1
|
Fajardo C RJ, Clavijo C, Díaz GJ, Cadavid LF. Tissue distribution and expression dynamics of trefoil factor genes in the hydroid Hydractinia symbiolongicarpus. Gene 2024; 929:148824. [PMID: 39103057 DOI: 10.1016/j.gene.2024.148824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Proteins of the trefoil factor family (TFF) participate in mucosal repair and are formed by single or tandemly repeated trefoil domains. TFFs have been extensively studied in mammals and amphibians, but they have not been functionally characterized in other animals. Here we report the identification of two genes expressed in the hydroid Hydractinia symbiolongicarpus, predicted to encode trefoil domain-containing peptides, one with four trefoil domains in tandem and the other one with a trefoil domain flanked by two ShKT domains. Differential expression analyses by qPCR after an immune challenge and an induced mechanical damage, reveal that the former gene (hysyTFF) had no significant changes in expression after the inductions. However, the latter (hysyTFF-like) was overexpressed after three hours post immune challenge and was downregulated after the first hour post epithelial damage. Immunoblot analyses using specific IgY antibodies revealed that hysyTFF is secreted as a high molecular weight complex. Finally, whole mount immunofluorescence assays showed that hysyTFF was predominantly expressed in the endoderm of stolons and polyps, and sparsely in the ectoderm of both polyps and larvae. Thus, the tissue distribution and expression dynamics of trefoil factor genes in H. symbiolongicarpus suggest that hysyTFF is part of an ancient mechanism of epithelial restitution, and the newly reported hysyTFF-like might act as an immune effector gene, perhaps encoding an antibacterial peptide.
Collapse
Affiliation(s)
- R Johana Fajardo C
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, 111321 Bogotá, Colombia
| | - Carlos Clavijo
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, 111321 Bogotá, Colombia
| | - Gonzalo J Díaz
- Departamento de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia - Sede Bogotá, 111321 Bogotá, Colombia
| | - Luis F Cadavid
- Instituto de Genética, Universidad Nacional de Colombia - Sede Bogotá, 111321 Bogotá, Colombia.
| |
Collapse
|
2
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. Neural Dev 2024; 19:16. [PMID: 39118162 PMCID: PMC11308222 DOI: 10.1186/s13064-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human Leucine Rich Repeat Kinase 2 (LRRK2) gene. Mutations in this gene are the most common cause of inherited Parkinson's Disease (PD), highlighting the importance of understanding its function. Despite two decades of research, however, the function of LRRK2 is not well established. METHODS To investigate the function of LRRKs in Nematostella vectensis, we applied small molecule inhibitors targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. RESULTS In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. CONCLUSIONS Our work introduces a new model organism with which to study LRRK biology. We report that LRRK kinase activity is necessary for the development and regeneration of Nematostella. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
Affiliation(s)
- Grace Holmes
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK
| | - Sophie R Ferguson
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA
| | - Patrick Alfryn Lewis
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK.
- UCL Queen Square Institute of Neurology, University of London, London, WC1N 3BG, UK.
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| |
Collapse
|
3
|
Gilbert E, Craggs J, Modepalli V. Gene Regulatory Network that Shaped the Evolution of Larval Apical Organ in Cnidaria. Mol Biol Evol 2024; 41:msad285. [PMID: 38152864 PMCID: PMC10781443 DOI: 10.1093/molbev/msad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jamie Craggs
- Horniman Museum and Gardens, London SE23 3PQ, UK
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
4
|
Salinas-Saavedra M. SABER-FISH in Hydractinia. Methods Mol Biol 2024; 2784:77-85. [PMID: 38502479 DOI: 10.1007/978-1-0716-3766-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In situ hybridization allows the detection of nucleic acid sequences in fixed cells and tissues. The gelatinous nature of cnidarians and Hydractinia demands extensive and exhausting protocols to detect RNA transcripts with traditional methods (e.g., colorimetric in situ hybridization). Signal amplification by exchange reaction (SABER) fluorescence in situ hybridization (FISH) enables simplifying and multiplex imaging of RNA targets in a rapid and cost-effective manner. In one enzymatic reaction, SABER-FISH uses a strand-displacing polymerase and catalytic DNA hairpin to generate FISH probes with adjustable signal amplification, allowing highly sensitive detection of nucleic acids and reducing the number of required probes. Here I describe the methodology to detect transcripts within the cells of Hydractinia by SABER-FISH in whole-mount samples.
Collapse
|
5
|
Tournière O, Busengdal H, Gahan JM, Rentzsch F. Fluorescence In Situ Hybridization as a Tool for Studying the Specification and Differentiation of Cell Types in Nematostella vectensis. Methods Mol Biol 2024; 2784:59-75. [PMID: 38502478 DOI: 10.1007/978-1-0716-3766-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The sea anemone Nematostella vectensis is a genetically tractable cnidarian species that has become a model organism for studying the evolution of developmental processes and genome regulation, resilience to fluctuations in environmental conditions, and the response to pollutants. Gene expression analyses are central to many of these studies, and in situ hybridization has been an important method for obtaining spatial information, in particular during embryonic development. Like other cnidarians, Nematostella embryos are of comparably low morphological complexity, but they possess many cell types that are dispersed throughout the tissue and originate from broad and overlapping areas. These features have made two-color fluorescence in situ hybridization an important method to determine potential co-expression of genes and to generate hypotheses for their functions in cell fate specification. We here share protocols for single and double fluorescence in situ hybridization in Nematostella and for the combination of fluorescence in situ hybridization and immunofluorescence.
Collapse
Affiliation(s)
- Océane Tournière
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France
| | | | - James M Gahan
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Fabian Rentzsch
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Warner JF, Besemer R, Schickle A, Borbee E, Changsut IV, Sharp K, Babonis LS. Microinjection, gene knockdown, and CRISPR-mediated gene knock-in in the hard coral, Astrangia poculata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567385. [PMID: 38948709 PMCID: PMC11213136 DOI: 10.1101/2023.11.16.567385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cnidarians have become valuable models for understanding many aspects of developmental biology including the evolution of body plan diversity, novel cell type specification, and regeneration. Most of our understanding of gene function during early development in cnidarians comes from a small number of experimental systems including the sea anemone, Nematostella vectensis. Few molecular tools have been developed for use in hard corals, limiting our understanding of this diverse and ecologically important clade. Here, we report the development of a suite of tools for manipulating and analyzing gene expression during early development in the northern star coral, Astrangia poculata. We present methods for gene knockdown using short hairpin RNAs, gene overexpression using exogenous mRNAs, and endogenous gene tagging using CRISPR-mediated gene knock-in. Combined with our ability to control spawning in the laboratory, these tools make A. poculata a tractable experimental system for investigative studies of coral development. Further application of these tools will enable functional analyses of embryonic patterning and morphogenesis across Anthozoa and open new frontiers in coral biology research.
