1
|
Kielbinski M, Bernacka J. Fiber photometry in neuroscience research: principles, applications, and future directions. Pharmacol Rep 2024:10.1007/s43440-024-00646-w. [PMID: 39235662 DOI: 10.1007/s43440-024-00646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
In recent years, fluorescent sensors are enjoying a surge of popularity in the field of neuroscience. Through the development of novel genetically encoded sensors as well as improved methods of detection and analysis, fluorescent sensing has risen as a new major technique in neuroscience alongside molecular, electrophysiological, and imaging methods, opening up new avenues for research. Combined with multiphoton microscopy and fiber photometry, these sensors offer unique advantages in terms of cellular specificity, access to multiple targets - from calcium dynamics to neurotransmitter release to intracellular processes - as well as high capability for in vivo interrogation of neurobiological mechanisms underpinning behavior. Here, we provide a brief overview of the method, present examples of its integration with other tools in recent studies ranging from cellular to systems neuroscience, and discuss some of its principles and limitations, with the aim of introducing new potential users to this rapidly developing and potent technique.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Joanna Bernacka
- Cancer Neurophysiology Group, Łukasiewicz - PORT, Polish Center for Technology Development, Stabłowicka 147, Wrocław, 54-066, Poland
| |
Collapse
|
2
|
Rimoli CV, Moretti C, Soldevila F, Brémont E, Ventalon C, Gigan S. Demixing fluorescence time traces transmitted by multimode fibers. Nat Commun 2024; 15:6286. [PMID: 39060262 PMCID: PMC11282286 DOI: 10.1038/s41467-024-50306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Optical methods based on thin multimode fibers (MMFs) are promising tools for measuring neuronal activity in deep brain regions of freely moving mice thanks to their small diameter. However, current methods are limited: while fiber photometry provides only ensemble activity, imaging techniques using of long multimode fibers are very sensitive to bending and have not been applied to unrestrained rodents yet. Here, we demonstrate the fundamentals of a new approach using a short MMF coupled to a miniscope. In proof-of-principle in vitro experiments, we disentangled spatio-temporal fluorescence signals from multiple fluorescent sources transmitted by a thin (200 µm) and short (8 mm) MMF, using a general unconstrained non-negative matrix factorization algorithm directly on the raw video data. Furthermore, we show that low-cost open-source miniscopes have sufficient sensitivity to image the same fluorescence patterns seen in our proof-of-principle experiment, suggesting a new avenue for novel minimally invasive deep brain studies using multimode fibers in freely behaving mice.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Claudio Moretti
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Enora Brémont
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France.
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France.
| |
Collapse
|
3
|
Chen Y, Chien J, Dai B, Lin D, Chen ZS. Identifying behavioral links to neural dynamics of multifiber photometry recordings in a mouse social behavior network. J Neural Eng 2024; 21:10.1088/1741-2552/ad5702. [PMID: 38861996 PMCID: PMC11246699 DOI: 10.1088/1741-2552/ad5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Distributed hypothalamic-midbrain neural circuits help orchestrate complex behavioral responses during social interactions. Given rapid advances in optical imaging, it is a fundamental question how population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. This paper aims to investigate the correspondence between MFP data and social behaviors.Approach:We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include a continuous-state linear dynamical system and a discrete-state hidden semi-Markov model. We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively.Main results:Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states, and produce interpretable latent states. Our approach is also validated in computer simulations in the presence of known ground truth.Significance:Overall, these analysis approaches provide a state-space framework to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.
Collapse
Affiliation(s)
- Yibo Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Program in Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui, China
- Equal contributions (Y.C. and J.C.)
| | - Jonathan Chien
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Equal contributions (Y.C. and J.C.)
| | - Bing Dai
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Dayu Lin
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
4
|
Serikov A, Martsishevska I, Shin W, Kim J. Protocol for in vivo dual-color fiber photometry in the mouse thalamus. STAR Protoc 2024; 5:102931. [PMID: 38470909 PMCID: PMC10943959 DOI: 10.1016/j.xpro.2024.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
In vivo calcium imaging of neural activity is an indispensable approach for understanding the mechanisms and functions of neural system. Development of advanced imaging tools and various genetically encoded calcium indicators allows us to simultaneously record the activity of different neural populations. Here, we present a protocol for acquiring neural activity of two discrete neural populations in mice using dual-color fiber photometry. We describe steps for injecting viral constructs and implanting the fiber optic through stereotaxic surgery, calcium signal acquisition, and data analysis. We also describe the incorporation of electroencephalogram and electromyography recordings with dual-color fiber photometry analysis. For complete details on the use and execution of this protocol, please refer to Shin et al.1.
Collapse
Affiliation(s)
- Almas Serikov
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Iryna Martsishevska
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Wooyeon Shin
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Piantadosi SC, Lee MK, Wu M, Huynh H, Avila R, Pizzano C, Zamorano CA, Wu Y, Xavier R, Stanslaski M, Kang J, Thai S, Kim Y, Zhang J, Huang Y, Kozorovitskiy Y, Good CH, Banks AR, Rogers JA, Bruchas MR. An integrated microfluidic and fluorescence platform for probing in vivo neuropharmacology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594203. [PMID: 38798493 PMCID: PMC11118345 DOI: 10.1101/2024.05.14.594203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neurotechnologies and genetic tools for dissecting neural circuit functions have advanced rapidly over the past decade, although the development of complementary pharmacological method-ologies has comparatively lagged. Understanding the precise pharmacological mechanisms of neuroactive compounds is critical for advancing basic neurobiology and neuropharmacology, as well as for developing more effective treatments for neurological and neuropsychiatric disorders. However, integrating modern tools for assessing neural activity in large-scale neural networks with spatially localized drug delivery remains a major challenge. Here, we present a dual microfluidic-photometry platform that enables simultaneous intracranial drug delivery with neural dynamics monitoring in the rodent brain. The integrated platform combines a wireless, battery-free, miniaturized fluidic microsystem with optical probes, allowing for spatially and temporally specific drug delivery while recording activity-dependent fluorescence using genetically encoded calcium indicators (GECIs), neurotransmitter sensors GRAB NE and GRAB DA , and neuropeptide sensors. We demonstrate the performance this platform for investigating neuropharmacological mechanisms in vivo and characterize its efficacy in probing precise mechanistic actions of neuroactive compounds across several rapidly evolving neuroscience domains.
Collapse
|
6
|
Alonso-Lozares I, Wilbers P, Asperl L, Teijsse S, van der Neut C, Schetters D, van Mourik Y, McDonald AJ, Heistek T, Mansvelder HD, De Vries TJ, Marchant NJ. Lateral hypothalamic GABAergic neurons encode alcohol memories. Curr Biol 2024; 34:1086-1097.e6. [PMID: 38423016 DOI: 10.1016/j.cub.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
In alcohol use disorder, the alcohol memories persist during abstinence, and exposure to stimuli associated with alcohol use can lead to relapse. This highlights the importance of investigating the neural substrates underlying not only relapse but also encoding and expression of alcohol memories. GABAergic neurons in the lateral hypothalamus (LH-GABA) have been shown to be critical for food-cue memories and motivation; however, the extent to which this role extends to alcohol-cue memories and motivations remains unexplored. In this study, we aimed to describe how alcohol-related memories are encoded and expressed in LH GABAergic neurons. Our first step was to monitor LH-GABA calcium transients during acquisition, extinction, and reinstatement of an alcohol-cue memory using fiber photometry. We trained the rats on a Pavlovian conditioning task, where one conditioned stimulus (CS+) predicted alcohol (20% EtOH) and another conditioned stimulus (CS-) had no outcome. We then extinguished this association through non-reinforced presentations of the CS+ and CS- and finally, in two different groups, we measured relapse under non-primed and alcohol-primed induced reinstatement. Our results show that initially both cues caused increased LH-GABA activity, and after learning only the alcohol cue increased LH-GABA activity. After extinction, this activity decreases, and we found no differences in LH-GABA activity during reinstatement in either group. Next, we inhibited LH-GABA neurons with optogenetics to show that activity of these neurons is necessary for the formation of an alcohol-cue association. These findings suggest that LH-GABA might be involved in attentional processes modulated by learning.
