1
|
Kragelj J, Ghosh R, Xiao Y, Dumarieh R, Lagasca D, Krishna S, Frederick KK. Spatially resolved DNP-assisted NMR illuminates the conformational ensemble of α-synuclein in intact viable cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.24.563877. [PMID: 37961511 PMCID: PMC10634803 DOI: 10.1101/2023.10.24.563877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The protein α-syn adopts a wide variety of conformations including an intrinsically disordered monomeric form and an α-helical rich membrane-associated form that is thought to play an important role in cellular membrane processes. However, despite the high affinity of α-syn for membranes, evidence that the α-helical form is adopted inside cells has been indirect. DNP-assisted solid state NMR on frozen cellular samples can report on protein conformations inside cells. Moreover, by controlling the distribution of the DNP polarization agent throughout the cellular biomass, such experiments can provide quantitative information upon the entire structural ensemble or provide information about spatially resolved sub-populations. Using DNP-assisted magic angle spinning (MAS) NMR we establish that purified α-syn in the membrane-associated and intrinsically disordered forms have distinguishable spectra. We then introduced isotopically labeled monomeric α-syn into cells. When the DNP polarization agent is dispersed homogenously throughout the cell, we found that a minority of the α-syn inside cells adopted a highly α-helical rich conformation. When the DNP polarization agent is peripherally localized, we found that the α-helical rich conformation predominates. Thus, we provide direct evidence that α-helix rich conformations of α-syn are adopted near the cellular periphery inside cells under physiological conditions. Moreover, we demonstrate how selectively altering the spatial distribution of the DNP polarization agent can be a powerful tool to observe spatially distinct structural ensembles. This approach paves the way for more nuanced investigations into the conformations that proteins adopt in different areas of the cell.
Collapse
|
2
|
Ansari S, Lagasca D, Dumarieh R, Xiao Y, Krishna S, Li Y, Frederick KK. In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612142. [PMID: 39314304 PMCID: PMC11419106 DOI: 10.1101/2024.09.09.612142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.
Collapse
Affiliation(s)
- Shoyab Ansari
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yang Li
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
3
|
Oranges M, Jash C, Golani G, Seal M, Cohen SR, Rosenhek-Goldian I, Bogdanov A, Safran S, Goldfarb D. Core-shell model of the clusters of CPEB4 isoforms preceding liquid-liquid phase separation. Biophys J 2024; 123:2604-2622. [PMID: 38943248 PMCID: PMC11365225 DOI: 10.1016/j.bpj.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Protein solutions can undergo liquid-liquid phase separation (LLPS), where a dispersed phase with a low protein concentration coexists with coacervates with a high protein concentration. We focus on the low complexity N-terminal domain of cytoplasmic polyadenylation element binding-4 protein, CPEB4NTD, and its isoform depleted of the Exon4, CPEB4Δ4NTD. They both exhibit LLPS, but in contrast to most systems undergoing LLPS, the single-phase regime preceding LLPS consists mainly of soluble protein clusters. We combine experimental and theoretical approaches to resolve the internal structure of the clusters and the basis for their formation. Dynamic light scattering and atomic force microscopy show that both isoforms exhibit clusters with diameters ranging from 35 to 80 nm. Electron paramagnetic resonance spectroscopy of spin-labeled CPEB4NTD and CPEB4Δ4NTD revealed that these proteins have two distinct dynamical properties in both the clusters and coacervates. Based on the experimental results, we propose a core-shell structure for the clusters, which is supported by the agreement of the dynamic light scattering data on cluster size distribution with a statistical model developed to describe the structure of clusters. This model treats clusters as swollen micelles (microemulsions) where the core and the shell regions comprise different protein conformations, in agreement with the electron paramagnetic resonance detection of two protein populations. The effects of ionic strength and the addition of 1,6-hexanediol were used to probe the interactions responsible for cluster formation. While both CPEB4NTD and CPEB4Δ4NTD showed phase separation with increasing temperature and formed clusters, differences were found in the properties of the clusters and the coacervates. The data also suggested that the coacervates may consist of aggregates of clusters.
Collapse
Affiliation(s)
- Maria Oranges
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Chandrima Jash
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gonen Golani
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; Department of Physics, University of Haifa, Haifa, Israel
| | - Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Alexey Bogdanov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Botova M, Camacho-Zarco AR, Tognetti J, Bessa LM, Guseva S, Mikkola E, Salvi N, Maurin D, Herrmann T, Blackledge M. A specific phosphorylation-dependent conformational switch in SARS-CoV-2 nucleocapsid protein inhibits RNA binding. SCIENCE ADVANCES 2024; 10:eaax2323. [PMID: 39093972 PMCID: PMC11296341 DOI: 10.1126/sciadv.aax2323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
The nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 encapsidates the viral genome and is essential for viral function. The central disordered domain comprises a serine-arginine-rich (SR) region that is hyperphosphorylated in infected cells. This modification regulates function, although mechanistic details remain unknown. We use nuclear magnetic resonance to follow structural changes occurring during hyperphosphorylation by serine arginine protein kinase 1, glycogen synthase kinase 3, and casein kinase 1, that abolishes interaction with RNA. When eight approximately uniformly distributed sites have been phosphorylated, the SR domain binds the same interface as single-stranded RNA, resulting in complete inhibition of RNA binding. Phosphorylation by protein kinase A does not prevent RNA binding, indicating that the pattern resulting from physiologically relevant kinases is specific for inhibition. Long-range contacts between the RNA binding, linker, and dimerization domains are abrogated, phenomena possibly related to genome packaging and unpackaging. This study provides insight into the recruitment of specific host kinases to regulate viral function.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmi Mikkola
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Damien Maurin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Torsten Herrmann
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | |
Collapse
|
5
|
Costello WN, Xiao Y, Mentink-Vigier F, Kragelj J, Frederick KK. DNP-assisted solid-state NMR enables detection of proteins at nanomolar concentrations in fully protonated cellular milieu. JOURNAL OF BIOMOLECULAR NMR 2024; 78:95-108. [PMID: 38520488 PMCID: PMC11572114 DOI: 10.1007/s10858-024-00436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/09/2024] [Indexed: 03/25/2024]
Abstract
With the sensitivity enhancements conferred by dynamic nuclear polarization (DNP), magic angle spinning (MAS) solid state NMR spectroscopy experiments can attain the necessary sensitivity to detect very low concentrations of proteins. This potentially enables structural investigations of proteins at their endogenous levels in their biological contexts where their native stoichiometries with potential interactors is maintained. Yet, even with DNP, experiments are still sensitivity limited. Moreover, when an isotopically-enriched target protein is present at physiological levels, which typically range from low micromolar to nanomolar concentrations, the isotope content from the natural abundance isotopes in the cellular milieu can outnumber the isotope content of the target protein. Using isotopically enriched yeast prion protein, Sup35NM, diluted into natural abundance yeast lysates, we optimized sample composition. We found that modest cryoprotectant concentrations and fully protonated environments support efficient DNP. We experimentally validated theoretical calculations of the limit of specificity for an isotopically enriched protein in natural abundance cellular milieu. We establish that, using pulse sequences that are selective for adjacent NMR-active nuclei, proteins can be specifically detected in cellular milieu at concentrations in the hundreds of nanomolar. Finally, we find that maintaining native stoichiometries of the protein of interest to the components of the cellular environment may be important for proteins that make specific interactions with cellular constituents.
Collapse
Affiliation(s)
- Whitney N Costello
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
| | | | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
- Slovenian NMR centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA.