Collapse
Affiliation(s)
- Jacob F. Warner
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409
| | - Ryan Besemer
- Department of Biology and Marine Biology, UNC Wilmington, Wilmington, NC, 28409
| | - Alicia Schickle
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI 02871
| | - Erin Borbee
- Department of Biology, Texas State University, San Marcos, TX, 78666
| | | | - Koty Sharp
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI 02871
| | - Leslie S. Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
7
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. RESEARCH SQUARE 2023:rs.3.rs-3525606. [PMID: 37986927 PMCID: PMC10659525 DOI: 10.21203/rs.3.rs-3525606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human LRRK2 gene (nvLRRK2). The leucine rich repeat kinase 2 (LRRK2) gene, when mutated, is the most common cause of inherited Parkinson's Disease (PD). Its protein product (LRRK2) has implications in a variety of cellular processes, however, the full function of LRRK2 is not well established. Current research is focusing on understanding the function of LRRK2, including both its physiological role as well as its pathobiological underpinnings. Methods We used bioinformatics to determine the cross-species conservation of LRRK2, then applied drugs targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. Results An in-silico characterization and phylogenetic analysis of nvLRRK2 comparing it to human LRRK2 highlighted key conserved motifs and residues. In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. Conclusions Our work introduces a new model organism with which to study LRRK biology. We show a necessity for LRRK2 in development and regeneration. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
|
8
|
McCulloch KJ, Babonis LS, Liu A, Daly CM, Martindale MQ, Koenig KM. Nematostella vectensis exemplifies the exceptional expansion and diversity of opsins in the eyeless Hexacorallia. EvoDevo 2023; 14:14. [PMID: 37735470 PMCID: PMC10512536 DOI: 10.1186/s13227-023-00218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hundreds of millions of years. Medusozoans (e.g., jellyfish, hydroids) have evolved eyes multiple times, each time independently incorporating distinct opsin orthologs. Anthozoans (e.g., corals, sea anemones,) have diverse light-mediated behaviors and, despite being eyeless, exhibit more extensive opsin duplications than medusozoans. To better understand the evolution of photosensitivity in animals without eyes, we increased anthozoan representation in the phylogeny of animal opsins and investigated the large but poorly characterized opsin family in the sea anemone Nematostella vectensis. RESULTS We analyzed genomic and transcriptomic data from 16 species of cnidarians to generate a large opsin phylogeny (708 sequences) with the largest sampling of anthozoan sequences to date. We identified 29 opsins from N. vectensis (NvOpsins) with high confidence, using transcriptomic and genomic datasets. We found that lineage-specific opsin duplications are common across Cnidaria, with anthozoan lineages exhibiting among the highest numbers of opsins in animals. To establish putative photosensory function of NvOpsins, we identified canonically conserved protein domains and amino acid sequences essential for opsin function in other animal species. We show high sequence diversity among NvOpsins at sites important for photoreception and transduction, suggesting potentially diverse functions. We further examined the spatiotemporal expression of NvOpsins and found both dynamic expression of opsins during embryonic development and sexually dimorphic opsin expression in adults. CONCLUSIONS These data show that lineage-specific duplication and divergence has led to expansive diversity of opsins in eyeless cnidarians, suggesting opsins from these animals may exhibit novel biochemical functions. The variable expression patterns of opsins in N. vectensis suggest opsin gene duplications allowed for a radiation of unique sensory cell types with tissue- and stage-specific functions. This diffuse network of distinct sensory cell types could be an adaptive solution for varied sensory tasks experienced in distinct life history stages in Anthozoans.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Leslie S Babonis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA , 02138, , USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
He S, Shao W, Chen SC, Wang T, Gibson MC. Spatial transcriptomics reveals a cnidarian segment polarity program in Nematostella vectensis. Curr Biol 2023:S0960-9822(23)00676-0. [PMID: 37315559 DOI: 10.1016/j.cub.2023.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
During early animal evolution, the emergence of axially polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here, we demonstrate the molecular basis for segment polarization in developing larvae of the sea anemone Nematostella vectensis. Utilizing spatial transcriptomics, we first constructed a 3D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both bone morphogenetic protein (BMP) signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at the larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles (RMs) in primary polyps. These results demonstrate the molecular basis for segment polarity in a non-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
10
|
Faltine-Gonzalez D, Havrilak J, Layden MJ. The brain regulatory program predates central nervous system evolution. Sci Rep 2023; 13:8626. [PMID: 37244953 DOI: 10.1038/s41598-023-35721-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Understanding how brains evolved is critical to determine the origin(s) of centralized nervous systems. Brains are patterned along their anteroposterior axis by stripes of gene expression that appear to be conserved, suggesting brains are homologous. However, the striped expression is also part of the deeply conserved anteroposterior axial program. An emerging hypothesis is that similarities in brain patterning are convergent, arising through the repeated co-option of axial programs. To resolve whether shared brain neuronal programs likely reflect convergence or homology, we investigated the evolution of axial programs in neurogenesis. We show that the bilaterian anteroposterior program patterns the nerve net of the cnidarian Nematostella along the oral-aboral axis arguing that anteroposterior programs regionalized developing nervous systems in the cnidarian-bilaterian common ancestor prior to the emergence of brains. This finding rejects shared patterning as sufficient evidence to support brain homology and provides functional support for the plausibility that axial programs could be co-opted if nervous systems centralized in multiple lineages.
Collapse
Affiliation(s)
| | - Jamie Havrilak
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
11
|
Single-cell atavism reveals an ancient mechanism of cell type diversification in a sea anemone. Nat Commun 2023; 14:885. [PMID: 36797294 PMCID: PMC9935875 DOI: 10.1038/s41467-023-36615-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Cnidocytes are the explosive stinging cells unique to cnidarians (corals, jellyfish, etc). Specialized for prey capture and defense, cnidocytes comprise a group of over 30 morphologically and functionally distinct cell types. These unusual cells are iconic examples of biological novelty but the developmental mechanisms driving diversity of the stinging apparatus are poorly characterized, making it challenging to understand the evolutionary history of stinging cells. Using CRISPR/Cas9-mediated genome editing in the sea anemone Nematostella vectensis, we show that a single transcription factor (NvSox2) acts as a binary switch between two alternative stinging cell fates. Knockout of NvSox2 causes a transformation of piercing cells into ensnaring cells, which are common in other species of sea anemone but appear to have been silenced in N. vectensis. These results reveal an unusual case of single-cell atavism and expand our understanding of the diversification of cell type identity.
Collapse
|
12
|
Steinworth BM, Martindale MQ, Ryan JF. Gene Loss may have Shaped the Cnidarian and Bilaterian Hox and ParaHox Complement. Genome Biol Evol 2022; 15:6889381. [PMID: 36508343 PMCID: PMC9825252 DOI: 10.1093/gbe/evac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian-bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.
Collapse
Affiliation(s)
- Bailey M Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | | |
Collapse
|
13
|
Gilbert E, Teeling C, Lebedeva T, Pedersen S, Chrismas N, Genikhovich G, Modepalli V. Molecular and cellular architecture of the larval sensory organ in the cnidarian Nematostella vectensis. Development 2022; 149:dev200833. [PMID: 36000354 PMCID: PMC9481973 DOI: 10.1242/dev.200833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Cnidarians are the only non-bilaterian group to evolve ciliated larvae with an apical sensory organ, which is possibly homologous to the apical organs of bilaterian primary larvae. Here, we generated transcriptomes of the apical tissue in the sea anemone Nematostella vectensis and showed that it has a unique neuronal signature. By integrating previously published larval single-cell data with our apical transcriptomes, we discovered that the apical domain comprises a minimum of six distinct cell types. We show that the apical organ is compartmentalised into apical tuft cells (spot) and larval-specific neurons (ring). Finally, we identify ISX-like (NVE14554), a PRD class homeobox gene specifically expressed in apical tuft cells, as an FGF signalling-dependent transcription factor responsible for the formation of the apical tuft domain via repression of the neural ring fate in apical cells. With this study, we contribute a comparison of the molecular anatomy of apical organs, which must be carried out across phyla to determine whether this crucial larval structure evolved once or multiple times.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Callum Teeling
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
- Doctoral School of Ecology and Evolution, University of Vienna, Vienna, 1030, Austria
| | - Siffreya Pedersen
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Nathan Chrismas
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| |
Collapse
|
14
|
Chrysostomou E, Flici H, Gornik SG, Salinas-Saavedra M, Gahan JM, McMahon ET, Thompson K, Hanley S, Kilcoyne M, Schnitzler CE, Gonzalez P, Baxevanis AD, Frank U. A cellular and molecular analysis of SoxB-driven neurogenesis in a cnidarian. eLife 2022; 11:78793. [PMID: 35608899 PMCID: PMC9173746 DOI: 10.7554/elife.78793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
Neurogenesis is the generation of neurons from stem cells, a process that is regulated by SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongicarpus, a member of the early-branching phylum Cnidaria, to provide insight into this question. Using a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and in vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequentially at least in some cases. Stem cells expressing Piwi1 and Soxb1, which have broad developmental potential, become neural progenitors that express Soxb2 before differentiating into mature neural cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear whether migration per se or exposure to different microenvironments is the main driver of their fate determination. Our data constitute a rich resource for studies aiming at addressing this question, which is at the heart of understanding the origin and development of animal nervous systems.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Hakima Flici
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Miguel Salinas-Saavedra
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - James M Gahan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Emma T McMahon
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, National University of Ireland, GalwayGalwayIreland
| | - Shirley Hanley
- National Centre for Biomedical Engineering Science, National University of Ireland, GalwayGalwayIreland
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of FloridaSt. Augustine, FloridaUnited States,Department of Biology, University of FloridaGainesville, FloridaUnited States
| | - Paul Gonzalez
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of HealthBethesda, MarylandUnited States
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of HealthBethesda, MarylandUnited States
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| |
Collapse
|
15
|
Traylor-Knowles N, Emery M. Analysis of Spatial Gene Expression at the Cellular Level in Stony Corals. Methods Mol Biol 2022; 2450:359-371. [PMID: 35359318 PMCID: PMC9761507 DOI: 10.1007/978-1-0716-2172-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scleractinians, or stony corals, are colonial animals that possess a high regenerative capacity and a highly diverse innate immune system. As such they present the opportunity to investigate the interconnection between regeneration and immunity in a colonial animal. Understanding the relationship between regeneration and immunity in stony corals is of further interest as it has major implications for coral reef health. One method for understanding the role of innate immunity in scleractinian regeneration is in situ hybridization using RNA probes. Here we describe a protocol for in situ hybridization in adult stony corals using a digoxigenin (DIG)-labeled RNA antisense probe which can be utilized to investigate the spatial expression of immune factors during regeneration.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Madison Emery
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
16
|
The cyclic dinucleotide 2'3'-cGAMP induces a broad antibacterial and antiviral response in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2021; 118:2109022118. [PMID: 34903650 PMCID: PMC8713801 DOI: 10.1073/pnas.2109022118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
In mammals, cyclic dinucleotides (CDNs) bind and activate STING to initiate an antiviral type I interferon response. CDNs and STING originated in bacteria and are present in most animals. By contrast, interferons are believed to have emerged in vertebrates; thus, the function of CDN signaling in invertebrates is unclear. Here, we use a CDN, 2'3' cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP), to activate immune responses in a model cnidarian invertebrate, the starlet sea anemone Nematostella vectensis Using RNA sequencing, we found that 2'3'-cGAMP induces robust transcription of both antiviral and antibacterial genes in N. vectensis Many of the antiviral genes induced by 2'3'-cGAMP are homologs of vertebrate interferon-stimulated genes, implying that the interferon response predates the evolution of interferons. Knockdown experiments identified a role for NF-κB in specifically inducing antibacterial genes downstream of 2'3'-cGAMP. Some of these putative antibacterial genes were also found to be induced during Pseudomonas aeruginosa infection. We characterized the protein product of one of the putative antibacterial genes, the N. vectensis homolog of Dae4, and found that it has conserved antibacterial activity. This work suggests that a broad antibacterial and antiviral transcriptional response is an evolutionarily ancestral output of 2'3'-cGAMP signaling in animals.
