1
|
Thiele PJ, Mela-Lopez R, Blandin SA, Klug D. Let it glow: genetically encoded fluorescent reporters in Plasmodium. Malar J 2024; 23:114. [PMID: 38643106 PMCID: PMC11032601 DOI: 10.1186/s12936-024-04936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.
Collapse
Affiliation(s)
- Pia J Thiele
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Raquel Mela-Lopez
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Stéphanie A Blandin
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Dennis Klug
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France.
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
2
|
Bailey AJ, Ukegbu CV, Giorgalli M, Besson TRB, Christophides GK, Vlachou D. Intracellular Plasmodium aquaporin 2 is important for sporozoite production in the mosquito vector and malaria transmission. Proc Natl Acad Sci U S A 2023; 120:e2304339120. [PMID: 37883438 PMCID: PMC10622946 DOI: 10.1073/pnas.2304339120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/09/2023] [Indexed: 10/28/2023] Open
Abstract
Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of Plasmodium development in the mosquito vector. Disruption of AQP2 in the human parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei blocks sporozoite production inside oocysts established on mosquito midguts, greatly limiting parasite infection of salivary glands and transmission to a new host. In vivo epitope tagging of AQP2 in P. berghei, combined with immunofluorescence assays, reveals that the protein is localized in vesicle-like organelles found in the cytoplasm of gametocytes, ookinetes, and sporozoites. The number of these organelles varies between individual parasites and lifecycle stages suggesting that they are likely part of a dynamic endomembrane system. Phylogenetic analysis confirms that AQP2 is unique to malaria and closely related parasites and most closely resembles intracellular aquaporins. Structure prediction analyses identify several unusual features, including a large accessory extracellular loop and an arginine-to-phenylalanine substitution in the selectivity filter principally determining pore function, a unique feature among known aquaporins. This in conjunction with the importance of AQP2 for malaria transmission suggests that AQP2 may be a fruitful target of antimalarial interventions.
Collapse
Affiliation(s)
- Alexander J. Bailey
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - Maria Giorgalli
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | | | - Dina Vlachou
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Miyazaki Y, Vos MW, Geurten FJA, Bigeard P, Kroeze H, Yoshioka S, Arisawa M, Inaoka DK, Soulard V, Dechering KJ, Franke-Fayard B, Miyazaki S. A versatile Plasmodium falciparum reporter line expressing NanoLuc enables highly sensitive multi-stage drug assays. Commun Biol 2023; 6:713. [PMID: 37438491 DOI: 10.1038/s42003-023-05078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Transgenic luciferase-expressing Plasmodium falciparum parasites have been widely used for the evaluation of anti-malarial compounds. Here, to screen for anti-malarial drugs effective against multiple stages of the parasite, we generate a P. falciparum reporter parasite that constitutively expresses NanoLuciferase (NanoLuc) throughout its whole life cycle. The NanoLuc-expressing P. falciparum reporter parasite shows a quantitative NanoLuc signal in the asexual blood, gametocyte, mosquito, and liver stages. We also establish assay systems to evaluate the anti-malarial activity of compounds at the asexual blood, gametocyte, and liver stages, and then determine the 50% inhibitory concentration (IC50) value of several anti-malarial compounds. Through the development of this robust high-throughput screening system, we identify an anti-malarial compound that kills the asexual blood stage parasites. Our study highlights the utility of the NanoLuc reporter line, which may advance anti-malarial drug development through the improved screening of compounds targeting the human malarial parasite at multiple stages.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
| | - Martijn W Vos
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Fiona J A Geurten
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Pierre Bigeard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shohei Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Valerie Soulard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Koen J Dechering
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
| |
Collapse
|
4
|
Pathak AK, Shiau JC, Franke-Fayard B, Shollenberger LM, Harn DA, Kyle DE, Murdock CC. Streamlining sporozoite isolation from mosquitoes by leveraging the dynamics of migration to the salivary glands. Malar J 2022; 21:264. [PMID: 36100902 PMCID: PMC9472382 DOI: 10.1186/s12936-022-04270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Sporozoites isolated from the salivary glands of Plasmodium-infected mosquitoes are a prerequisite for several basic and pre-clinical applications. Although salivary glands are pooled to maximize sporozoite recovery, insufficient yields pose logistical and analytical hurdles; thus, predicting yields prior to isolation would be valuable. Preceding oocyst densities in the midgut is an obvious candidate. However, it is unclear whether current understanding of its relationship with sporozoite densities can be used to maximize yields, or whether it can capture the potential density-dependence in rates of sporozoite invasion of the salivary glands. Methods This study presents a retrospective analysis of Anopheles stephensi mosquitoes infected with two strains of the rodent-specific Plasmodium berghei. Mean oocyst densities were estimated in the midguts earlier in the infection (11–15 days post-blood meal), with sporozoites pooled from the salivary glands later in the infection (17–29 days). Generalized linear mixed effects models were used to determine if (1) mean oocyst densities can predict sporozoite yields from pooled salivary glands, (2) whether these densities can capture differences in rates of sporozoite invasion of salivary glands, and (3), if the interaction between oocyst densities and time could be leveraged to boost overall yields. Results The non-linear effect of mean oocyst densities confirmed the role of density-dependent constraints in limiting yields beyond certain oocyst densities. Irrespective of oocyst densities however, the continued invasion of salivary glands by the sporozoites boosted recoveries over time (17–29 days post-blood meal) for either parasite strain. Conclusions Sporozoite invasion of the salivary glands over time can be leveraged to maximize yields for P. berghei. In general, however, invasion of the salivary glands over time is a critical fitness determinant for all Plasmodium species (extrinsic incubation period, EIP). Thus, delaying sporozoite collection could, in principle, substantially reduce dissection effort for any parasite within the genus, with the results also alluding to the potential for changes in sporozoites densities over time to modify infectivity for the next host. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04270-y.
Collapse
|
5
|
Liu M, Liao MJ, Fisher CJ, Vicetti Miguel RD, Cherpes TL. Methodology to streamline flow cytometric-based detection of early stage Plasmodium parasitemia in mice. J Microbiol Methods 2022; 195:106439. [PMID: 35248600 PMCID: PMC9007886 DOI: 10.1016/j.mimet.2022.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Murine infection models are needed to develop therapeutics and vaccines to combat the Plasmodium parasites causing malaria. Herein, we describe an easy to perform flow cytometry-based methodology for detecting green fluorescent protein-expressing Plasmodium berghei in the peripheral red blood cells (RBC) of mice. This methodology uses one-step staining and simplified gating strategies to streamline the process of Plasmodium quantification and can detect parasitemia at an earlier time point after infection compared to traditional light microscopy-based techniques.
Collapse
|
6
|
Chahine Z, Le Roch KG. Decrypting the complexity of the human malaria parasite biology through systems biology approaches. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:940321. [PMID: 37200864 PMCID: PMC10191146 DOI: 10.3389/fsysb.2022.940321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, is a unicellular protozoan responsible for over half a million deaths annually. With a complex life cycle alternating between human and invertebrate hosts, this apicomplexan is notoriously adept at evading host immune responses and developing resistance to all clinically administered treatments. Advances in omics-based technologies, increased sensitivity of sequencing platforms and enhanced CRISPR based gene editing tools, have given researchers access to more in-depth and untapped information about this enigmatic micro-organism, a feat thought to be infeasible in the past decade. Here we discuss some of the most important scientific achievements made over the past few years with a focus on novel technologies and platforms that set the stage for subsequent discoveries. We also describe some of the systems-based methods applied to uncover gaps of knowledge left through single-omics applications with the hope that we will soon be able to overcome the spread of this life-threatening disease.
Collapse
|
7
|
Lopez-Perez M. Single-Cell Sorting of Plasmodium falciparum-Infected Erythrocytes Expressing Particular PfEMP1 Variants. Methods Mol Biol 2022; 2470:79-90. [PMID: 35881340 DOI: 10.1007/978-1-0716-2189-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cultures of Plasmodium falciparum often contain a heterogeneous parasite population. However, several studies require analysis of single infected erythrocytes (IEs) or a clonal parasite population derived from a single parasite. This protocol describes an efficient method for cloning by using fluorescence-activated cell sorting (FACS). For this, an antibody for a particular IEs surface protein it is added to the cell mixture to separate positive and negative IEs for that marker. After the separation, the viable homogeneous population can be used to grow in culture or for molecular analysis.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Wang S, Zeng W, Zhao W, Xiang Z, Zhao H, Yang Q, Li X, Duan M, Li X, Wang X, Si Y, Rosenthal BM, Yang Z. Comparison of in vitro transformation efficiency methods for Plasmodium falciparum. Mol Biochem Parasitol 2021; 247:111432. [PMID: 34826523 DOI: 10.1016/j.molbiopara.2021.111432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Poor efficiency plagues conventional methods to transfect Plasmodium falciparum with genetic modifications, impeding research aimed at limiting the damage wrought by this agent of severe malaria. Here, we sought and documented improvements, using fluoresce imaging, cell sorting, and drug selection as means to measure efficiency. Through the transfection of EGFP plasmid, the transfection efficiency of the three methods used in this study was as high as 10-3. A method that pre-loaded uninfected erythrocytes with plasmids using the Bio-Rad Gene Pulser Xcell achieved the highest efficiency (0.48%±0.06%), twice the efficiency of a method using nuclear transfection of ring stages employing the 4D-NucleofectorTM X Kit L. We also evaluated an approach using the Nucleofactor system to transform schizont stages. We considered efficiency and the time required to complete drug screening experiments when evaluating transfection methods. Fluorescence measurements confirmed greater efficiencies for the Pre-load method (52.4% vs. 25%; P < 0.0001), but the Nuc-Ring method required less time to complete drug selection experiments following CRISPR/Cas9 editing. These data should benefit future studies seeking to remove or modify genes of P. falciparum.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, 200025, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Wei Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Qi Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Xinxin Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Mengxi Duan
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Xiaosong Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Xun Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Yu Si
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China
| | - Benjamin M Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
9
|
Gimenez AM, Salman AM, Marques RF, López-Camacho C, Harrison K, Kim YC, Janse CJ, Soares IS, Reyes-Sandoval A. A universal vaccine candidate against Plasmodium vivax malaria confers protective immunity against the three PvCSP alleles. Sci Rep 2021; 11:17928. [PMID: 34504134 PMCID: PMC8429696 DOI: 10.1038/s41598-021-96986-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria is a highly prevalent parasitic disease in regions with tropical and subtropical climates worldwide. Among the species of Plasmodium causing human malaria, P. vivax is the second most prevalent and the most geographically widespread species. A major target of a pre-erythrocytic vaccine is the P. vivax circumsporozoite protein (PvCSP). In previous studies, we fused two recombinant proteins representing three allelic variants of PvCSP (VK210, VK247 and P. vivax-like) to the mumps virus nucleocapsid protein to enhance immune responses against PvCSP. The objective of the present study was to evaluate the protective efficacy of these recombinants in mice challenged with transgenic P. berghei parasites expressing PvCSP allelic variants. Formulations containing Poly (I:C) or Montanide ISA720 as adjuvants elicited high and long-lasting IgG antibody titers specific to each PvCSP allelic variant. Immunized mice were challenged with two existing chimeric P. berghei parasite lines expressing PvCSP-VK210 and PvCSP-VK247. We also developed a novel chimeric line expressing the third allelic variant, PvCSP-P. vivax-like, as a new murine immunization-challenge model. Our formulations conferred partial protection (significant delay in the time to reach 1% parasitemia) against challenge with the three chimeric parasites. Our results provide insights into the development of a vaccine targeting multiple strains of P. vivax.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ahmed M Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Rodolfo F Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Harrison
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Young Chan Kim
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK. .,Instituto Politécnico Nacional, IPN, Av. Luis Enrique Erro S/N. Unidad Adolfo López Mateos, Zacatenco, CP 07738, Mexico City, Mexico.