Collapse
Affiliation(s)
- Isis Alonso-Lozares
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Pelle Wilbers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Lina Asperl
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Sem Teijsse
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Charlotte van der Neut
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Dustin Schetters
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Yvar van Mourik
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Allison J McDonald
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Tim Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Taco J De Vries
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Nathan J Marchant
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands.
| |
Collapse
|
7
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
8
|
Chen Y, Chien J, Dai B, Lin D, Chen ZS. Identifying behavioral links to neural dynamics of multifiber photometry recordings in a mouse social behavior network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.25.573308. [PMID: 38234793 PMCID: PMC10793434 DOI: 10.1101/2023.12.25.573308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Distributed hypothalamic-midbrain neural circuits orchestrate complex behavioral responses during social interactions. How population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include continuous-state linear dynamical system (LDS) and discrete-state hidden semi-Markov model (HSMM). We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively. Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states. Overall, these analysis approaches provide an unbiased strategy to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.
Collapse
Affiliation(s)
- Yibo Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Program in Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui, China
| | - Jonathan Chien
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Bing Dai
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Dayu Lin
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
9
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Barbier M, Thirtamara Rajamani K, Netser S, Wagner S, Harony-Nicolas H. Altered neural activity in the mesoaccumbens pathway underlies impaired social reward processing in Shank3-deficient rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570134. [PMID: 38106179 PMCID: PMC10723340 DOI: 10.1101/2023.12.05.570134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.
Collapse
Affiliation(s)
- Marie Barbier
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Keerthi Thirtamara Rajamani
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Liu P, Gao C, Wu J, Wu T, Zhang Y, Liu C, Sun C, Li A. Negative valence encoding in the lateral entorhinal cortex during aversive olfactory learning. Cell Rep 2023; 42:113204. [PMID: 37804511 DOI: 10.1016/j.celrep.2023.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Olfactory learning is widely regarded as a substrate for animal survival. The exact brain areas involved in olfactory learning and how they function at various stages during learning remain elusive. Here, we investigate the role of the lateral entorhinal cortex (LEC) and the posterior piriform cortex (PPC), two important olfactory areas, in aversive olfactory learning. We find that the LEC is involved in the acquisition of negative odor value during olfactory fear conditioning, whereas the PPC is involved in the memory-retrieval phase. Furthermore, inhibition of LEC CaMKIIα+ neurons affects fear encoding, fear memory recall, and PPC responses to a conditioned odor. These findings provide direct evidence for the involvement of LEC CaMKIIα+ neurons in negative valence encoding.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tingting Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Changyu Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Changcheng Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
12
|
Salinas AG, Lee JO, Augustin SM, Zhang S, Patriarchi T, Tian L, Morales M, Mateo Y, Lovinger DM. Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor. Nat Commun 2023; 14:5915. [PMID: 37739964 PMCID: PMC10517008 DOI: 10.1038/s41467-023-41581-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/06/2023] [Indexed: 09/24/2023] Open
Abstract
The development of genetically encoded dopamine sensors such as dLight has provided a new approach to measuring slow and fast dopamine dynamics both in brain slices and in vivo, possibly enabling dopamine measurements in areas like the dorsolateral striatum (DLS) where previously such recordings with fast-scan cyclic voltammetry (FSCV) were difficult. To test this, we first evaluated dLight photometry in mouse brain slices with simultaneous FSCV and found that both techniques yielded comparable results, but notable differences in responses to dopamine transporter inhibitors, including cocaine. We then used in vivo fiber photometry with dLight in mice to examine responses to cocaine in DLS. We also compared dopamine responses during Pavlovian conditioning across the striatum. We show that dopamine increases were readily detectable in DLS and describe transient dopamine kinetics, as well as slowly developing signals during conditioning. Overall, our findings indicate that dLight photometry is well suited to measuring dopamine dynamics in DLS.
Collapse
Affiliation(s)
- Armando G Salinas
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
- Department of Bioengineering, George Mason University, Fairfax, VA, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Shana M Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Tommaso Patriarchi
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
13
|
Noh K, Cho WH, Lee BH, Kim DW, Kim YS, Park K, Hwang M, Barcelon E, Cho YK, Lee CJ, Yoon BE, Choi SY, Park HY, Jun SB, Lee SJ. Cortical astrocytes modulate dominance behavior in male mice by regulating synaptic excitatory and inhibitory balance. Nat Neurosci 2023; 26:1541-1554. [PMID: 37563296 DOI: 10.1038/s41593-023-01406-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Social hierarchy is established as an outcome of individual social behaviors, such as dominance behavior during long-term interactions with others. Astrocytes are implicated in optimizing the balance between excitatory and inhibitory (E/I) neuronal activity, which may influence social behavior. However, the contribution of astrocytes in the prefrontal cortex to dominance behavior is unclear. Here we show that dorsomedial prefrontal cortical (dmPFC) astrocytes modulate E/I balance and dominance behavior in adult male mice using in vivo fiber photometry and two-photon microscopy. Optogenetic and chemogenetic activation or inhibition of dmPFC astrocytes show that astrocytes bidirectionally control male mouse dominance behavior, affecting social rank. Dominant and subordinate male mice present distinct prefrontal synaptic E/I balance, regulated by astrocyte activity. Mechanistically, we show that dmPFC astrocytes control cortical E/I balance by simultaneously enhancing presynaptic-excitatory and reducing postsynaptic-inhibitory transmission via astrocyte-derived glutamate and ATP release, respectively. Our findings show how dmPFC astrocyte-neuron communication can be involved in the establishment of social hierarchy in adult male mice.
Collapse
Affiliation(s)
- Kyungchul Noh
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Woo-Hyun Cho
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, Republic of Korea
| | - Keebum Park
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Minkyu Hwang
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Ellane Barcelon
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yoon Kyung Cho
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, Republic of Korea
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Stanley AT, Post MR, Lacefield C, Sulzer D, Miniaci MC. Norepinephrine release in the cerebellum contributes to aversive learning. Nat Commun 2023; 14:4852. [PMID: 37563141 PMCID: PMC10415399 DOI: 10.1038/s41467-023-40548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The modulation of dopamine release from midbrain projections to the striatum has long been demonstrated in reward-based learning, but the synaptic basis of aversive learning is far less characterized. The cerebellum receives axonal projections from the locus coeruleus, and norepinephrine release is implicated in states of arousal and stress, but whether aversive learning relies on plastic changes in norepinephrine release in the cerebellum is unknown. Here we report that in mice, norepinephrine is released in the cerebellum following an unpredicted noxious event (a foot-shock) and that this norepinephrine release is potentiated powerfully with fear acquisition as animals learn that a previously neutral stimulus (tone) predicts the aversive event. Importantly, both chemogenetic and optogenetic inhibition of the locus coeruleus-cerebellum pathway block fear memory without impairing motor function. Thus, norepinephrine release in the cerebellum is modulated by experience and underlies aversive learning.
Collapse
Affiliation(s)
- Adrien T Stanley
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Michael R Post
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Clay Lacefield
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
15
|
Suthard RL, Senne RA, Buzharsky MD, Pyo AY, Dorst KE, Diep AH, Cole RH, Ramirez S. Basolateral Amygdala Astrocytes Are Engaged by the Acquisition and Expression of a Contextual Fear Memory. J Neurosci 2023; 43:4997-5013. [PMID: 37268419 PMCID: PMC10324998 DOI: 10.1523/jneurosci.1775-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Astrocytes are key cellular regulators within the brain. The basolateral amygdala (BLA) is implicated in fear memory processing, yet most research has entirely focused on neuronal mechanisms, despite a significant body of work implicating astrocytes in learning and memory. In the present study, we used in vivo fiber photometry in C57BL/6J male mice to record from amygdalar astrocytes across fear learning, recall, and three separate periods of extinction. We found that BLA astrocytes robustly responded to foot shock during acquisition, their activity remained remarkably elevated across days in comparison to unshocked control animals, and their increased activity persisted throughout extinction. Further, we found that astrocytes responded to the initiation and termination of freezing bouts during contextual fear conditioning and recall, and this behavior-locked pattern of activity did not persist throughout the extinction sessions. Importantly, astrocytes do not display these changes while exploring a novel context, suggesting that these observations are specific to the original fear-associated environment. Chemogenetic inhibition of fear ensembles in the BLA did not affect freezing behavior or astrocytic calcium dynamics. Overall, our work presents a real-time role for amygdalar astrocytes in fear processing and provides new insight into the emerging role of these cells in cognition and behavior.SIGNIFICANCE STATEMENT We show that basolateral amygdala astrocytes are robustly responsive to negative experiences, like shock, and display changed calcium activity patterns through fear learning and memory. Additionally, astrocytic calcium responses become time locked to the initiation and termination of freezing behavior during fear learning and recall. We find that astrocytes display calcium dynamics unique to a fear-conditioned context, and chemogenetic inhibition of BLA fear ensembles does not have an impact on freezing behavior or calcium dynamics. These findings show that astrocytes play a key real-time role in fear learning and memory.