Collapse
|
17
|
Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells 2021; 10:cells10102692. [PMID: 34685672 PMCID: PMC8534814 DOI: 10.3390/cells10102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.
Collapse
|
18
|
Interleukin-17A pathway target genes are upregulated in Equus caballus supporting limb laminitis. PLoS One 2020; 15:e0232920. [PMID: 33301461 PMCID: PMC7728170 DOI: 10.1371/journal.pone.0232920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Supporting Limb Laminitis (SLL) is a painful and crippling secondary complication of orthopedic injuries and infections in horses, often resulting in euthanasia. SLL causes structural alterations and inflammation of the interdigitating layers of specialized epidermal and dermal tissues, the lamellae, which suspend the equine distal phalanx from the hoof capsule. Activation of the interleukin-17A (IL-17A)-dependent inflammatory pathway is an epidermal stress response that contributes to physiologic cutaneous wound healing as well as pathological skin conditions. As a first test of the hypothesis that hoof lamellae of horses diagnosed with SLL also respond to stress by activating the IL-17A pathway, the expression of IL-17A, IL-17 receptor subunit A and 11 IL-17A effector genes was measured by RT-PCR or qPCR. Lamellar tissue was isolated from Thoroughbreds euthanized due to naturally occurring SLL and in age and breed matched non-laminitic controls. By RT-PCR, the IL-17 Receptor A subunit was expressed in both non-laminitic and laminitic tissues, while IL-17A was primarily detectable in laminitic tissues. IL-17A target gene expression was undetectable in non-laminitic samples with the exception of weak detection of DEFB4B, S100A9 and PTSG2. In contrast, all target genes examined, except CCL20, were expressed by some or all laminitic samples. By qPCR, severe acute (n = 7) SLL expressed ~15–100 fold higher levels of DEFB4B and S100A9 genes compared to non-laminitic controls (n = 8). DEFB4B was also upregulated in developmental/subclinical (n = 8) and moderate acute (n = 7) by ~ 5-fold, and in severe chronic (n = 5) by ~15–200 fold. In situ hybridization (DEFB4) and immunofluorescence (calprotectin, a dimer of S100A9/S100A8 proteins) demonstrated expression in keratinocytes, primarily in suprabasal cell layers, from SLL samples. These data demonstrate upregulation of a cohort of IL-17A target genes in SLL and support the hypothesis that similarities in the response to stresses and damage exist between equine and human epidermal tissues.
Collapse
|
19
|
Ectopic activation of GABA B receptors inhibits neurogenesis and metamorphosis in the cnidarian Nematostella vectensis. Nat Ecol Evol 2020; 5:111-121. [PMID: 33168995 DOI: 10.1038/s41559-020-01338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 09/29/2020] [Indexed: 01/22/2023]
Abstract
The metabotropic gamma-aminobutyric acid B receptor (GABABR) is a G protein-coupled receptor that mediates neuronal inhibition by the neurotransmitter GABA. While GABABR-mediated signalling has been suggested to play central roles in neuronal differentiation and proliferation across evolution, it has mostly been studied in the mammalian brain. Here, we demonstrate that ectopic activation of GABABR signalling affects neurogenic functions in the sea anemone Nematostella vectensis. We identified four putative Nematostella GABABR homologues presenting conserved three-dimensional extracellular domains and residues needed for binding GABA and the GABABR agonist baclofen. Moreover, sustained activation of GABABR signalling reversibly arrests the critical metamorphosis transition from planktonic larva to sessile polyp life stage. To understand the processes that underlie the developmental arrest, we combined transcriptomic and spatial analyses of control and baclofen-treated larvae. Our findings reveal that the cnidarian neurogenic programme is arrested following the addition of baclofen to developing larvae. Specifically, neuron development and neurite extension were inhibited, resulting in an underdeveloped and less organized nervous system and downregulation of proneural factors including NvSoxB(2), NvNeuroD1 and NvElav1. Our results thus point to an evolutionarily conserved function of GABABR in neurogenesis regulation and shed light on early cnidarian development.
Collapse
|
20
|
Ashwood LM, Norton RS, Undheim EAB, Hurwood DA, Prentis PJ. Characterising Functional Venom Profiles of Anthozoans and Medusozoans within Their Ecological Context. Mar Drugs 2020; 18:E202. [PMID: 32283847 PMCID: PMC7230708 DOI: 10.3390/md18040202] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.
Collapse
Affiliation(s)
- Lauren M. Ashwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eivind A. B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Hurwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
21
|
Faltine-Gonzalez DZ, Layden MJ. Characterization of nAChRs in Nematostella vectensis supports neuronal and non-neuronal roles in the cnidarian-bilaterian common ancestor. EvoDevo 2019; 10:27. [PMID: 31700598 PMCID: PMC6825365 DOI: 10.1186/s13227-019-0136-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/06/2019] [Indexed: 02/01/2023] Open
Abstract
Background Nicotinic and muscarinic acetylcholine receptors likely evolved in the cnidarian–bilaterian common ancestor. Both receptor families are best known for their role at chemical synapses in bilaterian animals, but they also have described roles as non-neuronal signaling receptors within the bilaterians. It is not clear when either of the functions for nicotinic or muscarinic receptors evolved. Previous studies in cnidarians suggest that acetylcholine’s neuronal role existed prior to the cnidarian–bilaterian divergence, but did not address potential non-neuronal functions. To determine the origins of neuronal and non-neuronal functions of nicotinic acetylcholine receptors, we investigated the phylogenetic position of cnidarian acetylcholine receptors, characterized the spatiotemporal expression patterns of nicotinic receptors in N. vectensis, and compared pharmacological studies in N. vectensis to the previous work in other cnidarians. Results Consistent with described activity in other cnidarians, treatment with acetylcholine-induced tentacular contractions in the cnidarian sea anemone N. vectensis. Phylogenetic analysis suggests that the N. vectensis genome encodes 26 nicotinic (nAChRs) and no muscarinic (mAChRs) acetylcholine receptors and that nAChRs independently radiated in cnidarian and bilaterian linages. The namesake nAChR agonist, nicotine, induced tentacular contractions similar to those observed with acetylcholine, and the nAChR antagonist mecamylamine suppressed tentacular contractions induced by both acetylcholine and nicotine. This indicated that tentacle contractions are in fact mediated by nAChRs. Nicotine also induced the contraction of radial muscles, which contract as part of the peristaltic waves that propagate along the oral–aboral axis of the trunk. Radial contractions and peristaltic waves were suppressed by mecamylamine. The ability of nicotine to mimic acetylcholine responses, and of mecamylamine to suppress acetylcholine and nicotine-induced contractions, supports a neuronal function for acetylcholine in cnidarians. Examination of the spatiotemporal expression of N. vectensis nAChRs (NvnAChRs) during development and in juvenile polyps identified that NvnAChRs are expressed in neurons, muscles, gonads, and large domains known to be consistent with a role in developmental patterning. These patterns are consistent with nAChRs functioning in both a neuronal and non-neuronal capacity in N. vectensis. Conclusion Our data suggest that nAChR receptors functioned at chemical synapses in N. vectensis to regulate tentacle contraction. Similar responses to acetylcholine are well documented in cnidarians, suggesting that the neuronal function represents an ancestral role for nAChRs. Expression patterns of nAChRs are consistent with both neuronal and non-neuronal roles for acetylcholine in cnidarians. Together, these observations suggest that both neuronal and non-neuronal functions for the ancestral nAChRs were present in the cnidarian–bilaterian common ancestor. Thus, both roles described in bilaterian species likely arose at or near the base of nAChR evolution.
