and serum interleukin-6 and tumour necrosis factor α showed no significant differences between the control and lipopolysaccharide groups. Subclinical lipopolysaccharide from S. Enteritidis can affect cells and signal molecules of the neuroimmune system. The presence of subclinical lipopolysaccharide from S. Enteritidis is associated with unknown prolonged consequences and may require eradication and a deeper search into the asymptomatic carrier state of Salmonella spp.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
27
|
Kye M, Lim YB. Synthesis and purification of self-assembling peptide-oligonucleotide conjugates by solid-phase peptide fragment condensation. J Pept Sci 2018; 24:e3092. [PMID: 29920844 DOI: 10.1002/psc.3092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Peptide-oligonucleotide conjugates (POCs) are interesting molecules as they covalently combine 2 of the most important biomacromolecules. Sometimes, the synthesis of POCs involves unexpected difficulties; however, POCs with self-assembling propensity are even harder to synthesize and purify. Here, we show that solid-phase peptide fragment condensation combined with thiol-maleimide or copper-catalyzed azide-alkyne cycloaddition click chemistries is useful for the syntheses of self-assembling POCs. We describe guidelines for the selection of reactive functional groups and their placement during the conjugation reaction and consider the cost-effectiveness of the reaction. Purification is another important challenge during the preparation of POCs. Our results show that polyacrylamide gel electrophoresis under denaturing conditions is most suitable to recover a high yield of self-assembling POCs. This report provides the first comprehensive study of the preparation of self-assembling POCs, which will lay a foundation for the development of elegant and sophisticated molecular assemblies.
Collapse
Affiliation(s)
- Mahnseok Kye
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
28
|
Multifunctional Self-Assembling Peptide-Based Nanostructures for Targeted Intracellular Delivery: Design, Physicochemical Characterization, and Biological Assessment. Methods Mol Biol 2018; 1758:11-26. [PMID: 29679319 DOI: 10.1007/978-1-4939-7741-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptide amphiphiles (PAs), consisting of a hydrophobic alkyl chain covalently bound to a hydrophilic peptide sequence, possess a versatile molecular design due to their combined self-assembling features of amphiphile surfactants and biological functionalities of peptides. Through rational design, PAs can self-assemble into a variety of nanostructures with controlled shape, size, and biological functionality to deliver therapeutic and imaging agents to target cells. Here, we describe principles to design multifunctional PAs for self-assembly into micellar nanostructures and targeted intracellular delivery. The PA micelles are designed to display a tumour targeting sequence on their surfaces and direct their interactions with specific cells. This targeting sequence includes an enzymatic sensitive sequence that can be cleaved upon exposure to matrix metalloproteinase 2 (MMP-2), an enzyme overexpressed in tumor environment, allowing the presentation of a cell-penetrating domain. The presentation of this domain will then facilitate the delivery of therapeutics for cancer treatment inside targeted cells. Methods to characterize the key physicochemical properties of PAs and their assemblies, including secondary structure, critical micelle concentration, shape and size, are described in detail. The enzyme responsiveness of PA assemblies is described with respect to their degradation by MMP-2. Protocols to evaluate the cytotoxicity and cellular uptake of the micellar carriers are also included.
Collapse
|
29
|
Tai HC, Checco JW, Sweedler JV. Non-targeted Identification of D-Amino Acid-Containing Peptides Through Enzymatic Screening, Chiral Amino Acid Analysis, and LC-MS. Methods Mol Biol 2018; 1719:107-118. [PMID: 29476507 DOI: 10.1007/978-1-4939-7537-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
D-Amino acid-containing peptides (DAACPs) in animals are a class of bioactive molecules formed via the posttranslational modification of peptides consisting of all-L-amino acid residues. Amino acid residue isomerization greatly impacts the function of the resulting DAACP. However, because isomerization does not change the peptide's mass, this modification is difficult to detect by most mass spectrometry-based peptidomic approaches. Here we describe a method for the identification of DAACPs that can be used to systematically survey peptides extracted from a tissue sample in a non-targeted manner.