Collapse
Affiliation(s)
- Rebecca L Suthard
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Ryan A Senne
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Michelle D Buzharsky
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Kaitlyn E Dorst
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Anh H Diep
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Rebecca H Cole
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Steve Ramirez
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
16
|
Arús BA, Cosco ED, Yiu J, Balba I, Bischof TS, Sletten EM, Bruns OT. Shortwave infrared fluorescence imaging of peripheral organs in awake and freely moving mice. Front Neurosci 2023; 17:1135494. [PMID: 37274204 PMCID: PMC10232761 DOI: 10.3389/fnins.2023.1135494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Extracting biological information from awake and unrestrained mice is imperative to in vivo basic and pre-clinical research. Accordingly, imaging methods which preclude invasiveness, anesthesia, and/or physical restraint enable more physiologically relevant biological data extraction by eliminating these extrinsic confounders. In this article, we discuss the recent development of shortwave infrared (SWIR) fluorescent imaging to visualize peripheral organs in freely-behaving mice, as well as propose potential applications of this imaging modality in the neurosciences.
Collapse
Affiliation(s)
- Bernardo A. Arús
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Emily D. Cosco
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joycelyn Yiu
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ilaria Balba
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas S. Bischof
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Oliver T. Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
17
|
Li JN, Wu XM, Zhao LJ, Sun HX, Hong J, Wu FL, Chen SH, Chen T, Li H, Dong YL, Li YQ. Central medial thalamic nucleus dynamically participates in acute itch sensation and chronic itch-induced anxiety-like behavior in male mice. Nat Commun 2023; 14:2539. [PMID: 37137899 PMCID: PMC10156671 DOI: 10.1038/s41467-023-38264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Itch is an annoying sensation consisting of both sensory and emotional components. It is known to involve the parabrachial nucleus (PBN), but the following transmission nodes remain elusive. The present study identified that the PBN-central medial thalamic nucleus (CM)-medial prefrontal cortex (mPFC) pathway is essential for itch signal transmission at the supraspinal level in male mice. Chemogenetic inhibition of the CM-mPFC pathway attenuates scratching behavior or chronic itch-related affective responses. CM input to mPFC pyramidal neurons is enhanced in acute and chronic itch models. Specifically chronic itch stimuli also alter mPFC interneuron involvement, resulting in enhanced feedforward inhibition and a distorted excitatory/inhibitory balance in mPFC pyramidal neurons. The present work underscores CM as a transmit node of the itch signal in the thalamus, which is dynamically engaged in both the sensory and affective dimensions of itch with different stimulus salience.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liu-Jie Zhao
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Feng-Ling Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Si-Hai Chen
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
- Department of Human Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou, 014040, China.
| |
Collapse
|
18
|
Oyaga MR, Serra I, Kurup D, Koekkoek SKE, Badura A. Delay eyeblink conditioning performance and brain-wide c-Fos expression in male and female mice. Open Biol 2023; 13:220121. [PMID: 37161289 PMCID: PMC10170203 DOI: 10.1098/rsob.220121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Delay eyeblink conditioning has been extensively used to study associative learning and the cerebellar circuits underlying this task have been largely identified. However, there is a little knowledge on how factors such as strain, sex and innate behaviour influence performance during this type of learning. In this study, we used male and female mice of C57BL/6J (B6) and B6CBAF1 strains to investigate the effect of sex, strain and locomotion in delay eyeblink conditioning. We performed a short and a long delay eyeblink conditioning paradigm and used a c-Fos immunostaining approach to explore the involvement of different brain areas in this task. We found that both B6 and B6CBAF1 females reach higher learning scores compared to males in the initial stages of learning. This sex-dependent difference was no longer present as the learning progressed. Moreover, we found a strong positive correlation between learning scores and voluntary locomotion irrespective of the training duration. c-Fos immunostainings after the short paradigm showed positive correlations between c-Fos expression and learning scores in the cerebellar cortex and brainstem, as well as previously unreported areas. By contrast, after the long paradigm, c-Fos expression was only significantly elevated in the brainstem. Taken together, we show that differences in voluntary locomotion and activity across brain areas correlate with performance in delay eyeblink conditioning across strains and sexes.
Collapse
Affiliation(s)
- Maria Roa Oyaga
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
| | - Ines Serra
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
| | - Devika Kurup
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
| | | | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC, 3000 Rotterdam, the Netherlands
- Netherlands Institute of Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| |
Collapse
|
19
|
Arús BA, Cosco ED, Yiu J, Balba I, Bischof TS, Sletten EM, Bruns OT. Shortwave infrared (SWIR) fluorescence imaging of peripheral organs in awake and freely moving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538387. [PMID: 37163051 PMCID: PMC10168299 DOI: 10.1101/2023.04.26.538387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracting biological information from awake and unrestrained mice is imperative to in vivo basic and pre-clinical research. Accordingly, imaging methods which preclude invasiveness, anesthesia, and/or physical restraint enable more physiologically relevant biological data extraction by eliminating these extrinsic confounders. In this article we discuss the recent development of shortwave infrared (SWIR) fluorescent imaging to visualize peripheral organs in freely-behaving mice, as well as propose potential applications of this imaging modality in the neurosciences.
Collapse
|
20
|
Li J, Shang Z, Chen JH, Gu W, Yao L, Yang X, Sun X, Wang L, Wang T, Liu S, Li J, Hou T, Xing D, Gill DL, Li J, Wang SQ, Hou L, Zhou Y, Tang AH, Zhang X, Wang Y. Engineering of NEMO as calcium indicators with large dynamics and high sensitivity. Nat Methods 2023:10.1038/s41592-023-01852-9. [PMID: 37081094 DOI: 10.1038/s41592-023-01852-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
Collapse
Affiliation(s)
- Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia-Hui Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjia Gu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Yang
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Xiaowen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tianlu Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Siyao Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jiajing Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Lijuan Hou
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
21
|
Zhou J, Li J, Papaneri AB, Cui G. AJ76 and UH232 as potential agents for diagnosing early-stage Parkinson's disease. Neuropharmacology 2023; 226:109397. [PMID: 36623805 PMCID: PMC9901527 DOI: 10.1016/j.neuropharm.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
We recently reported that the "Dopamine Neuron Challenge Test" (DNC Test), a diagnostic method that measures the levels of dopamine metabolites in cerebrospinal fluid (CSF) and plasma samples after pharmacologically inducing a transient dopamine release, can detect early-stage Parkinson's disease (PD) with high sensitivity and selectivity in mouse models. The use of haloperidol in the original DNC test to challenge dopamine neurons was less than ideal, as it may cause extrapyramidal motor symptoms. Here we report an improved DNC Test, in which the original challenging agents, haloperidol and methylphenidate, are replaced by a single challenging agent, a dopamine autoreceptor preferring antagonist AJ76 or UH232. We show that the improved DNC Test can achieve the same level of sensitivity and selectivity in detecting early PD in a mouse model without causing motor side effects. These findings significantly improve the practicality of using the DNC Test as a screening or diagnostic test for detecting early-stage PD in the high-risk population in humans.
Collapse
Affiliation(s)
- Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jicheng Li
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Amy B Papaneri
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
22
|
Ramandi D, Michelson NJ, Raymond LA, Murphy TH. Chronic multiscale resolution of mouse brain networks using combined mesoscale cortical imaging and subcortical fiber photometry. NEUROPHOTONICS 2023; 10:015001. [PMID: 36694618 PMCID: PMC9867602 DOI: 10.1117/1.nph.10.1.015001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Genetically encoded optical probes to image calcium levels in neurons in vivo are used widely as a real-time measure of neuronal activity in the brain. Mesoscale calcium imaging through a cranial window provides a method of studying the interaction of circuit activity between cortical areas but lacks access to subcortical regions. AIM We have developed an optical and surgical preparation that preserves wide-field imaging of the cortical surface while also permitting access to specific subcortical networks. APPROACH This was achieved using an optical fiber implanted in the striatum, along with a bilateral widefield cranial window, enabling simultaneous mesoscale cortical imaging and subcortical fiber photometry recording of calcium signals in a transgenic animal expressing GCaMP. Subcortical signals were collected from the dorsal regions of the striatum. We combined this approach with multiple sensory-motor tasks, including specific auditory and visual stimulation, and video monitoring of animal movements and pupillometry during head-fixed behaviors. RESULTS We found high correlations between cortical and striatal activity in response to sensory stimulation or movement. Furthermore, spontaneous activity recordings revealed that specific motifs of cortical activity are correlated with presynaptic activity recorded in the striatum, enabling us to select for corticostriatal activity motifs. CONCLUSION We believe that this method can be utilized to reveal not only global patterns but also cell-specific connectivity that provides insight into corticobasal ganglia circuit organization.
