1
|
Arbaciauskaite M, Pirhanov A, Paoloni J, Lei Y, Cho YK. Protocol for screening and validating antibodies specific to protein phosphorylation sites using a set of yeast biopanning approaches. STAR Protoc 2024; 5:103241. [PMID: 39093705 PMCID: PMC11345596 DOI: 10.1016/j.xpro.2024.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Developing antibodies with high specificity against post-translationally modified epitopes remains a challenge. Yeast biopanning is well suited in screening for high-specificity binders. Here, we present a protocol for screening and validating antibodies specific to protein phosphorylation sites using a set of yeast biopanning approaches. We describe steps for screening a yeast surface display library for antibodies and other binders. We then detail procedures for validating the antibodies found by analyzing their specificity through whole-well image analysis in 96-well plates. For complete details on the use and execution of this protocol, please refer to Arbaciauskaite et al.1.
Collapse
Affiliation(s)
- Monika Arbaciauskaite
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Azady Pirhanov
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Justin Paoloni
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
2
|
Zhu Q, Combs ME, Bowles DE, Gross RT, Mendiola Pla M, Mack CP, Taylor JM. GRAF1 Acts as a Downstream Mediator of Parkin to Regulate Mitophagy in Cardiomyocytes. Cells 2024; 13:448. [PMID: 38474413 PMCID: PMC10930636 DOI: 10.3390/cells13050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiomyocytes rely on proper mitochondrial homeostasis to maintain contractility and achieve optimal cardiac performance. Mitochondrial homeostasis is controlled by mitochondrial fission, fusion, and mitochondrial autophagy (mitophagy). Mitophagy plays a particularly important role in promoting the degradation of dysfunctional mitochondria in terminally differentiated cells. However, the precise mechanisms by which this is achieved in cardiomyocytes remain opaque. Our study identifies GRAF1 as an important mediator in PINK1-Parkin pathway-dependent mitophagy. Depletion of GRAF1 (Arhgap26) in cardiomyocytes results in actin remodeling defects, suboptimal mitochondria clustering, and clearance. Mechanistically, GRAF1 promotes Parkin-LC3 complex formation and directs autophagosomes to damaged mitochondria. Herein, we found that these functions are regulated, at least in part, by the direct binding of GRAF1 to phosphoinositides (PI(3)P, PI(4)P, and PI(5)P) on autophagosomes. In addition, PINK1-dependent phosphorylation of Parkin promotes Parkin-GRAF1-LC3 complex formation, and PINK1-dependent phosphorylation of GRAF1 (on S668 and S671) facilitates the clustering and clearance of mitochondria. Herein, we developed new phosphor-specific antibodies to these sites and showed that these post-translational modifications are differentially modified in human hypertrophic cardiomyopathy and dilated cardiomyopathy. Furthermore, our metabolic studies using serum collected from isoproterenol-treated WT and GRAF1CKO mice revealed defects in mitophagy-dependent cardiomyocyte fuel flexibility that have widespread impacts on systemic metabolism. In summary, our study reveals that GRAF1 co-regulates actin and membrane dynamics to promote cardiomyocyte mitophagy and that dysregulation of GRAF1 post-translational modifications may underlie cardiac disease pathogenesis.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
| | - Matthew E. Combs
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
| | - Dawn E. Bowles
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Ryan T. Gross
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Michelle Mendiola Pla
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Christopher P. Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M. Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Zhu Q, Combs ME, Liu J, Bai X, Wang WB, Herring LE, Liu J, Locasale JW, Bowles DE, Gross RT, Pla MM, Mack CP, Taylor JM. GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis. Nat Commun 2023; 14:8187. [PMID: 38081847 PMCID: PMC10713658 DOI: 10.1038/s41467-023-43889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The serine/threonine kinase, PINK1, and the E3 ubiquitin ligase, Parkin, are known to facilitate LC3-dependent autophagosomal encasement and lysosomal clearance of dysfunctional mitochondria, and defects in this process contribute to a variety of cardiometabolic and neurological diseases. Although recent evidence indicates that dynamic actin remodeling plays an important role in PINK1/Parkin-mediated mitochondrial autophagy (mitophagy), the underlying signaling mechanisms remain unknown. Here, we identify the RhoGAP GRAF1 (Arhgap26) as a PINK1 substrate that regulates mitophagy. GRAF1 promotes the release of damaged mitochondria from F-actin anchors, regulates mitochondrial-associated Arp2/3-mediated actin remodeling and facilitates Parkin-LC3 interactions to enhance mitochondria capture by autophagosomes. Graf1 phosphorylation on PINK1-dependent sites is dysregulated in human heart failure, and cardiomyocyte-restricted Graf1 depletion in mice blunts mitochondrial clearance and attenuates compensatory metabolic adaptations to stress. Overall, we identify GRAF1 as an enzyme that coordinates cytoskeletal and metabolic remodeling to promote cardioprotection.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew E Combs
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wenbo B Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiandong Liu
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ryan T Gross
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michelle Mendiola Pla
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Regulatory Light Chains in Cardiac Development and Disease. Int J Mol Sci 2021; 22:ijms22094351. [PMID: 33919432 PMCID: PMC8122660 DOI: 10.3390/ijms22094351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
The role of regulatory light chains (RLCs) in cardiac muscle function has been elucidated progressively over the past decade. The RLCs are among the earliest expressed markers during cardiogenesis and persist through adulthood. Failing hearts have shown reduced RLC phosphorylation levels and that restoring baseline levels of RLC phosphorylation is necessary for generating optimal force of muscle contraction. The signalling mechanisms triggering changes in RLC phosphorylation levels during disease progression remain elusive. Uncovering this information may provide insights for better management of heart failure patients. Given the cardiac chamber-specific expression of RLC isoforms, ventricular RLCs have facilitated the identification of mature ventricular cardiomyocytes, opening up possibilities of regenerative medicine. This review consolidates the standing of RLCs in cardiac development and disease and highlights knowledge gaps and potential therapeutic advancements in targeting RLCs.