Collapse
Affiliation(s)
- Hua-Chia Tai
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James W Checco
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
30
|
Conlon JM, Moffett RC, Leprince J, Flatt PR. Identification of Components in Frog Skin Secretions with Therapeutic Potential as Antidiabetic Agents. Methods Mol Biol 2018; 1719:319-333. [PMID: 29476521 DOI: 10.1007/978-1-4939-7537-2_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Several peptides that were first identified on the basis of their antimicrobial or immunomodulatory properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves fractionation of the secretions by reversed-phase HPLC, identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal β-cells without simultaneously stimulating the release of lactate dehydrogenase, identification of active peptides in the mass range 1-6 kDa by MALDI-TOF mass spectrometry, purification of the peptides to near homogeneity by further HPLC, and structural characterization by automated Edman degradation. The effect of synthetic replicates of the active peptides on glucose homeostasis in vivo may be evaluated in mice fed a high fat diet to produce obesity, glucose intolerance, and insulin resistance.
Collapse
Affiliation(s)
- J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, UK.
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | | | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, UK
| |
Collapse
|
31
|
Mikołajczyk A, Gonkowski S, Złotkowska D. Modulation of the main porcine enteric neuropeptides by a single low-dose of lipopolysaccharide (LPS) Salmonella Enteritidis. Gut Pathog 2017; 9:73. [PMID: 29255488 PMCID: PMC5727943 DOI: 10.1186/s13099-017-0225-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Background The present research was conducted to investigate the influence of a low, single dose of LPS, which does not result in any clinical symptoms of intoxication on the expression of selected neuropeptides within the intestines of the domestic pig. Methods This experiment was conducted on immature female pigs of the Pitrain × Duroc breed (n = five per group). Seven days after the intravenous injection of 10 mL saline solution for control animals and 5 μg/kg b.w. (in 10 mL saline solution) LPS Salmonella Enteritidis for the experimental group, the excised segments of duodenum, jejunum, ileum, ileocecal valve, caecum, descending colon, transverse colon, ascending colon and rectum were prepared to extract the main enteric neuropeptides, including GAL, NPY, SOM, SP, VIP. Results The results of this research indicate that single low-dose LPS S. Enteritidis produced changes in the content of the selected neuropeptides of the porcine intestine. The most visible changes were observed in the transverse colon, where LPS induced the increase of GAL expression from 19.41 ± 7.121 to 92.92 ± 11.447 ng/g tissue. Conclusion The exact functions of the substances studied and mechanisms of responses to LPS action depend on the sections of the intestines. The mechanisms of observed changes are not fully understood, but fluctuations in neuronal active substance levels may be connected with neurodegenerative and/or pro-inflammatory activity of LPS.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30 Str., 10-082 Olsztyn, Poland
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10 Str., 10-748 Olsztyn, Poland
| |
Collapse
|
32
|
Starr AE, Deeke SA, Li L, Zhang X, Daoud R, Ryan J, Ning Z, Cheng K, Nguyen LVH, Abou-Samra E, Lavallée-Adam M, Figeys D. Proteomic and Metaproteomic Approaches to Understand Host–Microbe Interactions. Anal Chem 2017; 90:86-109. [DOI: 10.1021/acs.analchem.7b04340] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda E. Starr
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Shelley A. Deeke
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Leyuan Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rachid Daoud
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - James Ryan
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kai Cheng
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Linh V. H. Nguyen
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Elias Abou-Samra
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Molecular Architecture of Life Program, Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
33
|
Candido-Ferreira IL, Kronenberger T, Sayegh RSR, Batista IDFC, da Silva Junior PI. Evidence of an Antimicrobial Peptide Signature Encrypted in HECT E3 Ubiquitin Ligases. Front Immunol 2017; 7:664. [PMID: 28119686 PMCID: PMC5220581 DOI: 10.3389/fimmu.2016.00664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is a hallmark of the eukaryotic cell. In jawed vertebrates, it has been co-opted by the adaptive immune system, where proteasomal degradation produces endogenous peptides for major histocompatibility complex class I antigen presentation. However, proteolytic products are also necessary for the phylogenetically widespread innate immune system, as they often play a role as host defense peptides (HDPs), pivotal effectors against pathogens. Here, we report the identification of the arachnid HDP oligoventin, which shares homology to a core member of the UPP, E3 ubiquitin ligases. Oligoventin has broad antimicrobial activity and shows strong synergy with lysozymes. Using computational and phylogenetic approaches, we show high conservation of the oligoventin signature in HECT E3s. In silico simulation of HECT E3s self-proteolysis provides evidence that HDPs can be generated by fine-tuned 26S proteasomal degradation, and therefore are consistent with the hypothesis that oligoventin is a cryptic peptide released by the proteolytic processing of an Nedd4 E3 precursor protein. Finally, we compare the production of HDPs and endogenous antigens from orthologous HECT E3s by proteasomal degradation as a means of analyzing the UPP coupling to metazoan immunity. Our results highlight the functional plasticity of the UPP in innate and adaptive immune systems as a possibly recurrent mechanism to generate functionally diverse peptides.