Collapse
Affiliation(s)
- Daniel Ramandi
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Nicholas J. Michelson
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Lynn A. Raymond
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Timothy H. Murphy
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Beacher NJ, Washington KA, Zhang Y, Li Y, Lin DT. GRIN lens applications for studying neurobiology of substance use disorder. ADDICTION NEUROSCIENCE 2022; 4:100049. [PMID: 36531187 PMCID: PMC9757736 DOI: 10.1016/j.addicn.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Substance use disorder (SUD) is associated with severe health and social consequences. Continued drug use results in alterations of circuits within the mesolimbic dopamine system. It is critical to observe longitudinal impacts of SUD on neural activity in vivo to identify SUD predispositions, develop pharmaceuticals to prevent overdose, and help people suffering from SUD. However, implicated SUD associated areas are buried in deep brain which makes in vivo observation of neural activity challenging. The gradient index (GRIN) lens can probe these regions in mice and rats. In this short communications review, we will discuss how the GRIN lens can be coupled with other technologies such as miniaturized microscopes, fiberscopes, fMRI, and optogenetics to fully explore in vivo SUD research. Particularly, GRIN lens allows in vivo observation of deep brain regions implicated in SUD, differentiation of genetically distinct neurons, examination of individual cells longitudinally, correlation of neuronal patters with SUD behavior, and manipulation of neural circuits.
Collapse
Affiliation(s)
- Nicholas James Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Kayden Alecsandre Washington
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
24
|
Malik A, Eldaly ABM, Agadagba SK, Zheng Y, Chen X, He J, Chan LLH. Neuromodulation in the developing visual cortex after long-term monocular deprivation. Cereb Cortex 2022; 33:5636-5645. [PMID: 36396729 DOI: 10.1093/cercor/bhac448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Neural dynamics are altered in the primary visual cortex (V1) during critical period monocular deprivation (MD). Synchronization of neural oscillations is pertinent to physiological functioning of the brain. Previous studies have reported chronic disruption of V1 functional properties such as ocular dominance, spatial acuity, and binocular matching after long-term monocular deprivation (LTMD). However, the possible neuromodulation and neural synchrony has been less explored. Here, we investigated the difference between juvenile and adult experience-dependent plasticity in mice from intracellular calcium signals with fluorescent indicators. We also studied alterations in local field potentials power bands and phase-amplitude coupling (PAC) of specific brain oscillations. Our results showed that LTMD in juveniles causes higher neuromodulatory changes as seen by high-intensity fluorescent signals from the non-deprived eye (NDE). Meanwhile, adult mice showed a greater response from the deprived eye (DE). LTMD in juvenile mice triggered alterations in the power of delta, theta, and gamma oscillations, followed by enhancement of delta–gamma PAC in the NDE. However, LTMD in adult mice caused alterations in the power of delta oscillations and enhancement of delta–gamma PAC in the DE. These markers are intrinsic to cortical neuronal processing during LTMD and apply to a wide range of nested oscillatory markers.
Collapse
Affiliation(s)
- Anju Malik
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
| | - Abdelrahman B M Eldaly
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
- Minia University Electrical Engineering Department, Faculty of Engineering, , Minia 61517 , Egypt
| | - Stephen K Agadagba
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
| | - Yilin Zheng
- City University of Hong Kong Department of Neuroscience, , Hong Kong SAR, P. R . China
| | - Xi Chen
- City University of Hong Kong Department of Neuroscience, , Hong Kong SAR, P. R . China
| | - Jufang He
- City University of Hong Kong Department of Neuroscience, , Hong Kong SAR, P. R . China
| | - Leanne Lai-Hang Chan
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
- City University of Hong Kong Center for Biosystems, Neuroscience, and Nanotechnology, , Hong Kong SAR, P. R . China
| |
Collapse
|
25
|
Zhou J, Yeh A, Meng C, Papaneri AB, Peddada T, Kobzar NP, Cui G. Spectrally Resolved Fiber Photometry for In Vivo Multi-Color Fluorescence Measurements. Curr Protoc 2022; 2:e587. [PMID: 36373979 PMCID: PMC10018997 DOI: 10.1002/cpz1.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This article describes how to assemble and operate a spectrometer-based fiber photometry system for in vivo simultaneous measurements of multiple fluorescent biosensors in freely moving mice. The first section of the article describes the step-by-step procedure to assemble a basic single-spectrometer fiber photometry system and how to expand it into a dual-spectrometer system that allows for simultaneous recordings from two sites. The second part describes the steps for a typical fiber probe implantation surgery. The last section describes how to acquire and analyze the time-lapsed spectral data. This article is intended for teaching labs how to build their own fiber photometry systems (with a video tutorial) from commercially available parts and perform in vivo recordings in behaving mice. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Assembling a dual-laser, single-spectrometer fiber photometry system Support Protocol: Dual-spectrometer fiber photometry assembly Basic Protocol 2: Optical fiber probe implantation Basic Protocol 3: Data acquisition and analysis.
Collapse
Affiliation(s)
- Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA
| | - Alan Yeh
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA
| | - Chengbo Meng
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA
| | - Amy B Papaneri
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA
| | - Teja Peddada
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA
| | - Nicholas P Kobzar
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA
| |
Collapse
|
26
|
Lu J, Zhang Z, Yin X, Tang Y, Ji R, Chen H, Guang Y, Gong X, He Y, Zhou W, Wang H, Cheng K, Wang Y, Chen X, Xie P, Guo ZV. An entorhinal-visual cortical circuit regulates depression-like behaviors. Mol Psychiatry 2022; 27:3807-3820. [PMID: 35388184 DOI: 10.1038/s41380-022-01540-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is viewed as a 'circuitopathy'. The hippocampal-entorhinal network plays a pivotal role in regulation of depression, and its main sensory output, the visual cortex, is a promising target for stimulation therapy of depression. However, whether the entorhinal-visual cortical pathway mediates depression and the potential mechanism remains unknown. Here we report a cortical circuit linking entorhinal cortex layer Va neurons to the medial portion of secondary visual cortex (Ent→V2M) that bidirectionally regulates depression-like behaviors in mice. Analyses of brain-wide projections of Ent Va neurons and two-color retrograde tracing indicated that Ent Va→V2M projection neurons represented a unique population of neurons in Ent Va. Immunostaining of c-Fos revealed that activity in Ent Va neurons was decreased in mice under chronic social defeat stress (CSDS). Both chemogenetic inactivation of Ent→V2M projection neurons and optogenetic inactivation of the projection terminals induced social deficiency, anxiety- and despair-related behaviors in healthy mice. Chemogenetic inactivation of Ent→V2M projection neurons also aggravated these depression-like behaviors in CSDS-resilient mice. Optogenetic activation of Ent→V2M projection terminals rapidly ameliorated depression-like phenotypes. Optical recording using fiber photometry indicated that elevated neural activity in Ent→V2M projection terminals promoted antidepressant-like behaviors. Thus, the Ent→V2M circuit plays a crucial role in regulation of depression-like behaviors, and can function as a potential target for treating major depressive disorder.
Collapse
Affiliation(s)
- Jian Lu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.,IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Zhouzhou Zhang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Xinxin Yin
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Yingjun Tang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Runan Ji
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Han Chen
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Yu Guang
- Department of gynecology, The First Affiliated Hospital of Shenzhen University (The Second People's Hospital of Shenzhen) and Dapeng Maternity & Child Healthcare Hospital, 518028, Shenzhen, China
| | - Xue Gong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, 400038, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Zengcai V Guo
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
27
|
Zhang WT, Chao THH, Yang Y, Wang TW, Lee SH, Oyarzabal EA, Zhou J, Nonneman R, Pegard NC, Zhu H, Cui G, Shih YYI. Spectral fiber photometry derives hemoglobin concentration changes for accurate measurement of fluorescent sensor activity. CELL REPORTS METHODS 2022; 2:100243. [PMID: 35880016 PMCID: PMC9308135 DOI: 10.1016/j.crmeth.2022.100243] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Fiber photometry is an emerging technique for recording fluorescent sensor activity in the brain. However, significant hemoglobin absorption artifacts in fiber photometry data may be misinterpreted as sensor activity changes. Because hemoglobin exists widely in the brain, and its concentration varies temporally, such artifacts could impede the accuracy of photometry recordings. Here we present use of spectral photometry and computational methods to quantify photon absorption effects by using activity-independent fluorescence signals, which can be used to derive oxy- and deoxy-hemoglobin concentration changes. Although these changes are often temporally delayed compared with the fast-responding fluorescence spikes, we found that erroneous interpretation may occur when examining pharmacology-induced sustained changes and that sometimes hemoglobin absorption could flip the GCaMP signal polarity. We provide hemoglobin-based correction methods to restore fluorescence signals and compare our results with other commonly used approaches. We also demonstrated the utility of spectral fiber photometry for delineating regional differences in hemodynamic response functions.