Collapse
Affiliation(s)
| | - Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
22
|
Genomic analysis of the tryptome reveals molecular mechanisms of gland cell evolution. EvoDevo 2019; 10:23. [PMID: 31583070 PMCID: PMC6767649 DOI: 10.1186/s13227-019-0138-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background Understanding the drivers of morphological diversity is a persistent challenge in evolutionary biology. Here, we investigate functional diversification of secretory cells in the sea anemone Nematostella vectensis to understand the mechanisms promoting cellular specialization across animals. Results We demonstrate regionalized expression of gland cell subtypes in the internal ectoderm of N. vectensis and show that adult gland cell identity is acquired very early in development. A phylogenetic survey of trypsins across animals suggests that this gene family has undergone numerous expansions. We reveal unexpected diversity in trypsin protein structure and show that trypsin diversity arose through independent acquisitions of non-trypsin domains. Finally, we show that trypsin diversification in N. vectensis was effected through a combination of tandem duplication, exon shuffling, and retrotransposition. Conclusions Together, these results reveal the numerous evolutionary mechanisms that drove trypsin duplication and divergence during the morphological specialization of cell types and suggest that the secretory cell phenotype is highly adaptable as a vehicle for novel secretory products.
Collapse
|
23
|
Armstrong C, Cassimeris L, Da Silva Santos C, Micoogullari Y, Wagner B, Babasyan S, Brooks S, Galantino-Homer H. The expression of equine keratins K42 and K124 is restricted to the hoof epidermal lamellae of Equus caballus. PLoS One 2019; 14:e0219234. [PMID: 31550264 PMCID: PMC6759161 DOI: 10.1371/journal.pone.0219234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/11/2019] [Indexed: 01/30/2023] Open
Abstract
The equine hoof inner epithelium is folded into primary and secondary epidermal lamellae which increase the dermo-epidermal junction surface area of the hoof and can be affected by laminitis, a common disease of equids. Two keratin proteins (K), K42 and K124, are the most abundant keratins in the hoof lamellar tissue of Equus caballus. We hypothesize that these keratins are lamellar tissue-specific and could serve as differentiation- and disease-specific markers. Our objective was to characterize the expression of K42 and K124 in equine stratified epithelia and to generate monoclonal antibodies against K42 and K124. By RT-PCR analysis, keratin gene (KRT) KRT42 and KRT124 expression was present in lamellar tissue, but not cornea, haired skin, or hoof coronet. In situ hybridization studies showed that KRT124 localized to the suprabasal and, to a lesser extent, basal cells of the lamellae, was absent from haired skin and hoof coronet, and abruptly transitions from KRT124-negative coronet to KRT124-positive proximal lamellae. A monoclonal antibody generated against full-length recombinant equine K42 detected a lamellar keratin of the appropriate size, but also cross-reacted with other epidermal keratins. Three monoclonal antibodies generated against N- and C-terminal K124 peptides detected a band of the appropriate size in lamellar tissue and did not cross-react with proteins from haired skin, corneal limbus, hoof coronet, tongue, glabrous skin, oral mucosa, or chestnut on immunoblots. K124 localized to lamellar cells by indirect immunofluorescence. This is the first study to demonstrate the localization and expression of a hoof lamellar-specific keratin, K124, and to validate anti-K124 monoclonal antibodies.
Collapse
Affiliation(s)
- Caitlin Armstrong
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
| | - Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Claire Da Silva Santos
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Yagmur Micoogullari
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Samantha Brooks
- Department of Animal Sciences and University of Florida Genetics institute, University of Florida, Gainesville, Florida, United States of America
| | - Hannah Galantino-Homer
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
DuBuc TQ, Ryan JF, Martindale MQ. "Dorsal-Ventral" Genes Are Part of an Ancient Axial Patterning System: Evidence from Trichoplax adhaerens (Placozoa). Mol Biol Evol 2019; 36:966-973. [PMID: 30726986 PMCID: PMC6501881 DOI: 10.1093/molbev/msz025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placozoa are a morphologically simplistic group of marine animals found globally in tropical and subtropical environments. They consist of two named species, Trichoplax adhaerens and more recently Hoilungia hongkongensis, both with roughly six morphologically distinct cell types. With a sequenced genome, a limited number of cell types, and a simple flattened morphology, Trichoplax is an ideal model organism from which to explore the biology of an animal with a cellular complexity analagous to that of the earliest animals. Using a new approach for identification of gene expression patterns, this research looks at the relationship of Chordin/TgfΒ signaling and the axial patterning system of Placozoa. Our results suggest that placozoans have an oral-aboral axis similar to cnidarians and that the parahoxozoan ancestor (common ancestor of Placozoa and Cnidaria) was likely radially symmetric.
Collapse
Affiliation(s)
- Timothy Q DuBuc
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
- Kewalo Marine Laboratory and the Department of Biology, University of Hawaii, Manoa, Honolulu, HI
- Centre for Chromosome Biology, Bioscience Building, National University of Ireland Galway, Galway, Ireland
| | - Joseph F Ryan
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience and the Department of Biology, University of Florida, St. Augustine, FL
| |
Collapse
|
25
|
Strömberg SM, Östman C, Larsson AI. The cnidome and ultrastructural morphology of late planulae in
Lophelia pertusa
(Linnaeus, 1758)—With implications for settling competency. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susanna M. Strömberg
- Department of Marine Sciences, Tjärnö Marine Laboratory University of Gothenburg Strömstad Sweden
| | - Carina Östman
- Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Ann I. Larsson
- Department of Marine Sciences, Tjärnö Marine Laboratory University of Gothenburg Strömstad Sweden
| |
Collapse
|
26
|
Nathaniel Clarke D, Lowe CJ, James Nelson W. The cadherin-catenin complex is necessary for cell adhesion and embryogenesis in Nematostella vectensis. Dev Biol 2019; 447:170-181. [PMID: 30629955 PMCID: PMC6433513 DOI: 10.1016/j.ydbio.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
Abstract
The cadherin-catenin complex is a conserved, calcium-dependent cell-cell adhesion module that is necessary for normal development and the maintenance of tissue integrity in bilaterian animals. Despite longstanding evidence of a deep ancestry of calcium-dependent cell adhesion in animals, the requirement of the cadherin-catenin complex to coordinate cell-cell adhesion has not been tested directly in a non-bilaterian organism. Here, we provide the first analysis of classical cadherins and catenins in the Starlet Sea Anemone, Nematostella vectensis. Gene expression, protein localization, siRNA-mediated knockdown of α-catenin, and calcium-dependent cell aggregation assays provide evidence that a bonafide cadherin-catenin complex is present in the early embryo, and that α-catenin is required for normal embryonic development and the formation of cell-cell adhesions between cells dissociated from whole embryos. Together these results support the hypothesis that the cadherin-catenin complex was likely a complete and functional cell-cell adhesion module in the last common cnidarian-bilaterian ancestor. SUMMARY STATEMENT: Embryonic manipulations and ex vivo adhesion assays in the sea anemone, Nematostella vectensis, indicate that the necessity of the cadherin-catenin complex for mediating cell-cell adhesion is deeply conserved in animal evolution.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - Christopher J Lowe
- Department of Biology, Stanford University, Stanford CA 94305, United States.