Collapse
|
6
|
Kumar S, Kapadia A, Theil S, Joshi P, Riffel F, Heneka MT, Walter J. Novel Phosphorylation-State Specific Antibodies Reveal Differential Deposition of Ser26 Phosphorylated Aβ Species in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2021; 13:619639. [PMID: 33519377 PMCID: PMC7844098 DOI: 10.3389/fnmol.2020.619639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregation and deposition of amyloid-β (Aβ) peptides in extracellular plaques and in the cerebral vasculature are prominent neuropathological features of Alzheimer's disease (AD) and closely associated with the pathogenesis of AD. Amyloid plaques in the brains of most AD patients and transgenic mouse models exhibit heterogeneity in the composition of Aβ deposits, due to the occurrence of elongated, truncated, and post-translationally modified Aβ peptides. Importantly, changes in the deposition of these different Aβ variants are associated with the clinical disease progression and considered to mark sequential phases of plaque and cerebral amyloid angiopathy (CAA) maturation at distinct stages of AD. We recently showed that Aβ phosphorylated at serine residue 26 (pSer26Aβ) has peculiar characteristics in aggregation, deposition, and neurotoxicity. In the current study, we developed and thoroughly validated novel monoclonal and polyclonal antibodies that recognize Aβ depending on the phosphorylation-state of Ser26. Our results demonstrate that selected phosphorylation state-specific antibodies were able to recognize Ser26 phosphorylated and non-phosphorylated Aβ with high specificity in enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB) assays. Furthermore, immunofluorescence analyses with these antibodies demonstrated the occurrence of pSer26Aβ in transgenic mouse brains that show differential deposition as compared to non-phosphorylated Aβ (npAβ) or other modified Aβ species. Notably, pSer26Aβ species were faintly detected in extracellular Aβ plaques but most prominently found intraneuronally and in cerebral blood vessels. In conclusion, we developed new antibodies to specifically differentiate Aβ peptides depending on the phosphorylation state of Ser26, which are applicable in ELISA, WB, and immunofluorescence staining of mouse brain tissues. These site- and phosphorylation state-specific Aβ antibodies represent novel tools to examine phosphorylated Aβ species to further understand and dissect the complexity in the age-related and spatio-temporal deposition of different Aβ variants in transgenic mouse models and human AD brains.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Akshay Kapadia
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Pranav Joshi
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Riffel
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Michael T. Heneka
- Department of Neurodegenerative Diseases and Geropsychiatry, Neurology, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
7
|
de Pablo Y, Marasek P, Pozo-Rodrigálvarez A, Wilhelmsson U, Inagaki M, Pekna M, Pekny M. Vimentin Phosphorylation Is Required for Normal Cell Division of Immature Astrocytes. Cells 2019; 8:cells8091016. [PMID: 31480524 PMCID: PMC6769829 DOI: 10.3390/cells8091016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis (VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability, facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin accumulations that co-localize with mitochondria. This phenotype is transient and disappears with VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP−/− mice. Surprisingly, the fraction of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on GFAP−/− background. This indicates that the disappearance of vimentin accumulations and cytokinetic failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and VIMSA/SAGFAP−/− astrocytes showed normal mitochondrial membrane potential and vulnerability to H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature astrocytes without altering their vulnerability to oxidative stress.
Collapse
Affiliation(s)
- Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Andrea Pozo-Rodrigálvarez
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, New South Wales 2308, Australia
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
- University of Newcastle, New South Wales 2308, Australia.
| |
Collapse
|
8
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
9
|
Zhang Y, Zhao C, Li L, Hsu CC, Zhu JK, Iliuk A, Tao WA. High-Throughput Phosphorylation Screening and Validation through Ti(IV)-Nanopolymer Functionalized Reverse Phase Phosphoprotein Array. Anal Chem 2018; 90:10263-10270. [PMID: 30103608 DOI: 10.1021/acs.analchem.8b01843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein phosphorylation is one of the most important and widespread molecular regulatory mechanisms that controls almost all aspects of cellular functions in animals and plants. Here, we introduce a novel chemically functionalized reverse phase phosphoprotein array (RP3A) to capture and measure phosphoproteomes. RP3A uses polyamidoamine (PAMAM) dendrimer immobilized with Ti(IV) ions to functionalize nitrocellulose membrane, facilitating specific chelation of phosphoproteins from complex protein samples on the array. Globular, water-soluble Ti(IV)-dendrimer allows the RP3A surface to be highly accessible to phosphoproteins multidimensionally, and the captured phosphoproteins were subsequently detected using the same validated antibodies as in regular reverse-phase protein arrays. The novel chemical strategy demonstrated superior specificity (1:10 000), high sensitivity (fg level), and good quantitative nature ( R2 = 0.99) for measuring phosphoproteins. We further applied quantitative phosphoproteomics followed by RP3A to validate the phosphorylation status of a panel of phosphoproteins in response to environmental stresses in Arabidopsis.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Minhang Hospital and Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , P. R. China
| | - Chunzhao Zhao
- Department of Horticulture and Landscape Architecture , Purdue University , West Lafayette , Indiana 47907 , United States.,Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Li Li
- Tymora Analytical Operations , West Lafayette , Indiana 47906 , United States
| | - Chuan-Chih Hsu
- Department of Biochemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture , Purdue University , West Lafayette , Indiana 47907 , United States.,Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Anton Iliuk
- Tymora Analytical Operations , West Lafayette , Indiana 47906 , United States
| | - W Andy Tao
- Department of Biochemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
10
|
Barinova KV, Melnikova AK, Schmalhausen EV, Muronetz VI. [A rational approach to obtaining high-specific polyclonal antibodies against recombinant alpha-synuclein]. BIOMEDITSINSKAIA KHIMIIA 2018; 64:276-282. [PMID: 29964265 DOI: 10.18097/pbmc20186403276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The approach for the quick and efficient production ofpolyclonal antibodies tothe target antigen alpha-synuclein has been proposed. Two methods have been employed to purify specific rabbit polyclonal antibodies against recombinant human alpha-synuclein, produced by subcutaneous immunization with complete Freund's adjuvant. It was shown that purification on CNBr-activated Sepharose with immobilized alpha-synuclein resulted in antibody preparation with rabbit serum histidine-rich glycoprotein as a contaminant. Two-stage antibody purification procedure first on Sepharose with immobilized protein G, and then on alpha-synuclein immobilized column helps to avoid contamination and to obtain homogenous antibody preparation. Antibodies recognize different conformations of alpha-synuclein and can be used in a variety of immunochemical approaches, including immunocytochemistry.
