1
|
Webster NB, Meyer NP. Capitella teleta gets left out: possible evolutionary shift causes loss of left tissues rather than increased neural tissue from dominant-negative BMPR1. Neural Dev 2024; 19:4. [PMID: 38698415 PMCID: PMC11067212 DOI: 10.1186/s13064-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.
Collapse
Affiliation(s)
- Nicole B Webster
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
- Biology Department, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|
2
|
Foster B, Hugosson F, Scucchia F, Enjolras C, Babonis LS, Hoaen W, Martindale MQ. A novel in vivo system to study coral biomineralization in the starlet sea anemone, Nematostella vectensis. iScience 2024; 27:109131. [PMID: 38384856 PMCID: PMC10879693 DOI: 10.1016/j.isci.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Coral conservation requires a mechanistic understanding of how environmental stresses disrupt biomineralization, but progress has been slow, primarily because corals are not easily amenable to laboratory research. Here, we highlight how the starlet sea anemone, Nematostella vectensis, can serve as a model to interrogate the cellular mechanisms of coral biomineralization. We have developed transgenic constructs using biomineralizing genes that can be injected into Nematostella zygotes and designed such that translated proteins may be purified for physicochemical characterization. Using fluorescent tags, we confirm the ectopic expression of the coral biomineralizing protein, SpCARP1, in Nematostella. We demonstrate via calcein staining that SpCARP1 concentrates calcium ions in Nematostella, likely initiating the formation of mineral precursors, consistent with its suspected role in corals. These results lay a fundamental groundwork for establishing Nematostella as an in vivo system to explore the evolutionary and cellular mechanisms of coral biomineralization, improve coral conservation efforts, and even develop novel biomaterials.
Collapse
Affiliation(s)
- Brent Foster
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Fredrik Hugosson
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Federica Scucchia
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| | - Camille Enjolras
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Institute of Human Genetics, CNRS, Montpellier 34090, France
| | - Leslie S. Babonis
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - William Hoaen
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Mark Q. Martindale
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, Gainesville, FL 32080, USA
| |
Collapse
|
3
|
Lin Y, Guan X, Su J, Chen S, Fu X, Xu X, Deng X, Chang J, Qin A, Shen A, Zhang L. Cell Membrane-Camouflaged Nanoparticles Mediated Nucleic Acids Delivery. Int J Nanomedicine 2023; 18:8001-8021. [PMID: 38164266 PMCID: PMC10758188 DOI: 10.2147/ijn.s433737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.
Collapse
Affiliation(s)
- Yinshan Lin
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaoling Guan
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jianfen Su
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xihua Fu
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaohua Deng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jishuo Chang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Aiping Qin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Ao Shen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Lingmin Zhang
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| |
Collapse
|
4
|
Warner JF, Besemer R, Schickle A, Borbee E, Changsut IV, Sharp K, Babonis LS. Microinjection, gene knockdown, and CRISPR-mediated gene knock-in in the hard coral, Astrangia poculata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567385. [PMID: 38948709 PMCID: PMC11213136 DOI: 10.1101/2023.11.16.567385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cnidarians have become valuable models for understanding many aspects of developmental biology including the evolution of body plan diversity, novel cell type specification, and regeneration. Most of our understanding of gene function during early development in cnidarians comes from a small number of experimental systems including the sea anemone, Nematostella vectensis. Few molecular tools have been developed for use in hard corals, limiting our understanding of this diverse and ecologically important clade. Here, we report the development of a suite of tools for manipulating and analyzing gene expression during early development in the northern star coral, Astrangia poculata. We present methods for gene knockdown using short hairpin RNAs, gene overexpression using exogenous mRNAs, and endogenous gene tagging using CRISPR-mediated gene knock-in. Combined with our ability to control spawning in the laboratory, these tools make A. poculata a tractable experimental system for investigative studies of coral development. Further application of these tools will enable functional analyses of embryonic patterning and morphogenesis across Anthozoa and open new frontiers in coral biology research.
Collapse
Affiliation(s)
- Jacob F. Warner
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409
| | - Ryan Besemer
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409
| | - Alicia Schickle
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI 02871
| | - Erin Borbee
- Department of Biology, Texas State University, San Marcos, TX, 78666
| | | | - Koty Sharp
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI 02871
| | - Leslie S. Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
5
|
Rouhana L, Edgar A, Hugosson F, Dountcheva V, Martindale MQ, Ryan JF. Cytoplasmic Polyadenylation Is an Ancestral Hallmark of Early Development in Animals. Mol Biol Evol 2023; 40:msad137. [PMID: 37288606 PMCID: PMC10284499 DOI: 10.1093/molbev/msad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Fredrik Hugosson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Valeria Dountcheva
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Faltine-Gonzalez D, Havrilak J, Layden MJ. The brain regulatory program predates central nervous system evolution. Sci Rep 2023; 13:8626. [PMID: 37244953 DOI: 10.1038/s41598-023-35721-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Understanding how brains evolved is critical to determine the origin(s) of centralized nervous systems. Brains are patterned along their anteroposterior axis by stripes of gene expression that appear to be conserved, suggesting brains are homologous. However, the striped expression is also part of the deeply conserved anteroposterior axial program. An emerging hypothesis is that similarities in brain patterning are convergent, arising through the repeated co-option of axial programs. To resolve whether shared brain neuronal programs likely reflect convergence or homology, we investigated the evolution of axial programs in neurogenesis. We show that the bilaterian anteroposterior program patterns the nerve net of the cnidarian Nematostella along the oral-aboral axis arguing that anteroposterior programs regionalized developing nervous systems in the cnidarian-bilaterian common ancestor prior to the emergence of brains. This finding rejects shared patterning as sufficient evidence to support brain homology and provides functional support for the plausibility that axial programs could be co-opted if nervous systems centralized in multiple lineages.
Collapse
Affiliation(s)
| | - Jamie Havrilak
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
7
|
Ellison ST, Duraivel S, Subramaniam V, Hugosson F, Yu B, Lebowitz JJ, Khoshbouei H, Lele TP, Martindale MQ, Angelini TE. Cellular micromasonry: biofabrication with single cell precision. SOFT MATTER 2022; 18:8554-8560. [PMID: 36350122 DOI: 10.1039/d2sm01013e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In many tissues, cell type varies over single-cell length-scales, creating detailed heterogeneities fundamental to physiological function. To gain understanding of the relationship between tissue function and detailed structure, and eventually to engineer structurally and physiologically accurate tissues, we need the ability to assemble 3D cellular structures having the level of detail found in living tissue. Here we introduce a method of 3D cell assembly having a level of precision finer than the single-cell scale. With this method we create detailed cellular patterns, demonstrating that cell type can be varied over the single-cell scale and showing function after their assembly.