- Center for Alzheimer's and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Vieira MFM, Hernandez G, Zhong Q, Arbesú M, Veloso T, Gomes T, Martins ML, Monteiro H, Frazão C, Frankel G, Zanzoni A, Cordeiro TN. The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection. Commun Biol 2024; 7:179. [PMID: 38351154 PMCID: PMC10864410 DOI: 10.1038/s42003-024-05856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.
Collapse
Affiliation(s)
- Marta F M Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Qiyun Zhong
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Miguel Arbesú
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- InstaDeep Ltd, 5 Merchant Square, London, UK
| | - Tiago Veloso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Maria L Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.
| |
Collapse
|
7
|
Chaturvedi M, Raj R, Yadav SK, Srivastava T, Devi S, Dharmadana D, Valéry C, Sharma SK, Kumar D, Priya S. Implications of In Vitro Multi-Serine Phosphorylation of Alpha-Synuclein in Aggregation and Cytotoxicity. ACS Chem Neurosci 2023; 14:3103-3112. [PMID: 37562012 DOI: 10.1021/acschemneuro.3c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Post-translational modifications guide the functional diversity and identity of proteins. Phosphorylation is one such post-translational modification that has been reported in pathological proteins related to various neurodegenerative disorders such as α-synuclein (α-syn) phosphorylation in Parkinson's disease and other synucleinopathies. In α-syn, the phosphorylation has mostly been observed at S129; however, the occurrence of other serine modifications at S9, S42, and S87 is partially explored. In pathogenic conditions, where α-syn is phosphorylated by complex kinase pathways, multi-site modifications may happen and alter the mechanism of α-syn aggregation. Here, using Polo-like kinase 2 and G-protein coupled receptor kinase 4, the in vitro phosphorylation of α-syn was performed, which revealed multi-serine phosphorylation. Mass spectrometry with customized proteolytic digestion showed prominent phosphorylation at S129 and modifications at S87 and S42 with PLK2 and S87 with GRK4. The phosphorylation at the identified serine residues was further validated with NMR and western blotting. Multi-serine phosphorylation aggravates the aggregation potential of monomeric α-syn, seeding capacity, and cytotoxicity in the SH-SY5Y cell line. This study proposes evidence for in vitro multi-site phosphorylation and its significance in α-syn aggregation, toxicity, and related pathogenesis.
Collapse
Affiliation(s)
- Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- School of Health and Biomedical Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Ritu Raj
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sanjeev Kumar Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tulika Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Dharmadana
- School of Health and Biomedical Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Céline Valéry
- School of Health and Biomedical Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Sandeep K Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Malki I, Liepina I, Kogelnik N, Watmuff H, Robinson S, Lightfoot A, Gonchar O, Bottrill A, Fry AM, Dominguez C. Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions. Nucleic Acids Res 2022; 50:13045-13062. [PMID: 36537190 PMCID: PMC9825155 DOI: 10.1093/nar/gkac1181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Sam68, also known as KHDRBS1, is a member of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins and its role is modulated by post-translational modifications, including serine/threonine phosphorylation, that differ at various stages of the cell cycle. However, the molecular basis and mechanisms of these modulations remain largely unknown. Here, we combined mass spectrometry, nuclear magnetic resonance spectroscopy and cell biology techniques to provide a comprehensive post-translational modification mapping of Sam68 at different stages of the cell cycle in HEK293 and HCT116 cells. We established that Sam68 is specifically phosphorylated at T33 and T317 by Cdk1, and demonstrated that these phosphorylation events reduce the binding of Sam68 to RNA, control its cellular localization and reduce its alternative splicing activity, leading to a reduction in the induction of apoptosis and an increase in the proliferation of HCT116 cells.
Collapse
Affiliation(s)
- Idir Malki
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Inara Liepina
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nora Kogelnik
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Hollie Watmuff
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Sue Robinson
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Adam Lightfoot
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Oksana Gonchar
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew Bottrill
- Proteomics RTP, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Cyril Dominguez
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
9
|
Waudby CA, Alvarez-Teijeiro S, Josue Ruiz E, Suppinger S, Pinotsis N, Brown PR, Behrens A, Christodoulou J, Mylona A. An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment. Nat Commun 2022; 13:6133. [PMID: 36253406 PMCID: PMC9576782 DOI: 10.1038/s41467-022-33866-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Protein phosphorylation is a major regulatory mechanism of cellular signalling. The c-JUN proto-oncoprotein is phosphorylated at four residues within its transactivation domain (TAD) by the JNK family kinases, but the functional significance of c-JUN multisite phosphorylation has remained elusive. Here we show that c-JUN phosphorylation by JNK exhibits defined temporal kinetics, with serine63 and serine73 being phosphorylated more rapidly than threonine91 and threonine93. We identify the positioning of the phosphorylation sites relative to the kinase docking motif, and their primary sequence, as the main factors controlling phosphorylation kinetics. Functional analysis reveals three c-JUN phosphorylation states: unphosphorylated c-JUN recruits the MBD3 repressor, serine63/73 doubly-phosphorylated c-JUN binds to the TCF4 co-activator, whereas the fully phosphorylated form disfavours TCF4 binding attenuating JNK signalling. Thus, c-JUN phosphorylation encodes multiple functional states that drive a complex signalling response from a single JNK input.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, UK
- School of Pharmacy, University College London, London, UK
| | - Saul Alvarez-Teijeiro
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - E Josue Ruiz
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Simon Suppinger
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Paul R Brown
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College, London, UK
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
- CR-UK Convergence Science Centre, Imperial College, London, SW7 2BU, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
| | - Anastasia Mylona
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK.
- Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK.
| |
Collapse
|
10
|
Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions. J Biol Chem 2022; 298:102384. [PMID: 35987383 PMCID: PMC9520037 DOI: 10.1016/j.jbc.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies. Our comparison with phosphorylation of MAP2c by a model cyclin-dependent kinase CDK2 and with phosphorylation of the MAP2c homolog Tau revealed differences in phosphorylation profiles that explain specificity of regulation of biological functions of MAP2c and Tau. To probe the molecular basis of the regulatory effect of ERK2, we investigated the interactions of phosphorylated and unphosphorylated MAP2c by NMR with single-residue resolution. As ERK2 phosphorylates mostly outside the regions binding microtubules, we studied the binding of proteins other than tubulin, namely regulatory subunit RIIα of cAMP-dependent protein kinase (PKA), adaptor protein Grb2, Src homology domain 3 of tyrosine kinases Fyn and Abl, and ERK2 itself. We found ERK2 phosphorylation interfered mostly with binding to proline-rich regions of MAP2c. Furthermore, our NMR experiments in SH-SY5Y neuroblastoma cell lysates showed that the kinetics of dephosphorylation are compatible with in-cell NMR studies and that residues targeted by ERK2 and PKA are efficiently phosphorylated in the cell lysates. Taken together, our results provide a deeper characterization of MAP2c phosphorylation and its effects on interactions with other proteins.
Collapse
|
11
|
Camacho-Zarco AR, Schnapka V, Guseva S, Abyzov A, Adamski W, Milles S, Jensen MR, Zidek L, Salvi N, Blackledge M. NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins. Chem Rev 2022; 122:9331-9356. [PMID: 35446534 PMCID: PMC9136928 DOI: 10.1021/acs.chemrev.1c01023] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Intrinsically disordered
proteins are ubiquitous throughout all
known proteomes, playing essential roles in all aspects of cellular
and extracellular biochemistry. To understand their function, it is
necessary to determine their structural and dynamic behavior and to
describe the physical chemistry of their interaction trajectories.