Collapse
Affiliation(s)
- Wei-Ting Zhang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Yang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Esteban A. Oyarzabal
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Randy Nonneman
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicolas C. Pegard
- Department of Applied Physical Sciences, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Beloate LN, Zhang N. Connecting the dots between cell populations, whole-brain activity, and behavior. NEUROPHOTONICS 2022; 9:032208. [PMID: 35350137 PMCID: PMC8957372 DOI: 10.1117/1.nph.9.3.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targeted Ca 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.
Collapse
Affiliation(s)
- Lauren N. Beloate
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
| | - Nanyin Zhang
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
- Pennsylvania State University, Huck Institutes of the Life Sciences, Pennsylvania, United States
| |
Collapse
|
29
|
Qin J, Huang WS, DU HR, Zhang CQ, Xie P, Qin H. Ca 2+-based neural activity recording for rapidly screening behavioral correlates of the claustrum in freely behaving mice. Biomed Res 2022; 43:81-89. [PMID: 35718448 DOI: 10.2220/biomedres.43.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The claustrum has been hypothesized to participate in high-order brain functions, but experimental studies to demonstrate these functions are currently lacking. Neural activity recording of the claustrum in freely-behaving animals allows for correlating claustral activities with specific behaviors. However, previously utilized methods for studying the claustrum make it difficult to monitor neural activity patterns of freely-behaving animals in real time. Here we applied fiber photometry to monitor Ca2+ activity in the claustrum of freely-behaving mice. Using this method, we were able to achieve Ca2+ activity recording in both anesthetized and freely-behaving mice. We found that the dynamics of Ca2+ activity depended on anesthesia levels. As compared to the use of genetically encoded Ca2+ indicators that requires a few weeks of virus-dependent expression, we used a synthetic fluorescent Ca2+-sensitive dye, Oregon green 488 BAPTA-1, that allows for rapidly screening neural activity of interest within a few hours that relates to certain behaviors. In this way, we found the correlation between Ca2+ activity and specific behaviors, such as approaching an object. Our work offers an effective method for recording neural activity in the claustrum and thus for rapidly screening any behavioral relevance of the claustrum in freely-behaving mice.
Collapse
Affiliation(s)
- Jing Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Wu-Shuang Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Hao-Ran DU
- Center for Neurointelligence, School of Medicine, Chongqing University
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University
| |
Collapse
|
30
|
张 帅, 武 健, 许 家, 党 君, 赵 毅, 侯 文, 徐 桂. [Effects of transcranial magneto-acoustic electrical stimulation on calcium signals in prefrontal nerve clusters]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:19-27. [PMID: 35231962 PMCID: PMC9927753 DOI: 10.7507/1001-5515.202107044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Transcranial magneto-acoustic electrical stimulation (TMAES) is a novel method of brain nerve regulation and research, which uses induction current generated by the coupling of ultrasound and magnetic field to regulate neural electrical activity in different brain regions. As the second special envoy of nerve signal, calcium plays a key role in nerve signal transmission. In order to investigate the effect of TMAES on prefrontal cortex electrical activity, 15 mice were divided into control group, ultrasound stimulation (TUS) group and TMAES group. The TMAES group received 2.6 W/cm 2 and 0.3 T of magnetic induction intensity, the TUS group received only ultrasound stimulation, and the control group received no ultrasound and magnetic field for one week. The calcium ion concentration in the prefrontal cortex of mice was recorded in real time by optical fiber photometric detection technology. The new object recognition experiment was conducted to compare the behavioral differences and the time-frequency distribution of calcium signal in each group. The results showed that the mean value of calcium transient signal in the TMAES group was (4.84 ± 0.11)% within 10 s after the stimulation, which was higher than that in the TUS group (4.40 ± 0.10)% and the control group (4.22 ± 0.08)%, and the waveform of calcium transient signal was slower, suggesting that calcium metabolism was faster. The main energy band of the TMAES group was 0-20 Hz, that of the TUS group was 0-12 Hz and that of the control group was 0-8 Hz. The cognitive index was 0.71 in the TMAES group, 0.63 in the TUS group, and 0.58 in the control group, indicating that both ultrasonic and magneto-acoustic stimulation could improve the cognitive ability of mice, but the effect of the TMAES group was better than that of the TUS group. These results suggest that TMAES can change the calcium homeostasis of prefrontal cortex nerve clusters, regulate the discharge activity of prefrontal nerve clusters, and promote cognitive function. The results of this study provide data support and reference for further exploration of the deep neural mechanism of TMAES.
Collapse
Affiliation(s)
- 帅 张
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 健康 武
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 家悦 许
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 君武 党
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 毅航 赵
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 文涛 侯
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 桂芝 徐
- 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
31
|
Park G, Shin W, Park Y, Chung S, Kim D, Kim J. Neural correlates of multidimensional motor outputs in an excitatory parafascicular-zona incerta circuit. Biochem Biophys Res Commun 2022; 591:102-109. [PMID: 35007833 DOI: 10.1016/j.bbrc.2021.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
The parafascicular nucleus (Pf) in medial thalamus is interconnected with prefrontal cortex and basal ganglia. Though much research has determined its importance in cognitive regulation of behaviour, its projections to regions in subthalamus remain less known. Such connections include those to zona incerta (ZI), located immediately dorsal to subthalamic nuclei (STN) regulating motor output, and whose role in a motor context is only beginning to be investigated. We thus examined circuits from parafascicular (Pf) thalamus to ZI, and its activity during locomotion and spontaneous behaviours in mice. We found that a distinct group of CaMKIIα-positive excitatory parafascicular neurons, separated from VGLUT2-positive excitatory neurons, project widely into ZI, more than adjacent STN. Our results from fibre photometry and decoding with general linear model (GLM) indicate that PF-ZI pathways do not specifically correlate with amount of locomotion or movement velocity, but instead show more specified activity during relative directional changes of movements observed in turning, sniffing behaviours. These results hint at the PF-ZI pathway having a distinct role in directing action specificity and have implications for subcortical bases in dimensional control of behaviours.
Collapse
Affiliation(s)
- Geunhong Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea; Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Wooyeon Shin
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yongjun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Sooyoung Chung
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
32
|
Zhou J, Li J, Papaneri AB, Kobzar NP, Cui G. Dopamine Neuron Challenge Test for early detection of Parkinson's disease. NPJ Parkinsons Dis 2021; 7:116. [PMID: 34916526 PMCID: PMC8677804 DOI: 10.1038/s41531-021-00261-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/21/2021] [Indexed: 11/08/2022] Open
Abstract
Diagnosing Parkinson's disease (PD) before the clinical onset proves difficult because the hallmark PD symptoms do not manifest until more than 60% of dopamine neurons in the substantia nigra pars compacta have been lost. Here we show that, by evoking a transient dopamine release and subsequently measuring the levels of dopamine metabolites in the cerebrospinal fluid and plasma, a hypodopaminergic state can be revealed when less than 30% of dopamine neurons are lost in mouse PD models. These findings may lead to sensitive and practical screening and diagnostic tests for detecting early PD in the high-risk population.