Collapse
Affiliation(s)
- S Tori Ellison
- Department of Material Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | - Senthilkumar Duraivel
- Department of Material Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | - Vignesh Subramaniam
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Fredrik Hugosson
- The Whitney Laboratory for Marine Bioscience, St. Augustine, Florida 32080, USA
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Joseph J Lebowitz
- Department of Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, Texas 77843, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, St. Augustine, Florida 32080, USA
| | - Thomas E Angelini
- Department of Material Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA.
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
8
|
Martindale MQ. Emerging models: The "development" of the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis as useful experimental models. Curr Top Dev Biol 2022; 147:93-120. [PMID: 35337468 DOI: 10.1016/bs.ctdb.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The goal of this chapter is to explain the reasoning for developing two understudied invertebrate animal species for asking specific biological questions. The first is the ctenophore (comb jelly) Mnemiopsis leidyi and the second is the anthozoan cnidarian (starlet sea anemone) Nematostella vectensis. Although these two taxa belong to some of the earliest branching extant metazoan clades, their developmental features could hardly be more different from one another. This should serve as a general warning to be careful when extrapolating comparisons of one species to another. Two-taxon comparisons are especially flawed; and to interpret features in a phylogenetic context one must sample carefully within a given taxon to determine how representative certain features are before comparing with other clades. The other benefit of this comparison is to identify key practical factors when attempting to develop new species for experimental investigation.
Collapse
Affiliation(s)
- Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
9
|
Rajendran AK, Amirthalingam S, Hwang NS. A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Adv 2022; 12:8889-8900. [PMID: 35424872 PMCID: PMC8985089 DOI: 10.1039/d2ra00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The therapeutics for bone tissue regeneration requires constant advancements owing to the steady increase in the number of patients suffering from bone-related disorders, and also to find efficient and cost-effective treatment modalities. One of the major advancements in the field of therapeutics is the development of mRNAs. mRNAs, which have been extensively tested for the vaccines, could be very well utilized as a potential inducer for bone regeneration. The ability of mRNAs to enter the cells and instruct the cellular machinery to produce the required native proteins such as BMP or VEGF is a great way to avoid the issues faced with growth factor deliveries such as the production cost, loss of biological function etc. However, there have been a few hurdles for using mRNAs as an effective therapeutic agent, such as proper dosing, tolerating the degradation by RNases, improving the half-life, controlling the spatio-temporal release and reducing the off-target effects. This brief review discusses the various developments in the field of mRNA therapeutics especially for bone tissue engineering, how nano-formulations are being developed to effectively deliver the mRNAs into the cells by evading the immune responses, how researchers have developed certain strategies to increase the half-life, to successfully deliver the mRNAs to specific bone defect area and bring about effective bone regeneration.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute for Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
10
|
Croce O, Röttinger E. Creating a User-Friendly and Open-Access Gene Expression Database for Comparing Embryonic Development and Regeneration in Nematostella vectensis. Methods Mol Biol 2022; 2450:649-662. [PMID: 35359334 PMCID: PMC9761911 DOI: 10.1007/978-1-0716-2172-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sea anemone Nematostella vectensis has emerged as a powerful research model to understand at the gene regulatory network level, to what extend regeneration recapitulates embryonic development. Such comparison involves massive transcriptomic analysis, a routine approach for identifying differential gene expression. Here we present a workflow to build a user-friendly, mineable, and open-access database providing access to the scientific community to various RNAseq datasets.
Collapse
Affiliation(s)
- Olivier Croce
- Institute for Research on Cancer and Aging in Nice (IRCAN), Université Côte d'Azur, CNRS, INSERM, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Eric Röttinger
- Institute for Research on Cancer and Aging in Nice (IRCAN), Université Côte d'Azur, CNRS, INSERM, Nice, France.
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France.
| |
Collapse
|
11
|
The cyclic dinucleotide 2'3'-cGAMP induces a broad antibacterial and antiviral response in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2021; 118:2109022118. [PMID: 34903650 PMCID: PMC8713801 DOI: 10.1073/pnas.2109022118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
In mammals, cyclic dinucleotides (CDNs) bind and activate STING to initiate an antiviral type I interferon response. CDNs and STING originated in bacteria and are present in most animals. By contrast, interferons are believed to have emerged in vertebrates; thus, the function of CDN signaling in invertebrates is unclear. Here, we use a CDN, 2'3' cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP), to activate immune responses in a model cnidarian invertebrate, the starlet sea anemone Nematostella vectensis Using RNA sequencing, we found that 2'3'-cGAMP induces robust transcription of both antiviral and antibacterial genes in N. vectensis Many of the antiviral genes induced by 2'3'-cGAMP are homologs of vertebrate interferon-stimulated genes, implying that the interferon response predates the evolution of interferons. Knockdown experiments identified a role for NF-κB in specifically inducing antibacterial genes downstream of 2'3'-cGAMP. Some of these putative antibacterial genes were also found to be induced during Pseudomonas aeruginosa infection. We characterized the protein product of one of the putative antibacterial genes, the N. vectensis homolog of Dae4, and found that it has conserved antibacterial activity. This work suggests that a broad antibacterial and antiviral transcriptional response is an evolutionarily ancestral output of 2'3'-cGAMP signaling in animals.
Collapse
|
12
|
Wijesena N, Sun H, Kumburegama S, Wikramanayake AH. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella. Dev Biol 2021; 481:215-225. [PMID: 34767794 DOI: 10.1016/j.ydbio.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
Endomesodermal cell fate specification and archenteron formation during gastrulation are tightly linked developmental processes in most metazoans. However, studies have shown that in the anthozoan cnidarian Nematostella vectensis, Wnt/β-catenin (cWnt) signalling-mediated endomesodermal cell fate specification can be experimentally uncoupled from Wnt/Planar Cell Polarity (PCP) signalling-mediated primary archenteron invagination. The upstream signalling mechanisms regulating cWnt signalling-dependent endomesoderm cell fate specification and Wnt/PCP signalling-mediated primary archenteron invagination in Nematostella embryos are not well understood. By screening for potential upstream mediators of cWnt and Wnt/PCP signalling, we identified two Nematostella Frizzled homologs that are expressed early in development. NvFzd1 is expressed maternally and in a broad pattern during early development while NvFzd10 is zygotically expressed at the animal pole in blastula stage embryos and is restricted to the invaginating cells of the presumptive endomesoderm. Molecular and morphological characterization of NvFzd1 and NvFzd10 knock-down phenotypes provide evidence for distinct regulatory roles for the two receptors in endomesoderm cell fate specification and primary archenteron invagination. These results provide further experimental evidence for the independent regulation of endomesodermal cell fate specification and primary archenteron invagination during gastrulation in Nematostella. Moreover, these results provide additional support for the previously proposed two-step model for the independent evolution of cWnt-mediated cell fate specification and Wnt/PCP-mediated primary archenteron invagination.