Collapse
Affiliation(s)
- Ivan Lavander Candido-Ferreira
- Special Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, Brazil; Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thales Kronenberger
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo , São Paulo, São Paulo , Brazil
| | - Raphael Santa Rosa Sayegh
- Special Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, São Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Pedro Ismael da Silva Junior
- Special Laboratory for Applied Toxinology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute , São Paulo, São Paulo , Brazil
| |
Collapse
|
34
|
McLaughlin CM, Lampis S, Mechkarska M, Coquet L, Jouenne T, King JD, Mangoni ML, Lukic ML, Scorciapino MA, Conlon JM. Purification, Conformational Analysis, and Properties of a Family of Tigerinin Peptides from Skin Secretions of the Crowned Bullfrog Hoplobatrachus occipitalis. JOURNAL OF NATURAL PRODUCTS 2016; 79:2350-2356. [PMID: 27560386 DOI: 10.1021/acs.jnatprod.6b00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four host-defense peptides belonging to the tigerinin family (tigerinin-1O: RICTPIPFPMCY; tigerinin-2O: RTCIPIPLVMC; tigerinin-3O: RICTAIPLPMCL; and tigerinin-4O: RTCIPIPPVCF) were isolated from skin secretions of the African crowned bullfrog Hoplobatrachus occipitalis. In aqueous solution at pH 4.8, the cyclic domain of tigerinin-2O adopts a rigid amphipathic conformation that incorporates a flexible N-terminal tail. The tigerinins lacked antimicrobial (MIC > 100 μM) and hemolytic (LC50 > 500 μM) activities but, at a concentration of 20 μg/mL, significantly (P < 0.05) inhibited production of interferon-γ (IFN-γ) by peritoneal cells from C57BL/6 mice without affecting production of IL-10 and IL-17. Tigerinin-2O and -4O inhibited IFN-γ production at concentrations as low as 1 μg/mL. The tigerinins significantly (P ≤ 0.05) stimulated the rate of insulin release from BRIN-BD11 clonal β-cells without compromising the integrity of the plasma membrane. Tigerinin-1O was the most potent (threshold concentration 1 nM) and the most effective (395% increase over basal rate at a concentration of 1 μM). Tigerinin-4O was the most potent and effective peptide in stimulating the rate of glucagon-like peptide-1 release from GLUTag enteroendocrine cells (threshold concentration 10 nM; 289% increase over basal rate at 1 μM). Tigerinin peptides have potential for development into agents for the treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Christopher M McLaughlin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster , Coleraine, U.K
| | - Sandrina Lampis
- Department of Chemical and Geological Sciences and Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari , Cagliari, Italy
| | - Milena Mechkarska
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster , Coleraine, U.K
| | - Laurent Coquet
- CNRS UMR 6270, PISSARO, University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB) , Mont-Saint-Aignan, France
| | - Thierry Jouenne
- CNRS UMR 6270, PISSARO, University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB) , Mont-Saint-Aignan, France
| | - Jay D King
- Rare Species Conservatory Foundation , St. Louis, Missouri, United States
| | - Maria Luisa Mangoni
- Instituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - Miodrag L Lukic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac , Kragujevac, Serbia
| | - Mariano A Scorciapino
- Department of Chemical and Geological Sciences and Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari , Cagliari, Italy
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster , Coleraine, U.K
| |
Collapse
|
35
|
Marchesan S, Vargiu AV, Styan KE. The Phe-Phe Motif for Peptide Self-Assembly in Nanomedicine. Molecules 2015; 20:19775-88. [PMID: 26540034 PMCID: PMC6332413 DOI: 10.3390/molecules201119658] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 01/19/2023] Open
Abstract
Since its discovery, the Phe-Phe motif has gained in popularity as a minimalist building block to drive the self-assembly of short peptides and their analogues into nanostructures and hydrogels. Molecules based on the Phe-Phe motif have found a range of applications in nanomedicine, from drug delivery and biomaterials to new therapeutic paradigms. Here we discuss the various production methods for this class of compounds, and the characterization, nanomorphologies, and application of their self-assembled nanostructures. We include the most recent findings on their remarkable properties, which hold substantial promise for the creation of the next generation nanomedicines.
Collapse
Affiliation(s)
- Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy.