Collapse
Affiliation(s)
- Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jicheng Li
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Amy B Papaneri
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Nicholas P Kobzar
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
33
|
Lodder B, Lee SJ, Sabatini BL. Real-Time, In Vivo Measurement of Protein Kinase A Activity in Deep Brain Structures Using Fluorescence Lifetime Photometry (FLiP). Curr Protoc 2021; 1:e265. [PMID: 34661994 DOI: 10.1002/cpz1.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biochemical state of neurons, and of cells in general, is regulated by extracellular factors, including neurotransmitters, neuromodulators, and growth hormones. Interactions of an animal with its environment trigger neuromodulator release and engage biochemical transduction cascades to modulate synapse and cell function. Although these processes are thought to enact behavioral adaption to changing environments, when and where in the brain they are induced has been mysterious because of the challenge of monitoring biochemical state in real time in defined neurons in behaving animals. Here, we describe a method allowing measurement of activity of protein kinase A (PKA), an important intracellular effector for neuromodulators, in freely moving mice. To monitor PKA activity in vivo, we use a genetically targeted sensor (FLIM-AKAR) and fluorescence lifetime photometry (FLiP). This article describes how to set up a FLiP system and obtain robust recordings of net PKA phosphorylation state in vivo. The methods should be generally useful to monitor other pathways for which fluorescence lifetime reporters exist. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Building a FLiP system Basic Protocol 2: FLIM-AKAR viral injection and fiber implantation for FLiP measurement Basic Protocol 3: Performing measurements using FLiP.
Collapse
Affiliation(s)
- Bart Lodder
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Boston, Massachusetts
| | - Suk Joon Lee
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Montinaro C, Pisanello M, Bianco M, Spagnolo B, Pisano F, Balena A, De Nuccio F, Lofrumento DD, Verri T, De Vittorio M, Pisanello F. Influence of the anatomical features of different brain regions on the spatial localization of fiber photometry signals. BIOMEDICAL OPTICS EXPRESS 2021; 12:6081-6094. [PMID: 34745723 PMCID: PMC8547979 DOI: 10.1364/boe.439848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 05/30/2023]
Abstract
Fiber photometry is widely used in neuroscience labs for in vivo detection of functional fluorescence from optical indicators of neuronal activity with a simple optical fiber. The fiber is commonly placed next to the region of interest to both excite and collect the fluorescence signal. However, the path of both excitation and fluorescence photons is altered by the uneven optical properties of the brain, due to local variation of the refractive index, different cellular types, densities and shapes. Nonetheless, the effect of the local anatomy on the actual shape and extent of the volume of tissue that interfaces with the fiber has received little attention so far. To fill this gap, we measured the size and shape of fiber photometry efficiency field in the primary motor and somatosensory cortex, in the hippocampus and in the striatum of the mouse brain, highlighting how their substructures determine the detected signal and the depth at which photons can be mined. Importantly, we show that the information on the spatial expression of the fluorescent probes alone is not sufficient to account for the contribution of local subregions to the overall collected signal, and it must be combined with the optical properties of the tissue adjacent to the fiber tip.
Collapse
Affiliation(s)
- Cinzia Montinaro
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Marco Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Marco Bianco
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Francesco De Nuccio
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Dario Domenico Lofrumento
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Tiziano Verri
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
- Equally contributing authors
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Equally contributing authors
| |
Collapse
|
35
|
Ozbakir HF, Miller ADC, Fishman KB, Martins AF, Kippin TE, Mukherjee A. A Protein-Based Biosensor for Detecting Calcium by Magnetic Resonance Imaging. ACS Sens 2021; 6:3163-3169. [PMID: 34420291 DOI: 10.1021/acssensors.1c01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.
Collapse
|
36
|
Yamashita A, Moriya S, Nishi R, Kaminosono J, Yamanaka A, Kuwaki T. Aversive emotion rapidly activates orexin neurons and increases heart rate in freely moving mice. Mol Brain 2021; 14:104. [PMID: 34193206 PMCID: PMC8247171 DOI: 10.1186/s13041-021-00818-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/22/2021] [Indexed: 01/28/2023] Open
Abstract
The perifornical area of the hypothalamus has been known as the center for the defense response, or fight-or-flight response, which is characterized by a concomitant rise in arterial blood pressure, heart rate, and respiratory frequency. It is well established that orexin neurons, which are located in this region, play a critical role in this response. In this study, we further examined this role by recording orexin neuronal activity and heart rate in freely moving mice using an original dual-channel fiber photometry system in vivo. Analysis of orexin neuron activity in relation to autonomic responses to aversive stimuli revealed a rapid increase in neuronal activity just prior to changes in heart rate. In addition, we examined whether orexin neurons would be activated by a conditioned neutral sound that was previously associated with aversive stimulus. We show that the memory of the aversive stimulus activated orexin neurons and increased heart rate. Our data suggest that orexin neurons are a key component linking aversive emotions to autonomic defense response. Our data also suggest that targeting orexin neurons may enable treatment of psychiatric disorders associated with chronic stress and traumatic memories.
Collapse
Affiliation(s)
- Akira Yamashita
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544, Japan
| | - Shunpei Moriya
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544, Japan
| | - Ryusei Nishi
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544, Japan
| | - Jun Kaminosono
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544, Japan.
| |
Collapse
|
37
|
Jones-Tabah J, Mohammad H, Clarke PBS, Hébert TE. In vivo detection of GPCR-dependent signaling using fiber photometry and FRET-based biosensors. Methods 2021; 203:422-430. [PMID: 34022351 DOI: 10.1016/j.ymeth.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Genetically encoded fluorescent biosensors allow intracellular signaling dynamics to be tracked in live cells and tissues using optical detection. Many such biosensors are based on the principle of Förster resonance energy transfer (FRET), and we have recently developed a simple approach for in vivo detection of FRET-based biosensor signals using fiber photometry. By combining fiber photometry with FRET-based biosensors, we were able to track GPCR-dependent signaling pathways over time, and in response to drug treatments in freely-moving adult rats. Recording from specific neuronal populations, we can quantify intracellular signaling while simultaneously measuring behavioral responses. Our approach, described in detail here, uses adeno-associated viruses infused intracerebrally in order to express genetically-encoded FRET-based biosensors. After several weeks to allow biosensor expression, fiber photometry is used in order to record drug responses in real time from freely-moving adult rats. This methodology would be compatible with other mammalian species and with many biosensors. Hence, it has wide applicability across a spectrum of neuroscience research, ranging from the study of neural circuits and behavior, to preclinical drug development and screening.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Hanan Mohammad
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
38
|
Distinct Characteristics of Odor-evoked Calcium and Electrophysiological Signals in Mitral/Tufted Cells in the Mouse Olfactory Bulb. Neurosci Bull 2021; 37:959-972. [PMID: 33856645 PMCID: PMC8275716 DOI: 10.1007/s12264-021-00680-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Fiber photometry is a recently-developed method that indirectly measures neural activity by monitoring Ca2+ signals in genetically-identified neuronal populations. Although fiber photometry is widely used in neuroscience research, the relationship between the recorded Ca2+ signals and direct electrophysiological measurements of neural activity remains elusive. Here, we simultaneously recorded odor-evoked Ca2+ and electrophysiological signals [single-unit spikes and local field potentials (LFPs)] from mitral/tufted cells in the olfactory bulb of awake, head-fixed mice. Odors evoked responses in all types of signal but the response characteristics (e.g., type of response and time course) differed. The Ca2+ signal was correlated most closely with power in the β-band of the LFP. The Ca2+ signal performed slightly better at odor classification than high-γ oscillations, worse than single-unit spikes, and similarly to β oscillations. These results provide new information to help researchers select an appropriate method for monitoring neural activity under specific conditions.
Collapse
|
39
|
Paik SH, Lee SH, Kim JH, Kang SY, Phillips V Z, Choi Y, Kim BM. Multichannel near-infrared spectroscopy brain imaging system for small animals in mobile conditions. NEUROPHOTONICS 2021; 8:025013. [PMID: 34179215 PMCID: PMC8230091 DOI: 10.1117/1.nph.8.2.025013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Significance: We propose a customized animal-specific head cap and an near-infrared spectroscopy (NIRS) system to obtain NIRS signals in mobile small animals. NIRS studies in mobile small animals provide a feasible solution for comprehensive brain function studies. Aim: We aim to develop and validate a multichannel NIRS system capable of performing functional brain imaging along with a closed-box stimulation kit for small animals in mobile conditions. Approach: The customized NIRS system uses light-weight long optical fibers, along with a customized light-weight head cap to securely attach the optical fibers to the mouse. A customized stimulation box was designed to perform various stimuli in a controlled environment. The system performance was tested in a visual stimulation task on eight anesthetized mice and eight freely moving mice. Results: Following the visual stimulation task, we observed a significant stimulation-related oxyhemoglobin (HbO) increase in the visual cortex of freely moving mice during the task. In contrast, HbO concentration did not change significantly in the visual cortex of anesthetized mice. Conclusions: We demonstrate the feasibility of a wearable, multichannel NIRS system for small animals in a less confined experimental design.