Collapse
Affiliation(s)
- Naveen Wijesena
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Biology, University of Bergen, Bergen, Norway
| | - Hongyan Sun
- Department of Biology, University of Miami, Coral Gables, FL33146, USA
| | - Shalika Kumburegama
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
13
|
Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells 2021; 10:cells10102692. [PMID: 34685672 PMCID: PMC8534814 DOI: 10.3390/cells10102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.
Collapse
|
14
|
Amiel AR, Michel V, Carvalho JE, Shkreli M, Petit C, Röttinger E. [The sea anemone Nematostella vectensis, an emerging model for biomedical research: Mechano-sensitivity, extreme regeneration and longevity]. Med Sci (Paris) 2021; 37:167-177. [PMID: 33591260 DOI: 10.1051/medsci/2020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nematostella has fascinating features such as whole-body regeneration, the absence of signs of aging and importantly, the absence of age-related diseases. Easy to culture and spawn, this little sea anemone in spite of its "simple" aspect, displays interesting morphological characteristics similar to vertebrates and an unexpected similarity in gene content/genome organization. Importantly, the scientific community working on Nematostella is developing a variety of functional genomics tools that enable scientists to use this anemone in the field of regenerative medicine, longevity and mecano-sensory diseases. As a complementary research model to vertebrates, this marine invertebrate is emerging and promising to dig deeper into those fields of research in an integrative manner (entire organism) and provides new opportunities for scientists to lift specific barriers that can be encountered with other commonly used animal models.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Vincent Michel
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France
| | - João E Carvalho
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Marina Shkreli
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France
| | - Christine Petit
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France - Collège de France, 75005 Paris, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| |
Collapse
|
15
|
Stone MC, Kothe GO, Rolls MM, Jegla T. Cytoskeletal and synaptic polarity of LWamide-like+ ganglion neurons in the sea anemone Nematostella vectensis. J Exp Biol 2020; 223:jeb233197. [PMID: 32968001 PMCID: PMC7673360 DOI: 10.1242/jeb.233197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
The centralized nervous systems of bilaterian animals rely on directional signaling facilitated by polarized neurons with specialized axons and dendrites. It is not known whether axo-dendritic polarity is exclusive to bilaterians or was already present in early metazoans. We therefore examined neurite polarity in the starlet sea anemone Nematostella vectensis (Cnidaria). Cnidarians form a sister clade to bilaterians and share many neuronal building blocks characteristic of bilaterians, including channels, receptors and synaptic proteins, but their nervous systems comprise a comparatively simple net distributed throughout the body. We developed a tool kit of fluorescent polarity markers for live imaging analysis of polarity in an identified neuron type, large ganglion cells of the body column nerve net that express the LWamide-like neuropeptide. Microtubule polarity differs in bilaterian axons and dendrites, and this in part underlies polarized distribution of cargo to the two types of processes. However, in LWamide-like+ neurons, all neurites had axon-like microtubule polarity suggesting that they may have similar contents. Indeed, presynaptic and postsynaptic markers trafficked to all neurites and accumulated at varicosities where neurites from different neurons often crossed, suggesting the presence of bidirectional synaptic contacts. Furthermore, we could not identify a diffusion barrier in the plasma membrane of any of the neurites like the axon initial segment barrier that separates the axonal and somatodendritic compartments in bilaterian neurons. We conclude that at least one type of neuron in Nematostella vectensis lacks the axo-dendritic polarity characteristic of bilaterian neurons.
Collapse
Affiliation(s)
- Michelle C Stone
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory O Kothe
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Jegla
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Wang Y, Singh AR, Zhao Y, Du T, Huang Y, Wan X, Mukhopadhyay D, Wang Y, Wang N, Zhang P. TRIM28 regulates sprouting angiogenesis through VEGFR-DLL4-Notch signaling circuit. FASEB J 2020; 34:14710-14724. [PMID: 32918765 PMCID: PMC10115459 DOI: 10.1096/fj.202000186rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Sprouting angiogenesis is a highly coordinately process controlled by vascular endothelial growth factor receptor (VEGFR)-Notch signaling. Here we investigated whether Tripartite motif-containing 28 (TRIM28), which is an epigenetic modifier implicated in gene transcription and cell differentiation, is essential to mediate sprouting angiogenesis. We observed that knockdown of TRIM28 ortholog in zebrafish resulted in developmental vascular defect with disorganized and reduced vasculatures. Consistently, TRIM28 knockdown inhibited angiogenic sprouting of cultured endothelial cells (ECs), which exhibited increased mRNA levels of VEGFR1, Delta-like (DLL) 3, and Notch2 but reduced levels of VEGFR2, DLL1, DLL4, Notch1, Notch3, and Notch4.The regulative effects of TRIM28 on these angiogenic factors were partially mediated by hypoxia-inducible factor 1 α (HIF-1α) and recombination signal-binding protein for immunoglobulin kappa J region (RBPJκ). In vitro DNA-binding assay showed that TRIM28 knockdown increased the association of RBPJκ with DNA sequences containing HIF-1α-binding sites. Moreover, the phosphorylation of TRIM28 was controlled by VEGF and Notch1 through a mechanism involving RBPJκ-dual-specificity phosphatase (DUSP)-p38 MAPK, indicating a negative feedback mechanism. These findings established TRIM28 as a crucial regulator of VEGFR-Notch signaling circuit through HIF-1α and RBPJκ in EC sprouting angiogenesis.
Collapse
Affiliation(s)
- Yinfang Wang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Angom Ramcharan Singh
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, USA
| | - Yuanyuan Zhao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohong Wan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, USA
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Reverse Genetic Approaches to Investigate the Neurobiology of the Cnidarian Sea Anemone Nematostella vectensis. Methods Mol Biol 2020; 2047:25-43. [PMID: 31552647 DOI: 10.1007/978-1-4939-9732-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cnidarian sea anemone Nematostella vectensis has grown in popularity as a model system to complement the ongoing work in traditional bilaterian model species (e.g. Drosophila, C. elegans, vertebrate). The driving force behind developing cnidarian model systems is the potential of this group of animals to impact EvoDevo studies aimed at better determining the origin and evolution of bilaterian traits, such as centralized nervous systems. However, it is becoming apparent that cnidarians have the potential to impact our understanding of regenerative neurogenesis and systems neuroscience. Next-generation sequencing and the development of reverse genetic approaches led to functional genetics becoming routine in the Nematostella system. As a result, researchers are beginning to understand how cnidarian nerve nets are related to the bilaterian nervous systems. This chapter describes the methods for morpholino and mRNA injections to knockdown or overexpress genes of interest, respectively. Carrying out these techniques in Nematostella requires obtaining and preparing embryos for microinjection, designing and generating effective morpholino and mRNA molecules with controls for injection, and optimizing injection conditions.