| | - W James Nelson
- Department of Biology, Stanford University, Stanford CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford CA 94305, United States.
| |
Collapse
|
27
|
Traylor-Knowles N. Heat stress compromises epithelial integrity in the coral, Acropora hyacinthus. PeerJ 2019; 7:e6510. [PMID: 30828497 PMCID: PMC6396749 DOI: 10.7717/peerj.6510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/23/2019] [Indexed: 01/07/2023] Open
Abstract
It is well understood that heat stress causes bleaching in corals. Much work has focused on the way heat stress disrupts corals’ symbiotic relationship with endosymbiotic algal dinoflagellate, Symbiodiniaceae, a process called bleaching. However, the damage to the coral tissue that occurs during the bleaching process and, importantly, the factors that contribute to subsequent recovery, are not well understood. I hypothesize that the host tissue damage created by heat stress initiates cascades of wound healing factors that maintain epithelial integrity. These factors may be found to contribute to the coral’s potential capacity to recover. In this study, I present evidence that heat stress causes damage to the coral host tissue and that collagen is present in the gastrodermis of heat-stressed corals. I found that, during the early stages of bleaching, an important transcription factor for wound healing, Grainyhead, is expressed throughout the gastrodermis, where the cellular and tissue rearrangements occur. Lastly, using phylogenetics, I found that cnidarian Grainyhead proteins evolved three distinct groups and that evolution of this protein family likely happened within each taxonomic group. These findings have important implications for our study of coral resiliency in the face of climate change.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL, United States of America
| |
Collapse
|
28
|
Karabulut A, He S, Chen CY, McKinney SA, Gibson MC. Electroporation of short hairpin RNAs for rapid and efficient gene knockdown in the starlet sea anemone, Nematostella vectensis. Dev Biol 2019; 448:7-15. [PMID: 30641041 DOI: 10.1016/j.ydbio.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
A mechanistic understanding of evolutionary developmental biology requires the development of novel techniques for the manipulation of gene function in phylogenetically diverse organismal systems. Recently, gene-specific knockdown by microinjection of short hairpin RNA (shRNA) was applied in the sea anemone Nematostella vectensis, demonstrating that the shRNA approach can be used for efficient and robust sequence-specific knockdown of a gene of interest. However, the time- and labor-intensive process of microinjection limits access to this technique and its application in large scale experiments. To address this issue, here we present an electroporation protocol for shRNA delivery into Nematostella eggs. This method leverages the speed and simplicity of electroporation, enabling users to manipulate gene expression in hundreds of eggs or embryos within minutes. We provide a detailed description of the experimental procedure, including reagents, electroporation conditions, preparation of Nematostella eggs, and follow-up care of experimental animals. Finally, we demonstrate the knockdown of several endogenous and exogenous genes with known phenotypes and discuss the potential applications of this method.
Collapse
Affiliation(s)
- Ahmet Karabulut
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Shuonan He
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Cheng-Yi Chen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Sean A McKinney
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Dept. Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160 USA.
| |
Collapse
|
29
|
Sunagar K, Columbus-Shenkar YY, Fridrich A, Gutkovich N, Aharoni R, Moran Y. Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone. BMC Biol 2018; 16:108. [PMID: 30261880 PMCID: PMC6161364 DOI: 10.1186/s12915-018-0578-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an “explosive” organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development. However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. Results In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1—cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte-specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. Conclusions Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development, and evolution of cnidocytes. Electronic supplementary material The online version of this article (10.1186/s12915-018-0578-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel. .,Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Nadya Gutkovich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
30
|
Traylor-Knowles N. In Situ Hybridization Techniques for Paraffin-Embedded Adult Coral Samples. J Vis Exp 2018. [PMID: 30222153 DOI: 10.3791/57853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Corals are important ocean invertebrates that are critical for overall ocean health as well as human health. However, due to human impacts such as rising ocean temperatures and ocean acidification, corals are increasingly under threat. To tackle these challenges, advances in cell and molecular biology have proven to be crucial for diagnosing the health of corals. Modifying some of the techniques commonly used in human medicine could greatly improve researchers' ability to treat and save corals. To address this, a protocol for in situ hybridization used primarily in human medicine and evolutionary developmental biology has been adapted for use in adult corals under stress. The purpose of this method is to visualize the spatial expression of an RNA probe in adult coral tissue that has been embedded in paraffin and sectioned onto glass slides. This method focuses on removal of the paraffin and rehydration of the sample, pretreatment of the sample to ensure permeability of the sample, pre-hybridization incubation, hybridization of the RNA probe, and visualization of the RNA probe. This is a powerful method when using non-model organisms to discover where specific genes are expressed, and the protocol can be easily adapted for other non-model organisms. However, the method is limited in that it is primarily qualitative, because expression intensity can vary depending on the amount of time used during the visualization step and the concentration of the probe. Furthermore, patience is required, as this protocol can take up to 5 days (and in many cases, longer) depending on the probe being used. Finally, non-specific background staining is common, but this limitation can be overcome.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Sciences;
| |
Collapse
|
31
|
Salinas-Saavedra M, Rock AQ, Martindale MQ. Germ layer-specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm. eLife 2018; 7:e36740. [PMID: 30063005 PMCID: PMC6067901 DOI: 10.7554/elife.36740] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
In triploblastic animals, Par-proteins regulate cell-polarity and adherens junctions of both ectodermal and endodermal epithelia. But, in embryos of the diploblastic cnidarian Nematostella vectensis, Par-proteins are degraded in all cells in the bifunctional gastrodermal epithelium. Using immunohistochemistry, CRISPR/Cas9 mutagenesis, and mRNA overexpression, we describe the functional association between Par-proteins, ß-catenin, and snail transcription factor genes in N. vectensis embryos. We demonstrate that the aPKC/Par complex regulates the localization of ß-catenin in the ectoderm by stabilizing its role in cell-adhesion, and that endomesodermal epithelial cells are organized by a different cell-adhesion system than overlying ectoderm. We also show that ectopic expression of snail genes, which are expressed in mesodermal derivatives in bilaterians, is sufficient to downregulate Par-proteins and translocate ß-catenin from the junctions to the cytoplasm in ectodermal cells. These data provide molecular insight into the evolution of epithelial structure and distinct cell behaviors in metazoan embryos.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| | - Amber Q Rock
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
| | - Mark Q Martindale
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| |
Collapse
|
32
|
Sebé-Pedrós A, Saudemont B, Chomsky E, Plessier F, Mailhé MP, Renno J, Loe-Mie Y, Lifshitz A, Mukamel Z, Schmutz S, Novault S, Steinmetz PRH, Spitz F, Tanay A, Marlow H. Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq. Cell 2018; 173:1520-1534.e20. [PMID: 29856957 DOI: 10.1016/j.cell.2018.05.019] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/22/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023]
Abstract
The emergence and diversification of cell types is a leading factor in animal evolution. So far, systematic characterization of the gene regulatory programs associated with cell type specificity was limited to few cell types and few species. Here, we perform whole-organism single-cell transcriptomics to map adult and larval cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal with complex tissue-level body-plan organization. We uncover eight broad cell classes in Nematostella, including neurons, cnidocytes, and digestive cells. Each class comprises different subtypes defined by the expression of multiple specific markers. In particular, we characterize a surprisingly diverse repertoire of neurons, which comparative analysis suggests are the result of lineage-specific diversification. By integrating transcription factor expression, chromatin profiling, and sequence motif analysis, we identify the regulatory codes that underlie Nematostella cell-specific expression. Our study reveals cnidarian cell type complexity and provides insights into the evolution of animal cell-specific genomic regulation.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, UMR3738, 25 Rue du Dr Roux, 75015 Paris, France
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Flora Plessier
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, UMR3738, 25 Rue du Dr Roux, 75015 Paris, France; Département de Biologie, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Marie-Pierre Mailhé
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, UMR3738, 25 Rue du Dr Roux, 75015 Paris, France
| | - Justine Renno
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, UMR3738, 25 Rue du Dr Roux, 75015 Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, UMR3738, 25 Rue du Dr Roux, 75015 Paris, France
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zohar Mukamel
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sandrine Schmutz