Nuclear magnetic resonance is perfectly adapted to this task, providing
ensemble averaged structural and dynamic parameters that report on
each assigned resonance in the molecule, unveiling otherwise inaccessible
insight into the reaction kinetics and thermodynamics that are essential
for function. In this review, we describe recent applications of NMR-based
approaches to understanding the conformational energy landscape, the
nature and time scales of local and long-range dynamics and how they
depend on the environment, even in the cell. Finally, we illustrate
the ability of NMR to uncover the mechanistic basis of functional
disordered molecular assemblies that are important for human health.
Collapse
Affiliation(s)
| | - Vincent Schnapka
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Serafima Guseva
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Anton Abyzov
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Wiktor Adamski
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Lukas Zidek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic
| | - Nicola Salvi
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
12
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Xiao Y, Ghosh R, Frederick KK. In-Cell NMR of Intact Mammalian Cells Preserved with the Cryoprotectants DMSO and Glycerol Have Similar DNP Performance. Front Mol Biosci 2022; 8:789478. [PMID: 35145995 PMCID: PMC8824258 DOI: 10.3389/fmolb.2021.789478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
NMR has the resolution and specificity to determine atomic-level protein structures of isotopically-labeled proteins in complex environments and, with the sensitivity gains conferred by dynamic nuclear polarization (DNP), NMR has the sensitivity to detect proteins at their endogenous concentrations. Prior work established that DNP MAS NMR is compatible with cellular viability. However, in that work, 15% glycerol, rather than the more commonly used 10% DMSO, was used as the cellular cryoprotectant. Moreover, incubation of cells cryoprotected 15% glycerol with the polarization agent, AMUPol, resulted in an inhomogeneous distribution of AMUPol through the cellular biomass, which resulted in a spatial bias of the NMR peak intensities. Because 10% DMSO is not only the most used cryoprotectant for mammalian cells, but also because DMSO is often used to improve delivery of molecules to cells, we sought to characterize the DNP performance of cells that were incubated with AMUPol and cryoprotected with 10% DMSO. We found that, like cells preserved with 15% glycerol, cells preserved with 10% DMSO retain high viability during DNP MAS NMR experiments if they are frozen at a controlled rate. However, DMSO did not improve the dispersion of AMUPol throughout the cellular biomass. Cells preserved with 15% glycerol and with 10% DMSO had similar DNP performance for both the maximal DNP enhancements as well as the inhomogeneous dispersion of AMUPol throughout the cellular biomass. Therefore, 10% DMSO and 15% glycerol are both appropriate cryoprotectant systems for DNP-assisted MAS NMR of intact viable mammalian cells.
Collapse
Affiliation(s)
- Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, United States
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Kendra K. Frederick,
| |
Collapse
|
14
|
Ghosh R, Xiao Y, Kragelj J, Frederick KK. In-Cell Sensitivity-Enhanced NMR of Intact Viable Mammalian Cells. J Am Chem Soc 2021; 143:18454-18466. [PMID: 34724614 DOI: 10.1021/jacs.1c06680] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NMR has the resolution and specificity to determine atomic-level protein structures of isotopically labeled proteins in complex environments, and with the sensitivity gains conferred by dynamic nuclear polarization (DNP), NMR has the sensitivity to detect proteins at their endogenous concentrations. However, DNP sensitivity enhancements are critically dependent on experimental conditions and sample composition. While some of these conditions are theoretically compatible with cellular viability, the effects of others on cellular sample integrity are unknown. Uncertainty about the integrity of cellular samples limits the utility of experimental outputs of in-cell experiments. Using several measures, we establish conditions that support DNP enhancements that can enable detection of micromolar concentrations of proteins in experimentally tractable times that are compatible with cellular viability. Taken together, we establish DNP-assisted MAS NMR as a technique for structural investigations of biomolecules in intact viable cells that can be phenotyped both before and after NMR experiments.
Collapse
Affiliation(s)
- Rupam Ghosh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas 75390-8816, United States.,Center for Alzheimer's and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
15
|
Lesovoy DM, Georgoulia PS, Diercks T, Matečko‐Burmann I, Burmann BM, Bocharov EV, Bermel W, Orekhov VY. Unambiguous Tracking of Protein Phosphorylation by Fast High‐Resolution FOSY NMR**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry M. Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS 117997 Moscow Russia
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases Moscow Institute of Physics and Technology (State University) 141700 Dolgoprudny Russia
| | - Panagiota S. Georgoulia
- Department of Chemistry and Molecular Biology University of Gothenburg Box 465 40530 Gothenburg Sweden
| | - Tammo Diercks
- NMR Platform CiC bioGUNE Bld. 800, Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Irena Matečko‐Burmann
- Department of Psychiatry and Neurochemistry University of Gothenburg 40530 Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg 40530 Gothenburg Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology University of Gothenburg Box 465 40530 Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg 40530 Gothenburg Sweden
| | - Eduard V. Bocharov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS 117997 Moscow Russia
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases Moscow Institute of Physics and Technology (State University) 141700 Dolgoprudny Russia
| | - Wolfgang Bermel
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Germany
| | - Vladislav Y. Orekhov
- Department of Chemistry and Molecular Biology University of Gothenburg Box 465 40530 Gothenburg Sweden
| |
Collapse
|
16
|
Lesovoy DM, Georgoulia PS, Diercks T, Matečko‐Burmann I, Burmann BM, Bocharov EV, Bermel W, Orekhov VY. Unambiguous Tracking of Protein Phosphorylation by Fast High-Resolution FOSY NMR*. Angew Chem Int Ed Engl 2021; 60:23540-23544. [PMID: 34143912 PMCID: PMC8596425 DOI: 10.1002/anie.202102758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Dysregulation of post-translational modifications (PTMs) like phosphorylation is often involved in disease. NMR may elucidate exact loci and time courses of PTMs at atomic resolution and near-physiological conditions but requires signal assignment to individual atoms. Conventional NMR methods for this base on tedious global signal assignment that may often fail, as for large intrinsically disordered proteins (IDPs). We present a sensitive, robust alternative to rapidly obtain only the local assignment near affected signals, based on FOcused SpectroscopY (FOSY) experiments using selective polarisation transfer (SPT). We prove its efficiency by identifying two phosphorylation sites of glycogen synthase kinase 3 beta (GSK3β) in human Tau40, an IDP of 441 residues, where the extreme spectral dispersion in FOSY revealed unprimed phosphorylation also of Ser409. FOSY may broadly benefit NMR studies of PTMs and other hotspots in IDPs, including sites involved in molecular interactions.
Collapse
Affiliation(s)
- Dmitry M. Lesovoy
- Department of Structural Biology, Shemyakin-OvchinnikovInstitute of Bioorganic Chemistry RAS117997MoscowRussia
- Research Center for Molecular Mechanisms of Aging and Age-related DiseasesMoscow Institute of Physics and Technology (State University)141700DolgoprudnyRussia
| | - Panagiota S. Georgoulia
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 46540530GothenburgSweden
| | - Tammo Diercks
- NMR PlatformCiC bioGUNEBld. 800, Parque Tecnológico de Bizkaia48160DerioSpain
| | - Irena Matečko‐Burmann
- Department of Psychiatry and NeurochemistryUniversity of Gothenburg40530GothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of Gothenburg40530GothenburgSweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 46540530GothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of Gothenburg40530GothenburgSweden
| | - Eduard V. Bocharov
- Department of Structural Biology, Shemyakin-OvchinnikovInstitute of Bioorganic Chemistry RAS117997MoscowRussia
- Research Center for Molecular Mechanisms of Aging and Age-related DiseasesMoscow Institute of Physics and Technology (State University)141700DolgoprudnyRussia
| | | | - Vladislav Y. Orekhov
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 46540530GothenburgSweden
| |
Collapse
|
17
|
Lenard AJ, Hutten S, Zhou Q, Usluer S, Zhang F, Bourgeois BMR, Dormann D, Madl T. Phosphorylation Regulates CIRBP Arginine Methylation, Transportin-1 Binding and Liquid-Liquid Phase Separation. Front Mol Biosci 2021; 8:689687. [PMID: 34738012 PMCID: PMC8562343 DOI: 10.3389/fmolb.2021.689687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications.