| |
Collapse
|
10
|
Müller K, Silvie O, Mollenkopf HJ, Matuschewski K. Pleiotropic Roles for the Plasmodium berghei RNA Binding Protein UIS12 in Transmission and Oocyst Maturation. Front Cell Infect Microbiol 2021; 11:624945. [PMID: 33747980 PMCID: PMC7973279 DOI: 10.3389/fcimb.2021.624945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
Colonization of the mosquito host by Plasmodium parasites is achieved by sexually differentiated gametocytes. Gametocytogenesis, gamete formation and fertilization are tightly regulated processes, and translational repression is a major regulatory mechanism for stage conversion. Here, we present a characterization of a Plasmodium berghei RNA binding protein, UIS12, that contains two conserved eukaryotic RNA recognition motifs (RRM). Targeted gene deletion resulted in viable parasites that replicate normally during blood infection, but form fewer gametocytes. Upon transmission to Anopheles stephensi mosquitoes, both numbers and size of midgut-associated oocysts were reduced and their development stopped at an early time point. As a consequence, no salivary gland sporozoites were formed indicative of a complete life cycle arrest in the mosquito vector. Comparative transcript profiling in mutant and wild-type infected red blood cells revealed a decrease in transcript abundance of mRNAs coding for signature gamete-, ookinete-, and oocyst-specific proteins in uis12(-) parasites. Together, our findings indicate multiple roles for UIS12 in regulation of gene expression after blood infection in good agreement with the pleiotropic defects that terminate successful sporogony and onward transmission to a new vertebrate host.
Collapse
Affiliation(s)
- Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
11
|
Definition of constitutive and stage-enriched promoters in the rodent malaria parasite, Plasmodium yoelii. Malar J 2020; 19:424. [PMID: 33228734 PMCID: PMC7685602 DOI: 10.1186/s12936-020-03498-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background Well-defined promoters are essential elements for genetic studies in all organisms, and enable controlled expression of endogenous genes, transgene expression, and gene editing. Despite this, there is a paucity of defined promoters for the rodent-infectious malaria parasites. This is especially true for Plasmodium yoelii, which is often used to study the mosquito and liver stages of malarial infection, as well as host immune responses to infection. Methods Here six promoters were selected from across the parasite’s life cycle (clag-a, dynein heavy chain delta, lap4, trap, uis4, lisp2) that have been invoked in the literature as controlling their genes in a stage-specific manner. A minimal promoter length for the constitutive pybip promoter that confers strong expression levels was also determined, which is useful for expression of reporters and gene editing enzymes. Results Instead, it was observed that these promoters confer stage-enriched gene control, as some parasites also effectively use these promoters in other stages. Thus, when used alone, these promoters could complicate the interpretation of results obtained from promoter swaps, stage-targeted recombination, or gene editing experiments. Conclusions Together these data indicate that achieving stage-specific effects, such as gene editing, is likely best done using a two-component system with independent promoter activities overlapping only in the intended life cycle stage.
Collapse
|
12
|
Balestra AC, Zeeshan M, Rea E, Pasquarello C, Brusini L, Mourier T, Subudhi AK, Klages N, Arboit P, Pandey R, Brady D, Vaughan S, Holder AA, Pain A, Ferguson DJP, Hainard A, Tewari R, Brochet M. A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission. eLife 2020; 9:e56474. [PMID: 32568069 PMCID: PMC7308089 DOI: 10.7554/elife.56474] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Cell cycle transitions are generally triggered by variation in the activity of cyclin-dependent kinases (CDKs) bound to cyclins. Malaria-causing parasites have a life cycle with unique cell-division cycles, and a repertoire of divergent CDKs and cyclins of poorly understood function and interdependency. We show that Plasmodium berghei CDK-related kinase 5 (CRK5), is a critical regulator of atypical mitosis in the gametogony and is required for mosquito transmission. It phosphorylates canonical CDK motifs of components in the pre-replicative complex and is essential for DNA replication. During a replicative cycle, CRK5 stably interacts with a single Plasmodium-specific cyclin (SOC2), although we obtained no evidence of SOC2 cycling by transcription, translation or degradation. Our results provide evidence that during Plasmodium male gametogony, this divergent cyclin/CDK pair fills the functional space of other eukaryotic cell-cycle kinases controlling DNA replication.
Collapse
Affiliation(s)
| | - Mohammad Zeeshan
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Edward Rea
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | | | - Lorenzo Brusini
- University of Geneva, Faculty of MedicineGenevaSwitzerland
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Tobias Mourier
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Amit Kumar Subudhi
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Natacha Klages
- University of Geneva, Faculty of MedicineGenevaSwitzerland
| | | | - Rajan Pandey
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Declan Brady
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical SciencesOxfordUnited Kingdom
| | - Anthony A Holder
- The Francis Crick Institute, Malaria Parasitology LaboratoryLondonUnited Kingdom
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - David JP Ferguson
- Oxford Brookes University, Department of Biological and Medical SciencesOxfordUnited Kingdom
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Laboratory ScienceOxfordUnited Kingdom
| | | | - Rita Tewari
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | | |
Collapse
|
13
|
Andreadaki M, Pace T, Grasso F, Siden‐Kiamos I, Mochi S, Picci L, Bertuccini L, Ponzi M, Currà C. Plasmodium berghei
Gamete Egress Protein is required for fertility of both genders. Microbiologyopen 2020; 9:e1038. [PMID: 32352241 PMCID: PMC7349110 DOI: 10.1002/mbo3.1038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Male and female Plasmodium gametocytes ingested by the Anopheles mosquitoes during a blood meal egress from the red blood cells by rupturing the two surrounding membranes, the parasitophorous vacuole and the red blood cell membranes. Proteins of the so‐called osmiophilic bodies, (OBs), secretory organelles resident in the cytoplasm, are important players in this process. Once gametes emerge, the female is ready to be fertilized while the male develops into motile flagellar gametes. Here, we describe the function(s) of PBANKA_1115200, which we named Gamete Egress Protein (GEP), a protein specific to malaria parasites. GEP is restricted to gametocytes, expressed in gametocytes of both genders and partly localizes to the OBs. A mutant lacking the protein shows aberrant rupture of the two surrounding membranes, while OBs discharge is delayed but not aborted. Moreover, we identified a second function of GEP during exflagellation since the axonemes of the male flagellar gametes were not motile. Genetic crossing experiments reveal that both genders are unable to establish infections in mosquitoes and thus the lack of GEP leads to a complete block in Plasmodium transmission from mice to mosquitoes. The combination of our results reveals essential and pleiotropic functions of GEP in Plasmodium gametogenesis.
Collapse
Affiliation(s)
- Maria Andreadaki
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| | - Tomasino Pace
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Felicia Grasso
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Inga Siden‐Kiamos
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| | - Stefania Mochi
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Leonardo Picci
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | | | - Marta Ponzi
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Chiara Currà
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| |
Collapse
|
14
|
Delves M, Lafuente-Monasterio MJ, Upton L, Ruecker A, Leroy D, Gamo FJ, Sinden R. Fueling Open Innovation for Malaria Transmission-Blocking Drugs: Hundreds of Molecules Targeting Early Parasite Mosquito Stages. Front Microbiol 2019; 10:2134. [PMID: 31572339 PMCID: PMC6753678 DOI: 10.3389/fmicb.2019.02134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite recent successes at controlling malaria, progress has stalled with an estimated 219 million cases and 435,000 deaths in 2017 alone. Combined with emerging resistance to front line antimalarial therapies in Southeast Asia, there is an urgent need for new treatment options and novel approaches to halt the spread of malaria. Plasmodium, the parasite responsible for malaria propagates through mosquito transmission. This imposes an acute bottleneck on the parasite population and transmission-blocking interventions exploiting this vulnerability are recognized as vital for malaria elimination. Methods 13,533 small molecules with known activity against Plasmodium falciparum asexual parasites were screened for additional transmission-blocking activity in an ex vivo Plasmodium berghei ookinete development assay. Active molecules were then counterscreened in dose response against HepG2 cells to determine their activity/cytotoxicity window and selected non-toxic representative molecules were fully profiled in a range of transmission and mosquito infection assays. Furthermore, the entire dataset was compared to other published screens of the same molecules against P. falciparum gametocytes and female gametogenesis. Results 437 molecules inhibited P. berghei ookinete formation with an IC50 < 10 μM. of which 273 showed >10-fold parasite selectivity compared to activity against HepG2 cells. Active molecules grouped into 49 chemical clusters of three or more molecules, with 25 doublets and 94 singletons. Six molecules representing six major chemical scaffolds confirmed their transmission-blocking activity against P. falciparum male and female gametocytes and inhibited P. berghei oocyst formation in the standard membrane feeding assay at 1 μM. When screening data in the P. berghei development ookinete assay was compared to published screens of the same library in assays against P. falciparum gametocytes and female gametogenesis, it was established that each assay identified distinct, but partially overlapping subsets of transmission-blocking molecules. However, selected molecules unique to each assay show transmission-blocking activity in mosquito transmission assays. Conclusion The P. berghei ookinete development assay is an excellent high throughput assay for efficiently identifying antimalarial molecules targeting early mosquito stage parasite development. Currently no high throughput transmission-blocking assay is capable of identifying all transmission-blocking molecules.