- Cytometry & Biomarkers UtechS, Cytometry Platform, Institut Pasteur, 75015 Paris, France
| | - Sophie Novault
- Cytometry & Biomarkers UtechS, Cytometry Platform, Institut Pasteur, 75015 Paris, France
| | - Patrick R H Steinmetz
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5006, Norway
| | - François Spitz
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, UMR3738, 25 Rue du Dr Roux, 75015 Paris, France
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Heather Marlow
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS, UMR3738, 25 Rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
33
|
Columbus-Shenkar YY, Sachkova MY, Macrander J, Fridrich A, Modepalli V, Reitzel AM, Sunagar K, Moran Y. Dynamics of venom composition across a complex life cycle. eLife 2018; 7:35014. [PMID: 29424690 PMCID: PMC5832418 DOI: 10.7554/elife.35014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022] Open
Abstract
Little is known about venom in young developmental stages of animals. The appearance of toxins and stinging cells during early embryonic stages in the sea anemone Nematostella vectensis suggests that venom is already expressed in eggs and larvae of this species. Here, we harness transcriptomic, biochemical and transgenic tools to study venom production dynamics in Nematostella. We find that venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings can be explained by the vastly different interspecific interactions of each life stage, as individuals develop from a miniature non-feeding mobile planula to a larger sessile polyp that predates on other animals and interact differently with predators. Indeed, behavioral assays involving prey, predators and Nematostella are consistent with this hypothesis. Further, the results of this work suggest a much wider and dynamic venom landscape than initially appreciated in animals with a complex life cycle. Some animals produce a mixture of toxins, commonly known as venom, to protect themselves from predators and catch prey. Cnidarians – a group of animals that includes sea anemones, jellyfish and corals – have stinging cells on their tentacles that inject venom into the animals they touch. The sea anemone Nematostella goes through a complex life cycle. Nematostella start out life in eggs. They then become swimming larvae, barely visible to the naked eye, that do not feed. Adult Nematostella are cylindrical, stationary ‘polyps’ that are several inches long. They use tentacles at the end of their tube-like bodies to capture small aquatic animals. Sea anemones therefore change how they interact with predators and prey at different stages of their life. Most research on venomous animals focuses on adults, so until now it was not clear whether the venom changes along their maturation. Columbus-Shenkar, Sachkova et al. genetically modified Nematostella so that the cells that produce distinct venom components were labeled with different fluorescent markers. The composition of the venom could then be linked to how the anemones interacted with their fish and shrimp predators at each life stage. The results of the experiments showed that Nematostella mothers pass on a toxin to their eggs that makes them unpalatable to predators. Larvae then produce high levels of other toxins that allow them to incapacitate or kill potential predators. Adults have a different mix of toxins that likely help them capture prey. Venom is often studied because the compounds it contains have the potential to be developed into new drugs. The jellyfish and coral relatives of Nematostella may also produce different venoms at different life stages. This means that there are likely to be many toxins that we have not yet identified in these animals. As some jellyfish venoms are very active on humans and reef corals have a pivotal role in ocean ecology, further research into the venoms produced at different life stages could help us to understand and preserve marine ecosystems, as well as having medical benefits.
Collapse
Affiliation(s)
- Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, United States
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, United States
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
34
|
Williams LM, Fuess LE, Brennan JJ, Mansfield KM, Salas-Rodriguez E, Welsh J, Awtry J, Banic S, Chacko C, Chezian A, Dowers D, Estrada F, Hsieh YH, Kang J, Li W, Malchiodi Z, Malinowski J, Matuszak S, McTigue T, Mueller D, Nguyen B, Nguyen M, Nguyen P, Nguyen S, Njoku N, Patel K, Pellegrini W, Pliakas T, Qadir D, Ryan E, Schiffer A, Thiel A, Yunes SA, Spilios KE, Pinzón C JH, Mydlarz LD, Gilmore TD. A conserved Toll-like receptor-to-NF-κB signaling pathway in the endangered coral Orbicella faveolata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:128-136. [PMID: 29080785 DOI: 10.1016/j.dci.2017.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Herein, we characterize the Toll-like receptor (TLR)-to-NF-κB innate immune pathway of Orbicella faveolata (Of), which is an ecologically important, disease-susceptible, reef-building coral. As compared to human TLRs, the intracellular TIR domain of Of-TLR is most similar to TLR4, and it can interact in vitro with the human TLR4 adapter MYD88. Treatment of O. faveolata tissue with lipopolysaccharide, a ligand for mammalian TLR4, resulted in gene expression changes consistent with NF-κB pathway mobilization. Biochemical and cell-based assays revealed that Of-NF-κB resembles the mammalian non-canonical NF-κB protein p100 in that C-terminal truncation results in translocation of Of-NF-κB to the nucleus and increases its DNA-binding and transcriptional activation activities. Moreover, human IκB kinase (IKK) and Of-IKK can both phosphorylate conserved residues in Of-NF-κB in vitro and induce C-terminal processing of Of-NF-κB in vivo. These results are the first characterization of TLR-to-NF-κB signaling proteins in an endangered coral, and suggest that these corals have conserved innate immune pathways.
Collapse
Affiliation(s)
- Leah M Williams
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Lauren E Fuess
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | - Julianne Welsh
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jake Awtry
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sarah Banic
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Cecilia Chacko
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Aarthia Chezian
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Donovan Dowers
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Felicia Estrada
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Yu-Hsuan Hsieh
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Jiawen Kang
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Wanwen Li
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Zoe Malchiodi
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - John Malinowski
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sean Matuszak
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Thomas McTigue
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - David Mueller
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Brian Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Michelle Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Phuong Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sinead Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Ndidi Njoku
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Khusbu Patel
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - William Pellegrini
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Tessa Pliakas
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Deena Qadir
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Emma Ryan
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Alex Schiffer
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Amber Thiel
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sarah A Yunes
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Kathryn E Spilios
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Jorge H Pinzón C
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Intraspecific variation in oxidative stress tolerance in a model cnidarian: Differences in peroxide sensitivity between and within populations of Nematostella vectensis. PLoS One 2018; 13:e0188265. [PMID: 29373572 PMCID: PMC5786289 DOI: 10.1371/journal.pone.0188265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/05/2017] [Indexed: 12/27/2022] Open
Abstract
Nematostella vectensis is a member of the phylum Cnidaria, a lineage that includes anemones, corals, hydras, and jellyfishes. This estuarine anemone is an excellent model system for investigating the evolution of stress tolerance because it is easy to collect in its natural habitat and to culture in the laboratory, and it has a sequenced genome. Additionally, there is evidence of local adaptation to environmental stress in different N. vectensis populations, and abundant protein-coding polymorphisms have been identified, including polymorphisms in proteins that are implicated in stress responses. N. vectensis can tolerate a wide range of environmental parameters, and has recently been shown to have substantial intraspecific variation in temperature preference. We investigated whether different clonal lines of anemones also exhibit differential tolerance to oxidative stress. N. vectensis populations are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism and by other environmental factors. Fifteen clonal lines of N. vectensis collected from four different estuaries were exposed to hydrogen peroxide. Pronounced differences in survival and regeneration were apparent between clonal lines collected from Meadowlands, NJ, Baruch, SC, and Kingsport, NS, as well as among 12 clonal lines collected from a single Cape Cod marsh. To our knowledge, this is the first example of intraspecific variability in oxidative stress resistance in cnidarians or in any marine animal. As oxidative stress often accompanies heat stress in marine organisms, resistance to oxidative stress could strongly influence survival in warming oceans. For example, while elevated temperatures trigger bleaching in corals, oxidative stress is thought to be the proximal trigger of bleaching at the cellular level.
Collapse
|
36
|
Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci U S A 2017; 114:E10122-E10131. [PMID: 29109290 PMCID: PMC5703304 DOI: 10.1073/pnas.1711530114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR-to-NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR-expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.