Collapse
Affiliation(s)
- K V Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| | - A K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Inaba H, Yamakawa D, Tomono Y, Enomoto A, Mii S, Kasahara K, Goto H, Inagaki M. Regulation of keratin 5/14 intermediate filaments by CDK1, Aurora-B, and Rho-kinase. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Mizutani Y, Kuga D, Iida M, Ushida K, Takagi T, Tokita Y, Takahashi M, Asai M. Use of Anti-phospho-girdin Antibodies to Visualize Intestinal Tuft Cells in Free-Floating Mouse Jejunum Cryosections. J Vis Exp 2018. [PMID: 29630055 PMCID: PMC5933235 DOI: 10.3791/57475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The actin binding protein girdin is a cytosolic protein that is required for actin remodeling to trigger cell migration in various tissues. Girdin is phosphorylated by both receptor and non-receptor tyrosine kinases at tyrosine 1798. Omori et al. developed site- and phosphorylation status-specific antibodies against human girdin at tyrosine-1798 (pY1798), which specifically bind to phosphorylated tyrosine-1798, but not to unphosphorylated tyrosine-1798. pY1798 antibodies have been used to specifically label tuft cells (TCs) that are present in mammalian gastrointestinal tissues, but the function of these cells is unclear. This protocol allows the robust visualization of TCs in the jejunum using pY1798 antibodies and immunofluorescence. To ensure successful and simple TC visualization, this protocol includes two histological techniques: production of free-floating cryosections from gelatin-filled jejunum tissue, and low-temperature antigen retrieval at 50 °C for 3 h. Filling the jejunum with gelatin maintains the shape of free-floating sections throughout the staining procedure, whereas low-temperature antigen retrieval ensures robust signals from TCs. Successful use of this protocol results in pY1798 staining of TCs distributed from villus tip to crypt. Stained TCs have a spool-shaped soma and fluorescent signals condense at the lumenal tip, which corresponds to the protruding 'tuft.' Phalloidin staining colocalized with pY1798-positive TCs at the thickened brush border, and corresponds to a rootlet mass extending from the TC tuft. This protocol could be used to examine TCs in human biopsy samples collected with gastrointestinal endoscopes. Furthermore, TCs were recently reported to accumulate following parasite infection in mice, suggesting that this protocol could have applications for diagnosis of parasite infections in the human gut.
Collapse
Affiliation(s)
- Yuka Mizutani
- Division of Perinatology, Institute for Developmental Research, Aichi Human Service Center
| | | | - Machiko Iida
- Division of Perinatology, Institute for Developmental Research, Aichi Human Service Center
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine
| | - Tsuyoshi Takagi
- Division of Perinatology, Institute for Developmental Research, Aichi Human Service Center
| | - Yoshihito Tokita
- Division of Perinatology, Institute for Developmental Research, Aichi Human Service Center
| | | | - Masato Asai
- Division of Perinatology, Institute for Developmental Research, Aichi Human Service Center; Department of Pathology, Nagoya University Graduate School of Medicine;
| |
Collapse
|
13
|
Chen M, Puschmann TB, Marasek P, Inagaki M, Pekna M, Wilhelmsson U, Pekny M. Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice. Mol Neurobiol 2017; 55:5478-5489. [PMID: 28956310 PMCID: PMC5994207 DOI: 10.1007/s12035-017-0759-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
Abstract
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
Collapse
Affiliation(s)
- Meng Chen
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Till B Puschmann
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. .,University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
14
|
Acylation of Superoxide Dismutase 1 (SOD1) at K122 Governs SOD1-Mediated Inhibition of Mitochondrial Respiration. Mol Cell Biol 2017; 37:MCB.00354-17. [PMID: 28739857 DOI: 10.1128/mcb.00354-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 12/24/2022] Open
Abstract
In this study, we employed proteomics to identify mechanisms of posttranslational regulation on cell survival signaling proteins. We focused on Cu-Zn superoxide dismutase (SOD1), which protects cells from oxidative stress. We found that acylation of K122 on SOD1, while not impacting SOD1 catalytic activity, suppressed the ability of SOD1 to inhibit mitochondrial metabolism at respiratory complex I. We found that deacylase depletion increased K122 acylation on SOD1, which blocked the suppression of respiration in a K122-dependent manner. In addition, we found that acyl-mimicking mutations at K122 decreased SOD1 accumulation in mitochondria, initially hinting that SOD1 may inhibit respiration directly within the intermembrane space (IMS). However, surprisingly, we found that forcing the K122 acyl mutants into the mitochondria with an IMS-targeting tag did not recover their ability to suppress respiration. Moreover, we found that suppressing or boosting respiration levels toggled SOD1 in or out of the mitochondria, respectively. These findings place SOD1-mediated inhibition of respiration upstream of its mitochondrial localization. Lastly, deletion-rescue experiments show that a respiration-defective mutant of SOD1 is also impaired in its ability to rescue cells from toxicity caused by SOD1 deletion. Together, these data suggest a previously unknown interplay between SOD1 acylation, metabolic regulation, and SOD1-mediated cell survival.