Collapse
Affiliation(s)
- Aneta J. Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Saskia Hutten
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
| | - Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin M. R. Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
18
|
Hu W, Bagramyan K, Bhatticharya S, Hong T, Tapia A, Wong P, Kalkum M, Shively JE. Phosphorylation of human CEACAM1-LF by PKA and GSK3β promotes its interaction with β-catenin. J Biol Chem 2021; 297:101305. [PMID: 34656562 PMCID: PMC8564729 DOI: 10.1016/j.jbc.2021.101305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
CEACAM1-LF, a homotypic cell adhesion adhesion molecule, transduces intracellular signals via a 72 amino acid cytoplasmic domain that contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a binding site for β-catenin. Phosphorylation of Ser503 by PKC in rodent CEACAM1 was shown to affect bile acid transport or hepatosteatosis via the level of ITIM phosphorylation, but the phosphorylation of the equivalent residue in human CEACAM1 (Ser508) was unclear. Here we studied this analogous phosphorylation by NMR analysis of the 15N labeled cytoplasmic domain peptide. Incubation with a variety of Ser/Thr kinases revealed phosphorylation of Ser508 by GSK3bβ but not by PKC. The lack of phosphorylation by PKC is likely due to evolutionary sequence changes between the rodent and human genes. Phosphorylation site assignment by mass spectrometry and NMR revealed phosphorylation of Ser472, Ser461 and Ser512 by PKA, of which Ser512 is part of a conserved consensus site for GSK3β binding. We showed here that only after phosphorylation of Ser512 by PKA was GSK3β able to phosphorylate Ser508. Phosphorylation of Ser512 by PKA promoted a tight association with the armadillo repeat domain of β-catenin at an extended region spanning the ITIMs of CEACAM1. The kinetics of phosphorylation of the ITIMs by Src, as well dephosphorylation by SHP2, were affected by the presence of Ser508/512 phosphorylation, suggesting that PKA and GSK3β may regulate the signal transduction activity of human CEACAM1-LF. The interaction of CEACAM1-LF with β-catenin promoted by PKA is suggestive of a tight association between the two ITIMs of CEACAM1-LF.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Karine Bagramyan
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhatticharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Teresa Hong
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Alonso Tapia
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
19
|
Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol 2021; 2:1441-1461. [PMID: 34704048 PMCID: PMC8496066 DOI: 10.1039/d1cb00045d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Posttranslational modifications can alter protein structures, functions and locations, and are important cellular regulatory and signalling mechanisms. Spectroscopic techniques such as nuclear magnetic resonance, infrared and Raman spectroscopy, as well as small-angle scattering, can provide insights into the structural and dynamic effects of protein posttranslational modifications and their impact on interactions with binding partners. However, heterogeneity of modified proteins from natural sources and spectral complexity often hinder analyses, especially for large proteins and macromolecular assemblies. Selective labelling of proteins with stable isotopes can greatly simplify spectra, as one can focus on labelled residues or segments of interest. Employing chemical biology tools for modifying and isotopically labelling proteins with atomic precision provides access to unique protein samples for structural biology and spectroscopy. Here, we review site-specific and segmental isotope labelling methods that are employed in combination with chemical and enzymatic tools to access posttranslationally modified proteins. We discuss illustrative examples in which these methods have been used to facilitate spectroscopic studies of posttranslationally modified proteins, providing new insights into biology.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| | - Anne C Conibear
- The University of Queensland, School of Biomedical Sciences St Lucia Brisbane 4072 QLD Australia
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| |
Collapse
|
20
|
Bourgeois B, Gui T, Hoogeboom D, Hocking HG, Richter G, Spreitzer E, Viertler M, Richter K, Madl T, Burgering BMT. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep 2021; 36:109446. [PMID: 34320339 DOI: 10.1016/j.celrep.2021.109446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Transcription factors harbor defined regulatory intrinsically disordered regions (IDRs), which raises the question of how they mediate binding to structured co-regulators and modulate their activity. Here, we present a detailed molecular regulatory mechanism of Forkhead box O4 (FOXO4) by the structured transcriptional co-regulator β-catenin. We find that the disordered FOXO4 C-terminal region, which contains its transactivation domain, binds β-catenin through two defined interaction sites, and this is regulated by combined PKB/AKT- and CK1-mediated phosphorylation. Binding of β-catenin competes with the autoinhibitory interaction of the FOXO4 disordered region with its DNA-binding Forkhead domain, and thereby enhances FOXO4 transcriptional activity. Furthermore, we show that binding of the β-catenin inhibitor protein ICAT is compatible with FOXO4 binding to β-catenin, suggesting that ICAT acts as a molecular switch between anti-proliferative FOXO and pro-proliferative Wnt/TCF/LEF signaling. These data illustrate how the interplay of IDRs, post-translational modifications, and co-factor binding contribute to transcription factor function.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tianshu Gui
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Diana Hoogeboom
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Henry G Hocking
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Martin Viertler
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Klaus Richter
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Boudewijn M T Burgering
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
21
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
22
|
Mateos B, Holzinger J, Conrad-Billroth C, Platzer G, Żerko S, Sealey-Cardona M, Anrather D, Koźmiński W, Konrat R. Hyperphosphorylation of Human Osteopontin and Its Impact on Structural Dynamics and Molecular Recognition. Biochemistry 2021; 60:1347-1355. [PMID: 33876640 PMCID: PMC8154273 DOI: 10.1021/acs.biochem.1c00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation is an abundant post-translational modification (PTM) and an essential modulator of protein functionality in living cells. Intrinsically disordered proteins (IDPs) are particular targets of PTM protein kinases due to their involvement in fundamental protein interaction networks. Despite their dynamic nature, IDPs are far from having random-coil conformations but exhibit significant structural heterogeneity. Changes in the molecular environment, most prominently in the form of PTM via phosphorylation, can modulate these structural features. Therefore, how phosphorylation events can alter conformational ensembles of IDPs and their interactions with binding partners is of great interest. Here we study the effects of hyperphosphorylation on the IDP osteopontin (OPN), an extracellular target of the Fam20C kinase. We report a full characterization of the phosphorylation sites of OPN using a combined nuclear magnetic resonance/mass spectrometry approach and provide evidence for an increase in the local flexibility of highly phosphorylated regions and the ensuing overall structural elongation. Our study emphasizes the simultaneous importance of electrostatic and hydrophobic interactions in the formation of compact substates in IDPs and their relevance for molecular recognition events.