Collapse
|
37
|
Havrilak JA, Faltine-Gonzalez D, Wen Y, Fodera D, Simpson AC, Magie CR, Layden MJ. Characterization of NvLWamide-like neurons reveals stereotypy in Nematostella nerve net development. Dev Biol 2017; 431:336-346. [DOI: 10.1016/j.ydbio.2017.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/25/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
|
38
|
Babonis LS, Martindale MQ. PaxA, but not PaxC, is required for cnidocyte development in the sea anemone Nematostella vectensis. EvoDevo 2017; 8:14. [PMID: 28878874 PMCID: PMC5584322 DOI: 10.1186/s13227-017-0077-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Background Pax genes are a family of conserved transcription factors that regulate many aspects of developmental morphogenesis, notably the development of ectodermal sensory structures including eyes. Nematostella vectensis, the starlet sea anemone, has numerous Pax orthologs, many of which are expressed early during embryogenesis. The function of Pax genes in this eyeless cnidarian is unknown. Results Here, we show that PaxA, but not PaxC, plays a critical role in the development of cnidocytes in N. vectensis. Knockdown of PaxA results in a loss of developing cnidocytes and downregulation of numerous cnidocyte-specific genes, including a variant of the transcription factor Mef2. We also demonstrate that the co-expression of Mef2 in a subset of the PaxA-expressing cells is associated with the development with a second lineage of cnidocytes and show that knockdown of the neural progenitor gene SoxB2 results in downregulation of expression of PaxA, Mef2, and several cnidocyte-specific genes. Because PaxA is not co-expressed with SoxB2 at any time during cnidocyte development, we propose a simple model for cnidogenesis whereby a SoxB2-expressing progenitor cell population undergoes division to give rise to PaxA-expressing cnidocytes, some of which also express Mef2. Discussion The role of PaxA in cnidocyte development among hydrozoans has not been studied, but the conserved role of SoxB2 in regulating the fate of a progenitor cell that gives rise to neurons and cnidocytes in Nematostella and Hydractinia echinata suggests that this SoxB2/PaxA pathway may well be conserved across cnidarians.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080 USA.,Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
39
|
Servetnick MD, Steinworth B, Babonis LS, Simmons D, Salinas-Saavedra M, Martindale MQ. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning. Development 2017; 144:2951-2960. [PMID: 28705897 PMCID: PMC5592810 DOI: 10.1242/dev.145839] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensis Nvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis.
Collapse
Affiliation(s)
- Marc D Servetnick
- Division of Biological Sciences, University of Washington Bothell, Bothell, WA 98011, USA
| | - Bailey Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - David Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Miguel Salinas-Saavedra
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
40
|
Traylor-Knowles N, Rose NH, Palumbi SR. The cell specificity of gene expression in the response to heat stress in corals. ACTA ACUST UNITED AC 2017; 220:1837-1845. [PMID: 28254881 DOI: 10.1242/jeb.155275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Previous transcriptional studies in heat-stressed corals have shown that many genes are responsive to generalized heat stress whereas the expression patterns of specific gene networks after heat stress show strong correlations with variation in bleaching outcomes. However, where these specific genes are expressed is unknown. In this study, we employed in situ hybridization to identify patterns of spatial gene expression of genes previously predicted to be involved in general stress response and bleaching. We found that tumor necrosis factor receptors (TNFRs), known to be strong responders to heat stress, were not expressed in gastrodermal symbiont-containing cells but were widely expressed in specific cells of the epidermal layer. The transcription factors AP-1 and FosB, implicated as early signals of heat stress, were widely expressed throughout the oral gastrodermis and epidermis. By contrast, a G protein-coupled receptor gene (GPCR) and a fructose bisphosphate aldolase C gene (aldolase), previously implicated in bleaching, were expressed in symbiont-containing gastrodermal cells and in the epidermal tissue. Finally, chordin-like/kielin (chordin-like), a gene highly correlated to bleaching, was expressed solely in the oral gastrodermis. From this study, we confirm that heat-responsive genes occur widely in coral tissues outside of symbiont-containing cells. Joint information about expression patterns in response to heat and cell specificity will allow greater dissection of the regulatory pathways and specific cell reactions that lead to coral bleaching.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA 93950, USA
| | - Noah H Rose
- Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA 93950, USA
| | - Stephen R Palumbi
- Hopkins Marine Station, Stanford University, 120 Oceanview Blvd, Pacific Grove, CA 93950, USA
| |
Collapse
|
41
|
In vitro cultures of ectodermal monolayers from the model sea anemone Nematostella vectensis. Cell Tissue Res 2016; 366:693-705. [PMID: 27623804 DOI: 10.1007/s00441-016-2495-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
We report here a novel approach for the extraction, isolation and culturing of intact ectodermal tissue layers from a model marine invertebrate, the sea anemone Nematostella vectensis. A methodology is described in which a brief exposure of the animal to the mucolytic agent N-acetyl-L-cysteine (NAC) solution triggers the dislodging of the ectodermis from its underlying basement membrane and mesoglea. These extracted fragments of cell sheets adherent to culture-dish substrates, initially form 2D monolayers that are transformed within 24 h post-isolation into 3D structures. These ectodermal tissues were sustained in vitro for several months, retaining their 3D structure while continuously releasing cells into the surrounding media. Cultures were then used for cell type characterizations and, additionally, the underlying organization of actin filaments in the 3D structures are demonstrated. Incorporation of BrdU and immunohistochemical labeling using p-histone H3 primary antibody were performed to compare mitotic activities of ectodermal cells originating from intact and from in vivo regenerating animals. Results revealed no change in mitotic activities at 2 h after bisection and a 1.67-, 1.71- and 3.74-fold increase over 24, 48 and 72 h of regeneration, respectively, depicting a significant correlation coefficient (p < 0.05; R 2 = 0.74). A significant difference was found only between the control and 3-day regenerations (p = 0.016). Cell proliferation was demonstrated in the 3D ectodermis after 6 culturing days. Moreover, monolayers that were subjected to Ca++/Mg++ free medium for the first 2 h after isolation and then replaced by standard medium, showed, at 6 days of culturing, profuse appearance of positive p-histone H3-labeled nuclei in the 3D tissues. Cytochalasin administered throughout the culturing period abolished all p-histone H3 labeling. This study thus depicts novel in vitro tissue culturing of ectodermal layers from a model marine invertebrate, demonstrating the ease with which experiments can be performed and cellular and molecular pathways can be revealed, thus opening studies on 2D tissue organizations and morphogenesis as well as the roles of cellular components in the formation of tissues in this organism.
Collapse
|
42
|
Jacquiod S, Stenbæk J, Santos SS, Winding A, Sørensen SJ, Priemé A. Metagenomes provide valuable comparative information on soil microeukaryotes. Res Microbiol 2016; 167:436-50. [DOI: 10.1016/j.resmic.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 02/02/2023]
|
43
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
44
|
Li X, Martinson AS, Layden MJ, Diatta FH, Sberna AP, Simmons DK, Martindale MQ, Jegla TJ. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. ACTA ACUST UNITED AC 2015; 218:526-36. [PMID: 25696816 DOI: 10.1242/jeb.110080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexandra S Martinson
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Layden
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Fortunay H Diatta
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Anna P Sberna
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - David K Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Timothy J Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
45
|
Levitan S, Sher N, Brekhman V, Ziv T, Lubzens E, Lotan T. The making of an embryo in a basal metazoan: Proteomic analysis in the sea anemoneNematostella vectensis. Proteomics 2015; 15:4096-104. [DOI: 10.1002/pmic.201500255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/25/2015] [Accepted: 09/09/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Shimrit Levitan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Noa Sher
- Bioinformatics Service Unit; University of Haifa; Haifa Israel
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Tamar Ziv
- Faculty of Biology; Technion - Israel Institute of Technology; Haifa Israel
| | - Esther Lubzens
- Faculty of Biology; Technion - Israel Institute of Technology; Haifa Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
46
|
Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies. PLoS Genet 2015; 11:e1005344. [PMID: 26131556 PMCID: PMC4488434 DOI: 10.1371/journal.pgen.1005344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023] Open
Abstract
Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes. Genome sequencing projects have identified large numbers of genes that encode proteins of unknown function. Many of these genes show strong evolutionary conservation, predicting important and well-conserved functions. A fraction of these show strong conservation of core domains but dynamic changes in other domains, predicting both conserved and lineage-dependent functions. Here we identify neurological functions associated with one such gene identified by a forward genetic screen in mice. We use recently developed genome editing tools both to confirm the mouse studies and to test comparative functions in a model insect, the fruit fly Drosophila melanogaster. Each of these species has a single homolog of this gene family, but differ by inclusion of a ras-association (RA) domain present in most invertebrate species but missing in mammals. Null mutations in both mice and flies produce neurological phenotypes, but while the mouse phenotypes are comparatively mild (vestibular deficits, mild tremor, hyperactivity, mild circadian phenotypes and abnormal fear learning–but normal viability and breeding), null flies rarely survive to adulthood and surviving flies have severe locomotor deficits. Interestingly, heterozygous flies have significant sleep-related phenotypes. Together, our results provide a detailed first look at comparative function for a gene lineage with an unusual evolutionary history.