Collapse
Affiliation(s)
- Seung-Ho Paik
- Korea University, College of Health Science, Global Health Technology Research Center, Seoul, Republic of Korea
- KLIEN Inc., Seoul, Republic of Korea
| | - Seung Hyun Lee
- Korea University, College of Health Science, Global Health Technology Research Center, Seoul, Republic of Korea
| | - Ju-Hee Kim
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Shin-Young Kang
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Zephaniah Phillips V
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Youngwoon Choi
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
| | - Beop-Min Kim
- Korea University, Department of Bio-Convergence Engineering, Seoul, Republic of Korea
- Korea University, Interdisciplinary Program in Precision Public Health, Seoul, Republic of Korea
| |
Collapse
|
40
|
Li A, Jing D, Dellarco DV, Hall BS, Yang R, Heilberg RT, Huang C, Liston C, Casey BJ, Lee FS. Role of BDNF in the development of an OFC-amygdala circuit regulating sociability in mouse and human. Mol Psychiatry 2021; 26:955-973. [PMID: 30992540 PMCID: PMC6883137 DOI: 10.1038/s41380-019-0422-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/17/2019] [Accepted: 04/03/2019] [Indexed: 01/29/2023]
Abstract
Social deficits are common in many psychiatric disorders. However, due to inadequate tools for manipulating circuit activity in humans and unspecific paradigms for modeling social behaviors in rodents, our understanding of the molecular and circuit mechanisms mediating social behaviors remains relatively limited. Using human functional neuroimaging and rodent fiber photometry, we identified a mOFC-BLA projection that modulates social approach behavior and influences susceptibility to social anxiety. In humans and knock-in mice with a loss of function BDNF SNP (Val66Met), the functionality of this circuit was altered, resulting in social behavioral changes in human and mice. We further showed that the development of this circuit is disrupted in BDNF Met carriers due to insufficient BDNF bioavailability, specifically during a peri-adolescent timeframe. These findings define one mechanism by which social anxiety may stem from altered maturation of orbitofronto-amygdala projections and identify a developmental window in which BDNF-based interventions may have therapeutic potential.
Collapse
Affiliation(s)
- Anfei Li
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, USA
| | - Deqiang Jing
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Danielle V Dellarco
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, USA
| | - Baila S Hall
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Ross T Heilberg
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Chienchun Huang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - B J Casey
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Multimode Optical Fibers for Optical Neural Interfaces. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33398843 DOI: 10.1007/978-981-15-8763-4_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Although multiphoton microscopy enables optical control and monitoring of neural activity with single cells resolution over a depth of several hundreds of micrometers, the scattering nature of the brain tissue requires implantable optical neural interfaces to access subcortical structures. If micro light-emitting devices (μLEDs) and solid-state waveguides represent important technological advancements for the field, multimodal optical fibers (MMFs) are still the most diffused tool in neuroscience labs to interface with deep regions of the brain. At a first glance, MMFs can be seen as very limited systems. However, new studies and discoveries in optics, photonics, and technological solutions for their application to neuroscience research have enabled applications of MMF where competing technologies fail. In this framework, the chapter starts with a description of optical neural interfaces based on MMF, with specific reference on recent works analyzing the performances of this approach to deliver and collect light from scattering tissue. The discussion then focuses on how peculiar features of MMFs can be exploited to obtain unconventional applications, including brain imaging through a single multimode fiber, multifunctional neural interfaces, and depth-resolved light delivery and functional fluorescence collection.
Collapse
|
42
|
Nuno-Perez A, Trusel M, Lalive AL, Congiu M, Gastaldo D, Tchenio A, Lecca S, Soiza-Reilly M, Bagni C, Mameli M. Stress undermines reward-guided cognitive performance through synaptic depression in the lateral habenula. Neuron 2021; 109:947-956.e5. [PMID: 33535028 PMCID: PMC7980092 DOI: 10.1016/j.neuron.2021.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
Weighing alternatives during reward pursuit is a vital cognitive computation that, when disrupted by stress, yields aspects of neuropsychiatric disorders. To examine the neural mechanisms underlying these phenomena, we employed a behavioral task in which mice were confronted by a reward and its omission (i.e., error). The experience of error outcomes engaged neuronal dynamics within the lateral habenula (LHb), a subcortical structure that supports appetitive behaviors and is susceptible to stress. A high incidence of errors predicted low strength of habenular excitatory synapses. Accordingly, stressful experiences increased error choices while decreasing glutamatergic neurotransmission onto LHb neurons. This synaptic adaptation required a reduction in postsynaptic AMPA receptors (AMPARs), irrespective of the anatomical source of glutamate. Bidirectional control of habenular AMPAR transmission recapitulated and averted stress-driven cognitive deficits. Thus, a subcortical synaptic mechanism vulnerable to stress underlies behavioral efficiency during cognitive performance.
Collapse
Affiliation(s)
- Alvaro Nuno-Perez
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Massimo Trusel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Arnaud L Lalive
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Anna Tchenio
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Claudia Bagni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
43
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
44
|
Conde Rojas I, Acosta-García J, Caballero-Florán RN, Jijón-Lorenzo R, Recillas-Morales S, Avalos-Fuentes JA, Paz-Bermúdez F, Leyva-Gómez G, Cortés H, Florán B. Dopamine D4 receptor modulates inhibitory transmission in pallido-pallidal terminals and regulates motor behavior. Eur J Neurosci 2020; 52:4563-4585. [PMID: 33098606 DOI: 10.1111/ejn.15020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022]
Abstract
Two major groups of terminals release GABA within the Globus pallidus; one group is constituted by projections from striatal neurons, while endings of the intranuclear collaterals form the other one. Each neurons' population expresses different subtypes of dopamine D2-like receptors: D2 R subtype is expressed by encephalin-positive MSNs, while pallidal neurons express the D4 R subtype. The D2 R modulates the firing rate of striatal neurons and GABA release at their projection areas, while the D4 R regulates Globus pallidus neurons excitability and GABA release at their projection areas. However, it is unknown if these receptors control GABA release at pallido-pallidal collaterals and regulate motor behavior. Here, we present neurochemical evidence of protein content and binding of D4 R in pallidal synaptosomes, control of [3 H] GABA release in pallidal slices of rat, electrophysiological evidence of the presence of D4 R on pallidal recurrent collaterals in mouse slices, and turning behavior induced by D4 R antagonist microinjected in amphetamine challenged rats. As in projection areas of pallidal neurons, GABAergic transmission in pallido-pallidal recurrent synapses is under modulation of D4 R, while the D2 R subtype, as known, modulates striato-pallidal projections. Also, as in projection areas, D4 R contributes to control the motor activity differently than D2 R. This study could help to understand the organization of intra-pallidal circuitry.
Collapse
Affiliation(s)
- Israel Conde Rojas
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | | | | | - Rafael Jijón-Lorenzo
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Sergio Recillas-Morales
- Faculty of Veterinary Medicine, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Benjamín Florán
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| |
Collapse
|
45
|
Schwabe MR, Taxier LR, Frick KM. It takes a neural village: Circuit-based approaches for estrogenic regulation of episodic memory. Front Neuroendocrinol 2020; 59:100860. [PMID: 32781195 PMCID: PMC7669700 DOI: 10.1016/j.yfrne.2020.100860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cognitive behaviors, such as episodic memory formation, are complex processes involving coordinated activity in multiple brain regions. However, much of the research on hormonal regulation of cognition focuses on manipulation of one region at a time or provides a single snapshot of how a systemic treatment affects multiple brain regions without investigating how these regions might interact to mediate hormone effects. Here, we use estrogenic regulation of episodic memory as an example of how circuit-based approaches may be incorporated into future studies of hormones and cognition. We first review basic episodic memory circuitry, rapid mechanisms by which 17β-estradiol can alter circuit activity, and current knowledge about 17β-estradiol's effects on episodic memory. Next, we outline approaches that researchers can employ to consider circuit effects in their estrogen research and provide examples of how these methods have been used to examine hormonal regulation of memory and other behaviors.
Collapse
Affiliation(s)
- Miranda R Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
46
|
Allostatic Changes in the cAMP System Drive Opioid-Induced Adaptation in Striatal Dopamine Signaling. Cell Rep 2020; 29:946-960.e2. [PMID: 31644915 PMCID: PMC6871051 DOI: 10.1016/j.celrep.2019.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023] Open
Abstract
Opioids are powerful addictive agents that alter dopaminergic influence
on reward signaling in medium spiny neurons (MSNs) of the nucleus accumbens.
Repeated opioid exposure triggers adaptive changes, shifting reward valuation to
the allostatic state underlying tolerance. However, the cellular substrates and
molecular logic underlying such allostatic changes are not well understood.