Collapse
|
15
|
Kuga D, Ushida K, Mii S, Enomoto A, Asai N, Nagino M, Takahashi M, Asai M. Tyrosine Phosphorylation of an Actin-Binding Protein Girdin Specifically Marks Tuft Cells in Human and Mouse Gut. J Histochem Cytochem 2017; 65:347-366. [PMID: 28375676 DOI: 10.1369/0022155417702586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tuft cells (TCs) are minor components of gastrointestinal epithelia, characterized by apical tufts and spool-shaped somas. The lack of reliable TC-markers has hindered the elucidation of its role. We developed site-specific and phosphorylation-status-specific antibodies against Girdin at tyrosine-1798 (pY1798) and found pY1798 immunostaining of mouse jejunum clearly depicted epithelial cells closely resembling TCs. This study aimed to validate pY1798 as a TC-marker. Double-fluorescence staining of intestines was performed with pY1798 and known TC-markers, for example, hematopoietic-prostaglandin-D-synthase (HPGDS), or doublecortin-like kinase 1 (DCLK1). Odds ratios (ORs) were calculated from cell counts to determine whether two markers were attracting (OR<1) or repelling (OR>1). In consequence, pY1798 signals strongly attracted those of known TC-markers. ORs for HPGDS in mouse stomach, small intestine, and colon were 0 for all, and 0.08 for DCLK1 in human small intestine. pY1798-positive cells in jejunum were distinct from other minor epithelial cells, including goblet, Paneth, and neuroendocrine cells. Thus, pY1798 was validated as a TC-marker. Interestingly, apoptosis inducers significantly increased relative TC frequencies despite the absence of proliferation at baseline. In conclusion, pY1798 is a novel TC-marker. Selective tyrosine phosphorylation and possible resistance to apoptosis inducers implied the activation of certain kinase(s) in TCs, which may become a clue to elucidate the enigmatic roles of TCs. .
Collapse
Affiliation(s)
- Daisuke Kuga
- Department of Pathology (DK, KU, SM, AE, NA, MT, MA), Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Surgical Oncology, Department of Surgery (DK, MN), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Ushida
- Department of Pathology (DK, KU, SM, AE, NA, MT, MA), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology (DK, KU, SM, AE, NA, MT, MA), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology (DK, KU, SM, AE, NA, MT, MA), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology (DK, KU, SM, AE, NA, MT, MA), Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Pathology, Center for Neurological Disease and Cancer (NA, MT), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery (DK, MN), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology (DK, KU, SM, AE, NA, MT, MA), Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Pathology, Center for Neurological Disease and Cancer (NA, MT), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Asai
- Department of Pathology (DK, KU, SM, AE, NA, MT, MA), Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Endocrinology and Diabetes (MA), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Bhalla N, Di Lorenzo M, Estrela P, Pula G. Semiconductor technology in protein kinase research and drug discovery: sensing a revolution. Drug Discov Today 2016; 22:204-209. [PMID: 27780788 DOI: 10.1016/j.drudis.2016.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Since the discovery of protein kinase activity in 1954, close to 600 kinases have been discovered that have crucial roles in cell physiology. In several pathological conditions, aberrant protein kinase activity leads to abnormal cell and tissue physiology. Therefore, protein kinase inhibitors are investigated as potential treatments for several diseases, including dementia, diabetes, cancer and autoimmune and cardiovascular disease. Modern semiconductor technology has recently been applied to accelerate the discovery of novel protein kinase inhibitors that could become the standard-of-care drugs of tomorrow. Here, we describe current techniques and novel applications of semiconductor technologies in protein kinase inhibitor drug discovery.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Mirella Di Lorenzo
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Pedro Estrela
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Giordano Pula
- Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
17
|
Makihara H, Inaba H, Enomoto A, Tanaka H, Tomono Y, Ushida K, Goto M, Kurita K, Nishida Y, Kasahara K, Goto H, Inagaki M. Desmin phosphorylation by Cdk1 is required for efficient separation of desmin intermediate filaments in mitosis and detected in murine embryonic/newborn muscle and human rhabdomyosarcoma tissues. Biochem Biophys Res Commun 2016; 478:1323-9. [PMID: 27565725 DOI: 10.1016/j.bbrc.2016.08.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 11/25/2022]
Abstract
Desmin is a type III intermediate filament (IF) component protein expressed specifically in muscular cells. Desmin is phosphorylated by Aurora-B and Rho-kinase specifically at the cleavage furrow from anaphase to telophase. The disturbance of this phosphorylation results in the formation of unusual long bridge-like IF structures (IF-bridge) between two post-mitotic (daughter) cells. Here, we report that desmin also serves as an excellent substrate for the other type of mitotic kinase, Cdk1. Desmin phosphorylation by Cdk1 loses its ability to form IFs in vitro. We have identified Ser6, Ser27, and Ser31 on murine desmin as phosphorylation sites for Cdk1. Using a site- and phosphorylation-state-specific antibody for Ser31 on desmin, we have demonstrated that Cdk1 phosphorylates desmin in entire cytoplasm from prometaphase to metaphase. Desmin mutations at Cdk1 sites exhibit IF-bridge phenotype, the frequency of which is significantly increased by the addition of Aurora-B and Rho-kinase site mutations to Cdk1 site mutations. In addition, Cdk1-induced desmin phosphorylation is detected in mitotic muscular cells of murine embryonic/newborn muscles and human rhabdomyosarcoma specimens. Therefore, Cdk1-induced desmin phosphorylation is required for efficient separation of desmin-IFs and generally detected in muscular mitotic cells in vivo.
Collapse
Affiliation(s)
- Hiroyuki Makihara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Hironori Inaba
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroki Tanaka
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Yasuko Tomono
- Division of Molecular and Cell Biology, Shigei Medical Research Institute, Okayama, 701-0202, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mitsuo Goto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, 464-8651, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan; Department of Physiology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
18
|
Kurosawa N, Wakata Y, Inobe T, Kitamura H, Yoshioka M, Matsuzawa S, Kishi Y, Isobe M. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies. Sci Rep 2016; 6:25174. [PMID: 27125496 PMCID: PMC4850396 DOI: 10.1038/srep25174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/11/2016] [Indexed: 12/03/2022] Open
Abstract
Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins.