Collapse
Affiliation(s)
- Michael Delves
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Leanna Upton
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Robert Sinden
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Tokunaga N, Nozaki M, Tachibana M, Baba M, Matsuoka K, Tsuboi T, Torii M, Ishino T. Expression and Localization Profiles of Rhoptry Proteins in Plasmodium berghei Sporozoites. Front Cell Infect Microbiol 2019; 9:316. [PMID: 31552198 PMCID: PMC6746830 DOI: 10.3389/fcimb.2019.00316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023] Open
Abstract
In the Plasmodium lifecycle two infectious stages of parasites, merozoites, and sporozoites, efficiently infect mammalian host cells, erythrocytes, and hepatocytes, respectively. The apical structure of merozoites and sporozoites contains rhoptry and microneme secretory organelles, which are conserved with other infective forms of apicomplexan parasites. During merozoite invasion of erythrocytes, some rhoptry proteins are secreted to form a tight junction between the parasite and target cell, while others are discharged to maintain subsequent infection inside the parasitophorous vacuole. It has been questioned whether the invasion mechanisms mediated by rhoptry proteins are also involved in sporozoite invasion of two distinct target cells, mosquito salivary glands and mammalian hepatocytes. Recently we demonstrated that rhoptry neck protein 2 (RON2), which is crucial for tight junction formation in merozoites, is also important for sporozoite invasion of both target cells. With the aim of comprehensively describing the mechanisms of sporozoite invasion, the expression and localization profiles of rhoptry proteins were investigated in Plasmodium berghei sporozoites. Of 12 genes representing merozoite rhoptry molecules, nine are transcribed in oocyst-derived sporozoites at a similar or higher level compared to those in blood-stage schizonts. Immuno-electron microscopy demonstrates that eight proteins, namely RON2, RON4, RON5, ASP/RON1, RALP1, RON3, RAP1, and RAMA, localize to rhoptries in sporozoites. It is noteworthy that most rhoptry neck proteins in merozoites are localized throughout rhoptries in sporozoites. This study demonstrates that most rhoptry proteins, except components of the high-molecular mass rhoptry protein complex, are commonly expressed in merozoites and sporozoites in Plasmodium spp., which suggests that components of the invasion mechanisms are basically conserved between infective forms independently of their target cells. Combined with sporozoite-stage specific gene silencing strategies, the contribution of rhoptry proteins in invasion mechanisms can be described.
Collapse
Affiliation(s)
- Naohito Tokunaga
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mamoru Nozaki
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Kazuhiro Matsuoka
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
16
|
Wells MB, Andrew DJ. Anopheles Salivary Gland Architecture Shapes Plasmodium Sporozoite Availability for Transmission. mBio 2019; 10:e01238-19. [PMID: 31387905 PMCID: PMC6686039 DOI: 10.1128/mbio.01238-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Plasmodium sporozoites (SPZs) must traverse the mosquito salivary glands (SGs) to reach a new vertebrate host and continue the malaria disease cycle. Although SGs can harbor thousands of sporozoites, only 10 to 100 are deposited into a host during probing. To determine how the SGs might function as a bottleneck in SPZ transmission, we have characterized Anopheles stephensi SGs infected with the rodent malaria parasite Plasmodium berghei using immunofluorescence confocal microscopy. Our analyses corroborate findings from previous electron microscopy studies and provide new insights into the invasion process. We identified sites of SPZ accumulation within SGs across a range of infection intensities. Although SPZs were most often seen in the distal lateral SG lobes, they were also observed in the medial and proximal lateral lobes. Most parasites were associated with either the basement membrane or secretory cavities. SPZs accumulated at physical barriers, including fused salivary ducts and extensions of the chitinous salivary duct wall into the distal lumen. SPZs were observed only rarely within salivary ducts. SPZs appeared to contact each other in many different quantities, not just in the previously described large bundles. Within parasite bundles, all of the SPZs were oriented in the same direction. We found that moderate levels of infection did not necessarily correlate with major SG disruptions or abundant SG cell death. Altogether, our findings suggest that SG architecture largely acts as a barrier to SPZ transmission.IMPORTANCE Malaria continues to have a devastating impact on human health. With growing resistance to insecticides and antimalarial drugs, as well as climate change predictions indicating expansion of vector territories, the impact of malaria is likely to increase. Additional insights regarding pathogen migration through vector mosquitoes are needed to develop novel methods to prevent transmission to new hosts. Pathogens, including the microbes that cause malaria, must invade the salivary glands (SGs) for transmission. Since SG traversal is required for parasite transmission, SGs are ideal targets for transmission-blocking strategies. The work presented here highlights the role that mosquito SG architecture plays in limiting parasite traversal, revealing how the SG transmission bottleneck is imposed. Further, our data provide unprecedented detail about SG-sporozoite interactions and gland-to-gland variation not provided in previous studies.
Collapse
Affiliation(s)
- Michael B Wells
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Hillier C, Pardo M, Yu L, Bushell E, Sanderson T, Metcalf T, Herd C, Anar B, Rayner JC, Billker O, Choudhary JS. Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific Functionality. Cell Rep 2019; 28:1635-1647.e5. [PMID: 31390575 PMCID: PMC6693557 DOI: 10.1016/j.celrep.2019.07.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/28/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria represents a major global health issue, and the identification of new intervention targets remains an urgent priority. This search is hampered by more than one-third of the genes of malaria-causing Plasmodium parasites being uncharacterized. We report a large-scale protein interaction network in Plasmodium schizonts, generated by combining blue native-polyacrylamide electrophoresis with quantitative mass spectrometry and machine learning. This integrative approach, spanning 3 species, identifies >20,000 putative protein interactions, organized into 600 protein clusters. We validate selected interactions, assigning functions in chromatin regulation to previously unannotated proteins and suggesting a role for an EELM2 domain-containing protein and a putative microrchidia protein as mechanistic links between AP2-domain transcription factors and epigenetic regulation. Our interactome represents a high-confidence map of the native organization of core cellular processes in Plasmodium parasites. The network reveals putative functions for uncharacterized proteins, provides mechanistic and structural insight, and uncovers potential alternative therapeutic targets.
Collapse
Affiliation(s)
- Charles Hillier
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK.
| | - Lu Yu
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ellen Bushell
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tom Metcalf
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Colin Herd
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Burcu Anar
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Billker
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden.
| | - Jyoti S Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
18
|
Spreng B, Fleckenstein H, Kübler P, Di Biagio C, Benz M, Patra P, Schwarz US, Cyrklaff M, Frischknecht F. Microtubule number and length determine cellular shape and function in Plasmodium. EMBO J 2019; 38:e100984. [PMID: 31368598 PMCID: PMC6669926 DOI: 10.15252/embj.2018100984] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 11/27/2022] Open
Abstract
Microtubules are cytoskeletal filaments essential for many cellular processes, including establishment and maintenance of polarity, intracellular transport, division and migration. In most metazoan cells, the number and length of microtubules are highly variable, while they can be precisely defined in some protozoan organisms. However, in either case the significance of these two key parameters for cells is not known. Here, we quantitatively studied the impact of modulating microtubule number and length in Plasmodium, the protozoan parasite causing malaria. Using a gene deletion and replacement strategy targeting one out of two α-tubulin genes, we show that chromosome segregation proceeds in the oocysts even in the absence of microtubules. However, fewer and shorter microtubules severely impaired the formation, motility and infectivity of Plasmodium sporozoites, the forms transmitted by the mosquito, which usually contain 16 microtubules. We found that α-tubulin expression levels directly determined the number of microtubules, suggesting a high nucleation barrier as supported by a mathematical model. Infectious sporozoites were only formed in parasite lines featuring at least 10 microtubules, while parasites with 9 or fewer microtubules failed to transmit.
Collapse
Affiliation(s)
- Benjamin Spreng
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Hannah Fleckenstein
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Patrick Kübler
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Claudia Di Biagio
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Madlen Benz
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Pintu Patra
- Institute for Theoretical Physics and BioquantHeidelberg UniversityHeidelbergGermany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioquantHeidelberg UniversityHeidelbergGermany
| | - Marek Cyrklaff
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Friedrich Frischknecht
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| |
Collapse
|
19
|
Boareto AC, Gomes C, Centeno Müller J, da Silva JG, Vergara F, Salum N, Maristany Sargaço R, de Carvalho RR, Queiroz Telles JE, Marinho CRF, Paumgartten FJR, Dalsenter PR. Maternal and fetal outcome of pregnancy in Swiss mice infected with Plasmodium berghei ANKA GFP. Reprod Toxicol 2019; 89:107-114. [PMID: 31310803 DOI: 10.1016/j.reprotox.2019.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
Abstract
Malaria in pregnant women is associated with risk of maternal and perinatal morbidity and mortality, and there are few antimalarial drugs considered safe to treat them, so it is necessary to develop safer antimalarial medicines. The goal of this study was to develop an animal model for human malaria during pregnancy by characterizing the maternal and fetal outcomes in malaria infected Swiss mice. For that, in the present study, we evaluated the outcome of pregnancy in Swiss mice infected with Plasmodium berghei ANKAGFP. We observed a reduction of fetal body weight and signs of skeletal ossification retardation in the offspring of mice infected on GD 12. The group of mice infected with malaria presented premature deliveries and histopathology changes consistent with placental malaria. Our study suggests that Swiss Webster mice infected with P. berghei ANKAGFP on GD 12 might be a valuable model to investigate the safety and the efficacy of new antimalarial drugs indicated to pregnant women.