Collapse
|
18
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
19
|
Salinas-Saavedra M, Martindale MQ. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 2020; 9:54927. [PMID: 32716297 PMCID: PMC7441587 DOI: 10.7554/elife.54927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| |
Collapse
|
20
|
Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Am J Cancer Res 2020; 10:3190-3205. [PMID: 32194862 PMCID: PMC7053199 DOI: 10.7150/thno.42640] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Globally, more than 1.5 million patients undergo bone graft surgeries annually, and the development of biomaterial scaffolds that mimic natural bone for bone grafting remains a tremendous challenge. In recent decades, due to the improved understanding of the mechanisms of bone remodeling and the rapid development of gene therapy, RNA (including messenger RNA (mRNA), microRNA (miRNA), and short interfering RNA (siRNA)) has attracted increased attention as a new tool for bone tissue engineering due to its unique nature and great potential to cure bone defects. Different types of RNA play roles via a variety of mechanisms in bone-related cells in vivo as well as after synthesis in vitro. In addition, RNAs are delivered to injured sites by loading into scaffolds or systemic administration after combination with vectors for bone tissue engineering. However, the challenge of effectively and stably delivering RNA into local tissue remains to be solved. This review describes the mechanisms of the three types of RNAs and the application of the relevant types of RNA delivery vectors and scaffolds in bone regeneration. The improvements in their development are also discussed.
Collapse
|
21
|
Negri A, Ferrari M, Nodari R, Coppa E, Mastrantonio V, Zanzani S, Porretta D, Bandi C, Urbanelli S, Epis S. Gene silencing through RNAi and antisense Vivo-Morpholino increases the efficacy of pyrethroids on larvae of Anopheles stephensi. Malar J 2019; 18:294. [PMID: 31462239 PMCID: PMC6712854 DOI: 10.1186/s12936-019-2925-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022] Open
Abstract
Background Insecticides are still at the core of insect pest and vector control programmes. Several lines of evidence indicate that ABC transporters are involved in detoxification processes against insecticides, including permethrin and other pyrethroids. In particular, the ABCG4 gene, a member of the G subfamily, has consistently been shown to be up-regulated in response to insecticide treatments in the mosquito malaria vector Anopheles stephensi (both adults and larvae). Methods To verify the actual involvement of this transmembrane protein in the detoxification process of permethrin, bioassays on larvae of An. stephensi, combining the insecticide with a siRNA, specifically designed for the inhibition of ABCG4 gene expression were performed. Administration to larvae of the same siRNA, labeled with a fluorescent molecule, was effected to investigate the systemic distribution of the inhibitory RNA into the larval bodies. Based on siRNA results, similar experiments using antisense Vivo-Morpholinos (Vivo-MOs) were effected. These molecules, compared to siRNA, are expected to guarantee a higher stability in environmental conditions and in the insect gut, and present thus a higher potential for future in-field applications. Results Bioassays using two different concentrations of siRNA, associated with permethrin, led to an increase of larval mortality, compared with results with permethrin alone. These outcomes confirm that ABCG4 transporter plays a role in the detoxification process against the selected insecticide. Moreover, after fluorescent labelling, it was shown the systemic dissemination of siRNA in different body districts of An. stephensi larvae, which suggest a potential systemic effect of the molecule. At the same time, results of Vivo-MO experiments were congruent with those obtained using siRNA, thus confirming the potential of ABCG4 inhibition as a strategy to increase permethrin susceptibility in mosquitoes. For the first time, Vivo-MOs were administered in water to larvae, with evidence for a biological effect. Conclusions Targeting ABCG4 gene for silencing through both techniques resulted in an increased pyrethroid efficacy. These results open the way toward the possibility to exploit ABCG4 inhibition in the context of integrated programmes for the control An. stephensi mosquitoes and malaria transmission.
Collapse
Affiliation(s)
- Agata Negri
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy.,Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Marco Ferrari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Texas Biomedical Research Institute, San Antonio, 7620 NW Loop 410, San Antonio, TX, 78227-5301, USA
| | - Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Edoardo Coppa
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Valentina Mastrantonio
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Sergio Zanzani
- Department of Veterinary Medicine-DIMEVET, Università degli Studi di Milano, Via Celoria, 10, 20133, Milan, Italy
| | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy.
| |
Collapse
|
22
|
Transgenesis in Hydra to characterize gene function and visualize cell behavior. Nat Protoc 2019; 14:2069-2090. [DOI: 10.1038/s41596-019-0173-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
|
23
|
Nathaniel Clarke D, Lowe CJ, James Nelson W. The cadherin-catenin complex is necessary for cell adhesion and embryogenesis in Nematostella vectensis. Dev Biol 2019; 447:170-181. [PMID: 30629955 PMCID: PMC6433513 DOI: 10.1016/j.ydbio.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
Abstract
The cadherin-catenin complex is a conserved, calcium-dependent cell-cell adhesion module that is necessary for normal development and the maintenance of tissue integrity in bilaterian animals. Despite longstanding evidence of a deep ancestry of calcium-dependent cell adhesion in animals, the requirement of the cadherin-catenin complex to coordinate cell-cell adhesion has not been tested directly in a non-bilaterian organism. Here, we provide the first analysis of classical cadherins and catenins in the Starlet Sea Anemone, Nematostella vectensis. Gene expression, protein localization, siRNA-mediated knockdown of α-catenin, and calcium-dependent cell aggregation assays provide evidence that a bonafide cadherin-catenin complex is present in the early embryo, and that α-catenin is required for normal embryonic development and the formation of cell-cell adhesions between cells dissociated from whole embryos. Together these results support the hypothesis that the cadherin-catenin complex was likely a complete and functional cell-cell adhesion module in the last common cnidarian-bilaterian ancestor. SUMMARY STATEMENT: Embryonic manipulations and ex vivo adhesion assays in the sea anemone, Nematostella vectensis, indicate that the necessity of the cadherin-catenin complex for mediating cell-cell adhesion is deeply conserved in animal evolution.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - Christopher J Lowe
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - W James Nelson
- Department of Biology, Stanford University, Stanford CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford CA 94305, United States.