Collapse
Affiliation(s)
- Nobuyuki Kurosawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Yuka Wakata
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Tomonao Inobe
- Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Haruki Kitamura
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama-shi, Toyama, 930-8555, Japan
| | - Megumi Yoshioka
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Shun Matsuzawa
- Medical &Biological Laboratories Co., Ltd., 15-502 Akaho, Komagane, Nagano, 399-4117, Japan
| | - Yoshihiro Kishi
- Medical &Biological Laboratories Co., Ltd., 15-502 Akaho, Komagane, Nagano, 399-4117, Japan
| | - Masaharu Isobe
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| |
Collapse
|
19
|
Goto H, Tanaka H, Kasahara K, Inagaki M. Phospho-Specific Antibody Probes of Intermediate Filament Proteins. Methods Enzymol 2016; 568:85-111. [DOI: 10.1016/bs.mie.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Watanabe T, Kakeno M, Matsui T, Sugiyama I, Arimura N, Matsuzawa K, Shirahige A, Ishidate F, Nishioka T, Taya S, Hoshino M, Kaibuchi K. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J Cell Biol 2015; 210:737-51. [PMID: 26323690 PMCID: PMC4555816 DOI: 10.1083/jcb.201412075] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The microtubule (MT) plus end–tracking protein TTBK2 phosphorylates kinesin-13 family MT depolymerase KIF2A and removes it from MTs, thereby antagonizing KIF2A-induced depolymerization at MT plus ends during cell migration. Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end–tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Toshinori Matsui
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Ikuko Sugiyama
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Kenji Matsuzawa
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Aya Shirahige
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Fumiyoshi Ishidate
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8550, Japan
| |
Collapse
|
21
|
Kim J, Lee K, Rhee K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat Commun 2015; 6:10076. [PMID: 26647647 PMCID: PMC4682042 DOI: 10.1038/ncomms10076] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 11/26/2022] Open
Abstract
Centrioles are duplicated and segregated in close link to the cell cycle. During mitosis, daughter centrioles are disengaged and eventually separated from mother centrioles. New daughter centrioles may be generated only after centriole separation. Therefore, centriole separation is considered a licensing step for centriole duplication. It was previously known that separase specifically cleaves pericentrin (PCNT) during mitotic exit. Here we report that PCNT has to be phosphorylated by PLK1 to be a suitable substrate of separase. Phospho-resistant mutants of PCNT are not cleaved by separase and eventually inhibit centriole separation. Furthermore, phospho-mimetic PCNT mutants rescue centriole separation even in the presence of a PLK1 inhibitor. On the basis on these results, we propose that PLK1 phosphorylation is a priming step for separase-mediated cleavage of PCNT and eventually for centriole separation. PLK1 phosphorylation of PCNT provides an additional layer of regulatory mechanism to ensure the fidelity of centriole separation during mitotic exit.
Collapse
Affiliation(s)
- Jaeyoun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwanwoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
22
|
Protein-specific imaging of posttranslational modifications. Curr Opin Chem Biol 2015; 28:156-63. [DOI: 10.1016/j.cbpa.2015.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022]
|
23
|
Humanization of a phosphothreonine peptide-specific chicken antibody by combinatorial library optimization of the phosphoepitope-binding motif. Biochem Biophys Res Commun 2015; 463:414-20. [PMID: 26036575 DOI: 10.1016/j.bbrc.2015.05.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
Abstract
Detection of protein phosphorylation at a specific residue has been achieved by using antibodies, which have usually been raised by animal immunization. However, there have been no reports of the humanization of phosphospecific non-human antibodies. Here, we report the humanization of a chicken pT231 antibody specific to a tau protein-derived peptide carrying the phosphorylated threonine at residue 231 (pT231 peptide) as a model for better understanding the phosphoepitope recognition mechanism. In the chicken antibody, the phosphate group of the pT231-peptide antigen is exclusively recognized by complementarity determining region 2 of the heavy chain variable domain (VH-CDR2). Simple grafting of six CDRs of the chicken antibody into a homologous human framework (FR) template resulted in the complete loss of pT231-peptide binding. Using a yeast surface-displayed combinatorial library with permutations of 11 FR residues potentially affecting CDR loop conformations, we identified 5 critical FR residues. The back mutation of these residues to the corresponding chicken residues completely recovered the pT231-peptide binding affinity and specificity of the humanized antibody. Importantly, the back mutation of the FR 76 residue of VH (H76) (Asn to Ser) was critical in preserving the pT231-binding motif conformation via allosteric regulation of ArgH71, which closely interacts with ThrH52 and SerH52a residues on VH-CDR2 to induce the unique phosphate-binding bowl-like conformation. Our humanization approach of CDR grafting plus permutations of FR residues by combinatorial library screening can be applied to other animal antibodies containing unique binding motifs on CDRs specific to posttranslationally modified epitopes.
Collapse
|
24
|
Mortenson JB, Heppler LN, Banks CJ, Weerasekara VK, Whited MD, Piccolo SR, Johnson WE, Thompson JW, Andersen JL. Histone deacetylase 6 (HDAC6) promotes the pro-survival activity of 14-3-3ζ via deacetylation of lysines within the 14-3-3ζ binding pocket. J Biol Chem 2015; 290:12487-96. [PMID: 25770209 DOI: 10.1074/jbc.m114.607580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 12/18/2022] Open
Abstract
The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys(49) and Lys(120), is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys(49)/Lys(120) deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser(112) and Thr(642), respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser(112)/Thr(642) phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William E Johnson
- the Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02215, and
| | - J Will Thompson
- the Institute for Genome Sciences and Policy, Duke University, Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
25
|
Ueda H, Dong J. From fluorescence polarization to Quenchbody: Recent progress in fluorescent reagentless biosensors based on antibody and other binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1951-1959. [PMID: 24931832 DOI: 10.1016/j.bbapap.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
Abstract
Recently, antibody-based fluorescent biosensors are receiving considerable attention as a suitable biomolecule for diagnostics, namely, homogeneous immunoassay and also as an imaging probe. To date, several strategies for "reagentless biosensors" based on antibodies and natural and engineered binding proteins have been described. In this review, several approaches are introduced including a recently described fluorescent antibody-based biosensor Quenchbody, which works on the principle of fluorescence quenching of attached dye and its antigen-dependent release. The merits and possible demerits of each approach are discussed. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan.