Collapse
|
47
|
Salinas-Saavedra M, Stephenson TQ, Dunn CW, Martindale MQ. Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. EvoDevo 2015; 6:20. [PMID: 26101582 PMCID: PMC4476184 DOI: 10.1186/s13227-015-0014-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The evolutionary origins of cell polarity in metazoan embryos are unclear. In most bilaterian animals, embryonic and cell polarity are set up during embryogenesis with the same molecules being utilized to regulate tissue polarity at different life stages. Atypical protein kinase C (aPKC), lethal giant larvae (Lgl), and Partitioning-defective (Par) proteins are conserved components of cellular polarization, and their role in establishing embryonic asymmetry and tissue polarity have been widely studied in model bilaterian groups. However, the deployment and role of these proteins in animals outside Bilateria has not been studied. We address this by characterizing the localization of different components of the Par system during early development of the sea anemone Nematostella vectensis, a member of the clade Cnidaria, the sister group to bilaterian animals. Results Immunostaining using specific N. vectensis antibodies and the overexpression of mRNA-reporter constructs show that components of the N. vectensis Par system (NvPar-1, NvPar-3, NvPar-6, NvaPKC, and NvLgl) distribute throughout the microtubule cytoskeleton of eggs and early embryos without clear polarization along any embryonic axis. However, they become asymmetrically distributed at later stages, when the embryo forms an ectodermal epithelial layer. NvLgl and NvPar-1 localize in the basolateral cortex, and NvaPKC, NvPar-6, and NvPar-3 at the apical zone of the cell in a manner seen in bilaterian animals. Conclusions The cnidarian N. vectensis exhibits clear polarity at all stages of early embryonic development, which appears to be established independent of the Par system reported in many bilaterian embryos. However, in N. vectensis, using multiple immunohistochemical and fluorescently labeled markers in vivo, components of this system are deployed to organize epithelial cell polarity at later stages of development. This suggests that Par system proteins were co-opted to organize early embryonic cell polarity at the base of the Bilateria and that, therefore, different molecular mechanisms operate in early cnidarian embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0014-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Thomas Q Stephenson
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| |
Collapse
|
48
|
Traylor-Knowles NG, Kane EG, Sombatsaphay V, Finnerty JR, Reitzel AM. Sex-specific and developmental expression of Dmrt genes in the starlet sea anemone, Nematostella vectensis. EvoDevo 2015; 6:13. [PMID: 25984291 PMCID: PMC4433094 DOI: 10.1186/s13227-015-0013-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background The molecular mechanisms underlying sex determination and differentiation in animals are incredibly diverse. The Dmrt (doublesex and mab-3 related transcription factor) gene family is an evolutionary ancient group of transcription factors dating to the ancestor of metazoans that are, in part, involved in sex determination and differentiation in numerous bilaterian animals and thus represents a potentially conserved mechanism for differentiating males and females dating to the protostome-deuterostome ancestor. Recently, the diversity of this gene family throughout animals has been described, but the expression and potential function for Dmrt genes is not well understood outside the bilaterians. Results Here, we report sex- and developmental-specific expression of all 11 Dmrts in the starlet sea anemone Nematostella vectensis. Nine out of the eleven Dmrts showed significant differences in developmental expression, with the highest expression typically in the adult stage and, in some cases, with little or no expression measured during embryogenesis. When expression was compared in females and males, seven of the eleven Dmrt genes had significant differences in expression with higher expression in males than in females for six of the genes. Lastly, expressions of two Dmrt genes with differential expression in each sex are located in the mesenteries and into the pharynx in polyps. Conclusions Our results show that the phylogenetic diversity of Dmrt genes in N. vectensis is matched by an equally diverse pattern of expression during development and in each sex. This dynamic expression suggests multiple functions for Dmrt genes likely present in early diverging metazoans. Detailed functional analyses of individual genes will inform hypotheses regarding the antiquity of function for these transcription factors. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0013-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikki G Traylor-Knowles
- Hopkins Marine Station, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA 93950 USA
| | - Eric G Kane
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - Vanna Sombatsaphay
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215 USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 USA
| |
Collapse
|
49
|
Passamaneck YJ, Hejnol A, Martindale MQ. Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa. EvoDevo 2015; 6:10. [PMID: 25897375 PMCID: PMC4404124 DOI: 10.1186/s13227-015-0004-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Brachiopods undergo radial cleavage, which is distinct from the stereotyped development of closely related spiralian taxa. The mesoderm has been inferred to derive from the archenteron walls following gastrulation, and the primary mesoderm derivative in the larva is a complex musculature. To investigate the specification and differentiation of the mesoderm in the articulate brachiopod Terebratalia transversa, we have identified orthologs of genes involved in mesoderm development in other taxa and investigated their spatial and temporal expression during the embryonic and larval development of T. transversa. Results Orthologs of 17 developmental regulatory genes with roles in the development of the mesoderm in other bilaterian animals were found to be expressed in the developing mesoderm of T. transversa. Five genes, Tt.twist, Tt.GATA456, Tt.dachshund, Tt.mPrx, and Tt.NK1, were found to have expression throughout the archenteron wall at the radial gastrula stage, shortly after the initiation of gastrulation. Three additional genes, Tt.Pax1/9, Tt.MyoD, and Tt.Six1/2, showed expression at this stage in only a portion of the archenteron wall. Tt.eya, Tt.FoxC, Tt.FoxF, Tt.Mox, Tt.paraxis, Tt.Limpet, and Tt.Mef2 all showed initial mesodermal expression during later gastrula or early larval stages. At the late larval stage, Tt.dachshund, Tt.Limpet, and Tt.Mef2 showed expression in nearly all mesoderm cells, while all other genes were localized to specific regions of the mesoderm. Tt.FoxD and Tt.noggin both showed expression in the ventral mesoderm at the larval stages, with gastrula expression patterns in the archenteron roof and blastopore lip, respectively. Conclusions Expression analyses support conserved roles for developmental regulators in the specification and differentiation of the mesoderm during the development of T. transversa. Expression of multiple mesodermal factors in the archenteron wall during gastrulation supports previous morphological observations that this region gives rise to larval mesoderm. Localized expression domains during gastrulation and larval development evidence early regionalization of the mesoderm and provide a basis for hypotheses regarding the molecular regulation underlying the complex system of musculature observed in the larva. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813 USA ; The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate, 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| |
Collapse
|
50
|
Layden MJ, Martindale MQ. Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. EvoDevo 2014; 5:30. [PMID: 25705370 PMCID: PMC4335385 DOI: 10.1186/2041-9139-5-30] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/12/2014] [Indexed: 01/22/2023] Open
Abstract
Background Cellular differentiation is a critical process during development of multicellular animals that must be tightly controlled in order to avoid precocious differentiation or failed generation of differentiated cell types. Research in flies, vertebrates, and nematodes has led to the identification of a conserved role for Notch signaling as a mechanism to regulate cellular differentiation regardless of tissue/cell type. Notch signaling can occur through a canonical pathway that results in the activation of hes gene expression by a complex consisting of the Notch intracellular domain, SuH, and the Mastermind co-activator. Alternatively, Notch signaling can occur via a non-canonical mechanism that does not require SuH or activation of hes gene expression. Regardless of which mechanism is being used, high Notch activity generally inhibits further differentiation, while low Notch activity promotes differentiation. Flies, vertebrates, and nematodes are all bilaterians, and it is therefore unclear if Notch regulation of differentiation is a bilaterian innovation, or if it represents a more ancient mechanism in animals. Results To reconstruct the ancestral function of Notch signaling we investigate Notch function in a non-bilaterian animal, the sea anemone Nematostella vectensis (Cnidaria). Morpholino or pharmacological knockdown of Nvnotch causes increased expression of the neural differentiation gene NvashA. Conversely, overactivation of Notch activity resulting from overexpression of the Nvnotch intracellular domain or by overexpression of the Notch ligand Nvdelta suppresses NvashA. We also knocked down or overactivated components of the canonical Notch signaling pathway. We disrupted NvsuH with morpholino or by overexpressing a dominant negative NvsuH construct. We saw no change in expression levels for Nvhes genes or NvashA. Overexpression of Nvhes genes did not alter NvashA expression levels. Lastly, we tested additional markers associated with neuronal differentiation and observed that non-canonical Notch signaling broadly suppresses neural differentiation in Nematostella. Conclusions We conclude that one ancestral role for Notch in metazoans was to regulate neural differentiation. Remarkably, we found no evidence for a functional canonical Notch pathway during Nematostella embryogenesis, suggesting that the non-canonical hes-independent Notch signaling mechanism may represent an ancestral Notch signaling pathway.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|