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Cittadella Universitaria S.P. Monserrato-Sestu Km. 0.700, Monserrato 09042, Italy.
| | - Katie E Styan
- CSIRO Manufacturing, Bayview Ave Clayton, VIC 3168, Australia.
| |
Collapse
|
36
|
Zhang C, Zhang R, Li Q, Huang Y, Zhao L, Su Z, Gong F, Lv Z, Song H, Li W, Yuan Q, Ma G. Rapid octreotide separation from synthetic peptide crude mixtures by chromatography on poly(styrene–co-divinylbenzene)-based reversed phases. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Conlon JM, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Measey GJ. Evidence from peptidomic analysis of skin secretions that allopatric populations of Xenopus gilli (Anura:Pipidae) constitute distinct lineages. Peptides 2015; 63:118-25. [PMID: 25433327 DOI: 10.1016/j.peptides.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
The International Union for Conservation of Nature (IUCN) Endangered Cape Platanna Xenopus gilli inhabits disjunct ranges at the tip of Cape Peninsula and near the town of Kleinmond on opposite sides of False Bay in the extreme southwest of Africa. Peptidomic analysis of host-defense peptides in norepinephrine-stimulated skin secretions from frogs from the Cape Peninsula range resulted in the identification of two magainins, two peptide glycine-leucine-amide (PGLa) peptides, two xenopsin-precursor fragment (XPF) peptides, nine caerulein-precursor fragment (CPF) peptides, and a peptide related to peptide glycine-glutamine (PGQ) previously found in an extract of Xenopus laevis stomach. The primary structures of the peptides indicate a close phylogenetic relationship between X. gilli and X. laevis but only magainin-1, PGLa and one CPF peptide are identical in both species. Consistent with previous data, the CPF peptides show the greatest antimicrobial potency but are hemolytic. There are appreciable differences in the expression of host-defense peptide genes in frogs from the population of animals sampled near Kleinmond as peptides corresponding to magainin-G2, XPF-G1, XPF-G2, and four CPF peptides, present in secretions from the Cape Peninsula frogs, were not identified in the skin secretions from Kleinmond frogs. Conversely, PGLa-G3, XPF-G3, and three CPF peptides were identified in the Kleinmond frogs but not in the Cape Peninsula animals. The data support the conclusion from morphometric analyses and comparisons of the nucleotide sequences of mitochondrial genes that the disjunct populations of X. gilli have undergone appreciable genetic, morphological, and phenotypic divergence.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates; SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates
| | - Laurent Coquet
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - G John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
38
|
Mishra A, Gauri SS, Mukhopadhyay SK, Chatterjee S, Das SS, Mandal SM, Dey S. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides 2014; 54:148-58. [PMID: 24503375 DOI: 10.1016/j.peptides.2014.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Small cyclic peptides exhibiting potent biological activity have great potential for anticancer therapy. An antiproliferative cyclic octapeptide, cyclosaplin was purified from somatic seedlings of Santalum album L. (sandalwood) using gel filtration and RP-HPLC separation process. The molecular mass of purified peptide was found to be 858 Da and the sequence was determined by MALDI-ToF-PSD-MS as 'RLGDGCTR' (cyclic). The cytotoxic activity of the peptide was tested against human breast cancer (MDA-MB-231) cell line in a dose and time-dependent manner. The purified peptide exhibited significant antiproliferative activity with an IC50 2.06 μg/mL. In a mechanistic approach, apoptosis was observed in differential microscopic studies for peptide treated MDA-MB-231 cells, which was further confirmed by mitochondrial membrane potential, DNA fragmentation assay, cell cycle analysis and caspase 3 activities. The modeling and docking experiments revealed strong affinity (kcal/mol) of peptide toward EGFR and procaspase 3. The co-localization studies revealed that the peptide sensitizes MDA-MB-231 cells by possibly binding to EGFR and induces apoptosis. This unique cyclic octapeptide revealed to be a favorable candidate for development of anticancer agents.