Collapse
Affiliation(s)
- Ana Cláudia Boareto
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil.
| | - Caroline Gomes
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Juliane Centeno Müller
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Jonas Golart da Silva
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil; Department of Chemistry and Biology, Federal University of Technology - Paraná, Cidade Industrial, Curitiba, PR, 81020-430, Brazil
| | - Fernanda Vergara
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Noruê Salum
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Rafaela Maristany Sargaço
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| | - Rosângela Ribeiro de Carvalho
- Laboratory of Environmental Toxicology, National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | | | - Cláudio Romero Farias Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Butantã, São Paulo, SP, 03178-200, Brazil
| | - Francisco José Roma Paumgartten
- Laboratory of Environmental Toxicology, National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Paulo Roberto Dalsenter
- Department of Pharmacology, Federal University of Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR, 81531-980, Brazil
| |
Collapse
|
20
|
Matthews KM, Kalanon M, de Koning-Ward TF. Uncoupling the Threading and Unfoldase Actions of Plasmodium HSP101 Reveals Differences in Export between Soluble and Insoluble Proteins. mBio 2019; 10:e01106-19. [PMID: 31164473 PMCID: PMC6550532 DOI: 10.1128/mbio.01106-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Plasmodium parasites must export proteins into their erythrocytic host to survive. Exported proteins must cross the parasite plasma membrane (PPM) and the parasitophorous vacuolar membrane (PVM) encasing the parasite to access the host cell. Crossing the PVM requires protein unfolding and passage through a translocon, the Plasmodium translocon of exported proteins (PTEX). In this study, we provide the first direct evidence that heat shock protein 101 (HSP101), a core component of PTEX, unfolds proteins for translocation across the PVM by creating transgenic Plasmodium parasites in which the unfoldase and translocation functions of HSP101 have become uncoupled. Strikingly, while these parasites could export native proteins, they were unable to translocate soluble, tightly folded reporter proteins bearing the Plasmodium export element (PEXEL) across the PVM into host erythrocytes under the same conditions. In contrast, an identical PEXEL reporter protein but harboring a transmembrane domain could be exported, suggesting that a prior unfolding step occurs at the PPM. Together, these results demonstrate that the export of parasite proteins is dependent on how these proteins are presented to the secretory pathway before they reach PTEX as well as their folded status. Accordingly, only tightly folded soluble proteins secreted into the vacuolar space and not proteins containing transmembrane domains or the majority of erythrocyte-stage exported proteins have an absolute requirement for the full unfoldase activity of HSP101 to be exported.IMPORTANCE The Plasmodium parasites that cause malaria export hundreds of proteins into their host red blood cell (RBC). These exported proteins drastically alter the structural and functional properties of the RBC and play critical roles in parasite virulence and survival. To access the RBC cytoplasm, parasite proteins must pass through the Plasmodium translocon of exported proteins (PTEX) located at the membrane interfacing the parasite and host cell. Our data provide evidence that HSP101, a component of PTEX, serves to unfold protein cargo requiring translocation. We also reveal that addition of a transmembrane domain to soluble cargo influences its ability to be translocated by parasites in which the HSP101 motor and unfolding activities have become uncoupled. Therefore, we propose that proteins with transmembrane domains use an alternative unfolding pathway prior to PTEX to facilitate export.
Collapse
Affiliation(s)
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | |
Collapse
|
21
|
Cabral-Miranda G, M Salman A, O Mohsen M, L Storni F, S Roesti E, A Skinner M, D Heath M, F Kramer M, M Khan S, J Janse C, V S Hill A, F Bachmann M. DOPS Adjuvant Confers Enhanced Protection against Malaria for VLP-TRAP Based Vaccines. Diseases 2018; 6:diseases6040107. [PMID: 30469323 PMCID: PMC6313579 DOI: 10.3390/diseases6040107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination remains the most effective and essential prophylactic tool against infectious diseases. Enormous efforts have been made to develop effective vaccines against malaria but successes remain so far limited. Novel adjuvants may offer a significant advantage in the development of malaria vaccines, in particular if combined with inherently immunogenic platforms, such as virus-like particles (VLP). Dioleoyl phosphatidylserine (DOPS), which is expressed on the outer surface of apoptotic cells, represents a novel adjuvant candidate that may confer significant advantage over existing adjuvants, such as alum. In the current study we assessed the potential of DOPS to serve as an adjuvant in the development of a vaccine against malaria either alone or combined with VLP using Plasmodium falciparum thrombospondin-related adhesive protein (TRAP) as a target antigen. TRAP was chemically coupled to VLPs derived from the cucumber mosaic virus fused to a universal T cell epitope of tetanus toxin (CuMVtt). Mice were immunized with TRAP alone or formulated in alum or DOPS and compared to TRAP coupled to CuMVtt formulated in PBS or DOPS. Induced immune responses, in particular T cell responses, were assessed as the major protective effector cell population induced by TRAP. The protective capacity of the various formulations was assessed using a transgenic Plasmodium berghei expressing PfTRAP. All vaccine formulations using adjuvants and/or VLP increased humoral and T cell immunogenicity for PfTRAP compared to the antigen alone. Display on VLPs, in particular if formulated with DOPS, induced the strongest and most protective immune response. Thus, the combination of VLP with DOPS may harness properties of both immunogenic components and optimally enhance induction of protective immune responses.
Collapse
Affiliation(s)
- Gustavo Cabral-Miranda
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Mona O Mohsen
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Federico L Storni
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| | - Elisa S Roesti
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| | | | - Matthew D Heath
- Bencard Adjuvant Systems, Dominion Way, Worthing BN14 8SA, UK.
| | | | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Martin F Bachmann
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| |
Collapse
|
22
|
Abstract
Plasmodium sporozoites are injected into the skin as mosquitoes probe for blood. From here, they migrate through the dermis to find blood vessels which they enter in order to be rapidly carried to the liver, where they invade hepatocytes and develop into the next life cycle stage, the exoerythrocytic stage. Once sporozoites enter the blood circulation, they are found in hepatocytes within minutes. In contrast, sporozoite exit from the inoculation site resembles a slow trickle and occurs over several hours. Thus, sporozoites spend the majority of their extracellular time at the inoculation site, raising the hypothesis that this is when the malarial parasite is most vulnerable to antibody-mediated destruction. Here, we investigate this hypothesis and demonstrate that the neutralizing capacity of circulating antibodies is greater at the inoculation site than in the blood circulation. Furthermore, these antibodies are working, at least in part, by impacting sporozoite motility at the inoculation site. Using actively and passively immunized mice, we found that most parasites are either immobilized at the site of injection or display reduced motility, particularly in their net displacement. We also found that antibodies severely impair the entry of sporozoites into the bloodstream. Overall, our data suggest that antibodies targeting the migratory sporozoite exert a large proportion of their protective effect at the inoculation site.IMPORTANCE Studies in experimental animal models and humans have shown that antibodies against Plasmodium sporozoites abolish parasite infectivity and provide sterile immunity. While it is well documented that these antibodies can be induced after immunization with attenuated parasites or subunit vaccines, the mechanisms by and location in which they neutralize parasites have not been fully elucidated. Here, we report studies indicating that these antibodies display a significant portion of their protective effect in the skin after injection of sporozoites and that one mechanism by which they work is by impairing sporozoite motility, thus diminishing their ability to reach blood vessels. These results suggest that immune protection against malaria begins at the earliest stages of parasite infection and emphasize the need of performing parasite challenge in the skin for the evaluation of protective immunity.
Collapse
|
23
|
Tailoring a Plasmodium vivax Vaccine To Enhance Efficacy through a Combination of a CSP Virus-Like Particle and TRAP Viral Vectors. Infect Immun 2018; 86:IAI.00114-18. [PMID: 29986894 PMCID: PMC6105880 DOI: 10.1128/iai.00114-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Here, two leading P. vivax preerythrocytic vaccine candidate antigens, the P. vivax circumsporozoite protein (PvCSP) and the thrombospondin-related adhesion protein (PvTRAP) were delivered as a combined vaccine. This strategy provided a dose-sparing effect, with 100% sterile protection in mice using doses that individually conferred low or no protection, as with the unadjuvanted antigens PvTRAP (0%) and PvCSP (50%), and reached protection similar to that of adjuvanted components. Efficacy against malaria infection was assessed using a new mouse challenge model consisting of a double-transgenic Plasmodium berghei parasite simultaneously expressing PvCSP and PvTRAP used in mice immunized with the virus-like particle (VLP) Rv21 previously reported to induce high efficacy in mice using Matrix-M adjuvant, while PvTRAP was concomitantly administered in chimpanzee adenovirus and modified vaccinia virus Ankara (MVA) vectors (viral-vectored TRAP, or vvTRAP) to support effective induction of T cells. We examined immunity elicited by these vaccines in the context of two adjuvants approved for human use (AddaVax and Matrix-M). Matrix-M supported the highest anti-PvCSP antibody titers when combined with Rv21, and, interestingly, mixing PvCSP Rv21 and PvTRAP viral vectors enhanced immunity to malaria over levels provided by single vaccines.