| |
Collapse
|
24
|
Karabulut A, He S, Chen CY, McKinney SA, Gibson MC. Electroporation of short hairpin RNAs for rapid and efficient gene knockdown in the starlet sea anemone, Nematostella vectensis. Dev Biol 2019; 448:7-15. [PMID: 30641041 DOI: 10.1016/j.ydbio.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
A mechanistic understanding of evolutionary developmental biology requires the development of novel techniques for the manipulation of gene function in phylogenetically diverse organismal systems. Recently, gene-specific knockdown by microinjection of short hairpin RNA (shRNA) was applied in the sea anemone Nematostella vectensis, demonstrating that the shRNA approach can be used for efficient and robust sequence-specific knockdown of a gene of interest. However, the time- and labor-intensive process of microinjection limits access to this technique and its application in large scale experiments. To address this issue, here we present an electroporation protocol for shRNA delivery into Nematostella eggs. This method leverages the speed and simplicity of electroporation, enabling users to manipulate gene expression in hundreds of eggs or embryos within minutes. We provide a detailed description of the experimental procedure, including reagents, electroporation conditions, preparation of Nematostella eggs, and follow-up care of experimental animals. Finally, we demonstrate the knockdown of several endogenous and exogenous genes with known phenotypes and discuss the potential applications of this method.
Collapse
Affiliation(s)
- Ahmet Karabulut
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Shuonan He
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Cheng-Yi Chen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Sean A McKinney
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Dept. Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160 USA.
| |
Collapse
|
25
|
Microinjection to deliver protein, mRNA, and DNA into zygotes of the cnidarian endosymbiosis model Aiptasia sp. Sci Rep 2018; 8:16437. [PMID: 30401930 PMCID: PMC6219564 DOI: 10.1038/s41598-018-34773-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023] Open
Abstract
Reef-building corals depend on an intracellular symbiosis with photosynthetic dinoflagellates for their survival in nutrient-poor oceans. Symbionts are phagocytosed by coral larvae from the environment and transfer essential nutrients to their hosts. Aiptasia, a small tropical marine sea anemone, is emerging as a tractable model system for coral symbiosis; however, to date functional tools and genetic transformation are lacking. Here we have established an efficient workflow to collect Aiptasia eggs for in vitro fertilization and microinjection as the basis for experimental manipulations in the developing embryo and larvae. We demonstrate that protein, mRNA, and DNA can successfully be injected into live Aiptasia zygotes to label actin with recombinant Lifeact-eGFP protein; to label nuclei and cell membranes with NLS-eGFP and farnesylated mCherry translated from injected mRNA; and to transiently drive transgene expression from an Aiptasia-specific promoter, respectively, in embryos and larvae. These proof-of-concept approaches pave the way for future functional studies of development and symbiosis establishment in Aiptasia, a powerful model to unravel the molecular mechanisms underlying intracellular coral-algal symbiosis.
Collapse
|
26
|
He S, Del Viso F, Chen CY, Ikmi A, Kroesen AE, Gibson MC. An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science 2018; 361:1377-1380. [PMID: 30262503 DOI: 10.1126/science.aar8384] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 11/02/2022]
Abstract
Hox genes encode conserved developmental transcription factors that govern anterior-posterior (A-P) pattering in diverse bilaterian animals, which display bilateral symmetry. Although Hox genes are also present within Cnidaria, these simple animals lack a definitive A-P axis, leaving it unclear how and when a functionally integrated Hox code arose during evolution. We used short hairpin RNA (shRNA)-mediated knockdown and CRISPR-Cas9 mutagenesis to demonstrate that a Hox-Gbx network controls radial segmentation of the larval endoderm during development of the sea anemone Nematostella vectensis. Loss of Hox-Gbx activity also elicits marked defects in tentacle patterning along the directive (orthogonal) axis of primary polyps. On the basis of our results, we propose that an axial Hox code may have controlled body patterning and tissue segmentation before the evolution of the bilaterian A-P axis.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Cheng-Yi Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Aissam Ikmi
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Amanda E Kroesen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA. .,Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
27
|
Sunagar K, Columbus-Shenkar YY, Fridrich A, Gutkovich N, Aharoni R, Moran Y. Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone. BMC Biol 2018; 16:108. [PMID: 30261880 PMCID: PMC6161364 DOI: 10.1186/s12915-018-0578-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an “explosive” organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development. However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. Results In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1—cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte-specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. Conclusions Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development, and evolution of cnidocytes. Electronic supplementary material The online version of this article (10.1186/s12915-018-0578-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel. .,Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Nadya Gutkovich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
28
|
Salinas-Saavedra M, Rock AQ, Martindale MQ. Germ layer-specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm. eLife 2018; 7:e36740. [PMID: 30063005 PMCID: PMC6067901 DOI: 10.7554/elife.36740] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
In triploblastic animals, Par-proteins regulate cell-polarity and adherens junctions of both ectodermal and endodermal epithelia. But, in embryos of the diploblastic cnidarian Nematostella vectensis, Par-proteins are degraded in all cells in the bifunctional gastrodermal epithelium. Using immunohistochemistry, CRISPR/Cas9 mutagenesis, and mRNA overexpression, we describe the functional association between Par-proteins, ß-catenin, and snail transcription factor genes in N. vectensis embryos. We demonstrate that the aPKC/Par complex regulates the localization of ß-catenin in the ectoderm by stabilizing its role in cell-adhesion, and that endomesodermal epithelial cells are organized by a different cell-adhesion system than overlying ectoderm. We also show that ectopic expression of snail genes, which are expressed in mesodermal derivatives in bilaterians, is sufficient to downregulate Par-proteins and translocate ß-catenin from the junctions to the cytoplasm in ectodermal cells. These data provide molecular insight into the evolution of epithelial structure and distinct cell behaviors in metazoan embryos.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| | - Amber Q Rock
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
| | - Mark Q Martindale
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| |
Collapse
|
29
|
Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018; 145:dev.162867. [PMID: 29739837 DOI: 10.1242/dev.162867] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023]
Abstract
For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.