Collapse
Affiliation(s)
- Abheepsa Mishra
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Samiran S Gauri
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sourav K Mukhopadhyay
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Soumya Chatterjee
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shibendu S Das
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Satyahari Dey
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
39
|
Xiao S, Zhao X, Finkielstein CV, Capelluto DGS. A rapid procedure to isolate isotopically labeled peptides for NMR studies: application to the Disabled-2 sulfatide-binding motif. J Pept Sci 2014; 20:216-22. [DOI: 10.1002/psc.2604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Shuyan Xiao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Xiaolin Zhao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Carla V. Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| |
Collapse
|
40
|
James T, Gallagher L, Titze J, Bourke P, Kavanagh J, Arendt E, Bond U. In situ
production of human β
defensin-3 in lager yeasts provides bactericidal activity against beer-spoiling bacteria under fermentation conditions. J Appl Microbiol 2013; 116:368-79. [DOI: 10.1111/jam.12382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/01/2013] [Accepted: 10/21/2013] [Indexed: 02/03/2023]
Affiliation(s)
- T.C. James
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - L. Gallagher
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - J. Titze
- School of Food and Nutritional Science; University College Cork; Cork Ireland
| | - P. Bourke
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - J. Kavanagh
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - E. Arendt
- School of Food and Nutritional Science; University College Cork; Cork Ireland
| | - U. Bond
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| |
Collapse
|
41
|
Bemquerer MP, Macedo JKA, Ribeiro ACJ, Carvalho AC, Silva DOC, Braz JM, Medeiros KA, Sallet LAP, Campos PF, Prates MV, Silva LP. Partial characterization of a novel amphibian hemoglobin as a model for graduate student investigation on peptide chemistry, mass spectrometry, and atomic force microscopy. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 40:121-129. [PMID: 22419593 DOI: 10.1002/bmb.20564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/17/2011] [Indexed: 05/31/2023]
Abstract
Graduate students in chemistry, and in biological and biomedical fields must learn the fundamentals and practices of peptide and protein chemistry as early as possible. A project-oriented approach was conducted by first-year M.Sc and Ph.D students in biological sciences. A blind glass slide containing a cellular smear and an aqueous cellular extract were offered to the students. Qualitative and quantitative cell morphological parameters were analyzed by atomic force microscopy. The fractionation of the aqueous extract was conducted by reversed-phase chromatography followed by analysis of the isolated and partially purified proteins and peptides by mass spectrometry (MS). The proteins were treated by peptidases and the obtained peptide fragments were sequenced by de novo MS/MS, together with peptides already present in the extract. The most abundant protein fractions were identified as the alpha and beta chains of hemoglobin from an amphibian of the Leptodactylus genera. Two of the peptides sequenced by the students were synthesized by the solid-phase methodology, one of those being obtained by the split-and-pool library synthesis method. Thus, the students were able to learn some advanced principles and practices of protein chemistry and bionanotechnology in a 6-weeks project-oriented approach.
Collapse
|
42
|
Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C, Stensvåg K. Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 2011; 29:519-30. [PMID: 21683779 DOI: 10.1016/j.biotechadv.2011.05.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 12/22/2022]
Abstract
The emergence of pathogenic bacteria resistance to conventional antibiotics calls for an increased focus on the purification and characterization of antimicrobials with new mechanisms of actions. Antimicrobial peptides are promising candidates, because their initial interaction with microbes is through binding to lipids. The interference with such a fundamental cell structure is assumed to hamper resistance development. In the present review we discuss antimicrobial peptides isolated from marine invertebrates, emphasizing the isolation and activity of these natural antibiotics. The marine environment is relatively poorly explored in terms of potential pharmaceuticals, and it contains a tremendous species diversity which evolved in close proximity to microorganisms. As invertebrates rely purely on innate immunity, including antimicrobial peptides, to combat infectious agents, it is believed that immune effectors from these animals are efficient and rapid inhibitors of microbial growth.
Collapse
Affiliation(s)
- Sigmund V Sperstad
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
43
|
Al-Azzouny RA, Wang R, Yoo SH. Purification and characterization of a 6.5 kDa antioxidant peptidoglycan purified from silk worm (Bombyx mori) pupae extract. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0033-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Woodhams DC, Kenyon N, Bell SC, Alford RA, Chen S, Billheimer D, Shyr Y, Rollins-Smith LA. Adaptations of skin peptide defences and possible response to the amphibian chytrid fungus in populations of Australian green-eyed treefrogs, Litoria genimaculata. DIVERS DISTRIB 2010. [DOI: 10.1111/j.1472-4642.2010.00666.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Abstract
Skin secretions from anurans (frogs and toads), particularly those species belonging to the Hylidae and Ranidae families, are a rich source of biologically active peptides. Cytolytic peptides with broad-spectrum antimicrobial activities and highly variable amino acid sequences are often released into these secretions in high concentrations. Identification and characterization of these components can prove to be valuable in species identification, elucidation of evolutionary histories and phylogenetic relationships between species, and may lead to development of agents with potential for therapeutic application. This chapter describes the use of norepinephrine (injection or immersion) to stimulate peptide release in a procedure that does not appear to cause distress to the animals. The peptide components in the secretions are separated by reversed-phase HPLC on octadecylsilyl silica (C(18)) columns under standard conditions after partial purification on Sep-Pak cartridges. Individual peptides are identified by determination of their molecular masses by MALDI-TOF mass spectrometry and from their retention times. The use of mixtures of synthetic peptides of appropriate molecular mass as calibration standards enables mass determination to a high degree of precision.