Collapse
Affiliation(s)
- Borja Mateos
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Julian Holzinger
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Clara Conrad-Billroth
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Gerald Platzer
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Szymon Żerko
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | | | - Dorothea Anrather
- Mass
Spectrometry Facility, Max Perutz Laboratories, Vienna BioCenter Campus 5, Dr. Bohr
Gasse 3, 1030 Vienna, Austria
| | - Wiktor Koźmiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | - Robert Konrat
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| |
Collapse
|
23
|
Chiki A, Ricci J, Hegde R, Abriata LA, Reif A, Boudeffa D, Lashuel HA. Site-Specific Phosphorylation of Huntingtin Exon 1 Recombinant Proteins Enabled by the Discovery of Novel Kinases. Chembiochem 2021; 22:217-231. [PMID: 32805086 PMCID: PMC8698011 DOI: 10.1002/cbic.202000508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of exon 1 of the Huntingtin protein (Httex1) play important roles in modulating its cellular properties and functions in health and disease. In particular, phosphorylation of threonine and serine residues (T3, S13, and/or S16) has been shown to inhibit Htt aggregation in vitro and inclusion formation in cellular and animal models of Huntington's disease (HD). In this paper, we describe a new and simple methodology for producing milligram quantities of highly pure wild-type or mutant Httex1 proteins that are site-specifically phosphorylated at T3 or at both S13 and S16. This advance was enabled by 1) the discovery and validation of novel kinases that efficiently phosphorylate Httex1 at S13 and S16 (TBK1), at T3 (GCK) or T3 and S13 (TNIK and HGK), and 2) the development of an efficient methodology for producing recombinant native Httex1 proteins by using a SUMO-fusion expression and purification strategy.[26] As a proof of concept, we demonstrate how this method can be applied to produce Httex1 proteins that are both site-specifically phosphorylated and fluorescently or isotopically labeled. Together, these advances should increase access to these valuable tools and expand the range of methods and experimental approaches that can be used to elucidate the mechanisms by which phosphorylation influences Httex1 or HTT structure, aggregation, interactome, and function(s) in health and disease.
Collapse
Affiliation(s)
- Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Ramanath Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Luciano A. Abriata
- Protein Production and Structure Core Facility and Laboratory for Biomolecular ModelingEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB)1015LausanneSwitzerland
| | - Andreas Reif
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Driss Boudeffa
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)Station 191015LausanneSwitzerland
| |
Collapse
|
24
|
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4:674-695. [PMID: 37127974 DOI: 10.1038/s41570-020-00223-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
Collapse
|
25
|
In-cell destabilization of a homodimeric protein complex detected by DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:20566-20575. [PMID: 32788347 DOI: 10.1073/pnas.2005779117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The complexity of the cellular medium can affect proteins' properties, and, therefore, in-cell characterization of proteins is essential. We explored the stability and conformation of the first baculoviral IAP repeat (BIR) domain of X chromosome-linked inhibitor of apoptosis (XIAP), BIR1, as a model for a homodimer protein in human HeLa cells. We employed double electron-electron resonance (DEER) spectroscopy and labeling with redox stable and rigid Gd3+ spin labels at three representative protein residues, C12 (flexible region), E22C, and N28C (part of helical residues 26 to 31) in the N-terminal region. In contrast to predictions by excluded-volume crowding theory, the dimer-monomer dissociation constant K D was markedly higher in cells than in solution and dilute cell lysate. As expected, this increase was partially recapitulated under conditions of high salt concentrations, given that conserved salt bridges at the dimer interface are critically required for association. Unexpectedly, however, also the addition of the crowding agent Ficoll destabilized the dimer while the addition of bovine serum albumin (BSA) and lysozyme, often used to represent interaction with charged macromolecules, had no effect. Our results highlight the potential of DEER for in-cell study of proteins as well as the complexities of the effects of the cellular milieu on protein structures and stability.
Collapse
|
26
|
Alik A, Bouguechtouli C, Julien M, Bermel W, Ghouil R, Zinn‐Justin S, Theillet F. Sensitivity‐Enhanced
13
C‐NMR Spectroscopy for Monitoring Multisite Phosphorylation at Physiological Temperature and pH. Angew Chem Int Ed Engl 2020; 59:10411-10415. [DOI: 10.1002/anie.202002288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ania Alik
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Chafiaa Bouguechtouli
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Manon Julien
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Wolfgang Bermel
- Bruker BioSpin GmbH Silberstreifen 76287 Rheinstetten Germany
| | - Rania Ghouil
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Sophie Zinn‐Justin
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Francois‐Xavier Theillet
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| |
Collapse
|
27
|
Alik A, Bouguechtouli C, Julien M, Bermel W, Ghouil R, Zinn‐Justin S, Theillet F. Sensitivity‐Enhanced
13
C‐NMR Spectroscopy for Monitoring Multisite Phosphorylation at Physiological Temperature and pH. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ania Alik
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Chafiaa Bouguechtouli
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Manon Julien
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Wolfgang Bermel
- Bruker BioSpin GmbH Silberstreifen 76287 Rheinstetten Germany
| | - Rania Ghouil
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Sophie Zinn‐Justin
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Francois‐Xavier Theillet
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| |
Collapse
|
28
|
Common Functions of Disordered Proteins across Evolutionary Distant Organisms. Int J Mol Sci 2020; 21:ijms21062105. [PMID: 32204351 PMCID: PMC7139818 DOI: 10.3390/ijms21062105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.
Collapse
|
29
|
Kyrilis FL, Meister A, Kastritis PL. Integrative biology of native cell extracts: a new era for structural characterization of life processes. Biol Chem 2020; 400:831-846. [PMID: 31091193 DOI: 10.1515/hsz-2018-0445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Advances in electron microscopy have provided unprecedented access to the structural characterization of large, flexible and heterogeneous complexes. Until recently, cryo-electron microscopy (cryo-EM) has been applied to understand molecular organization in either highly purified, isolated biomolecules or in situ. An emerging field is developing, bridging the gap between the two approaches, and focuses on studying molecular organization in native cell extracts. This field has demonstrated its potential by resolving the structure of fungal fatty acid synthase (FAS) at 4.7 Å [Fourier shell correlation (FSC) = 0.143]; FAS was not only less than 50% enriched, but also retained higher-order binders, previously unknown. Although controversial in the sense that the lysis step might introduce artifacts, cell extracts preserve aspects of cellular function. In addition, cell extracts are accessible, besides cryo-EM, to modern proteomic methods, chemical cross-linking, network biology and biophysical modeling. We expect that automation in imaging cell extracts, along with the integration of molecular/cell biology approaches, will provide remarkable achievements in the study of closer-to-life biomolecular states of pronounced biotechnological and medical importance. Such steps will, eventually, bring us a step closer to the biophysical description of cellular processes in an integrative, holistic approach.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany.,Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle/Saale, Germany
| |
Collapse
|
30
|
Philpott JM, Narasimamurthy R, Ricci CG, Freeberg AM, Hunt SR, Yee LE, Pelofsky RS, Tripathi S, Virshup DM, Partch CL. Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. eLife 2020; 9:e52343. [PMID: 32043967 PMCID: PMC7012598 DOI: 10.7554/elife.52343] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/25/2020] [Indexed: 12/27/2022] Open
Abstract
Post-translational control of PERIOD stability by Casein Kinase 1δ and ε (CK1) plays a key regulatory role in metazoan circadian rhythms. Despite the deep evolutionary conservation of CK1 in eukaryotes, little is known about its regulation and the factors that influence substrate selectivity on functionally antagonistic sites in PERIOD that directly control circadian period. Here we describe a molecular switch involving a highly conserved anion binding site in CK1. This switch controls conformation of the kinase activation loop and determines which sites on mammalian PER2 are preferentially phosphorylated, thereby directly regulating PER2 stability. Integrated experimental and computational studies shed light on the allosteric linkage between two anion binding sites that dynamically regulate kinase activity. We show that period-altering kinase mutations from humans to Drosophila differentially modulate this activation loop switch to elicit predictable changes in PER2 stability, providing a foundation to understand and further manipulate CK1 regulation of circadian rhythms.