Collapse
Affiliation(s)
- Jacob F Warner
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Vincent Guerlais
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Hereroa Johnston
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Karine Nedoncelle
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| |
Collapse
|
30
|
Intraspecific variation in oxidative stress tolerance in a model cnidarian: Differences in peroxide sensitivity between and within populations of Nematostella vectensis. PLoS One 2018; 13:e0188265. [PMID: 29373572 PMCID: PMC5786289 DOI: 10.1371/journal.pone.0188265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/05/2017] [Indexed: 12/27/2022] Open
Abstract
Nematostella vectensis is a member of the phylum Cnidaria, a lineage that includes anemones, corals, hydras, and jellyfishes. This estuarine anemone is an excellent model system for investigating the evolution of stress tolerance because it is easy to collect in its natural habitat and to culture in the laboratory, and it has a sequenced genome. Additionally, there is evidence of local adaptation to environmental stress in different N. vectensis populations, and abundant protein-coding polymorphisms have been identified, including polymorphisms in proteins that are implicated in stress responses. N. vectensis can tolerate a wide range of environmental parameters, and has recently been shown to have substantial intraspecific variation in temperature preference. We investigated whether different clonal lines of anemones also exhibit differential tolerance to oxidative stress. N. vectensis populations are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism and by other environmental factors. Fifteen clonal lines of N. vectensis collected from four different estuaries were exposed to hydrogen peroxide. Pronounced differences in survival and regeneration were apparent between clonal lines collected from Meadowlands, NJ, Baruch, SC, and Kingsport, NS, as well as among 12 clonal lines collected from a single Cape Cod marsh. To our knowledge, this is the first example of intraspecific variability in oxidative stress resistance in cnidarians or in any marine animal. As oxidative stress often accompanies heat stress in marine organisms, resistance to oxidative stress could strongly influence survival in warming oceans. For example, while elevated temperatures trigger bleaching in corals, oxidative stress is thought to be the proximal trigger of bleaching at the cellular level.
Collapse
|
31
|
Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci U S A 2017; 114:E10122-E10131. [PMID: 29109290 PMCID: PMC5703304 DOI: 10.1073/pnas.1711530114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR-to-NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR-expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.
Collapse
|
32
|
Babonis LS, Martindale MQ. PaxA, but not PaxC, is required for cnidocyte development in the sea anemone Nematostella vectensis. EvoDevo 2017; 8:14. [PMID: 28878874 PMCID: PMC5584322 DOI: 10.1186/s13227-017-0077-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Background Pax genes are a family of conserved transcription factors that regulate many aspects of developmental morphogenesis, notably the development of ectodermal sensory structures including eyes. Nematostella vectensis, the starlet sea anemone, has numerous Pax orthologs, many of which are expressed early during embryogenesis. The function of Pax genes in this eyeless cnidarian is unknown. Results Here, we show that PaxA, but not PaxC, plays a critical role in the development of cnidocytes in N. vectensis. Knockdown of PaxA results in a loss of developing cnidocytes and downregulation of numerous cnidocyte-specific genes, including a variant of the transcription factor Mef2. We also demonstrate that the co-expression of Mef2 in a subset of the PaxA-expressing cells is associated with the development with a second lineage of cnidocytes and show that knockdown of the neural progenitor gene SoxB2 results in downregulation of expression of PaxA, Mef2, and several cnidocyte-specific genes. Because PaxA is not co-expressed with SoxB2 at any time during cnidocyte development, we propose a simple model for cnidogenesis whereby a SoxB2-expressing progenitor cell population undergoes division to give rise to PaxA-expressing cnidocytes, some of which also express Mef2. Discussion The role of PaxA in cnidocyte development among hydrozoans has not been studied, but the conserved role of SoxB2 in regulating the fate of a progenitor cell that gives rise to neurons and cnidocytes in Nematostella and Hydractinia echinata suggests that this SoxB2/PaxA pathway may well be conserved across cnidarians.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA.,Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
33
|
Renfer E, Technau U. Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis. Nat Protoc 2017; 12:1844-1854. [DOI: 10.1038/nprot.2017.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Servetnick MD, Steinworth B, Babonis LS, Simmons D, Salinas-Saavedra M, Martindale MQ. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning. Development 2017; 144:2951-2960. [PMID: 28705897 PMCID: PMC5592810 DOI: 10.1242/dev.145839] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensis Nvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis.
Collapse
Affiliation(s)
- Marc D Servetnick
- Division of Biological Sciences, University of Washington Bothell, Bothell, WA 98011, USA
| | - Bailey Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - David Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Miguel Salinas-Saavedra
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
35
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
36
|
Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A. Non-model model organisms. BMC Biol 2017; 15:55. [PMID: 28662661 PMCID: PMC5492503 DOI: 10.1186/s12915-017-0391-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.
Collapse
Affiliation(s)
- James J Russell
- Department of Biology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Departments of Biochemistry and of Microbiology & Immunology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA.
| | - Pranidhi Sood
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA.
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY, 10032, USA
| | | | - Jessica K Polka
- Visiting Scholar, Whitehead Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Therese Gerbich
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Amy Gladfelter
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO, 63132, USA
| | | | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA, 94305, USA
| |
Collapse
|
37
|
Antagonistic BMP-cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm. Proc Natl Acad Sci U S A 2017; 114:E5608-E5615. [PMID: 28652368 DOI: 10.1073/pnas.1701607114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral-aboral axis in Nematostella We also show functionally that the conserved "kernel" of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue.
Collapse
|
38
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
39
|
Layden MJ, Johnston H, Amiel AR, Havrilak J, Steinworth B, Chock T, Röttinger E, Martindale MQ. MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biol 2016; 14:61. [PMID: 27480076 PMCID: PMC4968017 DOI: 10.1186/s12915-016-0282-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background The nerve net of Nematostella is generated using a conserved cascade of neurogenic transcription factors. For example, NvashA, a homolog of the achaete-scute family of basic helix-loop-helix transcription factors, is necessary and sufficient to specify a subset of embryonic neurons. However, positive regulators required for the expression of neurogenic transcription factors remain poorly understood. Results We show that treatment with the MEK/MAPK inhibitor U0126 severely reduces the expression of known neurogenic genes, Nvath-like, NvsoxB(2), and NvashA, and known markers of differentiated neurons, suggesting that MAPK signaling is necessary for neural development. Interestingly, ectopic NvashA fails to rescue the expression of neural markers in U0126-treated animals. Double fluorescence in situ hybridization and transgenic analysis confirmed that NvashA targets represent both unique and overlapping populations of neurons. Finally, we used a genome-wide microarray to identify additional patterning genes downstream of MAPK that might contribute to neurogenesis. We identified 18 likely neural transcription factors, and surprisingly identified ~40 signaling genes and transcription factors that are expressed in either the aboral domain or animal pole that gives rise to the endomesoderm at late blastula stages. Conclusions Together, our data suggest that MAPK is a key early regulator of neurogenesis, and that it is likely required at multiple steps. Initially, MAPK promotes neurogenesis by positively regulating expression of NvsoxB(2), Nvath-like, and NvashA. However, we also found that MAPK is necessary for the activity of the neurogenic transcription factor NvashA. Our forward molecular approach provided insight about the mechanisms of embryonic neurogenesis. For instance, NvashA suppression of Nvath-like suggests that inhibition of progenitor identity is an active process in newly born neurons, and we show that downstream targets of NvashA reflect multiple neural subtypes rather than a uniform neural fate. Lastly, analysis of the MAPK targets in the early embryo suggests that MAPK signaling is critical not only to neurogenesis, but also endomesoderm formation and aboral patterning. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0282-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| | - Hereroa Johnston
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Aldine R Amiel
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Jamie Havrilak
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Bailey Steinworth
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Taylor Chock
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Eric Röttinger
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA.