| | - Jinhua Dong
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| |
Collapse
|
26
|
Goto H, Inagaki M. New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life 2014; 66:195-200. [PMID: 24659572 DOI: 10.1002/iub.1260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Because of their insoluble nature, cellular IFs had been considered to be stable for a long time. The discovery that a purified protein kinase phosphorylated a purified IF protein and in turn induced the disassembly of IF structure in vitro led to the novel concept of dynamic IF regulation. Since then, a variety of protein kinases have been identified to phosphorylate IF proteins such as vimentin in a spatiotemporal regulated manner. A series of studies using cultured cells have demonstrated that preventing IF phosphorylation during mitosis inhibits cytokinesis by the retention of an IF bridge-like structure (IF-bridge) connecting the two daughter cells. Knock-in mice expressing phosphodeficient vimentin variants developed binucleation/aneuploidy in lens epithelial cells, which promoted microophthalmia and lens cataract. Therefore, mitotic phosphorylation of vimentin is of great importance in the completion of cytokinesis, the impairment of which promotes chromosomal instability and premature aging. © 2014 IUBMB Life, 66(3):195-200, 2014.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| |
Collapse
|
27
|
Generation and purification of highly specific antibodies for detecting post-translationally modified proteins in vivo. Nat Protoc 2014; 9:375-95. [PMID: 24457330 DOI: 10.1038/nprot.2014.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Post-translational modifications alter protein structure, affecting activity, stability, localization and/or binding partners. Antibodies that specifically recognize post-translationally modified proteins have a number of uses including immunocytochemistry and immunoprecipitation of the modified protein to purify protein-protein and protein-nucleic acid complexes. However, antibodies directed at modified sites on individual proteins are often nonspecific. Here we describe a protocol to purify polyclonal antibodies that specifically detect the modified protein of interest. The approach uses iterative rounds of subtraction and affinity purification, using stringent washes to remove antibodies that recognize the unmodified protein and low sequence complexity epitopes containing the modified amino acid. Dot blot and western blot assays are used to assess antibody preparation specificity. The approach is designed to overcome the common occurrence that a single round of subtraction and affinity purification is not sufficient to obtain a modified protein-specific antibody preparation. One full round of antibody purification and specificity testing takes 6 d of discontinuous time.
Collapse
|
28
|
Goto H, Inagaki M. Method for the generation of antibodies specific for site and posttranslational modifications. Methods Mol Biol 2014; 1131:21-31. [PMID: 24515457 DOI: 10.1007/978-1-62703-992-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein phosphorylation plays critical roles in multiple aspects of cellular events. Site- and phosphorylation state-specific antibodies are indispensable to analyze spatially and temporally distribution of protein phosphorylation in cells. Such information provides some clues of its biological function. Here, we describe a strategy to design a phosphopeptide as an antigen for a site- and phosphorylation state-specific antibody. Importantly, this strategy is also applicable to the production of other types of antibodies, which specifically recognize the site-specific modification, such as acetylation, methylation, and proteolysis. This protocol also focuses on the screening for monoclonal version of a site- and phosphorylation state-specific antibody.
Collapse
Affiliation(s)
- Hidemasa Goto
- Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | |
Collapse
|
29
|
Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M. Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem 2013; 288:35626-35. [PMID: 24142690 PMCID: PMC3861614 DOI: 10.1074/jbc.m113.514737] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.
Collapse
|
30
|
Chen JT, Ho CW, Chi LM, Chien KY, Hsieh YJ, Lin SJ, Yu JS. Identification of the lamin A/C phosphoepitope recognized by the antibody P-STM in mitotic HeLa S3 cells. BMC BIOCHEMISTRY 2013; 14:18. [PMID: 23870088 PMCID: PMC3727946 DOI: 10.1186/1471-2091-14-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/16/2013] [Indexed: 01/24/2023]
Abstract
Background Lamins A and C, two major structural components of the nuclear lamina that determine nuclear shape and size, are phosphoproteins. Phosphorylation of lamin A/C is cell cycle-dependent and is involved in regulating the assembly–disassembly of lamin filaments during mitosis. We previously reported that P-STM, a phosphoepitope-specific antibody raised against the autophosphorylation site of p21-activated kinase 2, recognizes a number of phosphoproteins, including lamins A and C, in mitotic HeLa cells. Results Here, using recombinant proteins and synthetic phosphopeptides containing potential lamin A/C phosphorylation sites in conjunction with in vitro phosphorylation assays, we determined the lamin A/C phosphoepitope(s) recognized by P-STM. We found that phosphorylation of Thr-19 is required for generating the P-STM phosphoepitope in lamin A/C and showed that it could be created in vitro by p34cdc2/cyclin B kinase (CDK1)-catalyzed phosphorylation of lamin A/C immunoprecipitated from unsynchronized HeLa S3 cells. To further explore changes in lamin A/C phosphorylation in living cells, we precisely quantified the phosphorylation levels of Thr-19 and other sites in lamin A/C isolated from HeLa S3 cells at interphase and mitosis using the SILAC method and liquid chromatography-tandem mass spectrometry. The results showed that the levels of phosphorylated Thr-19, Ser-22 and Ser-392 in both lamins A and C, and Ser-636 in lamin A only, increased ~2- to 6-fold in mitotic HeLa S3 cells. Conclusions Collectively, our results demonstrate that P-STM is a useful tool for detecting Thr-19-phosphorylated lamin A/C in cells and reveal quantitative changes in the phosphorylation status of major lamin A/C phosphorylation sites during mitosis.