Collapse
Affiliation(s)
- Jonathan M Philpott
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | | | - Clarisse G Ricci
- Department of Chemistry and BiochemistryUniversity of California San DiegoSan DiegoUnited States
| | - Alfred M Freeberg
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Sabrina R Hunt
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Lauren E Yee
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Rebecca S Pelofsky
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Sarvind Tripathi
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Department of PediatricsDuke University Medical CenterDurhamUnited States
| | - Carrie L Partch
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
- Center for Circadian BiologyUniversity of California San DiegoSan DiegoUnited States
| |
Collapse
|
31
|
Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. Int J Biol Macromol 2020; 145:53-63. [DOI: 10.1016/j.ijbiomac.2019.12.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
|
32
|
Julien M, Bouguechtouli C, Alik A, Ghouil R, Zinn-Justin S, Theillet FX. Multiple Site-Specific Phosphorylation of IDPs Monitored by NMR. Methods Mol Biol 2020; 2141:793-817. [PMID: 32696390 DOI: 10.1007/978-1-0716-0524-0_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In line with their high accessibility, disordered proteins are exquisite targets of kinases. Eukaryotic organisms use the so-called intrinsically disordered proteins (IDPs) or intrinsically disordered regions of proteins (IDRs) as molecular switches carrying intracellular information tuned by reversible phosphorylation schemes. Solvent-exposed serines and threonines are abundant in IDPs, and, consistently, kinases often modify disordered regions of proteins at multiple sites. In this context, nuclear magnetic resonance (NMR) spectroscopy provides quantitative, residue-specific information that permits mapping of phosphosites and monitoring of their individual kinetics. Hence, NMR monitoring emerges as an in vitro approach, complementary to mass-spectrometry or immuno-blotting, to characterize IDP phosphorylation comprehensively. Here, we describe in detail generic protocols for carrying out NMR monitoring of IDP phosphorylation, and we provide a number of practical insights that improve handiness and reproducibility of this method.
Collapse
Affiliation(s)
- Manon Julien
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Chafiaa Bouguechtouli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Ania Alik
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Rania Ghouil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - François-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France.
| |
Collapse
|
33
|
Conibear AC, Rosengren KJ, Becker CFW, Kaehlig H. Random coil shifts of posttranslationally modified amino acids. JOURNAL OF BIOMOLECULAR NMR 2019; 73:587-599. [PMID: 31317299 PMCID: PMC6859290 DOI: 10.1007/s10858-019-00270-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/09/2019] [Indexed: 05/14/2023]
Abstract
Most eukaryotic proteins are modified during and/or after translation, regulating their structure, function and localisation. The role of posttranslational modifications (PTMs) in both normal cellular processes and in diseases is already well recognised and methods for detection of PTMs and generation of specifically modified proteins have developed rapidly over the last decade. However, structural consequences of PTMs and their specific effects on protein dynamics and function are not well understood. Furthermore, while random coil NMR chemical shifts of the 20 standard amino acids are available and widely used for residue assignment, dihedral angle predictions and identification of structural elements or propensity, they are not available for most posttranslationally modified amino acids. Here, we synthesised a set of random coil peptides containing common naturally occurring PTMs and determined their random coil NMR chemical shifts under standardised conditions. We highlight unique NMR signatures of posttranslationally modified residues and their effects on neighbouring residues. This comprehensive dataset complements established random coil shift datasets of the 20 standard amino acids and will facilitate identification and assignment of posttranslationally modified residues. The random coil shifts will also aid in determination of secondary structure elements and prediction of structural parameters of proteins and peptides containing PTMs.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
- School of Biomedical Sciences, The University of Queensland, QLD, 4072, Brisbane, Australia.
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, QLD, 4072, Brisbane, Australia
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Hanspeter Kaehlig
- Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
34
|
Abstract
Although the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here, we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts. By following the maturation of yeast tRNAPhe with time-resolved NMR measurements, we show that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we show that a strong hierarchy controls the introduction of the T54, Ψ55 and m1A58 modifications in the T-arm, and we demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general. Transfer RNA (tRNA) is regulated by RNA modifications. Here the authors employ time-resolved NMR to monitor modifications of yeast tRNAPhe in cellular extracts, revealing a sequential order and cross-talk between modifications.
Collapse
|
35
|
Dalaloyan A, Martorana A, Barak Y, Gataulin D, Reuveny E, Howe A, Elbaum M, Albeck S, Unger T, Frydman V, Abdelkader EH, Otting G, Goldfarb D. Tracking Conformational Changes in Calmodulin in vitro, in Cell Extract, and in Cells by Electron Paramagnetic Resonance Distance Measurements. Chemphyschem 2019; 20:1860-1868. [PMID: 31054266 DOI: 10.1002/cphc.201900341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Indexed: 12/12/2022]
Abstract
It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew Howe
- Department of Chemical and Biological Physics
| | | | - Shira Albeck
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Elwy H Abdelkader
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | |
Collapse
|
36
|
Singh H, Verma D, Bardiaux B. Single-site phosphorylation within the His-tag sequence attached to a recombinant protein. Anal Biochem 2019; 570:62-64. [PMID: 30735667 DOI: 10.1016/j.ab.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
We report the observation of single-site phosphorylation in a His-tag sequence N-terminally attached to a recombinant protein (UVI31+) in vitro. This modification was detected at position 23 at a serine residue of the His-tag sequence encoded by the vector pET28a. Furthermore, the phosphorylated tag sequence was found to be dephosphorylated by the action of alkaline phosphatases. The functional activity and dynamics of the protein carrying the His-tag sequence were unchanged after phosphorylation. The possibility of phosphorylation within the N-terminal His-tag demonstrates that care has to be taken upon analysis of post-translational modifications via mass spectrometry for recombinant protein expression strategies.
Collapse
Affiliation(s)
- Himanshu Singh
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005, India.
| | - Deepshikha Verma
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005, India
| | - Benjamin Bardiaux
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756, Paris, France
| |
Collapse
|
37
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
38
|
Levy R, Gregory E, Borcherds W, Daughdrill G. p53 Phosphomimetics Preserve Transient Secondary Structure but Reduce Binding to Mdm2 and MdmX. Biomolecules 2019; 9:biom9030083. [PMID: 30832340 PMCID: PMC6468375 DOI: 10.3390/biom9030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The disordered p53 transactivation domain (p53TAD) contains specific levels of transient helical secondary structure that are necessary for its binding to the negative regulators, mouse double minute 2 (Mdm2) and MdmX. The interactions of p53 with Mdm2 and MdmX are also modulated by posttranslational modifications (PTMs) of p53TAD including phosphorylation at S15, T18 and S20 that inhibits p53-Mdm2 binding. It is unclear whether the levels of transient secondary structure in p53TAD are changed by phosphorylation or other PTMs. We used phosphomimetic mutants to determine if adding a negative charge at positions 15 and 18 has any effect on the transient secondary structure of p53TAD and protein-protein binding. Using a combination of biophysical and structural methods, we investigated the effects of single and multisite phosphomimetics on the transient secondary structure of p53TAD and its interaction with Mdm2, MdmX, and the KIX domain. The phosphomimetics reduced Mdm2 and MdmX binding affinity by 3–5-fold, but resulted in minimal changes in transient secondary structure, suggesting that the destabilizing effect of phosphorylation on the p53TAD-Mdm2 interaction is primarily electrostatic. Phosphomimetics had no effect on the p53-KIX interaction, suggesting that increased binding of phosphorylated p53 to KIX may be influenced by decreased competition with its negative regulators.