| |
Collapse
|
40
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
41
|
|
42
|
Chang L, Gallego-Perez D, Zhao X, Bertani P, Yang Z, Chiang CL, Malkoc V, Shi J, Sen CK, Odonnell L, Yu J, Lu W, Lee LJ. Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. LAB ON A CHIP 2015; 15:3147-53. [PMID: 26105628 DOI: 10.1039/c5lc00553a] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current transfection technologies lead to significant inter-clonal variations. Previously we introduced a unique electrotransfection technology, Nanochannel-Electroporation (NEP), which can precisely and benignly transfect small cell populations (~100-200 cells) with single-cell resolution. Here we report on the development of a novel 3D NEP system for large scale transfection. A properly-engineered array of nanochannels, capable of handling/transfecting ~60 000 cells cm(-2), was fabricated using cleanroom technologies. Positive dielectrophoresis was used to selectively position cells on the nanochannels, thus allowing highly efficient transfection. Single-cell dosage control was demonstrated using both small and large molecules, and different cell types. The potential clinical relevance of this system was tested with difficult-to-transfect natural killer cell suspensions, and plasmids encoding for the chimeric antigen receptor (CAR), a model of high relevance for adoptive immunotherapy. Our results show significantly higher CAR transfection efficiencies for the DEP-NEP system (>70% vs. <30%), as well as enhanced cell viabilities.
Collapse
Affiliation(s)
- Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains. Sci Rep 2015; 5:12147. [PMID: 26190255 PMCID: PMC4507178 DOI: 10.1038/srep12147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/16/2015] [Indexed: 11/08/2022] Open
Abstract
SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus.
Collapse
|
44
|
Salinas-Saavedra M, Stephenson TQ, Dunn CW, Martindale MQ. Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. EvoDevo 2015; 6:20. [PMID: 26101582 PMCID: PMC4476184 DOI: 10.1186/s13227-015-0014-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The evolutionary origins of cell polarity in metazoan embryos are unclear. In most bilaterian animals, embryonic and cell polarity are set up during embryogenesis with the same molecules being utilized to regulate tissue polarity at different life stages. Atypical protein kinase C (aPKC), lethal giant larvae (Lgl), and Partitioning-defective (Par) proteins are conserved components of cellular polarization, and their role in establishing embryonic asymmetry and tissue polarity have been widely studied in model bilaterian groups. However, the deployment and role of these proteins in animals outside Bilateria has not been studied. We address this by characterizing the localization of different components of the Par system during early development of the sea anemone Nematostella vectensis, a member of the clade Cnidaria, the sister group to bilaterian animals. Results Immunostaining using specific N. vectensis antibodies and the overexpression of mRNA-reporter constructs show that components of the N. vectensis Par system (NvPar-1, NvPar-3, NvPar-6, NvaPKC, and NvLgl) distribute throughout the microtubule cytoskeleton of eggs and early embryos without clear polarization along any embryonic axis. However, they become asymmetrically distributed at later stages, when the embryo forms an ectodermal epithelial layer. NvLgl and NvPar-1 localize in the basolateral cortex, and NvaPKC, NvPar-6, and NvPar-3 at the apical zone of the cell in a manner seen in bilaterian animals. Conclusions The cnidarian N. vectensis exhibits clear polarity at all stages of early embryonic development, which appears to be established independent of the Par system reported in many bilaterian embryos. However, in N. vectensis, using multiple immunohistochemical and fluorescently labeled markers in vivo, components of this system are deployed to organize epithelial cell polarity at later stages of development. This suggests that Par system proteins were co-opted to organize early embryonic cell polarity at the base of the Bilateria and that, therefore, different molecular mechanisms operate in early cnidarian embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0014-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Thomas Q Stephenson
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| |
Collapse
|
45
|
Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH. Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 2015; 218:515-25. [DOI: 10.1242/jeb.110270] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research.
Collapse
Affiliation(s)
- Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maya Gur Barzilai
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Benjamin J. Liebeskind
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
| | - Harold H. Zakon
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
- Department of Neuroscience, University of Texas at Austin, TX 78712, USA
- Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
46
|
Gong Q, Garvey K, Qian C, Yin I, Wong G, Tucker RP. Integrins of the starlet sea anemone Nematostella vectensis. THE BIOLOGICAL BULLETIN 2014; 227:211-220. [PMID: 25572209 DOI: 10.1086/bblv227n3p211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Integrins are extracellular matrix receptors composed of α and β subunits. Here we describe two α subunits and four β subunits from the starlet sea anemone Nematostella vectensis. Phylogenetic analysis suggests that the α subunits are most closely related to RGD- and LDV-dependent α subunits of chordates. The β subunits cluster with the previously described β integrins of the hard coral Acropora millepora. The expression of one of the α subunits and three of the β subunits was confirmed by reverse transcription PCR and in situ hybridization. The α subunit is primarily expressed in cells near muscles, by a subset of gastrodermal cells, and in the gonad. The three β subunits each have distinctive patterns of expression: one is concentrated in the gonad and mesenteric filament, another is found in a subset of cells in the epidermis of the oral region and in a subset of gastrodermal cells in the mesenteries, and a third is expressed widely. Changes in expression were also studied 48 h after horizontal transection by quantitative reverse transcription PCR and in situ hybridization. One of the β subunits is expressed 8-fold higher during regeneration, and its expression is observed in cells within both the epidermis and the gastrodermis at the site of regeneration. Our observations confirm that complex patterns of integrin expression were already present in basal metazoans. The integrins expressed in the gonads may play roles in mediating sperm-egg interactions in N. vectensis, while others may play a role in regulating proliferation during regeneration.