Collapse
|
24
|
Characterization of Plasmodium berghei Pbg37 as Both a Pre- and Postfertilization Antigen with Transmission-Blocking Potential. Infect Immun 2018; 86:IAI.00785-17. [PMID: 29866905 DOI: 10.1128/iai.00785-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/26/2018] [Indexed: 01/29/2023] Open
Abstract
Transmission-blocking vaccines (TBVs) interrupting malaria transmission are an integrated tool for malaria eradication. We characterized a sexual-stage-specific gene (PBANKA_060330) from Plasmodium berghei and studied its potential for use as a TBV. This gene, referred to as pbg37, encodes a protein of 37 kDa with a signal peptide and multiple transmembrane domains and is preferentially expressed in gametocytes. A recombinant Pbg37 (rPbg37) protein targeting the N-terminal 63 amino acids (amino acids 26 to 88) expressed in bacteria elicited strong antibody responses in mice. Western blotting demonstrated Pbg37 expression in gametocytes, zygotes, and, to a lesser extent, ookinetes and its predominant association with the membranes of gametocytes. Indirect immunofluorescence assay showed an abundant surface localization of Pbg37 on gametes and zygotes but reduced amounts on retorts and ookinetes. Knockout of pbg37 (Δpbg37) led to a considerable reduction in gametocytemia, which translated into a ~92.1% decrease in the oocyst number in mosquitoes. Deletion of pbg37 had a more substantial influence on the development and maturation of microgametocytes. As a result, the Δpbg37 lines exhibited a higher female/male gametocyte ratio, fewer mature male gametocytes, and defects in the exflagellation of mature microgametocytes. To test the transmission-blocking potential of Pbg37, an in vitro ookinete assay showed that the major inhibitory effects of anti-Pbg37 antiserum were on the exflagellation and fertilization processes. Direct feeding of mosquitoes on mice immunized with rPbg37 or a control protein showed that rPbg37-immunized and P. berghei-infected mice had a significant reduction (49.1%) in oocyst density compared to the controls. The conservation of this gene in Plasmodium warrants further investigations in human malaria parasites.
Collapse
|
25
|
Lee RS, Waters AP, Brewer JM. A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy. Nat Commun 2018; 9:1689. [PMID: 29703959 PMCID: PMC5924373 DOI: 10.1038/s41467-018-04108-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/28/2018] [Indexed: 12/04/2022] Open
Abstract
Blood stage human malaria parasites may exploit erythropoietic tissue niches and colonise erythroid progenitors; however, the precise influence of the erythropoietic environment on fundamental parasite biology remains unknown. Here we use quantitative approaches to enumerate Plasmodium infected erythropoietic precursor cells using an in vivo rodent model of Plasmodium berghei. We show that parasitised early reticulocytes (ER) in the major sites of haematopoiesis establish a cryptic asexual cycle. Moreover, this cycle is characterised by early preferential commitment to gametocytogenesis, which occurs in sufficient numbers to generate almost all of the initial population of circulating, mature gametocytes. In addition, we show that P. berghei is less sensitive to artemisinin in splenic ER than in blood, which suggests that haematopoietic tissues may enable origins of recrudescent infection and emerging resistance to antimalarials. Continuous propagation in these sites may also provide a mechanism for continuous transmission and infection in malaria endemic regions.
Collapse
Affiliation(s)
- Rebecca S Lee
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, Sir Graham Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Andrew P Waters
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, Sir Graham Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK.
| | - James M Brewer
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, Sir Graham Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK.
| |
Collapse
|
26
|
An in vitro assay to measure antibody-mediated inhibition of P. berghei sporozoite invasion against P. falciparum antigens. Sci Rep 2017; 7:17011. [PMID: 29209029 PMCID: PMC5717233 DOI: 10.1038/s41598-017-17274-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
A large research effort is currently underway to find an effective and affordable malaria vaccine. Tools that enable the rapid evaluation of protective immune responses are essential to vaccine development as they can provide selection criteria to rank order vaccine candidates. In this study we have revisited the Inhibition of Sporozoite Invasion (ISI) assay to assess the ability of antibodies to inhibit sporozoite infection of hepatocytes. By using GFP expressing sporozoites of the rodent parasite P. berghei we are able to robustly quantify parasite infection of hepatocyte cell lines by flow cytometry. In conjunction with recently produced transgenic P. berghei parasites that express P. falciparum sporozoite antigens, we have been able to use this assay to measure antibody mediated inhibition of sporozoite invasion against one of the lead malaria antigens P. falciparum CSP. By combining chimeric rodent parasites expressing P. falciparum antigens and a flow cytometric readout of infection, we are able to robustly assess vaccine-induced antibodies, from mice, rhesus macaques and human clinical trials, for their functional ability to block sporozoite invasion of hepatocytes.
Collapse
|
27
|
Hopp CS, Bennett BL, Mishra S, Lehmann C, Hanson KK, Lin JW, Rousseau K, Carvalho FA, van der Linden WA, Santos NC, Bogyo M, Khan SM, Heussler V, Sinnis P. Deletion of the rodent malaria ortholog for falcipain-1 highlights differences between hepatic and blood stage merozoites. PLoS Pathog 2017; 13:e1006586. [PMID: 28922424 PMCID: PMC5602738 DOI: 10.1371/journal.ppat.1006586] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/16/2017] [Indexed: 01/10/2023] Open
Abstract
Proteases have been implicated in a variety of developmental processes during the malaria parasite lifecycle. In particular, invasion and egress of the parasite from the infected hepatocyte and erythrocyte, critically depend on protease activity. Although falcipain-1 was the first cysteine protease to be characterized in P. falciparum, its role in the lifecycle of the parasite has been the subject of some controversy. While an inhibitor of falcipain-1 blocked erythrocyte invasion by merozoites, two independent studies showed that falcipain-1 disruption did not affect growth of blood stage parasites. To shed light on the role of this protease over the entire Plasmodium lifecycle, we disrupted berghepain-1, its ortholog in the rodent parasite P. berghei. We found that this mutant parasite displays a pronounced delay in blood stage infection after inoculation of sporozoites. Experiments designed to pinpoint the defect of berghepain-1 knockout parasites found that it was not due to alterations in gliding motility, hepatocyte invasion or liver stage development and that injection of berghepain-1 knockout merosomes replicated the phenotype of delayed blood stage growth after sporozoite inoculation. We identified an additional role for berghepain-1 in preparing blood stage merozoites for infection of erythrocytes and observed that berghepain-1 knockout parasites exhibit a reticulocyte restriction, suggesting that berghepain-1 activity broadens the erythrocyte repertoire of the parasite. The lack of berghepain-1 expression resulted in a greater reduction in erythrocyte infectivity in hepatocyte-derived merozoites than it did in erythrocyte-derived merozoites. These observations indicate a role for berghepain-1 in processing ligands important for merozoite infectivity and provide evidence supporting the notion that hepatic and erythrocytic merozoites, though structurally similar, are not identical. Malaria affects hundreds of millions of people and is the cause of hundreds of thousands of deaths each year. Infection begins with the inoculation of sporozoites into the skin during the bite of an infected mosquito. Sporozoites subsequently travel to the liver, where they invade and replicate in hepatocytes, eventually releasing the stage of the parasite that is infectious for red blood cells, termed merozoites. Hepatic merozoites initiate blood stage infection, the stage that is responsible for the clinical symptoms of malaria. The blood stage of the parasite grows through repeated rounds of invasion, development and egress of blood stage merozoites, which then continue the cycle. Proteases are among the enzymes that are essential for parasite survival and their functions range from invasion of red blood cells, to the breakdown of red cell hemoglobin, to the release of parasites from red cells. As the function of the cysteine protease falcipain-1 in the lifecycle of the human malaria parasite Plasmodium falciparum remains poorly understood, we decided to study berghepain-1, the orthologue of the rodent malaria parasite P. berghei by generating a berghepain-1 deletion parasite. Using this mutant, we demonstrate that berghepain-1 has a critical role in both hepatic and erythrocytic merozoite infectivity. Little is known about differences between these two types of merozoites and our data leads us to conclude that these merozoites are not identical.
Collapse
Affiliation(s)
- Christine S. Hopp
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (CSH); (BLB); (PS)
| | - Brandy L. Bennett
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (CSH); (BLB); (PS)
| | - Satish Mishra
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Kirsten K. Hanson
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Jing-wen Lin
- Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden ZA, The Netherlands
| | - Kimberly Rousseau
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Wouter A. van der Linden
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shahid M. Khan
- Department of Parasitology, Leiden Malaria Research Group, Leiden University Medical Center, Leiden ZA, The Netherlands
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (CSH); (BLB); (PS)
| |
Collapse
|
28
|
A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle. Cell Host Microbe 2017; 21:11-22. [PMID: 28081440 PMCID: PMC5241200 DOI: 10.1016/j.chom.2016.12.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/17/2016] [Accepted: 11/17/2016] [Indexed: 01/17/2023]
Abstract
A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle. Mutants in 11 of 26 apiAP2 genes reveal gene functions in mosquito transmission Co-expression clustering across mutants and stages reveals molecular phenotypes Multifunctional apiAP2 genes create complex regulatory networks in Plasmodium Ap2-g2 is a transcriptional repressor in both asexual and sexual blood stages
Collapse
|
29
|
Plasmodium berghei PIMMS2 Promotes Ookinete Invasion of the Anopheles gambiae Mosquito Midgut. Infect Immun 2017; 85:IAI.00139-17. [PMID: 28559405 PMCID: PMC5520436 DOI: 10.1128/iai.00139-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
Mosquito midgut stages of the malaria parasite present an attractive biological system to study host-parasite interactions and develop interventions to block disease transmission. Mosquito infection ensues upon oocyst development that follows ookinete invasion and traversal of the mosquito midgut epithelium. Here, we report the characterization of PIMMS2 (Plasmodium invasion of mosquito midgut screen candidate 2), a Plasmodium berghei protein with structural similarities to subtilisin-like proteins. PIMMS2 orthologs are present in the genomes of all plasmodia and are mapped between the subtilisin-encoding genes SUB1 and SUB3. P. berghei PIMMS2 is specifically expressed in zygotes and ookinetes and is localized on the ookinete surface. Loss of PIMMS2 function through gene disruption by homologous recombination leads to normal development of motile ookinetes that exhibit a severely impaired capacity to traverse the mosquito midgut and transform to oocysts. Genetic complementation of the disrupted locus with a mutated PIMMS2 allele reveals that amino acid residues corresponding to the putative subtilisin-like catalytic triad are important but not essential for protein function. Our data demonstrate that PIMMS2 is a novel ookinete-specific protein that promotes parasite traversal of the mosquito midgut epithelium and establishment of mosquito infection.