Collapse
Affiliation(s)
- Robin Levy
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Emily Gregory
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Wade Borcherds
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
39
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|
40
|
Yang Y, Yang F, Li XY, Su XC, Goldfarb D. In-Cell EPR Distance Measurements on Ubiquitin Labeled with a Rigid PyMTA-Gd(III) Tag. J Phys Chem B 2019; 123:1050-1059. [DOI: 10.1021/acs.jpcb.8b11442] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yin Yang
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xia-Yan Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
41
|
Limatola A, Eichmann C, Jacob RS, Ben-Nissan G, Sharon M, Binolfi A, Selenko P. Time-Resolved NMR Analysis of Proteolytic α-Synuclein Processing in vitro and in cellulo. Proteomics 2018; 18:e1800056. [PMID: 30260559 DOI: 10.1002/pmic.201800056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Indexed: 11/07/2022]
Abstract
Targeted proteolysis of the disordered Parkinson's disease protein alpha-synuclein (αSyn) constitutes an important event under physiological and pathological cell conditions. In this work, site-specific αSyn cleavage by different endopeptidases in vitro and by endogenous proteases in extracts of challenged and unchallenged cells was studied by time-resolved NMR spectroscopy. Specifically, proteolytic processing was monitored under neutral and low pH conditions and in response to Rotenone-induced oxidative stress. Further, time-dependent degradation of electroporation-delivered αSyn in intact SH-SY5Y and A2780 cells was analyzed. Results presented here delineate a general framework for NMR-based proteolysis studies in vitro and in cellulo, and confirm earlier reports pertaining to the exceptional proteolytic stability of αSyn under physiological cell conditions. However, experimental findings also reveal altered protease susceptibilities in selected mammalian cell lines and upon induced cell stress.
Collapse
Affiliation(s)
- Antonio Limatola
- Leibniz Institute of Molecular Pharmacology (FMP-Berlin), In-cell NMR Group,, Robert-Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Stanford University, Stanford, CA, 94305-5430, USA
| | - Cédric Eichmann
- Leibniz Institute of Molecular Pharmacology (FMP-Berlin), In-cell NMR Group,, Robert-Rössle Strasse 10, 13125, Berlin, Germany
| | - Reeba Susan Jacob
- Leibniz Institute of Molecular Pharmacology (FMP-Berlin), In-cell NMR Group,, Robert-Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, 761000, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, 761000, Rehovot, Israel
| | - Andres Binolfi
- Leibniz Institute of Molecular Pharmacology (FMP-Berlin), In-cell NMR Group,, Robert-Rössle Strasse 10, 13125, Berlin, Germany.,Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Philipp Selenko
- Leibniz Institute of Molecular Pharmacology (FMP-Berlin), In-cell NMR Group,, Robert-Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000, Rehovot, Israel
| |
Collapse
|
42
|
Wall KP, Hough LE. In-Cell NMR within Budding Yeast Reveals Cytoplasmic Masking of Hydrophobic Residues of FG Repeats. Biophys J 2018; 115:1690-1695. [PMID: 30342747 PMCID: PMC6225093 DOI: 10.1016/j.bpj.2018.08.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
In-cell NMR spectroscopy is a powerful tool to determine the properties of proteins and nucleic acids within living cells. In-cell NMR can give site-specific measurements of interactions, modifications, and dynamics as well as their modulation by the cellular environment. In-cell NMR requires selective incorporation of heavy isotopes into a protein of interest, either through the introduction of exogenously produced protein to a cell's interior or the selective overexpression of a protein. We developed conditions to allow the use of Saccharomyces cerevisiae, which was chosen because of its genetic tractability, as a eukaryotic expression system for in-cell NMR. We demonstrate this technique using a fragment of S. cerevisiae Nsp1, an FG Nup. FG Nups are intrinsically disordered proteins containing phenylalanine (F)-glycine (G) repeats and form the selective barrier within the nuclear pore complex. Yeast FG Nups have previously been shown to be maintained in a highly dynamic state within living bacteria as measured by in-cell NMR. Interactions thought to stabilize this dynamic state are also present in the protein's native organism, although site specificity of interaction is different between the two cytosols.
Collapse
Affiliation(s)
- Kathryn P Wall
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado, Boulder, Colorado.
| |
Collapse
|
43
|
Abstract
Our innate circadian clocks control myriad aspects of behavior and physiology. Disruption of our clocks by shift work, jet lag, or inherited mutation leads to metabolic dysregulation and contributes to diseases, including diabetes and cancer. A central step in clock control is phosphorylation of the PERIOD 2 (PER2) protein. Here we conclusively identify the elusive PER2 priming kinase and find it to be the well-known circadian kinase, casein kinase 1 (CK1). Surprisingly, different forms of CK1 have differing abilities to phosphorylate the PER2 priming site, adding to the complexity of circadian regulation. These insights into the phosphoregulation of PER2 will be of broad interest to circadian biologists, computational modelers, and those seeking to pharmacologically manipulate the circadian clock. Multisite phosphorylation of the PERIOD 2 (PER2) protein is the key step that determines the period of the mammalian circadian clock. Previous studies concluded that an unidentified kinase is required to prime PER2 for subsequent phosphorylation by casein kinase 1 (CK1), an essential clock component that is conserved from algae to humans. These subsequent phosphorylations stabilize PER2, delay its degradation, and lengthen the period of the circadian clock. Here, we perform a comprehensive biochemical and biophysical analysis of mouse PER2 (mPER2) priming phosphorylation and demonstrate, surprisingly, that CK1δ/ε is indeed the priming kinase. We find that both CK1ε and a recently characterized CK1δ2 splice variant more efficiently prime mPER2 for downstream phosphorylation in cells than the well-studied splice variant CK1δ1. While CK1 phosphorylation of PER2 was previously shown to be robust to changes in the cellular environment, our phosphoswitch mathematical model of circadian rhythms shows that the CK1 carboxyl-terminal tail can allow the period of the clock to be sensitive to cellular signaling. These studies implicate the extreme carboxyl terminus of CK1 as a key regulator of circadian timing.
Collapse
|
44
|
Teixeira JMC, Skinner SP, Arbesú M, Breeze AL, Pons M. Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data. JOURNAL OF BIOMOLECULAR NMR 2018; 71:1-9. [PMID: 29752607 PMCID: PMC5986830 DOI: 10.1007/s10858-018-0182-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
We present Farseer-NMR ( https://git.io/vAueU ), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems' responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension.