Collapse
Affiliation(s)
- Jeng-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Theillet FX, Rose HM, Liokatis S, Binolfi A, Thongwichian R, Stuiver M, Selenko P. Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nat Protoc 2013; 8:1416-32. [PMID: 23807285 DOI: 10.1038/nprot.2013.083] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We outline NMR protocols for site-specific mapping and time-resolved monitoring of protein phosphorylation reactions using purified kinases and mammalian cell extracts. These approaches are particularly amenable to intrinsically disordered proteins and unfolded, regulatory protein domains. We present examples for the ¹⁵N isotope-labeled N-terminal transactivation domain of human p53, which is either sequentially reacted with recombinant enzymes or directly added to mammalian cell extracts and phosphorylated by endogenous kinases. Phosphorylation reactions with purified enzymes are set up in minutes, whereas NMR samples in cell extracts are prepared within 1 h. Time-resolved NMR measurements are performed over minutes to hours depending on the activities of the probed kinases. Phosphorylation is quantitatively monitored with consecutive 2D ¹H-¹⁵N band-selective optimized-flip-angle short-transient (SOFAST)-heteronuclear multiple-quantum (HMQC) NMR experiments, which provide atomic-resolution insights into the phosphorylation levels of individual substrate residues and time-dependent changes thereof, thereby offering unique advantages over western blotting and mass spectrometry.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Jeong HJ, Ohmuro-Matsuyama Y, Ohashi H, Ohsawa F, Tatsu Y, Inagaki M, Ueda H. Detection of vimentin serine phosphorylation by multicolor Quenchbodies. Biosens Bioelectron 2013; 40:17-23. [DOI: 10.1016/j.bios.2012.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/07/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
|
33
|
Kasahara K, Goto H, Izawa I, Kiyono T, Watanabe N, Elowe S, Nigg EA, Inagaki M. PI 3-kinase-dependent phosphorylation of Plk1-Ser99 promotes association with 14-3-3γ and is required for metaphase-anaphase transition. Nat Commun 2013; 4:1882. [PMID: 23695676 PMCID: PMC3675326 DOI: 10.1038/ncomms2879] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/11/2013] [Indexed: 12/31/2022] Open
Abstract
Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1-Thr210 phosphorylation. Plk1-Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1-Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1-Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1-Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1-Ser99 phosphorylation downstream of the PI3K-Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
- Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
- Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Ichiro Izawa
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Nobumoto Watanabe
- Chemical Library Validation Team, Chemical Biology Department, RIKEN Advanced Science Institute (ASI), 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sabine Elowe
- Centre de Recherche du CHUQ, 2705 Boulevard Laurier, RC-9800, Quebec City, Québec, Canada G1V 4G2
- Département de Pédiatrie, Faculté de Médicine, Université Laval, 2705 Boulevard Laurier, Quebec City, Québec, Canada G1V 4G2
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
- Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
34
|
Li P, Goto H, Kasahara K, Matsuyama M, Wang Z, Yatabe Y, Kiyono T, Inagaki M. P90 RSK arranges Chk1 in the nucleus for monitoring of genomic integrity during cell proliferation. Mol Biol Cell 2012; 23:1582-92. [PMID: 22357623 PMCID: PMC3327324 DOI: 10.1091/mbc.e11-10-0883] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ataxia telangiectasia mutated- and rad3-related kinase (ATR)/Chk1 pathway is a sentinel of cell cycle progression. On the other hand, the Ras/mitogen-activated protein kinase/90-kDa ribosomal S6 kinase (p90 RSK) pathway is a central node in cell signaling downstream of growth factors. These pathways are closely correlated in cell proliferation, but their interaction is largely unknown. Here we show that Chk1 is phosphorylated predominantly at Ser-280 and translocated from cytoplasm to nucleus in response to serum stimulation. Nonphosphorylated Chk1-Ser-280 mutation attenuates nuclear Chk1 accumulation, whereas the phosphomimic mutation has a reverse effect on the localization. Treatment with p90 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and accumulation at the nucleus after serum stimulation, whereas these two phenomena are induced by the expression of the constitutively active mutant of p90 RSK in serum-starved cells. In vitro analyses indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk1. Together with Chk1 phosphorylation at Ser-345 by ATR and its autophosphorylation at Ser-296, which are critical for checkpoint signaling, Chk1-Ser-280 phosphorylation is elevated in a p90 RSK-dependent manner after UV irradiation. In addition, Chk1 phosphorylation at Ser-345 and Ser-296 after UV irradiation is also attenuated by the treatment with p90 RSK inhibitor or by Ser-280 mutation to Ala. These results suggest that p90 RSK facilitates nuclear Chk1 accumulation through Chk1-Ser-280 phosphorylation and that this pathway plays an important role in the preparation for monitoring genetic stability during cell proliferation.
Collapse
Affiliation(s)
- Ping Li
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Opsitnick EA, Jiang X, Hollenbeck AN, Lee D. Hydrogen-Bond-Assisted Helical Folding of Propeller-Shaped Molecules: Effects of Extended π-Conjugation on Chiral Selection, Conformational Stability, and Exciton Coupling. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M. 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J 2010; 29:2802-12. [PMID: 20639859 DOI: 10.1038/emboj.2010.157] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/21/2010] [Indexed: 11/09/2022] Open
Abstract
14-3-3 proteins control various cellular processes, including cell cycle progression and DNA damage checkpoint. At the DNA damage checkpoint, some subtypes of 14-3-3 (beta and zeta isoforms in mammalian cells and Rad24 in fission yeast) bind to Ser345-phosphorylated Chk1 and promote its nuclear retention. Here, we report that 14-3-3gamma forms a complex with Chk1 phosphorylated at Ser296, but not at ATR sites (Ser317 and Ser345). Ser296 phosphorylation is catalysed by Chk1 itself after Chk1 phosphorylation by ATR, and then ATR sites are rapidly dephosphorylated on Ser296-phosphorylated Chk1. Although Ser345 phosphorylation is observed at nuclear DNA damage foci, it occurs more diffusely in the nucleus. The replacement of endogenous Chk1 with Chk1 mutated at Ser296 to Ala induces premature mitotic entry after ultraviolet irradiation, suggesting the importance of Ser296 phosphorylation in the DNA damage response. Although Ser296 phosphorylation induces the only marginal change in Chk1 catalytic activity, 14-3-3gamma mediates the interaction between Chk1 and Cdc25A. This ternary complex formation has an essential function in Cdc25A phosphorylation and degradation to block premature mitotic entry after DNA damage.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Burke JM, Huang Z, Ivory CF. Simultaneous separation of negatively and positively charged species in dynamic field gradient focusing using a dual polarity electric field. Anal Chem 2009; 81:8236-43. [PMID: 19722517 DOI: 10.1021/ac901634y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynamic field gradient focusing (DFGF) utilizes an electric field gradient established by a computer-controlled electrode array to separate and concentrate charged analytes at unique axial positions. Traditionally, DFGF has been restricted to the analysis of negatively charged species due to limitations in the software of our voltage controller. This paper introduces a new voltage controller capable of operating under normal polarity (positive potentials applied to the electrode array) and reversed polarity (negative potentials applied to the electrode array) for the separation of negatively and positively charged analytes, respectively. The experiments conducted under normal polarity and reversed polarity illustrate the utility of the new controller to perform reproducible DFGF separations (elution times showing less than 1% run-to-run variation) over a wide pH range (3.08 to 8.5) regardless of the protein charge. A dual polarity experiment is then shown in which the separation channel has been divided into normal polarity and reversed polarity regions. This simultaneous separation of negatively charged R-phycoerythrin (R-PE) and positively charged cytochrome c (CYTC) within the same DFGF apparatus is shown.