Here, we report that the plasticity of dopamine-induced cyclic AMP (cAMP)
signaling in MSNs serves as a cellular substrate for drug-induced allostatic
adjustments. By recording cAMP responses to optically evoked dopamine in brain
slices from mice subjected to various opioid exposure paradigms, we define
profound neuronal-type-specific adaptations. We find that opioid exposure pivots
the initial hyper-responsiveness of D1-MSNs toward D2-MSN dominance as
dependence escalates. Presynaptic dopamine transporters and postsynaptic
phosphodiesterases critically enable cell-specific adjustments of cAMP that
control the balance between opponent D1-MSN and D2-MSN channels. We propose a
quantitative model of opioid-induced allostatic adjustments in cAMP signal
strength that balances circuit activity. Muntean et al. examine how opioid exposure influences cyclic AMP (cAMP)
responses to dopamine in striatal medium spiny neurons (MSNs). They describe
allostatic adaptations in the processing of dopaminergic signals by D1-MSN and
D2-MSN populations as opioid administration progresses from acute exposure to
chronic use, and they define molecular elements contributing to the process.
Collapse
|
47
|
Yoshikawa T, Nakamura T, Yanai K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 2020; 178:750-769. [PMID: 32744724 DOI: 10.1111/bph.15220] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Histamine plays pleiotropic roles as a neurotransmitter in the physiology of brain function, this includes the maintenance of wakefulness, appetite regulation and memory retrieval. Since numerous studies have revealed an association between histaminergic dysfunction and diverse neuropsychiatric disorders, such as Alzheimer's disease and schizophrenia, a large number of compounds acting on the brain histamine system have been developed to treat neurological disorders. In 2016, pitolisant, which was developed as a histamine H3 receptor inverse agonist by Schwartz and colleagues, was launched for the treatment of narcolepsy, emphasising the prominent role of brain histamine on wakefulness. Recent advances in neuroscientific techniques such as chemogenetic and optogenetic approaches have led to remarkable progress in the understanding of histaminergic neural circuits essential for the control of wakefulness. In this review article, we summarise the basic knowledge about the histaminergic nervous system and the mechanisms underlying sleep/wake regulation that are controlled by the brain histamine system. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
48
|
Noked O, Levi A, Someck S, Amber-Vitos O, Stark E. Bidirectional Optogenetic Control of Inhibitory Neurons in Freely-Moving Mice. IEEE Trans Biomed Eng 2020; 68:416-427. [PMID: 32746022 DOI: 10.1109/tbme.2020.3001242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Optogenetic manipulations of excitable cells enable activating or silencing specific types of neurons. By expressing two types of exogenous proteins, a single neuron can be depolarized using light of one wavelength and hyperpolarized with another. However, routing two distinct wavelengths into the same brain locality typically requires bulky optics that cannot be implanted on the head of a freely-moving animal. METHODS We developed a lens-free approach for constructing dual-color head-mounted, fiber-based optical units: any two wavelengths can be combined. RESULTS Here, each unit was comprised of one 450 nm and one 638 nm laser diode, yielding light power of 0.4 mW and 8 mW at the end of a 50 micrometer multimode fiber. To create a multi-color/multi-site optoelectronic device, a four-shank silicon probe mounted on a microdrive was equipped with two dual-color and two single-color units, for a total weight under 3 g. Devices were implanted in mice expressing the blue-light sensitive cation channel ChR2 and the red-light sensitive chloride pump Jaws in parvalbumin-immunoreactive (PV) inhibitory neurons. The combination of dual-color units with recording electrodes was free from electromagnetic interference, and device heating was under 7°C even after prolonged operation. CONCLUSION Using these devices, the same cortical PV cell could be activated and silenced. This was achieved for multiple cells both in neocortex and hippocampus of freely-moving mice. SIGNIFICANCE This technology can be used for controlling spatially intermingled neurons that have distinct genetic profiles, and for controlling spike timing of cortical neurons during cognitive tasks.
Collapse
|
49
|
Jaramillo A, Williford K, Marshall C, Winder D, Centanni S. BNST transient activity associates with approach behavior in a stressful environment and is modulated by the parabrachial nucleus. Neurobiol Stress 2020; 13:100247. [PMID: 33344702 PMCID: PMC7739036 DOI: 10.1016/j.ynstr.2020.100247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Studies demonstrate a role for the bed nucleus of the stria terminalis (BNST) in modulating affective behavior and stress-reward integration. To explore the dynamic nature of in vivo BNST activity associated with anxiety-like behavior in a stress-inducing context, we utilized fiber photometry and detected BNST calcium transients in mice during the novelty-suppressed feeding task (NSFT). Phasic BNST activity emerged time-locked to novel object or food pellet approach during NSFT. The parabrachial nucleus (PBN) has a large input to the BNST and is thought to function as a danger signal, in arousal responses and in feeding behavior. To explore a potential role for the PBN as a contributor to BNST activity in NSFT, we investigated whether chemogenetic regulation of PBN activity altered the dynamic BNST response synchronized to NSFT approach behavior. We found that activation of the hM3D(Gq) DREADD in the PBN enhanced the observed transient signal in the BNST synchronized to the consummatory food approach, and was associated at the behavioral level with increased latency to consume food. Because the PBN has multiple efferent pathways, we next used a transsynaptic anterograde AAV-based strategy to express hM3D(Gq) specifically in PBN-innervated BNST (BNSTPBN) neurons in male and female mice. Activation of hM3D(Gq) in these BNSTPBN neurons increased latency to consume food in female, but not male mice. To further explore the population of BNST neurons contributing to phasic BNST activity associated with NSFT, we turned to PKCδ neurons in BNST. BNST(PKCδ) neurons are implicated in stress and food-related behavior, and we previously found that the expression of this kinase is regulated in the BNST by stress in a sex-dependent manner. Here, we demonstrate close apposition of CGRP, a marker of PBN terminals, adjacent to BNST(PKCδ) cells. Finally, we find that PKCδ-expressing BNST cells exhibit a large transient signal synchronized to the consummatory food approach similar to that seen with bulk BNST activity measures. Taken together these data demonstrate phasic BNST activity at a global and cell-specific level that is driven in part by PBN activity at the time of NSFT consummatory approach behavior.
Collapse
Affiliation(s)
- A.A. Jaramillo
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Dept. Mol. Phys. & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - K.M. Williford
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - C. Marshall
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Dept. Mol. Phys. & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - D.G. Winder
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Dept. Mol. Phys. & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Vanderbilt Kennedy Center, Nashville, TN, USA
- Department of Psychiatry & Behavioral Sciences, Nashville, TN, USA
- Department of Pharmacology, Nashville, TN, USA
- Corresponding author. 875A Light Hall, 2215 Garland Avenue, Nashville, TN, 37232, USA.
| | - S.W. Centanni
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Dept. Mol. Phys. & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Corresponding author. 865 Light Hall, 2215 Garland Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
50
|
Lecca S, Namboodiri VM, Restivo L, Gervasi N, Pillolla G, Stuber GD, Mameli M. Heterogeneous Habenular Neuronal Ensembles during Selection of Defensive Behaviors. Cell Rep 2020; 31:107752. [PMID: 32521277 PMCID: PMC7296347 DOI: 10.1016/j.celrep.2020.107752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 01/19/2023] Open
Abstract
Optimal selection of threat-driven defensive behaviors is paramount to an animal's survival. The lateral habenula (LHb) is a key neuronal hub coordinating behavioral responses to aversive stimuli. Yet, how individual LHb neurons represent defensive behaviors in response to threats remains unknown. Here, we show that in mice, a visual threat promotes distinct defensive behaviors, namely runaway (escape) and action-locking (immobile-like). Fiber photometry of bulk LHb neuronal activity in behaving animals reveals an increase and a decrease in calcium signal time-locked with runaway and action-locking, respectively. Imaging single-cell calcium dynamics across distinct threat-driven behaviors identify independently active LHb neuronal clusters. These clusters participate during specific time epochs of defensive behaviors. Decoding analysis of this neuronal activity reveals that some LHb clusters either predict the upcoming selection of the defensive action or represent the selected action. Thus, heterogeneous neuronal clusters in LHb predict or reflect the selection of distinct threat-driven defensive behaviors.
Collapse
Affiliation(s)
- Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland.
| | - Vijay M.K. Namboodiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Leonardo Restivo
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; INSERM, UMR-S 839, 75005 Paris, France.
| |
Collapse
|