Collapse
|
30
|
Bioluminescence Method for In Vitro Screening of Plasmodium Transmission-Blocking Compounds. Antimicrob Agents Chemother 2017; 61:AAC.02699-16. [PMID: 28348156 PMCID: PMC5444155 DOI: 10.1128/aac.02699-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
The sporogonic stage of the life cycle of Plasmodium spp., the causative agents of malaria, occurs inside the parasite's mosquito vector, where a process of fertilization, meiosis, and mitotic divisions culminates in the generation of large numbers of mammalian-infective sporozoites. Efforts to cultivate Plasmodium mosquito stages in vitro have proved challenging and yielded only moderate success. Here, we describe a methodology that simplifies the in vitro screening of much-needed transmission-blocking (TB) compounds employing a bioluminescence-based method to monitor the in vitro development of sporogonic stages of the rodent malaria parasite Plasmodium berghei. Our proof-of-principle assessment of the in vitro TB activity of several commonly used antimalarial compounds identified cycloheximide, thiostrepton, and atovaquone as the most active compounds against the parasite's sporogonic stages. The TB activity of these compounds was further confirmed by in vivo studies that validated our newly developed in vitro approach to TB compound screening.
Collapse
|
31
|
Alkaitis MS, Wang H, Ikeda AK, Rowley CA, MacCormick IJC, Chertow JH, Billker O, Suffredini AF, Roberts DJ, Taylor TE, Seydel KB, Ackerman HC. Decreased Rate of Plasma Arginine Appearance in Murine Malaria May Explain Hypoargininemia in Children With Cerebral Malaria. J Infect Dis 2017; 214:1840-1849. [PMID: 27923948 DOI: 10.1093/infdis/jiw452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion. METHODS We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope-labeled tracers measured by quadrupole time-of-flight liquid chromatography-mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice. RESULTS Children with cerebral malaria and P. berghei-infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice. CONCLUSIONS Simultaneous arginine and ornithine depletion in malaria parasite-infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance.
Collapse
Affiliation(s)
- Matthew S Alkaitis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville.,Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Allison K Ikeda
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville
| | - Carol A Rowley
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville
| | - Ian J C MacCormick
- Department of Eye and Vision Science, University of Liverpool.,Centre for Clinical Brain Sciences, University of Edinburgh.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme
| | - Jessica H Chertow
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville
| | | | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington.,National Health Service Blood and Transplant, John Radcliffe Hospital, Oxford, United Kingdom
| | - Terrie E Taylor
- Michigan State University, East Lansing.,Blantyre Malaria Project, Malawi
| | - Karl B Seydel
- Michigan State University, East Lansing.,Blantyre Malaria Project, Malawi
| | - Hans C Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville
| |
Collapse
|
32
|
Salman AM, Montoya-Díaz E, West H, Lall A, Atcheson E, Lopez-Camacho C, Ramesar J, Bauza K, Collins KA, Brod F, Reis F, Pappas L, González-Cerón L, Janse CJ, Hill AVS, Khan SM, Reyes-Sandoval A. Rational development of a protective P. vivax vaccine evaluated with transgenic rodent parasite challenge models. Sci Rep 2017; 7:46482. [PMID: 28417968 PMCID: PMC5394459 DOI: 10.1038/srep46482] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
Development of a protective and broadly-acting vaccine against the most widely distributed human malaria parasite, Plasmodium vivax, will be a major step towards malaria elimination. However, a P. vivax vaccine has remained elusive by the scarcity of pre-clinical models to test protective efficacy and support further clinical trials. In this study, we report the development of a highly protective CSP-based P. vivax vaccine, a virus-like particle (VLP) known as Rv21, able to provide 100% sterile protection against a stringent sporozoite challenge in rodent models to malaria, where IgG2a antibodies were associated with protection in absence of detectable PvCSP-specific T cell responses. Additionally, we generated two novel transgenic rodent P. berghei parasite lines, where the P. berghei csp gene coding sequence has been replaced with either full-length P. vivax VK210 or the allelic VK247 csp that additionally express GFP-Luciferase. Efficacy of Rv21 surpassed viral-vectored vaccination using ChAd63 and MVA. We show for the first time that a chimeric VK210/247 antigen can elicit high level cross-protection against parasites expressing either CSP allele, which provide accessible and affordable models suitable to support the development of P. vivax vaccines candidates. Rv21 is progressing to GMP production and has entered a path towards clinical evaluation.
Collapse
Affiliation(s)
- Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.,Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eduardo Montoya-Díaz
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Heather West
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Amar Lall
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Erwan Atcheson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Cesar Lopez-Camacho
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Karolis Bauza
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Katharine A Collins
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Florian Brod
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Fernando Reis
- Universidade Federal de Minas Gerais, Belo Horizonte - MG - Brasil
| | - Leontios Pappas
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, 4ta Avenida Norte y Calle 19 Poniente, Tapachula, Chiapas, CP 30740, Mexico
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
33
|
Fougère A, Jackson AP, Paraskevi Bechtsi D, Braks JAM, Annoura T, Fonager J, Spaccapelo R, Ramesar J, Chevalley-Maurel S, Klop O, van der Laan AMA, Tanke HJ, Kocken CHM, Pasini EM, Khan SM, Böhme U, van Ooij C, Otto TD, Janse CJ, Franke-Fayard B. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole. PLoS Pathog 2016; 12:e1005917. [PMID: 27851824 PMCID: PMC5113031 DOI: 10.1371/journal.ppat.1005917] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites. Malaria-parasites invade and multiply in hepatocytes and erythrocytes. The human parasite P. falciparum transports proteins encoded by multigene families onto the surface of erythrocytes, mediating interactions between infected red blood cells (iRBCs) and other host-cells and are thought to play a key role in parasite survival during blood-stage development. The function of other exported Plasmodium protein families remains largely unknown. We provide novel insights into expression and cellular location of proteins encoded by three large multigene families of rodent malaria parasites (Fam-a, Fam-b and PIR). Multiple members of the same family are expressed in a single iRBC, unlike P. falciparum PfEMP1 proteins where individual iRBCs express only a single member. Most proteins we examined are located in the RBC cytoplasm and are not transported onto the iRBC surface membrane, indicating that these proteins are unlikely to mediate interactions between iRBCs and host-cells. Unexpectedly, liver stages also express many of these proteins, where they locate to the vacuole surrounding the parasite inside the hepatocyte. In support of a role of these proteins for parasite growth within their host cells we provide evidence that Fam-A proteins have a role in uptake and transport of (host) phosphatidylcholine for parasite-membrane synthesis.
Collapse
Affiliation(s)
- Aurélie Fougère
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Experimental Medicine, University of Perugia, Italy
| | - Andrew P. Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UnitedKingdom
| | | | - Joanna A. M. Braks
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Jannik Fonager
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microbiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | | | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Hans J. Tanke
- Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Erica M. Pasini
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, UnitedKingdom
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Alkaitis MS, Ackerman HC. Tetrahydrobiopterin Supplementation Improves Phenylalanine Metabolism in a Murine Model of Severe Malaria. ACS Infect Dis 2016; 2:827-838. [PMID: 27641435 PMCID: PMC6289270 DOI: 10.1021/acsinfecdis.6b00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for both phenylalanine hydroxylase and nitric oxide synthase. Patients with severe malaria have low urinary BH4, elevated plasma phenylalanine, and impaired endothelium-dependent vasodilation, suggesting that BH4 depletion may limit phenylalanine metabolism and nitric oxide synthesis. We infected C57BL/6 mice with Plasmodium berghei ANKA to characterize BH4 availability and to investigate the effects of BH4 supplementation. P. berghei ANKA infection lowered BH4 in plasma, erythrocytes, and brain tissue but raised it in aorta and liver tissue. The ratio of BH4 to 7,8-BH2 (the major product of BH4 oxidation) was decreased in plasma, erythrocytes, and brain tissue, suggesting that oxidation contributes to BH4 depletion. The continuous infusion of sepiapterin (a BH4 precursor) and citrulline (an arginine precursor) raised the concentrations of BH4 and arginine in both blood and tissue compartments. The restoration of systemic BH4 and arginine availability in infected mice produced only a minor improvement in whole blood nitrite concentrations, a biomarker of NO synthesis, and failed to prevent the onset of severe disease symptoms. However, sepiapterin and citrulline infusion reduced the ratio of phenylalanine to tyrosine in plasma, aortic tissue, and brain tissue. In summary, BH4 depletion in P. berghei infection may compromise both nitric oxide synthesis and phenylalanine metabolism; however, these findings require further investigation in human patients with severe malaria.