Collapse
Affiliation(s)
- Jeffrey M Burke
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
38
|
Imanishi SY, Kouvonen P, Smått JH, Heikkilä M, Peuhu E, Mikhailov A, Ritala M, Lindén M, Corthals GL, Eriksson JE. Phosphopeptide enrichment with stable spatial coordination on a titanium dioxide coated glass slide. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3661-3667. [PMID: 19899184 DOI: 10.1002/rcm.4291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent advances in phosphoproteomics have established powerful tools to analyze phosphorylation events. However, their spatial localization is lost due to sample homogenization procedures prior to the analysis. Imaging mass spectrometry (IMS) has emerged as a method to visualize the spatial distribution of molecules in tissue samples, but its application is still limited to relatively abundant molecules. Due to low phosphorylation stoichiometry, direct detection and imaging of protein phosphorylation by MS has not been achieved yet. Therefore we have developed a novel phosphopeptide enrichment strategy as a potential tool for in situ affinity imaging MS (AIMS). A specific type of titanium dioxide (TiO2)-coated glass slides was designed and validated with casein tryptic digests for their ability to selectively retain phosphopeptides while maintaining their spatial coordination.
Collapse
Affiliation(s)
- Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, FIN-20521 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Enomoto M, Goto H, Tomono Y, Kasahara K, Tsujimura K, Kiyono T, Inagaki M. Novel positive feedback loop between Cdk1 and Chk1 in the nucleus during G2/M transition. J Biol Chem 2009; 284:34223-30. [PMID: 19837665 DOI: 10.1074/jbc.c109.051540] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chk1, one of the critical transducers in DNA damage/replication checkpoints, prevents entry into mitosis through inhibition of Cdk1 activity. However, it has remained unclear how this inhibition is cancelled at the G(2)/M transition. We reported recently that Chk1 is phosphorylated at Ser(286) and Ser(301) by Cdk1 during mitosis. Here, we show that mitotic Chk1 phosphorylation is accompanied by Chk1 translocation from the nucleus to the cytoplasm in prophase. This translocation advanced in accordance with prophase progression and was regulated by Crm-1-dependent nuclear export. Exogenous Chk1 mutated at Ser(286) and Ser(301) to Ala (S286A/S301A) was observed mainly in the nuclei of prophase cells, although such nuclear accumulation was hardly observed in wild-type Chk1. Induction of S286A/S301A resulted in the delay of mitotic entry. Biochemical analyses using immunoprecipitated cyclin B(1)-Cdk1 complexes revealed S286A/S301A expression to block the adequate activation of Cdk1. In support of this, S286A/S301A expression retained Wee1 at higher levels and Cdk1-induced phosphorylation of cyclin B(1) and vimentin at lower levels. A kinase-dead version of S286A/S301A also localized predominantly in the nucleus but lost the ability to delay mitotic entry. These results indicate that Chk1 phosphorylation by Cdk1 participates in cytoplasmic sequestration of Chk1 activity, which releases Cdk1 inhibition in the nucleus and promotes mitotic entry.
Collapse
Affiliation(s)
- Masato Enomoto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Kitagawa K, Hiramatsu Y, Uchida C, Isobe T, Hattori T, Oda T, Shibata K, Nakamura S, Kikuchi A, Kitagawa M. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene 2009; 28:2393-405. [PMID: 19421138 DOI: 10.1038/onc.2009.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of oncoprotein c-Myb oscillates during hematopoiesis and hematological malignancies. Its quantity is not only regulated through transcriptional control but also through the ubiquitin-proteasome pathway, accompanied by phosphorylation, although the mechanisms are poorly understood. In this report, we tried to identify an E3 ubiquitin ligase, which targets c-Myb for ubiquitin-dependent degradation. We found that an F-box protein, Fbw7, interacted with c-Myb, which is mutated in numerous cancers. Fbw7 facilitated ubiquitylation and degradation of c-Myb in intact cells. Moreover, depletion of Fbw7 by RNA interference delayed turnover and increased the abundance of c-Myb in myeloid leukemia cells concomitantly, and suppressed the transcriptional level of gamma-globin, which receives transcriptional repression from c-Myb. In addition, we analysed sites required for both ubiquitylation and degradation of c-Myb. We found that Thr-572 is critical for Fbw7-mediated ubiquitylation in mouse c-Myb using site-directed mutagenesis. Fbw7 recognized the phosphorylation of Thr-572, which was mediated by glycogen synthase kinase 3 (GSK3). In consequence, the c-Myb protein was markedly stabilized by the substitution of Thr-572 to Ala. These observations suggest that SCF(Fbw7) ubiquitin ligase regulates phosphorylation-dependent degradation of c-Myb protein.
Collapse
Affiliation(s)
- K Kitagawa
- Department of Biochemistry 1, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Chk1 phosphorylation at Ser286 and Ser301 occurs with both stalled DNA replication and damage checkpoint stimulation. Biochem Biophys Res Commun 2008; 377:1227-31. [DOI: 10.1016/j.bbrc.2008.10.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|