Collapse
Affiliation(s)
- João M. C. Teixeira
- BioNMR Group, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| | - Simon P. Skinner
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Miguel Arbesú
- BioNMR Group, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| | - Alexander L. Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Miquel Pons
- BioNMR Group, Inorganic and Organic Chemistry Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Niesteruk A, Hutchison M, Sreeramulu S, Jonker HRA, Richter C, Abele R, Bock C, Schwalbe H. Structural characterization of the intrinsically disordered domain of Mycobacterium tuberculosis protein tyrosine kinase A. FEBS Lett 2018; 592:1233-1245. [PMID: 29494752 DOI: 10.1002/1873-3468.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 11/10/2022]
Abstract
Although intrinsically disordered proteins or protein domains (IDPs or IDD) are less abundant in bacteria than in eukaryotes, their presence in pathogenic bacterial proteins is important for protein-protein interactions. The protein tyrosine kinase A (PtkA) from Mycobacterium tuberculosis possesses an 80-residue disordered region (IDDPtkA ) of unknown function, located N-terminally to the well-folded kinase core domain. Here, we characterize the conformation of IDDPtkA under varying biophysical conditions and phosphorylation using NMR-spectroscopy. Our results confirm that the N-terminal domain of PtkA exists as an IDD at physiological pH. Furthermore, phosphorylation of IDDPtkA increases the activity of PtkA. Our findings will complement future approaches in understanding molecular mechanisms of key proteins in pathogenic virulence.
Collapse
Affiliation(s)
- Anna Niesteruk
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Marie Hutchison
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Hendrik R A Jonker
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Christian Richter
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| | - Rupert Abele
- Goethe-University Frankfurt am Main, Institute of Biochemistry, Biocenter, Frankfurt am Main, Germany
| | - Christoph Bock
- Goethe-University Frankfurt am Main, Institute of Biochemistry, Biocenter, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Goethe-University Frankfurt am Main, Institute for Organic Chemistry and Chemical Biology, Centre for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany
| |
Collapse
|
46
|
Abstract
Cell cycle progression is tightly regulated by cyclin-dependent kinases (CDKs). The ankyrin-repeat protein p19INK4d functions as a key regulator of G1/S transition; however, its molecular mode of action is unknown. Here, we combine cell and structural biology methods to unravel the mechanism by which p19INK4d controls cell cycle progression. We delineate how the stepwise phosphorylation of p19INK4d Ser66 and Ser76 by cell cycle-independent (p38) and -dependent protein kinases (CDK1), respectively, leads to local unfolding of the three N-terminal ankyrin repeats of p19INK4d This dissociates the CDK6-p19INK4d inhibitory complex and, thereby, activates CDK6. CDK6 triggers entry into S-phase, whereas p19INK4d is ubiquitinated and degraded. Our findings reveal how signaling-dependent p19INK4d unfolding contributes to the irreversibility of G1/S transition.
Collapse
|
47
|
Lippens G, Cahoreau E, Millard P, Charlier C, Lopez J, Hanoulle X, Portais JC. In-cell NMR: from metabolites to macromolecules. Analyst 2018; 143:620-629. [PMID: 29333554 DOI: 10.1039/c7an01635b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-cell NMR of macromolecules has gained momentum over the last ten years as an approach that might bridge the branches of cell biology and structural biology. In this review, we put it in the context of earlier efforts that aimed to characterize by NMR the cellular environment of live cells and their intracellular metabolites. Although technical aspects distinguish these earlier in vivo NMR studies and the more recent in cell NMR efforts to characterize macromolecules in a cellular environment, we believe that both share major concerns ranging from sensitivity and line broadening to cell viability. Approaches to overcome the limitations in one subfield thereby can serve the other one and vice versa. The relevance in biomedical sciences might stretch from the direct following of drug metabolism in the cell to the observation of target binding, and thereby encompasses in-cell NMR both of metabolites and macromolecules. We underline the efforts of the field to move to novel biological insights by some selected examples.
Collapse
Affiliation(s)
- G Lippens
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - E Cahoreau
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - P Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - C Charlier
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - J Lopez
- CERMN, Seccion Quimica, Departemento de Ciencias, Pontificia Universidad Catolica del Peru, Lima 32, Peru
| | - X Hanoulle
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, CNRS UMR8576, Lille, France
| | - J C Portais
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
48
|
Qu X, Qiu T, Guo D, Lu H, Ying J, Shen M, Hu B, Orekhov V, Chen Z. High-fidelity spectroscopy reconstruction in accelerated NMR. Chem Commun (Camb) 2018; 54:10958-10961. [DOI: 10.1039/c8cc06132g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-fidelity spectra, particularly low intensity peaks, are reconstructed for fast NMR with better rank approximation in the EnhanCed Low Rank (ECLR) method.
Collapse
Affiliation(s)
- Xiaobo Qu
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance
- Xiamen University
- Xiamen 361005
- China
| | - Tianyu Qiu
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance
- Xiamen University
- Xiamen 361005
- China
| | - Di Guo
- School of Computer and Information Engineering
- Xiamen University of Technology
- Xiamen 361024
- China
| | - Hengfa Lu
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance
- Xiamen University
- Xiamen 361005
- China
| | - Jiaxi Ying
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance
- Xiamen University
- Xiamen 361005
- China
| | - Ming Shen
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- East China Normal University
- Shanghai 200062
- China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- East China Normal University
- Shanghai 200062
- China
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology and Swedish NMR Centre
- University of Gothenburg
- Gothenburg 40530
- Sweden
| | - Zhong Chen
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
49
|
Liokatis S. Reconstitution of Nucleosomes with Differentially Isotope-labeled Sister Histones. J Vis Exp 2017. [PMID: 28447979 DOI: 10.3791/55349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Asymmetrically modified nucleosomes contain the two copies of a histone (sister histones) decorated with distinct sets of Post-translational Modifications (PTMs). They are newly identified species with unknown means of establishment and functional implications. Current analytical methods are inadequate to detect the copy-specific occurrence of PTMs on the nucleosomal sister histones. This protocol presents a biochemical method for the in vitro reconstitution of nucleosomes containing differentially isotope-labeled sister histones. The generated complex can be also asymmetrically modified, after including a premodified histone pool during refolding of histone subcomplexes. These asymmetric nucleosome preparations can be readily reacted with histone-modifying enzymes to study modification cross-talk mechanisms imposed by the asymmetrically pre-incorporated PTM using nuclear magnetic resonance (NMR) spectroscopy. Particularly, the modification reactions in real-time can be mapped independently on the two sister histones by performing different types of NMR correlation experiments, tailored for the respective isotope type. This methodology provides the means to study crosstalk mechanisms that contribute to the formation and propagation of asymmetric PTM patterns on nucleosomal complexes.
Collapse
Affiliation(s)
- Stamatios Liokatis
- Department of Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP-Berlin);
| |
Collapse
|
50
|
Louša P, Nedozrálová H, Župa E, Nováček J, Hritz J. Phosphorylation of the regulatory domain of human tyrosine hydroxylase 1 monitored using non-uniformly sampled NMR. Biophys Chem 2017; 223:25-29. [PMID: 28282625 DOI: 10.1016/j.bpc.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
Human tyrosine hydroxylase 1 (hTH1) activity is regulated by phosphorylation of its regulatory domain (RD-hTH1) and by an interaction with the 14-3-3 protein. The RD-hTH1 is composed of a structured region (66-169) preceded by an intrinsically disordered protein region (IDP, hTH1_65) containing two phosphorylation sites (S19 and S40) which are highly relevant for its increase in activity. The NMR signals of the IDP region in the non-phosphorylated, singly phosphorylated (pS40) and doubly phosphorylated states (pS19_pS40) were assigned by non-uniformly sampled spectra with increased dimensionality (5D). The structural changes induced by phosphorylation were analyzed by means of secondary structure propensities. The phosphorylation kinetics of the S40 and S19 by kinases PKA and PRAK respectively were monitored by non-uniformly sampled time-resolved NMR spectroscopy followed by their quantitative analysis.
Collapse
Affiliation(s)
- Petr Louša
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Hana Nedozrálová
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Erik Župa
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Nováček
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jozef Hritz
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|