Collapse
Affiliation(s)
- Matthew S. Alkaitis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, United Kingdom
| | - Hans C. Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Fotoran WL, Colhone MC, Ciancaglini P, Stabeli RG, Wunderlich G. Merozoite-Protein Loaded Liposomes Protect against Challenge in Two Murine Models of Plasmodium Infection. ACS Biomater Sci Eng 2016; 2:2276-2286. [DOI: 10.1021/acsbiomaterials.6b00492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wesley L. Fotoran
- Department
of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelle C. Colhone
- Department
of Chemistry, FFCLRP-USP, University of São Paulo, Ribeirão
Preto, Brazil
| | - Pietro Ciancaglini
- Department
of Chemistry, FFCLRP-USP, University of São Paulo, Ribeirão
Preto, Brazil
| | - Rodrigo G. Stabeli
- Centro de Estudos
de Biomoléculas Aplicadas a Saúde, Fiocruz−Fundação
Oswaldo Cruz, Ministério da Saúde, e Departamento de
Medicina da Universidade Federal de Rondônia (UNIR), Porto Velho, Rondônia, Brazil
| | - Gerhard Wunderlich
- Department
of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Cysne DN, Fortes TS, Reis AS, de Paulo Ribeiro B, dos Santos Ferreira A, do Amaral FMM, Guerra RNM, Marinho CRF, Nicolete R, Nascimento FRF. Antimalarial potential of leaves of Chenopodium ambrosioides L. Parasitol Res 2016; 115:4327-4334. [DOI: 10.1007/s00436-016-5216-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022]
|
37
|
Gupta P, Lai SM, Sheng J, Tetlak P, Balachander A, Claser C, Renia L, Karjalainen K, Ruedl C. Tissue-Resident CD169(+) Macrophages Form a Crucial Front Line against Plasmodium Infection. Cell Rep 2016; 16:1749-1761. [PMID: 27477286 DOI: 10.1016/j.celrep.2016.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/23/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022] Open
Abstract
Tissue macrophages exhibit diverse functions, ranging from the maintenance of tissue homeostasis, including clearance of senescent erythrocytes and cell debris, to modulation of inflammation and immunity. Their contribution to the control of blood-stage malaria remains unclear. Here, we show that in the absence of tissue-resident CD169(+) macrophages, Plasmodium berghei ANKA (PbA) infection results in significantly increased parasite sequestration, leading to vascular occlusion and leakage and augmented tissue deposition of the malarial pigment hemozoin. This leads to widespread tissue damage culminating in multiple organ inflammation. Thus, the capacity of CD169(+) macrophages to contain the parasite burden and its sequestration into different tissues and to limit infection-induced inflammation is crucial to mitigating Plasmodium infection and pathogenesis.
Collapse
Affiliation(s)
- Pravesh Gupta
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Si Min Lai
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jianpeng Sheng
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Piotr Tetlak
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Akhila Balachander
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Laurent Renia
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Klaus Karjalainen
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Christiane Ruedl
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
38
|
Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. mBio 2016; 7:mBio.00682-16. [PMID: 27353755 PMCID: PMC4937212 DOI: 10.1128/mbio.00682-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. IMPORTANCE Malaria is responsible for more mortality than any other parasitic disease. Resistance to antimalarial medicines is a recurring problem; new drugs are urgently needed. A key to the parasite's successful intracellular development in the liver is the metabolic changes necessary to convert the parasite from a sporozoite to a replication-competent, metabolically active trophozoite form. Our study reinforces the burgeoning concept that organellar changes during parasite differentiation are mediated by an autophagy-like process. We have identified ATG8 in Plasmodium liver forms as an important effector that controls the development and fate of organelles, e.g., the clearance of micronemes that are required for hepatocyte invasion and the expansion of the apicoplast that produces many metabolites indispensable for parasite replication. Given the unconventional properties and the importance of ATG8 for parasite development in hepatocytes, targeting the parasite's autophagic pathway may represent a novel approach to control malarial infections.
Collapse
|
39
|
Chisholm SA, McHugh E, Lundie R, Dixon MWA, Ghosh S, O’Keefe M, Tilley L, Kalanon M, de Koning-Ward TF. Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 in P. falciparum and P. berghei Unmasks a Role in Parasite Virulence. PLoS One 2016; 11:e0149296. [PMID: 26886275 PMCID: PMC4757573 DOI: 10.1371/journal.pone.0149296] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pathogenesis of malaria infections is linked to remodeling of erythrocytes, a process dependent on the trafficking of hundreds of parasite-derived proteins into the host erythrocyte. Recent studies have demonstrated that the Plasmodium translocon of exported proteins (PTEX) serves as the central gateway for trafficking of these proteins, as inducible knockdown of the core PTEX constituents blocked the trafficking of all classes of cargo into the erythrocyte. However, the role of the auxiliary component PTEX88 in protein export remains less clear. Here we have used inducible knockdown technologies in P. falciparum and P. berghei to assess the role of PTEX88 in parasite development and protein export, which reveal that the in vivo growth of PTEX88-deficient parasites is hindered. Interestingly, we were unable to link this observation to a general defect in export of a variety of known parasite proteins, suggesting that PTEX88 functions in a different fashion to the core PTEX components. Strikingly, PTEX88-deficient P. berghei were incapable of causing cerebral malaria despite a robust pro-inflammatory response from the host. These parasites also exhibited a reduced ability to sequester in peripheral tissues and were removed more readily from the circulation by the spleen. In keeping with these findings, PTEX88-deficient P. falciparum-infected erythrocytes displayed reduced binding to the endothelial cell receptor, CD36. This suggests that PTEX88 likely plays a specific direct or indirect role in mediating parasite sequestration rather than making a universal contribution to the trafficking of all exported proteins.
Collapse
Affiliation(s)
- Scott A. Chisholm
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Rachel Lundie
- The Burnet Institute, Melbourne, Victoria, Australia
| | - Matthew W. A. Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | |
Collapse
|
40
|
Sahu T, Boisson B, Lacroix C, Bischoff E, Richier Q, Formaglio P, Thiberge S, Dobrescu I, Ménard R, Baldacci P. ZIPCO, a putative metal ion transporter, is crucial for Plasmodium liver-stage development. EMBO Mol Med 2015; 6:1387-97. [PMID: 25257508 PMCID: PMC4237467 DOI: 10.15252/emmm.201403868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes. Iron/zinc supplementation and depletion experiments suggest that ZIPCO is required for parasite utilization of iron and possibly zinc, consistent with its predicted function as a metal transporter. This is the first report of a ZIP protein having a crucial role in Plasmodium liver-stage development, as well as the first metal ion transporter identified in Plasmodium pre-erythrocytic stages. Because of the drastic dependence on iron of Plasmodium growth, ZIPCO and related proteins might constitute attractive drug targets to fight against malaria.
Collapse
Affiliation(s)
- Tejram Sahu
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Bertrand Boisson
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Céline Lacroix
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France Institut de Biologie et Chimie des Protéines, Lyon Cedex 07, France
| | - Emmanuel Bischoff
- Institut Pasteur Plateforme Puces à ADN Génopole, Paris Cedex 15, France
| | - Quentin Richier
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France
| | - Pauline Formaglio
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France
| | - Sabine Thiberge
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France
| | - Irina Dobrescu
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France
| | - Robert Ménard
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France
| | - Patricia Baldacci
- Institut Pasteur Unité de Biologie et Génétique du Paludisme, Paris Cedex 15, France
| |
Collapse
|
41
|
de Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol 2015; 13:373-87. [DOI: 10.1038/nrmicro3450] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Ectopic expression of a Neospora caninum Kazal type inhibitor triggers developmental defects in Toxoplasma and Plasmodium. PLoS One 2015; 10:e0121379. [PMID: 25803874 PMCID: PMC4372514 DOI: 10.1371/journal.pone.0121379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/31/2015] [Indexed: 11/19/2022] Open
Abstract
Regulated proteolysis is known to control a variety of vital processes in apicomplexan parasites including invasion and egress of host cells. Serine proteases have been proposed as targets for drug development based upon inhibitor studies that show parasite attenuation and transmission blockage. Genetic studies suggest that serine proteases, such as subtilisin and rhomboid proteases, are essential but functional studies have proved challenging as active proteases are difficult to express. Proteinaceous Protease Inhibitors (PPIs) provide an alternative way to address the role of serine proteases in apicomplexan biology. To validate such an approach, a Neospora caninum Kazal inhibitor (NcPI-S) was expressed ectopically in two apicomplexan species, Toxoplasma gondii tachyzoites and Plasmodium berghei ookinetes, with the aim to disrupt proteolytic processes taking place within the secretory pathway. NcPI-S negatively affected proliferation of Toxoplasma tachyzoites, while it had no effect on invasion and egress. Expression of the inhibitor in P. berghei zygotes blocked their development into mature and invasive ookinetes. Moreover, ultra-structural studies indicated that expression of NcPI-S interfered with normal formation of micronemes, which was also confirmed by the lack of expression of the micronemal protein SOAP in these parasites. Our results suggest that NcPI-S could be a useful tool to investigate the function of proteases in processes fundamental for parasite survival, contributing to the effort to identify targets for parasite attenuation and transmission blockage.
Collapse
|
43
|
Matz JM, Kooij TWA. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei. Pathog Glob Health 2015; 109:46-60. [PMID: 25789828 DOI: 10.1179/2047773215y.0000000006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.
Collapse
|
44
|
Akinosoglou KA, Bushell ESC, Ukegbu CV, Schlegelmilch T, Cho JS, Redmond S, Sala K, Christophides GK, Vlachou D. Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission. Cell Microbiol 2015; 17:254-68. [PMID: 25225164 PMCID: PMC4371638 DOI: 10.1111/cmi.12363] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/27/2014] [Accepted: 09/08/2014] [Indexed: 12/24/2022]
Abstract
The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito. At least two of these programmes are associated with the ookinete development that is linked to mosquito midgut invasion and establishment of infection. Targeted disruption by homologous recombination of two of these genes resulted in mutant parasites exhibiting notable infection phenotypes. GAMER encodes a short polypeptide with granular localization in the gametocyte cytoplasm and shows a highly penetrant loss-of-function phenotype manifested as greatly reduced ookinete numbers, linked to impaired male gamete release. HADO encodes a putative magnesium phosphatase with distinctive cortical localization along the concave ookinete periphery. Disruption of HADO compromises ookinete development leading to significant reduction of oocyst numbers. Our data provide important insights into the molecular framework underpinning Plasmodium development in the mosquito and identifies two genes with important functions at initial stages of parasite development in the mosquito midgut.