Collapse
Affiliation(s)
- Qizhi Gong
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616-8643
| | - Katrina Garvey
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616-8643
| | - Chenghao Qian
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616-8643
| | - Isabel Yin
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616-8643
| | - Gary Wong
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616-8643
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616-8643
| |
Collapse
|
47
|
DuBuc TQ, Dattoli AA, Babonis LS, Salinas-Saavedra M, Röttinger E, Martindale MQ, Postma M. In vivo imaging of Nematostella vectensis embryogenesis and late development using fluorescent probes. BMC Cell Biol 2014; 15:44. [PMID: 25433655 PMCID: PMC4264334 DOI: 10.1186/s12860-014-0044-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cnidarians are the closest living relatives to bilaterians and have been instrumental to studying the evolution of bilaterian properties. The cnidarian model, Nematostella vectensis, is a unique system in which embryology and regeneration are both studied, making it an ideal candidate to develop in vivo imaging techniques. Live imaging is the most direct way for quantitative and qualitative assessment of biological phenomena. Actin and tubulin are cytoskeletal proteins universally important for regulating many embryological processes but so far studies in Nematostella primarily focused on the localization of these proteins in fixed embryos. RESULTS We used fluorescent probes expressed in vivo to investigate the dynamics of Nematostella development. Lifeact-mTurquoise2, a fluorescent cyan F-actin probe, can be visualized within microvilli along the cellular surface throughout embryonic development and is stable for two months after injection. Co-expression of Lifeact-mTurquoise2 with End-Binding protein1 (EB1) fused to mVenus or tdTomato-NLS allows for the visualization of cell-cycle properties in real time. Utilizing fluorescent probes in vivo helped to identify a concentrated 'flash' of Lifeact-mTurquoise2 around the nucleus, immediately prior to cytokinesis in developing embryos. Moreover, Lifeact-mTurquoise2 expression in adult animals allowed the identification of various cell types as well as cellular boundaries. CONCLUSION The methods developed in this manuscript provide an alternative protocol to investigate Nematostella development through in vivo cellular analysis. This study is the first to utilize the highly photo-stable florescent protein mTurquoise2 as a marker for live imaging. Finally, we present a clear methodology for the visualization of minute temporal events during cnidarian development.
Collapse
|
48
|
Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 2014; 5:43. [PMID: 25699168 PMCID: PMC4332929 DOI: 10.1186/2041-9139-5-43] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/03/2014] [Indexed: 12/26/2022] Open
Abstract
Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
Collapse
Affiliation(s)
- Anna F Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; BMIC graduate programme and Université Claude Bernard - Lyon 1, Lyon, France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
49
|
Pietri JE, Cheung KW, Luckhart S. Knockdown of mitogen-activated protein kinase (MAPK) signalling in the midgut of Anopheles stephensi mosquitoes using antisense morpholinos. INSECT MOLECULAR BIOLOGY 2014; 23:558-65. [PMID: 24866718 PMCID: PMC4159403 DOI: 10.1111/imb.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arthropod-borne infectious diseases are responsible for nearly 1.5 million deaths annually across the globe, with malaria responsible for >50% of these deaths. Recent efforts to enhance malaria control have focused on developing genetically modified Anopheles mosquitoes that are resistant to malaria parasite infection by manipulating proteins that are essential to the immune response. Although this approach has shown promise, the lack of efficient genetic tools in the mosquito makes it difficult to investigate innate immunity using reverse genetics. Current gene knockdown strategies based on small interfering RNA are typically labourious, inefficient, and require extensive training. In the present study, we describe the use of morpholino antisense oligomers to knockdown MEK-ERK signalling in the midgut of Anopheles stephensi through a simple feeding protocol. Anti-MEK morpholino provided in a saline meal was readily ingested by female mosquitoes with minimal toxicity and resulted in knockdown of total MEK protein levels 3-4 days after morpholino feeding. Further, anti-MEK morpholino feeding attenuated inducible phosphorylation of the downstream kinase ERK and, as predicted by previous work, reduced parasite burden in mosquitoes infected with Plasmodium falciparum. To our knowledge, this is the first example of morpholino use for target protein knockdown via feeding in an insect vector. Our results suggest this method is not only efficient for studies of individual proteins, but also for studies of phenotypic control by complex cell signalling networks. As such, our protocol is an effective alternative to current methods for gene knockdown in arthropods.
Collapse
Affiliation(s)
- Jose E. Pietri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Kong W. Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
50
|
Layden MJ, Martindale MQ. Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. EvoDevo 2014; 5:30. [PMID: 25705370 PMCID: PMC4335385 DOI: 10.1186/2041-9139-5-30] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/12/2014] [Indexed: 01/22/2023] Open
Abstract
Background Cellular differentiation is a critical process during development of multicellular animals that must be tightly controlled in order to avoid precocious differentiation or failed generation of differentiated cell types. Research in flies, vertebrates, and nematodes has led to the identification of a conserved role for Notch signaling as a mechanism to regulate cellular differentiation regardless of tissue/cell type. Notch signaling can occur through a canonical pathway that results in the activation of hes gene expression by a complex consisting of the Notch intracellular domain, SuH, and the Mastermind co-activator. Alternatively, Notch signaling can occur via a non-canonical mechanism that does not require SuH or activation of hes gene expression. Regardless of which mechanism is being used, high Notch activity generally inhibits further differentiation, while low Notch activity promotes differentiation. Flies, vertebrates, and nematodes are all bilaterians, and it is therefore unclear if Notch regulation of differentiation is a bilaterian innovation, or if it represents a more ancient mechanism in animals. Results To reconstruct the ancestral function of Notch signaling we investigate Notch function in a non-bilaterian animal, the sea anemone Nematostella vectensis (Cnidaria). Morpholino or pharmacological knockdown of Nvnotch causes increased expression of the neural differentiation gene NvashA. Conversely, overactivation of Notch activity resulting from overexpression of the Nvnotch intracellular domain or by overexpression of the Notch ligand Nvdelta suppresses NvashA. We also knocked down or overactivated components of the canonical Notch signaling pathway. We disrupted NvsuH with morpholino or by overexpressing a dominant negative NvsuH construct. We saw no change in expression levels for Nvhes genes or NvashA. Overexpression of Nvhes genes did not alter NvashA expression levels. Lastly, we tested additional markers associated with neuronal differentiation and observed that non-canonical Notch signaling broadly suppresses neural differentiation in Nematostella. Conclusions We conclude that one ancestral role for Notch in metazoans was to regulate neural differentiation. Remarkably, we found no evidence for a functional canonical Notch pathway during Nematostella embryogenesis, suggesting that the non-canonical hes-independent Notch signaling mechanism may represent an ancestral Notch signaling pathway.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|