Collapse
|
46
|
Abstract
Skin secretions from many species of anurans (frogs and toads) are a rich source of peptides with broad-spectrum antimicrobial activities that may be developed into agents with therapeutic potential, particularly for topical applications. This chapter describes the use of norepinephrine (injection or immersion) to stimulate peptide release from granular glands in the skin in procedures that do not appear to cause distress to the animals. The peptide components in the secretions are separated using reversed-phase HPLC on octadecylsilyl-silica (C(18)) columns after partial purification on Sep-Pak C(18) cartridges. Peptides with antimicrobial activity are then identified by demonstration of their abilities to inhibit growth of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria in liquid phase microtiter plate assays. Individual peptides with activity are purified to near homogeneity by further chromatography on butylsilyl-(C(4)) and diphenylmethylsilyl-silica columns and characterized structurally by automated Edman degradation and mass spectrometry.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | | |
Collapse
|
47
|
Mutalik S, Hewavitharana A, Shaw P, Anissimov Y, Roberts M, Parekh H. Development and validation of a reversed-phase high-performance liquid chromatographic method for quantification of peptide dendrimers in human skin permeation experiments. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3556-62. [DOI: 10.1016/j.jchromb.2009.08.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/08/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
|
48
|
Altelaar AFM, Mohammed S, Brans MAD, Adan RAH, Heck AJR. Improved identification of endogenous peptides from murine nervous tissue by multiplexed peptide extraction methods and multiplexed mass spectrometric analysis. J Proteome Res 2009; 8:870-6. [PMID: 19152261 DOI: 10.1021/pr800449n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, mass spectrometry (MS) based techniques have made their entrance in the analysis of endogenous peptides extracted from nervous tissue. In this study, we introduce a novel peptide extraction procedure using 8 M urea, next to the more established extraction method that uses acetic acid. The extracted peptide mixtures are analyzed by both high-resolution nanoLC MS/MS using collision induced dissociation (CID) on an LTQ-Orbitrap and nanoLC electron transfer induced dissociation (ETD) on a linear ion trap. The combined use of the two extraction methods significantly increased the yield of identified endogenous neuropeptides. The multiplexed use of high mass accuracy mass spectrometry and the ETD fragmentation technique further increased the yield and confidence of peptide identifications. Furthermore, reduction of disulfide bridges during sample preparation was essential in the identification of several endogenous peptides containing cysteine disulfide bonds. Through this study, we identified in total 142 peptides in extracts of the mouse pituitary tissue, whereby 43 uniquely in the urea extract and 11 uniquely in the acetic acid extract. A large number of detected endogenous peptides were reported previously, but we confidently identified 22 unreported peptides that possess characteristics of endogenous peptides and are thus interesting targets to be explored further.
Collapse
Affiliation(s)
- A F Maarten Altelaar
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Abstract
Matrix metalloproteinases (MMPs) are zinc endopeptidases composed of 23 members in humans, which belong to a subfamily of the metzincin superfamily. They play important roles in many pathophysiological events including development, organogenesis, angiogenesis, tissue remodeling and destruction, and cancer cell proliferation and progression by degradation of extracellular matrix (ECM) and non-ECM proteins and interaction with various molecules. Here, we present standard protocols for purification of native proMMPs (proMMP-1, -2, -3, -7, -9 and -10) and recombinant MT1-MMP (MMP-14) using conventional column chromatography. Purification steps comprise the initial common step [diethylaminoethyl (DEAE)-cellulose, Green A Dyematrex gel and gelatin-Sepharose columns], the second step for removal of nontarget proMMPs by immunoaffinity columns (anti-MMP-1 and/or anti-MMP-3 IgG-Sepharose columns) and the final step for further purification (IgG-Sepharose, DEAE-cellulose, Zn2+-chelate-Sepharose and/or gel filtration columns). Purified proMMPs and MMP are functionally active and suitable for biochemical analyses. The basic protocol for the purification from culture media takes approximately 7-10 d.
Collapse
Affiliation(s)
- Kazushi Imai
- Department of Biochemistry, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | |
Collapse
|