Collapse
Affiliation(s)
| | | | | | | | - Jee-Sun Cho
- Department of Life Sciences, Imperial College LondonLondon, UK
| | - Seth Redmond
- Department of Life Sciences, Imperial College LondonLondon, UK
| | - Katarzyna Sala
- Department of Life Sciences, Imperial College LondonLondon, UK
| | - George K Christophides
- Department of Life Sciences, Imperial College LondonLondon, UK
- The Cyprus InstituteNicosia, Cyprus
| | - Dina Vlachou
- Department of Life Sciences, Imperial College LondonLondon, UK
- The Cyprus InstituteNicosia, Cyprus
| |
Collapse
|
45
|
Salman AM, Mogollon CM, Lin JW, van Pul FJA, Janse CJ, Khan SM. Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins. Methods Mol Biol 2015; 1325:257-286. [PMID: 26450395 DOI: 10.1007/978-1-4939-2815-6_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe methods for the rapid generation of transgenic rodent Plasmodium berghei (Pb) parasites that express human malaria parasite (HMP) proteins, using the recently developed GIMO-based transfection methodology. Three different genetic modifications are described resulting in three types of transgenic parasites. (1) Additional Gene (AG) mutants. In these mutants the HMP gene is introduced as an "additional gene" into a silent/neutral locus of the Pb genome under the control of either a constitutive or stage-specific Pb promoter. This method uses the GIMO-transfection protocol and AG mutants are generated by replacing the positive-negative selection marker (SM) hdhfr::yfcu cassette in a neutral locus of a standard GIMO mother line with the HMP gene expression cassette, resulting in SM free transgenic parasites. (2) Double-step Replacement (DsR) mutants. In these mutants the coding sequence (CDS) of the Pb gene is replaced with the CDS of the HMP ortholog in a two-step GIMO-transfection procedure. This process involves first the replacement of the Pb CDS with the hdhfr::yfcu SM, followed by insertion of the HMP ortholog at the same locus thereby replacing hdhfr::yfcu with the HMP CDS. These steps use the GIMO-transfection protocol, which exploits both positive selection for Pb orthologous gene-deletion and negative selection for HMP gene-insertion, resulting in SM free transgenic parasites. (3) Double-step Insertion (DsI) mutants. When a Pb gene is essential for blood stage development the DsR strategy is not possible. In these mutants the HMP expression cassette is first introduced into the neutral locus in a standard GIMO mother line as described for AG mutants but under the control elements of the Pb orthologous gene; subsequently, the Pb ortholog CDS is targeted for deletion through replacement of the Pb CDS with the hdhfr::yfcu SM, resulting in transgenic parasites with a new GIMO locus permissive for additional gene-insertion modifications.The different types of transgenic parasites can be exploited to examine interactions of drugs/inhibitors or immune factors with HMP molecules in vivo. Mice either immunized with HMP-vaccines or treated with specific drugs can be infected/challenged with these transgenic mutants to evaluate drug or vaccine efficacy in vivo.
Collapse
Affiliation(s)
- Ahmed M Salman
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Jing-Wen Lin
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
- Division of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Fiona J A van Pul
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands.
| |
Collapse
|
46
|
Guerreiro A, Deligianni E, Santos JM, Silva PAGC, Louis C, Pain A, Janse CJ, Franke-Fayard B, Carret CK, Siden-Kiamos I, Mair GR. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol 2014; 15:493. [PMID: 25418785 PMCID: PMC4234863 DOI: 10.1186/s13059-014-0493-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown. RESULTS We identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5' untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development. CONCLUSIONS Our study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.
Collapse
Affiliation(s)
- Ana Guerreiro
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Elena Deligianni
- />Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), N. Plastira 100, Heraklio, Crete P.C. 71110 Greece
| | - Jorge M Santos
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Patricia AGC Silva
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Christos Louis
- />Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), N. Plastira 100, Heraklio, Crete P.C. 71110 Greece
| | - Arnab Pain
- />Pathogen Genomics Laboratory, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal-Jeddah, Saudi Arabia
| | - Chris J Janse
- />Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Celine K Carret
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Inga Siden-Kiamos
- />Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), N. Plastira 100, Heraklio, Crete P.C. 71110 Greece
| | - Gunnar R Mair
- />Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- />Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Functional characterization of Anopheles matrix metalloprotease 1 reveals its agonistic role during sporogonic development of malaria parasites. Infect Immun 2014; 82:4865-77. [PMID: 25183733 DOI: 10.1128/iai.02080-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to invade tissues is a unique characteristic of the malaria stages that develop/differentiate within the mosquitoes (ookinetes and sporozoites). On the other hand, tissue invasion by many pathogens has often been associated with increased matrix metalloprotease (MMP) activity in the invaded tissues. By employing cell biology and reverse genetics, we studied the expression and explored putative functions of one of the three MMPs encoded in the genome of the malaria vector Anopheles gambiae, namely, the Anopheles gambiae MMP1 (AgMMP1) gene, during the processes of blood digestion, midgut epithelium invasion by Plasmodium ookinetes, and oocyst development. We show that AgMMP1 exists in two alternative isoforms resulting from alternative splicing; one secreted (S-MMP1) and associated with hemocytes, and one membrane type (MT-MMP1) enriched in the cell attachment sites of the midgut epithelium. MT-MMP1 showed a remarkable response to ookinete midgut invasion manifested by increased expression, enhanced zymogen maturation, and subcellular redistribution, all indicative of an implication in the midgut epithelial healing that accompanies ookinete invasion. Importantly, RNA interference (RNAi)-mediated silencing of the AgMMP1 gene revealed a postinvasion protective function of AgMMP1 during oocyst development. The combined results link for the first time an MMP with vector competence and mosquito-Plasmodium interactions.
Collapse
|
48
|
Suarez C, Volkmann K, Gomes AR, Billker O, Blackman MJ. The malarial serine protease SUB1 plays an essential role in parasite liver stage development. PLoS Pathog 2013; 9:e1003811. [PMID: 24348254 PMCID: PMC3861531 DOI: 10.1371/journal.ppat.1003811] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022] Open
Abstract
Transmission of the malaria parasite to its vertebrate host involves an obligatory exoerythrocytic stage in which extensive asexual replication of the parasite takes place in infected hepatocytes. The resulting liver schizont undergoes segmentation to produce thousands of daughter merozoites. These are released to initiate the blood stage life cycle, which causes all the pathology associated with the disease. Whilst elements of liver stage merozoite biology are similar to those in the much better-studied blood stage merozoites, little is known of the molecular players involved in liver stage merozoite production. To facilitate the study of liver stage biology we developed a strategy for the rapid production of complex conditional alleles by recombinase mediated engineering in Escherichia coli, which we used in combination with existing Plasmodium berghei deleter lines expressing Flp recombinase to study subtilisin-like protease 1 (SUB1), a conserved Plasmodium serine protease previously implicated in blood stage merozoite maturation and egress. We demonstrate that SUB1 is not required for the early stages of intrahepatic growth, but is essential for complete development of the liver stage schizont and for production of hepatic merozoites. Our results indicate that inhibitors of SUB1 could be used in prophylactic approaches to control or block the clinically silent pre-erythrocytic stage of the malaria parasite life cycle. Malaria is caused by a single-celled parasite and is transmitted by the bite of an infected mosquito. The inoculated sporozoite forms of the parasite invade liver cells where they replicate, eventually releasing thousands of merozoites into the bloodstream to initiate the blood stage parasite life cycle which causes clinical malaria. The liver stage of the parasite life cycle is asymptomatic, so it is widely considered a potential target for prophylactic vaccine- or drug-based approaches designed to prevent infection. In this study, we use a robust, highly efficient gene engineering approach called recombineering, combined with a conditional gene deletion strategy to examine the function in liver stages of a parasite protease called SUB1, previously implicated in release of blood stage parasites. We show that SUB1 is expressed in the liver stage schizont and that the protease is essential for production of liver stage merozoites. Our results enhance our understanding of malarial liver stage biology, provide new tools for studying essential gene function in malaria, and suggest that inhibitors of SUB1 could be used as prophylactic drugs to prevent clinical malaria.
Collapse
Affiliation(s)
- Catherine Suarez
- Division of Parasitology, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Katrin Volkmann
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ana Rita Gomes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (OB); (MJB)
| | - Michael J. Blackman
- Division of Parasitology, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom
- * E-mail: (OB); (MJB)
| |
Collapse
|
49
|
Matthews K, Kalanon M, Chisholm SA, Sturm A, Goodman CD, Dixon MWA, Sanders PR, Nebl T, Fraser F, Haase S, McFadden GI, Gilson PR, Crabb BS, de Koning-Ward TF. The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth. Mol Microbiol 2013; 89:1167-86. [PMID: 23869529 DOI: 10.1111/mmi.12334] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
Abstract
Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX. Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth. In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.
Collapse
Affiliation(s)
- Kathryn Matthews
- School of Medicine, Deakin University, Waurn Ponds, Vic., 3216, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lödige M, Lewis MD, Paulsen ES, Esch HL, Pradel G, Lehmann L, Brun R, Bringmann G, Mueller AK. A primaquine-chloroquine hybrid with dual activity against Plasmodium liver and blood stages. Int J Med Microbiol 2013; 303:539-47. [PMID: 23992634 DOI: 10.1016/j.ijmm.2013.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 07/01/2013] [Accepted: 07/14/2013] [Indexed: 10/26/2022] Open
Abstract
We present a new class of hybrid molecules consisting of the established antiplasmodial drugs primaquine and chloroquine. No drug is known to date that acts comparably against all stages of Plasmodium in its life cycle. Starting from available precursors, we designed and synthesized a new-generation compound consisting of both primaquine and chloroquine components, with the intent to produce agents that exhibit bioactivity against different stages of the parasite's life cycle. In vitro, the hybrid molecule 3 displays activity against both asexual and sexual P. falciparum blood stages as well as P. berghei sporozoites and liver stages. In vivo, the hybrid elicits activity against P. berghei liver and blood stages. Our results successfully validate the concept of utilizing one compound to combine different modes of action that attack different Plasmodium stages in the mammalian host. It is our hope that the novel design of such compounds will outwit the pathogen in the spread of drug resistance. Based on the optimized synthetic pathway, the compound is accessible in a smooth and versatile way and open for potential further molecular modification.
Collapse
Affiliation(s)
- Melanie Lödige
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|